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Abstract—We study the problem of communicating over a
single-source single-terminal network in the presence of an
adversary that may jam a single link of the network. If any one of
the edges can be jammed, the capacity of such networks is well
understood and follows directly from the connection between
the minimum cut and maximum flow in single-source single-
terminal networks. In this work we consider networks in which
some edges cannot be jammed, and show that determining the
network communication capacity is at least as hard as solving
the multiple-unicast network coding problem for the error-free
case. The latter problem is a long standing open problem.

I. INTRODUCTION

The problem of network error correction concerns reliable
transmission of information in a network with point-to-point
noiseless channels, in the presence of an adversary. The
adversary controls a set A of channels in the network and may
corrupt the information transmitted on these channels in an
arbitrary way. A network error correction code, first introduced
by Cai and Yeung [1], [2], is a network code that can correct
adversarial errors injected into the network from a set of
channels A, for all A ∈ A, where A is a prescribed collection
of subsets of channels that characterizes the strength of the
adversary. For single-source multicast, under the simplifying
assumption that all channels have unit capacity and A is the
collection of all subsets containing Z channels, [1], [2] show
that the cut-set bound is tight and characterizes the network
error correction capacity, which can be achieved by a linear
code. Under similar settings a variety of works, e.g., [3], [4],
[5], [6], [7], [8] have proposed different efficient capacity-
achieving codes and strategies.

However, under slightly more general settings such that
channel capacities are non-uniform or A has a more general
structure, much less is known about the network error correc-
tion capacity and achievable strategies. Kim et al. [9] study
a model in which channel capacities are arbitrary and show
that capacity upper bounds based on cut-set approaches are
generally not tight. [9] also constructs examples where linear
codes are insufficient to achieve capacity. Kosut et al. [10]
study a model in which the adversary controls network nodes
instead of channels, which is a special case of network error
correction for non-uniform A in the sense that A may include
subsets of different sizes. In this case [10] constructs an
example that linear codes are inadequate to achieve capacity.

Achievable strategies under this node adversary model are also
studied in [11], [12], [13], whereas determining the capacity
region remains an open problem. As opposed to the well
studied and well understood setting of [1], [2], the subtlety
of finding and achieving the network error correction capacity
in the more general settings above motivates us to examine
the fundamental complexity of the general network error
correction problem.

In this paper, we show that solving the single-unicast
network error correction problem with general A is as hard as
solving the multiple-unicast network coding problem (with no
error). Specifically, we convert any unit rate k-unicast network
coding problem into a corresponding network error correction
problem with a single source, a single sink, and a single
adversarial channel chosen from a subset of channels, such that
the unit rate k-unicast is feasible with zero error if and only if
the zero-error network error correction capacity is k. Under the
vanishing error model, we show a similar but slightly weaker
result. Specifically, in this case if the unit rate k-unicast is
feasible, then a network error correction rate of k is feasible.
Conversely, if a network error correction rate of k is feasible,
then the unit rate k-unicast is asymptotically feasible.

Our results add to the portfolios of problems that are
connected to multiple-unicast network coding, which is a long
standing open problem not presently known to be in P, NP
or undecidable [14], [15], [16], [17]. Previously, equivalence
results have been established, e.g., between multiple-unicast
network coding and multiple-multicast network coding [18],
[19], index coding [20], [21], secure network coding [22], [23]
and two-unicast network coding [24].

The remainder of the paper is structured as follows. In
Section II, we present the models and definitions of multiple-
unicast network coding and single-source single-sink network
error correction. In Section III and IV, we prove the reduction
from multiple-unicast to network error correction for the zero
error model and vanishing error model, respectively. Finally,
we conclude the paper in Section V.

II. MODELS

A. Multiple-unicast Network Coding

We model the network to be a directed graph G = (V, E),
where the set of vertices V represents network nodes and the
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set of edges E represents network channels. Each edge e ∈ E
has a capacity ce, which is the maximum number of bits1 that
can be transmitted on e in one transmission. An instance I =
(G,S, T , B) of the multiple-unicast network coding problem,
includes a network G, a set of source nodes S ⊂ V , a set of
terminal nodes T ⊂ V and an |S| by |T | requirement matrix
B. The (i, j)-th entry of B equals 1 if terminal j requires
the information from source i and equals 0 otherwise. We
assume that B is a permutation matrix and so each source is
paired with a single terminal. Let s(t) be the source that is
required by terminal t. Denote [n] , {1, .., dne}, then each
source s ∈ S is associated with a message, which is a rate Rs

random variable Ms uniformly distributed over [2nRs ]. The
messages for different sources are independent. A network
code of length n is defined as a set of encoding functions
φe for every e ∈ E and a set of decoding functions φt for
each t ∈ T . For each e = (u, v), the encoding function φe
is a function taking as input the random variables associated
with incoming edges of node u and the random variable Mu

if u ∈ S, and maps to values in [2nce ]. For each t ∈ T , the
decoding function φt maps all random variables associated
with the incoming edges of t, to a message M̂s(t) with values
in [2nRs(t) ].

