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Abstract—Regenerating codes (RCs) can significantly reduce
the repair-bandwidth of distributed storage networks. Initially,
the analysis of RCs was based on the assumption that during
the repair process, the newcomer does not distinguish (among
all surviving nodes) which nodes to access, i.e., the newcomer
is oblivious to the set of helpers being used. Such a scheme is
termed the blind repair (BR) scheme. Nonetheless, it is intuitive
in practice that the newcomer should choose to access only those
“good” helpers. In this paper, a new characterization of the
effect of choosing the helper nodes in terms of the storage-
bandwidth tradeoff is given. Specifically, answers to the following
fundamental questions are given: Under what conditions does
proactively choosing the helper nodes improve the storage-
bandwidth tradeoff? Can this improvement be analytically quan-
tified?

This paper answers the former question by providing a nec-
essary and sufficient condition under which optimally choosing
good helpers strictly improves the storage-bandwidth tradeoff.
To answer the latter question, a low-complexity helper selection
solution, termed the family repair (FR) scheme, is proposed and
the corresponding storage/repair-bandwidth curve is character-
ized. For example, consider a distributed storage network with
60 total number of nodes and the network is resilient against
50 node failures. If the number of helper nodes is10, then
the FR scheme and its variant demonstrate27% reduction in
the repair-bandwidth when compared to the BR solution. This
paper also proves that under some design parameters, the FR
scheme is indeed optimal among all helper selection schemes.
An explicit construction of an exact-repair code is also proposed
that can achieve the minimum-bandwidth-regenerating point of
the FR scheme. The new exact-repair code can be viewed as a
generalization of the existingfractional repetition code.

Index Terms—Distributed storage, regenerating codes, family
repair schemes, helper nodes, generalized fractional repetition
codes, network coding

I. I NTRODUCTION

T HE need for storing very large amounts of data reliably is
one of the major reasons that has pushed for distributed

storage systems. Examples of distributed storage systems
include data centers [6] and peer-to-peer systems [2], [18].
One way to protect against data loss is by replication coding,
i.e, if a disk in the network fails, it can be replaced and its
data can be recovered from a replica disk. Another way is
to use maximum distance separable (MDS) codes. Recently,
regenerating codes (RCs) and its variants [4], [15], [19], [24]
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have been used to further reduce the repair-bandwidth of MDS
codes.

One possible mode of operation is to let thenewcomer, the
node that replaces the failed node,alwaysaccess/connect to all
the remaining nodes. On the other hand, under some practical
constraints we may be interested in letting the newcomer
communicate with only a subset of the remaining nodes
[12], termed thehelpers. For example, reducing the number
of helpers decreases I/O overhead during repair and thus
mitigates one of the performance bottlenecks in cloud stor-
age systems. In the original storage versus repair-bandwidth
analysis of RCs [4], it is assumed that the newcomer does
not distinguish/choose its helpers. We term such a solution
the blind repair (BR) scheme.Nonetheless, it is intuitive that
the newcomer should choose to access only those “good”
helpers of the remaining nodes. In fact, this idea of selecting
good helpers exists even in replication codes, the simplest
redundancy technique in the earliest literature of distributed
storage systems.

To illustrate this, we consider a storage network with4
nodes numbered from1 to 4. Suppose that we would like
to protect against one node failure by replication. To that end,
we first divide the file into two fragments, fragmentsA andB,
and we store fragmentA in node1 and fragmentB in node2.
Each fragment is replicated once by storing a copy of fragment
A in node3 and a copy of fragmentB in node4. If any one
of the four nodes fails, then we can retrieve the entire file
by accessing the intact fragmentsA andB in the remaining
three nodes. The repair process of this replication scheme is
also straightforward. Say node4 fails, the newcomer simply
accesses node2 and restores fragmentB. We observe that the
newcomer only accesses the good helper (the one that stores
the lost fragment) in this replication scheme. In this scheme,
each node stores half of the file, and during the repair process,
the newcomer accesses1 helper node and communicates half
of the file. For comparison, if we apply the analysis of [4]
(also see our discussion in the next paragraph), we will see
that if we use RCs to protect against one node failure, each
node has to store the whole file and during the repair process,
the newcomer accesses1 helper and communicates the entire
file. The simplest replication code is twice more efficient than
RCs in this example.1

1One may think that this performance improvement over the blind repair
(BR) scheme [4] is due to that the parameter values(n, k, d) = (4, 3, 1)
are beyond what is originally considered for the regenerating codes (which
requiresk ≤ d). In Appendix A and Section III, we provide other examples
with (n, k, d) = (6, 3, 3) and(6, 4, 4), respectively, which show that a good
helper selection can strictly outperform the BR solution in[4] for k ≤ d as
well.
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The reason why the replication code is the superior choice in
the above example is that it only chooses the good helpers dur-
ing the repair process, while the analysis in [4] assumes a blind
helper selection.2 To illustrate this, suppose the newcomer does
not choose good helper nodes but chooses the helpers blindly.
One possibility is as follows. Suppose node2 fails first, and
we let the new node2 choose node1 as the helper. Then
suppose node3 fails and we let node1 again be the helper.
Finally, suppose node4 fails and we let node1 be the helper.
Since the content of all four nodes are now originating from
the same node (node1), each node needs to store a complete
copy of the file otherwise the network cannot tolerate the case
when node1 fails. As can be seen, blind repair is the main
cause of the performance loss, i.e., every newcomer blindly
requests help from the same node, node 1, which lacks the
“diversity” necessary for implementing an efficient distributed
storage system. Another insightful example with parameter
values(n, k, d) = (6, 3, 3) is provided in Appendix A.