A network code {φe, φt}e∈E,t∈T is said to satisfy a terminal
t under transmission (ms, s ∈ S) if M̂s(t) = ms(t) when
(Ms, s ∈ S) = (ms, s ∈ S). A network code is said to
satisfy the multiple-unicast network coding problem I with
error probability ε if the probability that all t ∈ T are simul-
taneously satisfied is at least 1 − ε. The probability is taken
over the joint distribution on random variables (Ms, s ∈ S).
Namely, the network code satisfies I with error probability ε
if

Pr
(Ms,s∈S)

{⋂
t∈T

t is satisfied under (Ms, s ∈ S)

}
≥ 1− ε

(1)

For an instance I of the multiple-unicast network coding
problem, rate R is said to be feasible if Rs = R, ∀s ∈ S, and
for any ε > 0, there exists a network code with sufficiently
large length that satisfies I with error probability at most ε.
Rate R is said to be feasible with zero error if Rs = R, ∀s ∈ S
and there exists a network code that satisfies I with zero error
probability. Rate R is said to be asymptotically feasible if for
any δ > 0, rate (1−δ)R is feasible. The capacity of I refers to
the supremum over all rates R that are asymptotically feasible
and the zero-error capacity of I refers to the supremum over
all rates R that are feasible with zero error. The given model
assumes all sources transmit information at equal rate. There
is no loss of generality in this assumption as a varying rate
source s can be modeled by several equal rate sources co-
located at s.

1For convenience we assume that the network channels transmit binary
symbols. Our results can be naturally extended to the general q-ary case.

B. Single-Source Single-Sink Network Error Correction

An instance Ic = (G, s, t,A) of the single-source single-
terminal network error correction problem includes a network
G, a source node s ∈ V , a terminal node t ∈ V and a collection
of subsets of channels A ⊂ 2E susceptible to errors. In this
problem the channels are not always reliable and an error
is said to occur in a channel if the output of the channel
is different from the input. More precisely, the output of a
channel e is the input signal superposed by an error signal re,
and we say there is an error on channel e if re 6= 0. For a subset
A ∈ A of channels, an A-error is said to occur if an error
occurs in every channel in A. For an instance Ic of the single-
source single-terminal network error correction problem, a
network code {φe, φt, }e∈E,t∈T is said to satisfy a terminal
t under transmission ms if M̂s = ms when Ms = ms, given
the occurrence of any error pattern r = (re, e ∈ E) that results
in an A-error, for all A ∈ A. A network code is said to satisfy
problem Ic with error probability ε if the probability that t
is satisfied is at least 1− ε. The probability is taken over the
distribution on the source message Ms.

For an instance Ic of the single-source single-terminal
network error correction problem, rate R is said to be feasible
if Rs = R and for any ε > 0, there exists a network code with
sufficiently large length that satisfies Ic with error probability
at most ε. Rate R is said to be feasible with zero error if
Rs = R and there exists a network code that satisfies Ic with
zero error probability. Rate R is said to be asymptotically
feasible if for any δ > 0, rate (1 − δ)R is feasible. The
capacity of Ic refers to the supremum over all rates R that
are asymptotically feasible and the zero-error capacity of Ic
refers to the supremum over all rates R that are feasible with
zero error.

Throughout the paper we denote by RA the set of all
possible error patterns r that result in A-errors, where A ∈ A.

III. REDUCTION FROM MULTIPLE-UNICAST TO NETWORK
ERROR CORRECTION: ZERO ERROR CASE

In this section we reduce the multiple-unicast network
coding problem (with no error) to the single-source single-
terminal network error correction problem with at most a
single adversarial channel. We start with the zero-error case.

Theorem 1. Given any multiple-unicast network coding prob-
lem I with source-destination pairs {(si, ti), i = 1, ..., k}, a
corresponding single-source single-sink network error correc-
tion problem Ic = (G, s, t,A) in which A includes sets with
at most one edge can be constructed as specified in Figure 1,
such that the zero-error capacity of Ic is k if and only if unit
rate is feasible with zero error in I.

Proof: The zero-error capacity of Ic is upper bounded by
k, because it is the min-cut from s to t.

“⇒” We show that the feasibility of a zero-error rate k in
Ic implies the feasibility of unit zero-error rate in I.

Suppose a zero-error rate k is achieved in Ic by a network
code with length n, and denote the source message by M , then
M is uniformly distributed over [2nk]. For any edge e ∈ E ,



Fig. 1: In the single-source single-terminal network error
correction problem Ic, the source s wants to communicate
with the terminal t. N is a general network with point-to-
point noiseless channels. All edges outside N (i.e., edges for
which at least one of its end-point does not belong to N ) have
unit capacity. There is at most one error in this network, and
this error can occur at any edge except {ai, bi, 1 ≤ i ≤ k}.
Namely, A includes all singleton sets of a single edge in the
network except {ai} and {bi}, i = 1, ..., k. Note that there are
k branches in total but only the first and the k-th branches are
drawn explicitly. The multiple-unicast network coding problem
I is defined on the network N , where the k source-destination
pairs are (si, ti), i = 1, ..., k, and all channels are error-free.

we denote by e(m, r) : [2nk]×RA → [2n] the signal received
on edge e when the source message equals m and the error
pattern r occurs in the network. When the context is clear, we
may denote e(m, r) simply by e.

Let b(m, r) = (b1(m, r), ..., bk(m, r)), then because the
edges b1, ..., bk form a cut-set from s to t, b(m, r) must be
injective with respect to m due to the zero error decodability
constraint. Formally, for two different messages m1 6= m2,
it follows from the zero error decodability constraint that
b(m1, r1) 6= b(m2, r2), ∀r1, r2 ∈ RA. Note that the
codomain of b is [2n]k, which has the same size as the set
of messages [2nk]. Therefore denote by b(m) , b(m,0),
then b(m) is a bijective function and b(m, r) = b(m),
∀r ∈ RA. Similarly a(m, r) = (a1(m, r), ..., ak(m, r)) is
also a bijective function of the message, regardless of the error
patterns.

For any e ∈ E , denote e(m) , e(m,0). For i =
1, ..., k, we claim that for any two messages m1,m2 ∈ [2nk]
such that ai(m1) 6= ai(m2), it follows that xi(m1) 6=
xi(m2), yi(m1) 6= yi(m2) and zi(m1) 6= zi(m2). Sup-
pose for contradiction that there exist m1,m2 such that
ai(m1) 6= ai(m2) and such that the claim is not true, i.e.,
xi(m1) = xi(m2) or yi(m1) = yi(m2) or zi(m1) = zi(m2).

First consider the case that xi(m1) = xi(m2). Because
of the one-to-one correspondence between m and a, there
exists a message m3 6= m1,m2 and such that a(m3) =
(a1(m1), ..., ai−1(m1), ai(m2), ai+1(m1), ..., ak(m1)). Then
xi(m1) = xi(m3) because by hypothesis xi(m1) = xi(m2).
Consider the following two scenarios. In the first sce-
nario, m1 is transmitted, and an error turns yi(m1) into
yi(m3); in the second scenario, m3 is transmitted, and an
error turns zi(m3) into zi(m1). Then the cut-set signals
a1, ..., ai−1, xi, yi, zi, ai+1, ..., ak are exactly the same in both
scenarios, and so it is impossible for t to distinguish m1 from
m3, a contradiction to the zero error decodability constraint.
Therefore xi(m1) 6= xi(m2). With a similar argument it
follows that yi(m1) 6= yi(m2) and zi(m1) 6= zi(m2), and
the claim is proved.

The claim above suggests that xi, yi and zi, as functions
of ai, are injective. They are also surjective functions because
the domain and codomain are both [2n]. Hence there are one-
to-one correspondences between ai, xi, yi and zi.

Next we show that for any two messages m1,m2, if
bi(m1) 6= bi(m2), then z′i(m1) 6= z′i(m2). Suppose for
contradiction that there exists m1 6= m2 such that bi(m1) 6=
bi(m2) and z′i(m1) = z′i(m2). Then if m1 is transmitted
and an error r1 turns xi(m1) into xi(m2), the node Bi

will receive the same signals as in the case that m2 is
transmitted and an error r2 turns yi(m2) into yi(m1). There-
fore bi(m1, r1) = bi(m2, r2). But, as shown above, because
bi(m1, r1) = bi(m1) and bi(m2, r2) = bi(m2), it follows
that bi(m1) = bi(m2), a contradiction. This suggests that if
z′i(m1) = z′i(m2) then bi(m1) = bi(m2) and therefore bi is a
function of z′i. The function is surjective because bi takes all
2n possible values. Then since the domain and the codomain
are both [2n], it follows that bi must be a bijective function of
z′i. With the same argument it follows that bi is also a bijective
function of xi.

Hence zi is a bijection of ai, ai is a bijection of xi, xi is
a bijection of bi, and bi is a bijection of z′i. Therefore for all
1 ≤ i ≤ k, zi is a bijection of z′i, and therefore unit rate is
feasible with zero error in I.

“⇐” Conversely, we show that the feasibility of the unit
zero-error rate in I implies the achievability of a zero-error
rate of k in Ic. A constructive scheme is shown in Figure
2. In Ic, the source lets M = (M1, ...,Mk), where the Mi’s
are i.i.d. uniformly distributed over [2n]. Let the network code
be ai(M) = xi(M) = yi(M) = zi(M) = z′i(M) = Mi,
i = 1, ..., k, and let node Bi, i = 1, ..., k, perform majority
decoding. It is straightforward to see that the scheme ensures
that bi(M) = Mi under all error patterns in RA. Therefore
rate k is feasible with zero error in Ic. This rate achieves
capacity since it is equal to the min-cut from s to t.

IV. REDUCTION FROM MULTIPLE-UNICAST TO NETWORK
ERROR CORRECTION: VANISHING ERROR CASE

In this section we show that a similar but slightly weaker
result holds under the vanishing error model.