The idea of choosing good helpers in RC has already
been used in constructing exact-repair codes as in [5], [13].
Under the subject oflocally repairable codessome progress in
analyzing this problem has been done on the minimum-storage
point in [7], [12], [14] when helper selection is fixed over
time (See Section II-F for an in-depth comparison with these
references). Reference [5] also observes that choosing good
helpers can strictly outperform BR at the minimum-bandwidth
point. However, a complete characterization of the effect of
choosing the helper nodes in RC, includingstationary and
dynamichelper selection, on the storage-bandwidth tradeoff
is still lacking. This motivates the following open questions:
Under what condition is it beneficial to proactively choose the
helper nodes? Is it possible to analytically quantify the benefits
of choosing the good helpers? Specifically, the answers to the
aforementioned fundamental questions were still not known.

In this work, we answer the first question by providing
a necessary and sufficient condition under which optimally
choosing the helpers strictly improves the storage-bandwidth
tradeoff. This new necessary and sufficient characterization
of “under what circumstances helper selection improves the
performance” is by far the most important contribution of this
work since it provides a rigorous benchmark/guideline when
designing the next-generation smart helper selection solutions.

It is worth reemphasizing that which helpers are “optimal”
at the current time slott depends on the history of the failure
patterns and the helper choices for all the previous time
slots 1 to (t − 1), which makes it very difficult to quantify
the corresponding performance. Therefore, even though our
main result fully answers the questionwhether an optimal
design can outperform the blind helper selection, the question
how to design the optimal helper selection scheme remains
largely open. As part of the continuing quest of designing
high-performance helper selection methods, this work also
proposes a low-complexity solution, termed thefamily repair
(FR) scheme, that can harvest the benefits of (careful) helper
selection without incurring any additional complexity when

2Since our setting considers choosing the good helpers, it brings the two
extremes: replication codes with helper selection and regenerating codes with
blind helper selection, under the same analytical framework.

compared to a BR solution. We then characterize analytically
the storage-bandwidth tradeoff of the FR scheme and its ex-
tension, the family-plus repair scheme, and prove that theyare
optimal (as good as any helper selection one can envision) in
some cases andweakly optimalin general, see the discussion
in Sections IV and V.

Finally, we provide in Section VII an explicit constructionof
an exact-repair code that can achieve the minimum-bandwidth-
regenerating (MBR) points of the FR and family-plus repair
schemes. The new MBR-point scheme is termed thegener-
alized fractional repetitioncode, which can be viewed as a
generalization of the existing fractional repetition codes [5].

Numerical computation shows that for many cases (different
(n, k, d) parameter values), the family-based schemes can
reduce 40% to 90% of the repair-bandwidth of RCs when
the same amount of storage space is used.

II. PROBLEM STATEMENT

A. Functional-Repair Regenerating Codes with Dynamic
Helper Selection

Following the notation of the seminal paper [4], we denote
the total number of nodes in a storage network byn and the
minimum number of nodes that are required to reconstruct the
file by k. We denote byd the number of helper nodes that a
newcomer can access. From the above definitions, then, k,
andd values must satisfy

2 ≤ n, 1 ≤ k ≤ n, and 1 ≤ d ≤ n− 1. (1)

In all the results in this work, we assumeimplicitly that then,
k, andd values satisfy3 (1). The overall file size is denoted by
M. The storage size for each node isα, and during the repair
process, the newcomer requestsβ amount of traffic from each
of the helpers. The total repair-bandwidth is thusγ

∆
= dβ. We

use the notation(·)+ to mean(x)+ = max(x, 0). We also
define the indicator function as follows

1{B} =

{

1, if condition B is true

0, otherwise.
(2)

In this work, we consider the helper selection/repair scheme
in its most general form. Among all helper selection schemes,

3The following fact is proved in [4]. Supposek > d. If the storageα and the
repair-bandwidthβ of each node allow the storage network to tolerate(n−k)
failed nodes usingblind-repair (BR) regenerating codes, then the same storage
network with BR codes can actually tolerate(n−d) failed nodes. Therefore,
any BR regenerating code that can support the values(n, k, d) for somek > d
can also support the values(n, d, d). By definition, any regenerating code that
can support the values(n, d, d) can also support the values(n, k, d) for any
k > d. This shows that for BR, the storage-bandwidth tradeoff of the values
(n, k, d) is identical to that of the values(n, d, d) when k > d. This fact
prompts the authors in [4] to study only the case in whichk ≤ d and use the
results of(n, d, d) as a substitute whenever we are considering the case of
k > d. As will be seen later, the above equivalence between the(n, k, d) and
the (n, d, d) cases whenk > d does not hold when considering non-blind
helper selection. Therefore, throughout this paper, we do not assumek ≤ d.

Also, in practice the parameterk specifies the resilience of the system
and the parameterd specifies the repair cost. The choices ofk andd values
are generally orthogonal from a high-level design perspective. Any coupling
betweenk andd is usually imposed by the kind of storage codes used, e.g.,
replication versus Reed-Solomon versus regenerating codes versus locally
repairable codes. Since we are studying the most general form of helper-
selection, we discard the assumption ofk ≤ d, which was originally used for
the BR solution.
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a special class, termed stationary repair schemes, is also
studied. To distinguish the special class from the most general
form, we use the termdynamic repairschemes whenever we
are focusing on the most general type of helper selection
schemes. In addition to studying the performance of any
dynamic or stationary repair scheme, this work also proposes
a new low-complexity solution, termed the family repair
schemes. Detailed discussion of dynamic repair and stationary
repair is provided in the following.

B. Dynamic Versus Stationary Repair Schemes

In general, the helper selection at current timet can depend
on the history of the failure patterns and the helper choicesfor
all the previous time slots 1 to(t− 1). We call such a general
helper selection schemethe dynamic helper selection. In
contrast, a much simpler way of choosing the helpers, termed
stationary helper selection(or stationary repair scheme), is
described as follows.

Stationary Repair:Each node indexi is associated with a
set of indicesDi where the size ofDi is d. Whenever nodei
fails, the newcomer (for nodei) simply accesses those helpers
j in Di and requestsβ amount of data from each helper. It is
called stationary since the helper choices{D1, D2, . . . , Dn}
are fixed and do not evolve over time. As can be easily seen,
the stationary repair scheme is a special case of (dynamic)
helper selection, which incurs zero additional complexitywhen
compared to the BR solution.