Fig. 2: A scheme to achieve zero-error rate k in Ic given that
unit rate is feasible with zero error in I. M = (M1, ...,Mk)
and node Bi performs majority decoding.

Theorem 2. Given any multiple-unicast network coding prob-
lem I with source-destination pairs {(si, ti), i = 1, ..., k}, a
corresponding single-source single-sink network error correc-
tion problem Ic = (G, s, t,A) in which A includes sets with at
most a single edge can be constructed as specified in Figure
1, such that if unit rate is feasible in I then rate k is feasible
in Ic. Conversely, if rate k is feasible in Ic then unit rate is
asymptotically feasible in I.

We first give a simple lemma.

Lemma 1. Let X,Y, Z be three arbitrary random variables.
Then

I(X;Z) ≥ I(X;Y ) + I(Y ;Z)−H(Y ).

Proof:

I(X;Z) = H(Z)−H(Z|X)

≥ H(Z)−H(Z, Y |X)

= H(Z)−H(Y |X)−H(Z|Y,X)

≥ H(Z)−H(Y |X)−H(Z|Y )

= H(Y )−H(Y |X) +H(Z)−H(Z|Y )−H(Y )

= I(X;Y ) + I(Y ;Z)−H(Y )

In the following we prove Theorem 2.
“⇒” We first show the feasibility of rate k in Ic implies

the asymptotic feasibility of unit rate in I.
We will take the following path. In Ic, we apply the

network code that achieves rate k with message uniformly
distributed over a selected subset of [2nk]. Then we show
that for i = 1, ..., k, this induces a large mutual information
between random variables ai and bi, between bi and z′i, and
between zi and ai. Hence it implies a large mutual information

between zi and z′i and finally we show that this implies the
asymptotic feasibility of unit rate in I.

Step 1: Select a subset of messages.
Suppose in Ic a rate of k is achieved by a network code with

length n and with a probability of error ε. Let M be the source
message uniformly distributed over M = [2kn] and let M̂ be
the output of the decoder at the terminal. Partition M into
good and bad messages Mg +Mb in the way that m ∈Mg

if the network code satisfies t under transmission m, i.e., the
terminal decodes successfully M̂ = m when M = m for all
r ∈ RA. Therefore if m ∈ Mb then there exists r ∈ RA
such that M̂ 6= m if M = m and r occurs, i.e., r results in a
decoding error. By the hypothesis on the probability of error
it follows that |Mb| ≤ 2knε.

For i = 1, ..., k, let xi(m, r) : M × RA → [2n] be
the signal received from channel xi when m is transmit-
ted by the source and the error pattern r happens. Let
xi(m) = xi(m,0), x(m, r) = (x1(m, r), ..., xk(m, r))
and x(m) = (x1(m), ..., xk(m)). We define functions
ai, bi, yi, zi, z

′
i,a, b,y, z, z

′ in a similar way.

Lemma 2. There exists M◦ ⊂ Mg such that for any
m1,m2 ∈ M◦, m1 6= m2, it follows that a(m1) 6= a(m2),
b(m1) 6= b(m2) and z′(m1) 6= z′(m2), and such that
|M◦| ≥ 2kn(1− ε′), where ε′ = 4ε.

Proof: As a and b are cut-set signals, for any m1,m2 ∈
Mg , m1 6= m2, it follows that a(m1) 6= a(m2) and b(m1) 6=
b(m2). Setting Bg = {b(m) : m ∈Mg}, it holds that |Bg| ≥
(1 − ε)2kn, and setting Bb = [2n]k\Bg , it holds that |Bb| ≤
2knε.

For any m ∈ Mg , it is said to be a poor message if there
exists another m′ ∈Mg such that z′(m) = z′(m′). Consider
an arbitrary poor message m1. By definition there exists
m2 ∈ Mg , m2 6= m1, such that z′(m1) = z′(m2). Since
b(m1) 6= b(m2), there exists j such that bj(m1) 6= bj(m2).
Let r1 be the error pattern that changes the signal on xj
to xj(m2), and let r2 be the error pattern that changes the
signal on yj to yj(m1). Then if m1 is sent and r1 happens,
node Bj will receive the same inputs as in the situation
that m2 is sent and r2 happens. Therefore bj(m1, r1) =
bj(m2, r2) and it follows that either bj(m1, r1) 6= bj(m1)
or bj(m2, r2) 6= bj(m2). In the former case, the tu-
ple of signals (b1(m1, r1), ..., bj(m1, r1), ..., bk(m1, r1)) =
(b1(m1), ..., bj(m1, r1), ..., bk(m1)) will be decoded by the
terminal to message m1 (because by hypothesis m1 ∈ Mg ,
which is decodable under any error r ∈ RA). It is therefore
an element of Bb as it does not equal b(m1). Similarly, in
the latter case, (b1(m2, r2), ..., bj(m2, r2), ..., bk(m2, r2)) =
(b1(m2), ..., bj(m2, r2), ..., bk(m2)) will be decoded by the
terminal to message m2 and is an element of Bb. For ẑ ∈
[2n]k, letM(ẑ′) be the set of messages {m ∈Mg : z′(m) =
ẑ′}. Then if |M(ẑ′)| > 1, by the argument above, there are
at least

⌊
|M(ẑ′)|

2

⌋
≥ |M(ẑ′)|

3 elements of Bb, such that each
of them will be decoded by the terminal to some message



m ∈M(ẑ′). Let Mpoor be the set of all poor messages, then

|Mpoor| =
∑

ẑ′:|M(ẑ′)|>1

|M(ẑ′)| ≤ 3|Bb| ≤ 3ε · 2kn.

Let M◦ = Mg\Mpoor, then |M◦| = |Mg| − |Mpoor| ≥
(1− ε′)2kn, where ε′ = 4ε. This proves the assertion.

Let A◦ = {a(m)|m ∈ M◦} and A× = [2n]k\A◦,
then |A◦| = |M◦| ≥ (1 − ε′)2kn since by Lemma 2,
a(m1) 6= a(m2) for m1,m2 ∈ M◦,m1 6= m2. Therefore
|A×| ≤ 2knε′. Similarly let B◦ = {b(m)|m ∈ M◦} and
B× = [2n]k\B◦, then |B×| ≤ 2knε′. For i = 1, ..., k , let
A◦i = {ai(m)|m ∈ M◦}, then |A◦| ≥ (1 − ε′)2kn implies
that |A◦i | ≥ (1 − ε′)2n. For âi ∈ A◦i , let M(âi) = {m ∈
M◦ : ai(m) = âi} and define N(âi) = |M(âi)|. Furthermore
define A◦i,l = {âi ∈ A◦i |N(âi) ≥ (1− lε′)2(k−1)n}.

We show that the size of A◦i,l is large. Consider any âi ∈
A◦i \A◦i,l, then by definition |{(a1, ..., ak) ∈ A◦ : ai = âi}| <
(1 − lε′)2(k−1)n. And because |{(a1, ..., ak) ∈ [2n]k : ai =
âi}| = 2(k−1)n, there are at least lε′ · 2(k−1)n elements of A×
such that their i-th entry equals to âi. Therefore |A◦i \A◦i,l| ·
lε′ · 2(k−1)n ≤ |A×| ≤ 2knε′, and |A◦i \A◦i,l| ≤ 2n/l. So
|A◦i,l| ≥ |A◦i | − 2n/l ≥ (1− ε′ − 1/l)2n. Define B◦i , B◦i,l, Z ′◦i
and Z ′◦i,l similarly, then it follows from the same argument that
|B◦i,l|, |Z ′◦i,l| ≥ (1− ε′ − 1/l)2n.

Step 2: Connect ai and bi.
Let M◦ be the random variable that is uniformly distributed

over M◦. In the following we show that if M◦ is the source
message then I(ai; bi)/n→ 1 as ε→ 0, i = 1, ..., k. We start
by lower bounding the entropy H(bi). Consider any b̂i ∈ B◦i,l,
then

Pr{bi = b̂i} =
N(b̂i)

|M◦|
≥ (1− lε′)2(k−1)n

2kn
=

1− lε′

2n
(2)

Pr{bi = b̂i} =
N(b̂i)

|M◦|
≤ 2(k−1)n

(1− ε′)2kn
=

1

2n(1− ε′)
(3)

Therefore,

H(bi) = −
∑

b̂i∈B◦i

Pr{b̂i} log(Pr{b̂i})

≥ −
∑

b̂i∈B◦i,l

Pr{b̂i} log(Pr{b̂i})

(a)

≥ −|B◦i,l| ·
1− lε′

2n
· log

(
1

2n(1− ε′)

)
≥
(
1− ε′ − 1

l

)
2n · 1− lε

′

2n
· log(2n(1− ε′))

=

(
1− ε′ − 1

l

)
(1− lε′)(n+ log(1− ε′)) (4)

where (a) is due to (2) and (3). Similarly it follows that,

H(ai) ≥
(
1− ε′ − 1

l

)
(1− lε′)(n+ log(1− ε′)) (5)

H(z′i) ≥
(
1− ε′ − 1

l

)
(1− lε′)(n+ log(1− ε′)), (6)

In the next step we upper bound H(bi|ai). Recall that
M(âi) = {m ∈ M◦ : ai(m) = âi}, we first prove a useful
lemma.

Lemma 3. Suppose {bi(m) : m ∈M(âi)} = {b̂(1)i , ..., b̂
(L)
i },

then there exist (L − 1)N(âi) distinct elements of B× such
that each of them will be decoded by the terminal to some
message m ∈M(âi).