For any helper selection schemeA and given system param-
eters(n, k, d, α, β), we say that the corresponding RC with
helper selection schemeA “satisfies the reliability require-
ment” if it is able to protect against any failure pattern/history
while being able to reconstruct the original file from arbitrary
k surviving nodes. We consider exclusively single failure at
any given time. The setting of multiple simultaneous failed
nodes [5], [10], [21] is beyond the scope of this work.

C. Information Flow Graphs and the Existing Results

As in [4], the performance of a distributed storage system
can be characterized by the concept of information flow graphs
(IFGs). This IFG depicts the storage in the network and
the communication that takes place during repair as will be
described in the following.
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Fig. 1. An example of the information flow graph with(n, k, d) = (4, 2, 2).

As shown in Fig 1, an IFG has three different kinds of
nodes. It has a singlesourcenodes that represents the source
of the data object. It also has nodesxi

in andxi
out that represent

storage nodei of the IFG. A storage node is split into two
nodes so that the IFG can represent the storage capacity of
the nodes. We often refer to the pair of nodesxi

in and xi
out

simply by storage nodei. In addition to those nodes, the IFG
has data collector (DC) nodes. Each data collector node is
connected to a set ofk active storage nodes, which represents
the party that is interested in extracting the original dataobject
initially produced by the sources. Fig. 1 illustrates one such
data collector, denoted byt, which connects tok = 2 storage
nodes. A more detailed description of the IFG is provided as
follows.

The IFG evolves with time. In the first stage of an in-
formation flow graph, the source nodes communicates the
data object to all the initial nodes of the storage network. We
represent this communication by edges of infinite capacity as
this stage of the IFG is virtual. See Fig. 1 for illustration.This
stage models the encoding of the data object over the storage
network. To represent storage capacity, an edge of capacityα
connects the input node of storage nodes to the corresponding
output node. When a node fails in the storage network, we
represent that by a new stage in the IFG where, as shown
in Fig. 1, the newcomer connects to its helpers by edges of
capacityβ resembling the amount of data communicated from
each helper. We note that although the failed node still exists
in the IFG, it cannot participate in helping future newcomers.
Accordingly, we refer to failed nodes byinactive nodes and
existing nodes byactive nodes. By the nature of the repair
problem, the IFG is always acyclic.

Intuitively, each IFG reflects one unique history of the
failure patterns and the helper selection choices from time
1 to (t − 1) [4]. Consider any given helper selection scheme
A which can be either dynamic or stationary. Since there are
infinitely many different failure patterns (since we consider
t = 1 to ∞), there are infinitely many IFGs corresponding
to the same given helper selection schemeA. We denote the
collection of all such IFGs byGA(n, k, d, α, β). We define
G(n, k, d, α, β) =

⋃

∀A GA(n, k, d, α, β) as the union over all
possible helper selection schemesA. We sometimes drop the
input argument and useGA andG as shorthands.

Given an IFGG ∈ G, we useDC(G) to denote the
collection of all

(
n
k

)
data collector nodesin G [4]. Each data

collector t ∈ DC(G) represents one unique way of choosing
k out of n active nodes when reconstructing the file. Given
an IFG G ∈ G and a data collectort ∈ DC(G), we use
mincutG(s, t) to denote theminimum cut value[22] separating
s, the root node (source node) ofG, andt.

The key reason behind representing the repair problem by
an IFG is that it casts the problem as a multicast scenario
[4]. This allows for invoking the results of network coding in
[1], [8]. More specifically, for any helper schemeA and given
system parameters(n, k, d, α, β), the results in [1] prove that
the following condition isnecessaryfor the RC with helper
selection schemeA to satisfy the reliability requirement.

min
G∈GA

min
t∈DC(G)

mincutG(s, t) ≥ M. (3)

If we limit our focus to the blind repair scheme, then the above

3



necessary condition becomes

min
G∈G

min
t∈DC(G)

mincutG(s, t) ≥ M. (4)

Reference [4] found a closed-form expression of the LHS of
(4)

min
G∈G

min
t∈DC(G)

mincutG(s, t) =

k−1∑

i=0

min((d− i)+β, α), (5)

which allows us to numerically check whether (4) is true
(or equivalently whether “(5)≥ M”) for any (n, k, d, α, β)
values. Being a necessary condition for the blind repair scheme
implies that whenever “(5)< M” there exists a bad helper
selection schemeA for which the reliability requirement
cannot be met.

Reference [23] further proves that (4) is not only necessary
but also sufficient for the existence of a blind RC with some
finite field GF(q) that satisfies the reliability requirement.
Namely, as long as “(5)≥ M” is true, then there exists a
RC that meets the reliability requirement even for the worst
possible helper selection scheme (since we take the minimum
overG).

D. The Minimum-Bandwidth and Minimum-Storage Points

Fix the values of(n, k, d), “(5) ≥ M” describes the storage-
bandwidth tradeoff (α versusβ) of the BR scheme. Two points
on a storage-bandwidth tradeoff curve are of special interest:
the minimum-bandwidth regenerating code (MBR) point and
the minimum-storage regenerating code (MSR) point where
the former has the smallest possible repair-bandwidth (theβ
value) and the latter has the smallest possible storage per
node (theα value). The expressions of the MBR and MSR
points (αMBR,γMBR) and (αMSR,γMSR) of the BR scheme
are derived in [4]:

αMBR = γMBR =

2dM

min(d, k)(2d−min(d, k) + 1)
(6)

and

αMSR =
M

min(d, k)
, (7)

γMSR =
dM

min(d, k)(d −min(d, k) + 1)
. (8)

E. Characterizing the RC with Helper Selection SchemeA

In contrast with the existing results on the BR scheme that
hold for theworst possible helper selection scheme, this work
focuses on any given helper selection schemeA and studies the
impact of the given helper selection scheme on the storage-
bandwidth tradeoff of the corresponding regenerating codes.
To facilitate the discussion, we assume the following statement
holds for the given helper selectionA.