Proof: Consider arbitrary âi ∈ A◦i , by hypothesis there
exist L messages m1, ...,mL ∈ M(âi) such that bi(mj) =

b̂
(j)
i , j = 1, ..., L. For j = 1, ..., L, let rj be the error pattern

that changes the signal on z′i to be z′i(mj). Then if an arbitrary
message m0 ∈ M(âi) is transmitted by the source and rj
happens, the node Bi will receive the same inputs as in the
situation that mj is sent and no error happens. Therefore
bi(m0, rj) = b̂

(j)
i , and so b(m0, rj) takes L distinct values

for j = 1, .., L. Since m0 ∈M◦ is decodable under any error
pattern r ∈ RA, it follows that b(m0, rj) will be decoded by
the terminal to m0 for all j = 1, ..., L. Among these L values,
i.e., {b(m0, rj), j = 1, ..., L}, only one is equal to b(m0), and
the remaining L − 1 of them are elements of B×. Sum over
all m0 ∈M(âi) and the assertion is proved.

Partition A◦i,l into A◦i,L=1+A◦i,L>1, such that every element
of A◦i,L=1 has a corresponding L = 1 as defined in Lemma
3. Then it follows from Lemma 3 that:

|A◦i,L>1| · (1− lε′) · 2(k−1)n ≤ |B×| ≤ 2knε′

and so

|A◦i,L>1| ≤
ε′ · 2n

1− lε′
. (7)

We are ready to upper bound H(bi|ai).

H(bi|ai) = −
∑

âi∈A◦i

Pr{âi}
∑

b̂i∈B◦i

Pr{b̂i|âi} log Pr{b̂i|âi}

≤ I1 + I2 + I3, (8)

where

I1 = −
∑

âi∈A◦i \A◦i,l

Pr{âi}
∑

b̂i∈B◦i

Pr{b̂i|âi} log Pr{b̂i|âi}

I2 = −
∑

âi∈A◦i,L>1

Pr{âi}
∑

b̂i∈B◦i

Pr{b̂i|âi} log Pr{b̂i|âi}

I3 = −
∑

âi∈A◦i,L=1

Pr{âi}
∑

b̂i∈B◦i

Pr{b̂i|âi} log Pr{b̂i|âi}

We now bound I1, I2 and I3 respectively.

I1 ≤
∑

âi∈A◦i \A◦i,l

Pr{âi} log |2n|

= n
∑

âi∈A◦i \A◦i,l

Pr{âi}

≤ n
|M◦| −

∑
âi∈A◦i,l

N(âi)

|M◦|



≤ n

(
1−
|A◦i,l| · (1− lε′)2(k−1)n

|M◦|

)

≤ n
(
1− (1− 1/l − ε′)2n(1− lε′)2(k−1)n

2kn

)
< (1/l + lε′)n. (9)

I2 ≤
∑

âi∈A◦i,L>1

Pr{âi} log |2n|

= n
∑

âi∈A◦i,L>1

Pr{âi}

≤ n |Ai,L>1|2(k−1)n

2kn(1− ε′)
(b)

≤ ε′

(1− ε′)(1− lε′)
n, (10)

where (b) follows from (7). Finally, by definition if âi ∈
A◦i,L=1, then there is a unique b̂i ∈ B◦i such that for all
messages m ∈ M(â), it follows that bi(m) = b̂i. Therefore
I3 = 0. Substituting (10) and (9) into (8) we have

H(bi|ai) <
(
1

l
+ lε′

)
n+

ε′

(1− ε′)(1− lε′)
n.

Together with (4), it follows

I(ai; bi) >

(
1− ε′ − 1

l

)
(1− lε′)(n+ log(1− ε′))

−
(
1

l
+ lε′

)
n− ε′

(1− ε′)(1− lε′)
n. (11)

Step 3: Connect z′i and bi.
Next we show that I(bi; z′i)/n→ 1, as ε→ 0, n→∞, for

i = 1, ..., k, by upper bounding H(z′i|bi). We first make some
useful observations.

Lemma 4. Let M(ẑ′i) = {m ∈ M◦ : z′i(m) = ẑ′i}, then
for any m1,m2 ∈ M(ẑ′i) such that bi(m1) 6= bi(m2), there
exists an element of B× that will be decoded by the terminal
to either m1 or m2.

Proof: Consider any m1,m2 ∈ M(ẑ′i) such that
bi(m1) 6= bi(m2). Let r1 be the error pattern that changes
the signal on xi to be xi(m2), and let r2 be the er-
ror pattern that changes the signal on yi to be yi(m1).
Then if m1 is transmitted by the source and r1 happens,
the node Bi will receive the same inputs as in the sit-
uation that m2 is transmitted and r2 happens. Therefore
bi(m1, r1) = bi(m2, r2), and so either bi(m1, r1) 6= bi(m1)
or bi(m2, r2) 6= bi(m2) because by hypothesis bi(m1) 6=
bi(m2). Consider the first case that bi(m1, r1) 6= bi(m1),
then the tuple of signals (b1(m1, r1), ..., bk(m1, r1)) =
(b1(m1), ..., bi(m1, r1), ..., bk(m1)) will be decoded by
the terminal to message m1 because by hypothesis
m1 ∈ M◦ which is decodable under any error pat-
tern r ∈ RA. Therefore it is an element of B× since
it does not equals b(m1). Similarly in the latter case,
b1(m2, r2) 6= b1(m2), then (b2(m2, r2), ..., bk(m2, r2)) =

(b2(m2), ..., bi(m2, r2), ..., bk(m2)) is an element of B× and
will be decoded by the terminal to m2. Therefore in either
case we find an element of B× that will be decoded to either
m1 or m2.

Lemma 5. LetM(ẑ′i, b̂i) = {m ∈M◦ : z′i(m) = ẑ′i, bi(m) =
b̂i}, b̂i,ẑ′i = argmaxb̂i∈B◦i

|M(ẑ′i, b̂i)| and N(ẑ′i) = |M(ẑ′i)|,
then there are at least 1

2 (N(ẑ′i) − |M(ẑ′i, b̂i,ẑ′i)|) distinct
elements of B× that will be decoded by the terminal to some
messages in M(ẑ′i).

Proof: Let W := M(ẑ′i), and we describe an iterative
procedure as follow. Pick arbitrary m1,m2 ∈ W such that
bi(m1) 6= bi(m2), and then delete them from W and repeat
until there does not exist such m1,m2. By Lemma 4, each pair
of elements deleted fromW will generate a distinct element of
B×, which will be decoded by the terminal to either m1 or m2.
After the iterative procedure terminates, it follows that |W| ≤
|M(ẑ′i, b̂i,ẑ′i)|, because otherwise there must exist m1,m2 ∈
W such that bi(m1) 6= bi(m2). Therefore at least N(ẑ′i) −
|M(ẑ′i, b̂i,ẑ′i)| elements are deleted and the lemma is proved.

We are now ready to upper bound H(z′i|bi). Recall that
Z ′◦i = {z′i(m) : m ∈M◦}. We have,

H(bi|z′i) = −
∑

ẑ′i∈Z′◦i

Pr{ẑ′i}
∑

b̂i∈B◦i

Pr{b̂i|ẑ′i} log Pr{b̂i|ẑ′i}

= I4 + I5, (12)

where

I4 = −
∑

ẑ′i∈Z′◦i

Pr{ẑ′i}Pr{b̂i,ẑ′i |ẑ
′
i} log Pr{b̂i,ẑ′i |ẑ

′
i}

<
∑

ẑ′i∈Z′◦i

Pr{ẑ′i} ≤ 1 (13)

and

I5 = −
∑

ẑ′i∈Z′◦i

Pr{ẑ′i}
∑

b̂i 6=b̂i,ẑ′
i

Pr{b̂i|ẑ′i} log Pr{b̂i|ẑ′i}

≤
∑

ẑ′i∈Z′◦i

Pr{ẑ′i}
∑

b̂i 6=b̂i,ẑ′
i

Pr{b̂i|ẑ′i} log |2kn|

= kn
∑

ẑ′i∈Z′◦i

∑
b̂i 6=b̂i,ẑ′

i

Pr{ẑ′i, b̂i}

= kn
∑

ẑ′i∈Z′◦i

N(ẑ′i)− |M(ẑ′i, b̂i,ẑ′i)|
|M◦|

≤ kn

2kn(1− ε′)
∑

ẑ′i∈Z′◦i

(N(ẑ′i)− |M(ẑ′i, b̂i,ẑ′i)|)

(c)

≤ kn · 2|B×|
2kn(1− ε′)

=
kn · 2 · ε′ · 2kn

2kn(1− ε′)
=

2kε′

1− ε′
n, (14)



where (c) follows from Lemma 5. Substituting (13) and (14)
to (12) we have

H(bi|z′i) ≤ 1 +
2kε′

1− ε′
n. (15)

Step 4: Connect ai and zi.
Finally we discuss the connection between ai and zi. We

may assume that zi = ai without loss of generality in the
following sense. For every network code that achieves rate
k with error probability ε in Ic, we can modify it slightly
to obtain a new code such that zi = ai, and such that the
code on all other edges and at the terminal are the same as
the original code. This modification is feasible because the
encoding function zi of the original code is a function of ai,
and so if we let zi = ai, then the node si, i = 1, .., k, always
has enough information to reproduce the original network
code. Since from the perspective of the terminal, the modified
code is the same as the original code, it also achieves rate k
with error probability ε in Ic. Hence,

I(ai; zi) = H(ai). (16)

Step 5: Connect zi and z′i.
By (11), (15), (16) and Lemma 1, we have

I(zi; z
′
i) ≥ I(ai; zi) + I(ai; bi) + I(bi; z

′
i)−H(ai)−H(bi)

= I(ai; bi) + I(bi; z
′
i)−H(bi)

= I(ai; bi)−H(bi|z′i)

>

(
1− ε′ − 1

l

)
(1− lε′)(n+ log(1− ε′))

−
(
1

l
+ lε′

)
n− ε′

(1− ε′)(1− lε′)
n

− 1− 2kε′

1− ε′
n. (17)