Assumption 1:(3) is not only necessary but alsosufficient
for the existence of an RC with helper selection schemeA
that satisfies the reliability requirement.

This assumption allows us to use (3) as the complete
characterization for the RC with a given helper selection
schemeA. We then note that it is possible mathematically
that when focusing onGA (GA is by definition a strict subset
of G) we may have

min
G∈GA

min
t∈DC(G)

mincutG(s, t) > min
G∈G

min
t∈DC(G)

mincutG(s, t).

(9)

If (9) is true, then the given helper selection schemeA
strictly outperforms the BR solution. Whether (or under what
condition) (9) is true and how much the gap can be are the
two main focuses of this work.

Remark 1:As discussed in Section II-C, the necessary
direction of Assumption 1 is always true [1]. The suffi-
cient direction of Assumption 1 is equivalent to the follow-
ing statement: For any helper selection schemeA and any
(n, k, d, α, β) values satisfying (3), there exists a finite field
GF(q) such that the corresponding RC satisfies the reliability
requirement. Many similar statements have been proved in the
existing works4 (e.g., [23]). However, rigorous proofs are still
needed for the sufficiency direction of Assumption 1 and we
leave them as future directions of this work. On the other hand,
we have proved the following partial statement in Section VII.

Sufficiency for the MBR points:For the two helper
selection schemes proposed in this work, termed the
family repair and the family repair plus schemes,
if the (α, β) values correspond to the minimum-
bandwidth regenerating (MBR) point of the corre-
sponding storage-bandwidth tradeoff, then Assump-
tion 1 is provably true.

As will be discussed in Section IV-D, the MBR point is
the point when good helper selection results in the largest
improvement over the blind repair scheme. Since our focus
is on quantifying the benefits of helper selection, the above
partial statement proved in Section VII is sufficient for our
discussion.

F. Comparison to Locally Repairable Codes

Recall that RCs are distributed storage codes that minimize
the repair-bandwidth (given a storage constraint). In compari-
son,locally repairable codes (LRC), recently introduced in [7],
are codes that minimize the number of helpers participatingin
the repair of a failed node. LRCs were proposed to address the
disk I/O overhead problem that the repair process can entail
on a storage network since the number of helpers participating
in the repair of a failed node is proportional to the amount of
disk I/O needed during repair. Subsequent development has
been done on LRCs in [10]–[12], [14], [17].

In Table I, we compare the setting of the original RCs,
LRCs, and the dynamic helper selection considered in this
work. As first introduced in [4], original RCs were proposed
under the functional-repair scenario, i.e., nodes of the storage
network are allowed to store any combination of the original
packets as long as the reliability requirement is statisfied. In

4In fact, there is not yet any example in which the min-cut-based charac-
terization is provably not achievable by any finite field.
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TABLE I
THE COMPARISON TABLE AMONG BLIND-REPAIR REGENERATING CODES, LOCALLY REPAIRABLE CODES, AND THE SMART-REPAIR REGENERATING

CODES.

Original RC [4], [15], [16], [20], [24] Locally Repairable Codes [7], [10]–
[12], [14], [17]

Dynamic Helper Selection

Repair Mode Functional/Exact-Repair Exact-Repair Functional5 Repair
Helper Selection Blind Stationary (Fixed over time) Dynamic (helper choices may depend

on failure history)
(n, k, d) range

(1) Designed fork ≤ d.
(2) Can still be applied to the case of

k > d with reduced efficiency.

(1) Designed fork > d.
(2) Can still be applied to the case of

k ≤ d with reduced efficiency.

Allow for arbitrary (n, k, d) values

Contribution Storage/repair-bandwidth tradeoff for
the worst possible helper selection

Storage/repair-bandwidth characteriza-
tion for the specific stationary helper
selection of the proposed exact-repair
local code, which may/may not be op-
timal

First exploration of the storage/repair-
bandwidth tradeoff for the optimal dy-
namic helper selection

subsequent works [3], [15], [16], [19], [20], [24], RCs were
considered under the exact-repair scenario in which nodes
have to store the same original packets at any given time.
In contrast, LRCs are almost always considered under the
exact-repair scenario. However, in this work, for RCs with
dynamic helper selection, we consider functional-repair as
the mode of repair as we aim at understanding the absolute
benefits/limits of helper selection in RCs. Albeit our setting
is under functional-repair, in Section VII, we are able to
present an explicit construction of exact-repair codes that
achieve the optimal or weakly optimal minimum-bandwidth
point of the functional-repair. For comparison, existing works
[5], [15] design an exact-repair scheme that achieves the
minimum-bandwidth regenerating (MBR) point of the “blind-
functional-repair”. The main difference is that our exact-repair
construction achieves the MBR point of the “smart-functional-
repair”.

Table I also summarizes the differences between RCs,
LRCs, and smart helper RCs in terms of the helper selection
mechanisms. The original RCs are codes that do not perform
helper selection at all, i.e., BR, while LRCs are codes that
can perform stationary helper selection only. In this work,we
consider the most general setting in which codes are allowed
to have dynamic helper selection. Surprisingly, we are able
to find a stationary helper selection scheme that is weakly
optimal among all dynamic schemes and strictly optimal for
a range of(n, k, d) values.

Another dimension in this comparison table is the(n, k, d)
values that each of the three codes addresses. The original RCs
were designed for storage networks with larged values as they
perform rather poorly when applied to smalld values. LRCs,
on the other hand, are designed for smalld values, and for
that reason, they perform poorly whend is large. In contrast,
the codes we present in this work are designed for arbitrary
(n, k, d) values.

The comparison above illustrates the main differences in
the goals/contributions of each scenario. Namely, the original
RCs are concerned with the storage/repair-bandwidth tradeoff
for the worst possible helper selection. LRCs, however, are
concerned with only data storage (ignoring repair-bandwidth)
of the codes when restricting to stationary helper selection

and exact-repair. Some recent developments [10], [11] in
LRCs consider using RCs in the construction of the codes
therein (as local codes) in an attempt to examine the repair-
bandwidth performance of LRCs. This approach, however,
is not guaranteed to be optimal in terms of storage/repair-
bandwidth tradeoff.

In this work, we present the first exploration of the optimal
storage-bandwidth tradeoff for RCs that allowdynamic helper
selectionfor arbitrary(n, k, d) values, including both the cases
of k ≫ d and k ≪ d. The closest setting in the existing
literature is in a very recent work in [9]. That work finds
upper bounds on the file sizeM whenα = dβ andα = β
for functional-repair with dynamic helper selection. However,
[9] considers the case ofk = n− 1 only. Also, it is not clear
whether the provided upper bounds fork = n − 1 are tight
or not. A byproduct of the results of this work shows that
the upper bounds in [9] are tight in some cases and loose in
others, see Corollary 1 and Propositions 7 and 10.

III. PREVIEW OF THE RESULTS

In the following, we give a brief preview of our results
through concrete examples to illustrate the main contributions
of this work. Although we only present here specific examples
as a preview, the main results in Section IV are for general
(n, k, d) values.

Result 1: For (n, k, d) = (6, 3, 4), RCs with BR are
absolutely optimal, i.e., there exists no RCs with dynamic
helper selection that can outperform BR. Since LRCs with
symmetric repair can be viewed as a specially-designed sta-
tionary helper selection with exact-repair, this also implies that
for (n, k, d) = (6, 3, 4) there exists no LRCs with symmetric
repair-bandwidth per node that can outperform BR.

Result 2: For (n, k, d) = (6, 4, 4), the RCs with family
repair (FR) proposed in this paper are absolutely optimal in
terms of the storage-bandwidth tradeoff among all RCs with
dynamic helper selection. In Fig. 2, the storage-bandwidth
tradeoff curve of the FR scheme, the optimal helper selection
scheme, is plotted against the BR scheme with file size

5A (weakly) optimal exact-repair code construction is also provided in
SectionVII
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M = 1. In Section VII, we provide an explicit construction
of an exact-repair code that can achieve(α, γ) = ( 4

11 ,
4
11 ),

the MBR point of the storage-bandwidth tradeoff curve of
the FR scheme in Fig. 2. If we take a closer look at Fig. 2,
there are 3 corner points on the FR scheme curve and they
are (α, γ) = (0.25, 1), (27 ,

4
7 ), and ( 4

11 ,
4
11 ). Since the two

corners(α, γ) = (0.25, 1) and (27 ,
4
7 ) can be achieved by the

scheme in [23] and the new corner point(α, γ) = ( 4
11 ,

4
11 )

is proved to be achievable in Proposition 11, we can thus
achieve the entire optimal tradeoff curve in Fig. 2 by space-
sharing while no other scheme can do better, as proved in
Proposition 6. In fact, for(n, k, d) = (6, 4, 4), the random
LRCs in [12] designed forγ = ∞ have to satisfyM ≤
kα = 4α, i.e., can at most perform as good as the MSR point
(α, γ) = (0.25, 1) of the BR scheme. Moreover, the LRCs
utilizing MBR codes in [11] perform equally to the MBR point
(α, γ) = (0.4, 0.4) of the BR scheme. Both LRC constructions
in [11] and [12] are strictly suboptimal and perform worse than
the proposed family repair scheme, which is provably optimal
for (n, k, d) = (6, 4, 4).
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Fig. 2. Storage-bandwidth tradeoff curves of RCs with BR versus RCs with
the absolutely optimal scheme (FR) for(n, k, d) = (6, 4, 4) and file size
M = 1.

Result 3:For (n, k, d) = (5, 3, 2), we do not know what is
the absolutely optimal dynamic helper selection scheme. On
the other hand, the proposed FR scheme again outperforms
the BR scheme. Fig. 3 shows a tradeoff curve comparison
between the FR scheme and the BR scheme. An interesting
phenomenon is that the tradeoff curve of the FR scheme has
only one corner point(α, γ) = (0.5, 0.5) and we can achieve
this point by an exact-repair scheme, see Proposition 11. Note
that this exact-repair scheme for(α, γ) = (0.5, 0.5) has the
same storage consumption as the MSR point of the original RC
((α, γ) = (0.5, 1)) while using strictly less than the bandwidth
of the MBR point of the original RC ((α, γ) = (23 ,

2
3 )). Since

the tradeoff curve of the FR scheme has only 1 corner point,
it also suggests that with smart helper selection, it is possible
to achieve minimum-storage (MSR) and minimum-bandwidth
(MBR) simultaneously.
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Fig. 3. Storage-bandwidth tradeoff curves of RCs with BR versus RCs with
FR for (n, k, d) = (5, 3, 2) and file sizeM = 1.

Resul 4:For (n, k, d) = (20, 10, 10), we do not know what
is the absolutely optimal dynamic helper selection scheme.
We, however, have that the FR scheme again outperforms the
BR scheme. Fig. 4 shows a tradeoff curve comparison between
the FR scheme and the BR scheme.
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Fig. 4. Storage-bandwidth tradeoff curves of RCs with BR versus RCs with
FR for (n, k, d) = (20, 10, 10) and file sizeM = 1.