Recall that (17) is obtained under the assumption that the
source message is uniformly distributed over M◦, and hence
a is uniformly distributed over A◦. Therefore the random
variables {a1(M◦), ..., ak(M◦)} are not independent. Now we
consider the case that a is uniformly distributed over [2n]k

and the network code is the same as before. Specifically, the
decoding function and the encoding functions at all edges
except a1, ..., ak are the same as the network code that
achieves rate k with error probability ε in Ic. We are interested
in the mutual information between zi and z′i under this setting
where the random variables {a1, ..., ak} are independent. Let
a ← [2n]k denote that the distribution of a is uniform over
[2n]k,

Ia←[2n]k(zi; z
′
i) = Pr

a←[2n]k
{a ∈ A◦}Ia←[2n]k(zi; z

′
i|a ∈ A◦)

+ Pr
a←[2n]k

{a ∈ A×}Ia←[2n]k(zi; z
′
i|a ∈ A×). (18)

Note that

Ia←[2n]k(zi; z
′
i|a ∈ A◦) = Ia←A◦(zi; z

′
i) = I(zi; z

′
i), (19)

which is exactly the result we computed in (17). And

Pr
a←[2n]k

{a ∈ A◦} = |A◦|/2kn ≥ (1− ε′). (20)

Therefore by (19) and (20), Ia←[2n]k(zi; z
′
i) ≥ (1−ε′)I(zi; z′i).

Then by (17), for any ε1 > 0, by first choosing a sufficiently
large l and then a sufficiently small ε and a sufficiently large
n, it follows that Ia←[2n]k(zi; z

′
i)/n > 1 − ε1, i = 1, ..., k.

Hence unit rate is asymptotically feasible in I by the channel
coding theorem [25]. This completes the proof of the first part
of the theorem.

“⇐”. Conversely, we show that if unit rate is feasible in I,
then rate k is feasible in Ic. Again we use the constructive
scheme in Figure 2. In Ic, the source lets M = (M1, ...,Mk),
where the Mi’s are i.i.d. uniformly distributed over [2n]. Let
the network code be ai(M) = xi(M) = yi(M) = zi(M) =
z′i(M) = Mi, i = 1, ..., k, and let node Bi, i = 1, ..., k
performs majority decoding. The terminal t will not decode
an error as long as the multiple-unicast instance I does not
commit an error. This happens with probability at least 1− ε,
which implies the feasibility of rate k in Ic.

V. CONCLUSION

We summarize the results of this paper in Fig. 3 which
expresses the possible connections between the feasibility of
a general multiple-unicast network coding instance I and its
reduced single-unicast network error correction instance Ic.
Our results present an equivalence between multiple-unicast
and network error correction under zero-error communication.
Namely, determining the feasibility of zero-error unit rate in
I is equivalent to determining the feasibility of zero-error rate
k in Ic. This is expressed in Fig. 3 by the fact that the two
states in the first row are connected by a single solid edge and
there are no other edges connected to these two states.

For the vanishing error model, however, the implication of
our results are more involved. In our reduction there is a slight
slackness, which gives rise to the two dashed lines in Fig. 3.
For example, consider the case that unit rate is feasible (but not
with zero error) in I. Then it follows that rate k is feasible (but
not with zero error) in Ic. This fact is expressed by the sole
solid line leaving the state that unit rate is feasible (but not with
zero error) in I. However, if rate k is feasible (but not with
zero error) in Ic, then there are potentially two possibilities:
(a) that unit rate is feasible (but not with zero error) in I; and
(b) that unit rate is asymptotically feasible (but not exactly
feasible) in I. Option (a) is represented by a solid line, as
indeed we have observed instance I with a corresponding Ic
that fits this setting. Option (b) is represented by a dashed
line, as on one the one hand it has not been ruled out by
our analysis, but on the other hand we are not aware of how
to construct instances I with a corresponding Ic that fit this
setting.

All in all, under the vanishing error model, the two dashed
lines in Fig. 3 do not allow us to directly determine the
feasibility of I based on the feasibility of Ic. Nevertheless,
we may consider the following problem on I which can be



Fig. 3: Equivalence between multiple-unicast and network error correction under the construction of Fig. 1. In our reduction,
given an instance I of the multiple-unicast network coding problem, we construct an instance Ic of the single-unicast network
error correction problem. This figure expresses our current understanding of the relation between achievability in I and Ic. A
solid line between two states means that there exist instances of I and Ic with the corresponding achievability. If there is no
line between two states, there do not exist instances of I and Ic with the corresponding achievability. A dashed line between
two states means that whether there is a solid line between the two states or not is still an open problem.

solved by the study of Ic using our results: Given an instance
I, partially determine between the three possible settings in
the following manner: if unit rate is feasible (but not with
zero error) in I, answer yes; if unit rate is not asymptotically
feasible in I, answer no; if unit rate is asymptotically feasible
but not exactly feasible in I, then any answer is considered
correct. By our results, answering yes if and only if rate k
is feasible (but not with zero error) in Ic solves the problem
above. Whether the partial distinction problem above on I is a
difficult one (compared to the standard feasibility of multiple-
unicast network coding) is yet to be established.

Finally we note that our reduction and analysis in the
paper consider the case that the connections between source
destination pairs in I have unit rate. Our reduction can be
adapted to connections with different rates.
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