Result 5:For (n, d) = (60, 10), we do not know what is
the absolutely optimal dynamic helper selection. However,in
Fig. 5, we plot ak versus repair-bandwidth curve to compare
the blind repair scheme to the FR scheme when restricting to
the minimum-bandwidth (MBR) points. The curve of the MBR
LRCs in [11] is also provided in the same figure. Note that the
family-plus repair scheme in the figure, described in Section V,
is an extension of the FR scheme to cover the case when
n ≫ d. Examining Fig. 5, we can see that the BR scheme
performs very poorly compared to the other codes whenk is
large. Comparing the plots of the family-plus repair schemeto
the plot of the MBR LRCs, we can see that the MBR LRCs
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perform equally whenk is very large but performs poorly
otherwise (say whenk = 10). From this, we see that RCs
with the family-plus repair scheme perform well for arbitrary
(n, k, d) values as discussed in Table I.
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Fig. 5. Thek value versus repair-bandwidthγ curve comparison at the MBR
point for (n, d) = (60, 10) and file sizeM = 1.

Result 6: Although the main focus of this work is on
investigating the benefits of helper selection, a byproductof
our results is a new explicit construction of locally repairable
codes (LRCs) for arbitrary(n, k, d, α, β) values satisfying
α = dβ. Numerically, the proposed LRCs demonstrate good
performance in all(n, k, d) cases. Analytically, it achieves the
absolutely optimal MBR points (using the smallest possible
bandwidth among all dynamic helper selection schemes) for
all (n, k, d, α, β) values satisfying (i)n 6= 5, k = n − 1,
and d = 2; (ii) n is even,k = n − 1, and d = 3; (iii)
n /∈ {7, 9}, k = n− 1, andd = 4; (iv) n is even,n /∈ {8, 14},
k = n − 1, andd = 5; and (v)n /∈ {10, 11, 13}, k = n− 1,
and d = 6. This result is the combination of Proposition 10
and the explicit code construction in Section VII.

IV. T HE MAIN RESULTS

Our main results include two parts. In Section IV-A, we
answer the question “When is it beneficial to choose the
good helpers?” In Section IV-C, we quantify the potential
benefits of good helper selection by characterizing the storage-
bandwidth tradeoff of the family repair (FR) scheme proposed
in Section IV-B. Since the FR scheme is a special example
of the general dynamic helper selection, the improvement of
the FR scheme over the blind repair (BR) scheme serves as
a lower bound for the improvement of the optimal dynamic
repair scheme over the BR scheme.

It is worth noting that the first part, answering when it
is beneficial to choose good helpers, is of more importance
since it completely solves an open fundamental problem.
At the same time, the second part can be viewed as an
attempt towards finding the optimal helper selection schemes
for general(n, k, d) values. For comparison, the existing LRC

constructions [11], [12] are other ways of designing smart
helper repair solutions for a subset of(n, k, d) values.

A. When Is It Beneficial to Choose the Good Helpers?

Recall that we only consider(n, k, d) values that satisfy (1).
Proposition 1: If at least one of the following two con-

ditions is true: (i) d = 1, k = 3, and n is odd; and (ii)
k ≤

⌈
n

n−d

⌉

, then for any arbitrary dynamic helper selection

schemeA and any arbitrary(α, β) values, we have

min
G∈GA

min
t∈DC(G)

mincutG(s, t) =
k−1∑

i=0

min((d− i)+β, α). (10)

That is, even the best dynamic repair scheme cannot do better
than the BR solution. Conversely, for any(n, k, d) values that
satisfy neither (i) nor (ii), there exists a helper selection scheme
A and a pair of(α, β) values such that

min
G∈GA

min
t∈DC(G)

mincutG(s, t) >

k−1∑

i=0

min((d− i)+β, α). (11)

Moreover, for the same(α, β) values and the same helper
selection schemeA that satisfy (11), if the file sizeM also
satisfies (3), then there exists a finite field GF(q) such that
we can explicitly construct an RC that meets the reliability
requirement.

The proof of Proposition 1 is presented in Section VI-A.
By noticing that the right-hand sides of (10) and (11)

are identical to (5), Proposition 1 thus answers the central
question: Under what conditions is it beneficial to choose the
good helpers?

B. The Family Repair Schemes and Their Notation

To quantify the benefits of smart helper selection, we
propose a new helper selection scheme, which is termed the
family repair (FR) schemeand is a sub-class of stationary
repair schemes. To describe the FR scheme, we first arbitrarily
sort all storage nodes and denote them by1 to n. We then
define acomplete familyas a group of(n−d) physical nodes.
The first (n − d) nodes are grouped as the first complete
family and the second(n − d) nodes are grouped as the
second complete family and so on and so forth. In total, there
are
⌊

n
n−d

⌋

complete families. The remainingn mod (n− d)

nodes are grouped as anincomplete family. The helper set
Di of any nodei in a complete family contains all the nodes
not in the same family of nodei. That is, a newcomer only
seeks help fromoutside its family. The intuition is that we
would like each family to preserve as much information (or
equivalently as diverse information) as possible. To that end,
we design the helper selection sets such that each newcomer
refrains from requesting help from its own family. For any
node in the incomplete family,6 we set the corresponding
Di = {1, · · · , d}.

6All the concepts and intuitions are based on complete families. The
incomplete family is used to make the scheme consistent and applicable to
the case whenn mod (n− d) 6= 0.
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For example, suppose that(n, d) = (8, 5). There are2 com-
plete families,{1, 2, 3} and{4, 5, 6}, and1 incomplete family,
{7, 8}. Then if node4 fails, the corresponding newcomer will
access nodes{1, 2, 3, 7, 8} for repair since nodes 1, 2, 3, 7,
and 8 are outside the family of node 4. If node7 (a member of
the incomplete family) fails, the newcomer will access nodes
1 to 5 for repair.

By the above definitions, we have in total
⌈

n
n−d

⌉

number

of families, which are indexed from1 to
⌈

n
n−d

⌉

. However,
since the incomplete family has different properties from the
complete families, we replace the index of the incomplete
family with 0. Therefore, the family indices become from1
to c

∆
=
⌊

n
n−d

⌋

and then0, wherec is the index of the last
Complete family. If there is no incomplete family, we simply
omit the index0. Moreover, by our construction, any member
of the incomplete family hasDi = {1, · · · , d}. That is, it will
request help fromall the members of the first(c−1) complete
families, but only fromthe firstd− (n − d)(c − 1) = n mod
(n − d) members of the last complete family. Among the
(n− d) members in the last complete family, we thus need to
distinguish those members who will be helpers for incomplete
family members, and those who will not. Therefore,we add
a negative sign to the family indices of those who will “not”
be helpers for the incomplete family.

From the above discussion, we can now list the family
indices of then nodes as ann-dimensional family index
vector. Consider the same example as listed above where
(n, d) = (8, 5). There are two complete families, nodes
1 to 3 and nodes 4 to 6. Nodes 7 and 8 belong to the
incomplete family and thus have family index 0. The third
member of the second complete family, node6, is not a helper
for the incomplete family members, nodes7 and 8, since
both D7 = D8 = {1, · · · , d} = {1, 2, · · · , 5}. Therefore,
we replace the family index of node 6 by−2. In sum, the
family index vectorof this (n, d) = (8, 5) example becomes
(1, 1, 1, 2, 2,−2, 0, 0). Mathematically, we can write the family
index vector as




n−d
︷ ︸︸ ︷

1, · · · , 1,

n−d
︷ ︸︸ ︷

2, · · · , 2, · · · ,

n mod (n−d)
︷ ︸︸ ︷
c, · · · , c ,

n−d−(n mod (n−d))
︷ ︸︸ ︷

−c, · · · ,−c ,

n mod (n−d)
︷ ︸︸ ︷

0, · · · , 0




 . (12)

1

1

1

2

2

−2

0

0

1

1

1

2

2

−2

0

0

(1, 1, 1, 2, 2,−2, 0, 0) Insert column-by-column Read row-by-row

π
∗

f = (1, 2, 0, 1, 2, 0, 1,−2)

Fig. 6. The construction of the RFIP for(n, d) = (8, 5).

A family index permutationis a permutation of the family
index vector defined in (12), which we denote byπf . Con-

tinuing from the previous example, one instance of family
index permutations isπf = (1, 1, 0, 2, 0,−2, 1, 2). A rotat-
ing family index permutation (RFIP)π∗

f is a special family
index permutation that puts the family indices of (12) in an
(n − d) ×

⌈
n

n−d

⌉

table column-by-column and then reads it
row-by-row. Fig. 6 illustrates the construction of the RFIP
for the case of(n, d) = (8, 5). The input is the family
index vector(1, 1, 1, 2, 2,−2, 0, 0) and the output RFIPπ∗

f

is (1, 2, 0, 1, 2, 0, 1,−2).

C. Quantifying the benefits of the Family Repair scheme

To quantify the gap in (11) (or equivalently the gap in (9))
for the best dynamic helper selection scheme, we analyze the
performance of the stationary/FR schemes and use it as a lower
bound for the gap of (11).

Proposition 2: Consider any stationary repair schemeA
and denote its collection of helper sets by{D1, D2, . . . , Dn}.
We then have

min
G∈GA

min
t∈DC(G)

mincut(s, t) ≥ min
r∈R

k∑

i=1

min((d− zi(r))β, α),

(13)

where r is a k-dimensional integer-valued vector,R =
{(r1, r2, · · · , rk) : ∀i ∈ {1, · · · , k}, 1 ≤ ri ≤ n} and
zi(r) = |{rj : j < i, rj ∈ Dri}|. For example, suppose
n = 6, k = 4, D3 = {1, 4}, and r = (1, 2, 1, 3), then we
haver4 = 3 and z4(r) = |{rj : j < 4, rj ∈ D3}| = 1. (The
double appearances ofr1 = r3 = 1 are only counted as one.)

The proof of Proposition 2 is relegated to Appendix B.
Proposition 2 above establishes a lower bound on the cut

capacity of any stationary repair scheme. Therefore, when
designing any stationary scheme, one simply needs to choose
(n, k, d, α, β) values and the helper setsDi so that the right-
hand side of (13) is no less than the file sizeM. However,
since we do not have equality in (13), the above construction
is sufficient but not necessary. That is, we may be able to
use smallerα and β values while still guaranteeing that the
resulting stationary regenerating code meets the reliability
requirement.

When we focus on the family repair scheme introduced
in Section IV-B, a special example of stationary repair, the
inequality (13) can be further sharpened to the following
equality.

Proposition 3: Consider any given FR schemeF with the
corresponding IFGs denoted byGF (n, k, d, α, β). We have that

min
G∈GF

min
t∈DC(G)

mincutG(s, t) =

min
∀πf

k∑

i=1

min ((d− yi(πf )) β, α) , (14)

whereπf can be any family index permutation andyi(πf ) is
computed as follows. If thei-th coordinate ofπf is 0, then
yi(πf ) returns the number ofj satisfying both (i)j < i and
(ii) the j-th coordinate> 0. If the i-th coordinate ofπf is not
0, thenyi(πf ) returns the number ofj satisfying both (i)j < i
and (ii) the absolute value of thej-th coordinate ofπf and
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the absolute value of thei-th coordinate ofπf are different.
For example, ifπf = (1, 2,−2, 1, 0, 0, 1, 2), theny6(πf ) = 3
andy8(πf ) = 5.

The proof of Proposition 3 is presented in Section VI-B.
Remark 2: In general, the minimum cut of an IFG may

exist in the interior of the graph. When computing the min-
cut value in the left-hand side of (13), we generally need
to exhaustively consider all possible cuts for anyG ∈ GA,
which is why we have to chooser ∈ R in (13) that allows for
repeated values in the coordinates ofr and we can only prove
the inequality (lower bound) in (13).

Recall that the family index permutationπf is based on the
family index vector of all “currently active nodes.” Proposi-
tion 3 thus implies that when focusing on the family repair
schemeF , we can reduce the search scope and consider only
those cuts that directly separatek currently active nodes from
the rest of the IFG (see (14)). This allows us to explicitly
compute the corresponding min-cut value with equality.

Combining Proposition 3 and (3), we can derive the new
storage-bandwidth tradeoff (α vs. β) for the FR scheme. For
example, Fig. 4 plotsα versusγ

∆
= dβ for the (n, k, d) values

(20, 10, 10) with file sizeM = 1. As can be seen in Fig. 4,
the MBR point (the smallestγ value) of the FR scheme uses
only 72% of the repair-bandwidth of the MBR point of the
BR scheme (γMBR = 0.13 vs. 0.18). It turns out that for
any (n, k, d) values, the biggest improvement always happens
at the MBR point.7 The intuition is that choosing the good
helpers is most beneficial when the per-node storageα is no
longer a bottleneck (thus the MBR point).

D. The MBR and MSR Points of the FR Scheme

The right-hand side of (14) involves taking the minimum

over a set ofO

((
n

n−d

)k
)

entries. As a result, comput-

ing the entire storage-bandwidth tradeoff is of complexity

O

((
n

n−d

)k
)

. The following proposition shows that if we

are interested in the most beneficial point, the MBR point,
then we can compute the correspondingα and β values in
polynomial time.

Proposition 4: For the MBR point of (14), i.e., whenα is
sufficiently large, the minimizing family index permutation is
the RFIPπ∗

f defined in Section IV-B. That is, theα, β, andγ
values of the MBR point can be computed by

αMBR = γMBR = dβMBR =
dM

∑k
i=1(d− yi(π∗

f ))
. (15)

The proof of Proposition 4 is relegated to Appendix F.
We use Proposition 4 to plot the reliability requirement

k versus the repair-bandwidthγ for the MBR point when
(n, d) = (60, 10) in Fig. 5. Since the network is protected
against(n − k) simultaneous node failures, the larger thek,
the less resilient is the network, and the smaller the necessary
repair-bandwidthγ = dβ to maintain the network. As can be

7If we compare the min-cut value of FR in (14) with the min-cut value of
BR in (5), we can see that the greatest improvement happens when the new
term (d − yi(πf ))β ≤ α for all i. These are the mathematical reasons why
the MBR point sees the largest improvement.

seen in Fig. 5, fork ≥ 19, the FR scheme needs only58%
of the repair-bandwidth of the BR solution. Even for the case
of k = 10, i.e., (n, k, d) = (60, 10, 10) which is still within
the range of the parameter values (k ≤ d) considered by the
BR scheme, the FR scheme needs only73% of the repair-
bandwidth of the BR solution.

Unfortunately, we do not have a general formula for the
least beneficial point, the MSR point, of the FR scheme. Our
best knowledge for computing the MSR point is the following

Proposition 5: For arbitrary(n, k, d) values, the minimum-
storage of (14) isαMSR = M

min(d,k) . If the (n, k, d) values also
satisfy d ≥ k, then the correspondingβMSR = M

k(d−k+1) . If

d < k, then the correspondingβMSR ≤ M
d

.
The proof of Proposition 5 is relegated to Appendix G.
By Proposition 5, we can quickly computeαMSR andβMSR

when d ≥ k. If d < k, then we still haveαMSR = M
min(d,k)

but we do not know how to compute the exact value ofβMSR

other than directly applying the formula in Proposition 3.
Remark 3: If we compare the expressions of Proposition 5

and the MSR point of the BR scheme provided in (7) and
(8) of Section II-D, Proposition 5 implies that the FR scheme
does not do better than the BR scheme at the MSR point
whend ≥ k. However, it is still possible that the FR scheme
can do better than the BR scheme at the MSR point when
d < k. One such example is the example we considered in
Section III when(n, k, d) = (5, 3, 2). For this example, we
haveαMSR = M

2 , βMSR = M
4 , andγMSR = M

2 for the FR
scheme whereβMSR = M

4 is derived by searching over all
family index permutationsπf in (14). For comparison, the BR
scheme hasαMSR = M

2 , βMSR = M
2 , andγMSR = M. This

shows that the FR scheme can indeed do better at the MSR
point whend < k in terms of the repair-bandwidth although
we do not have a closed-form expression for this case.

E. Is the family repair scheme optimal?

The results presented above quantify the performance bene-
fits of one particular helper selection scheme, the FR scheme.
When compared to the BR scheme, the improvement of
the FR scheme can be substantial for some(n, k, d) value
combinations. At the same time, it is still important to see
how close to optimal is the FR scheme among all, stationary
or dynamic, helper selection schemes. In the following, we
prove that the FR scheme is indeed optimal for some(n, k, d)
values.

Proposition 6: For the(n, k, d) values satisfying simultane-
ously the following three conditions (i)d is even, (ii)n = d+2,
and (iii) k = n

2 + 1; we have

min
G∈GF

min
t∈DC(G)

mincutG(s, t) ≥ min
G∈GA

min
t∈DC(G)

mincutG(s, t)

(16)

for any arbitrary dynamic helper selection schemeA and any
arbitrary(α, β) values.

The proof of Proposition 6 is presented in Section VI-C.
Note that for any(n, k, d) values satisfying conditions (i)

to (iii) in Proposition 6, they must also satisfy neither (i)nor
(ii) in Proposition 1. As a result, by Proposition 1, there exists
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some helper selection scheme that strictly outperforms theBR
scheme. Proposition 6 further establishes that among all those
schemes strictly better than the BR scheme, the FR scheme is
indeed optimal.

We also note that [9, Theorem 5.4] proves that whenk =
n − 1 andα = β, no dynamic helper selection scheme can
protect a file of size> ndα

d+1 . Combining Propositions 3 and 6,
we can strictly sharpen this result for the case of(n, k, d) =
(4, 3, 2) andα = β.

Corollary 1: When (n, k, d) = (4, 3, 2) and α = β, no
dynamic helper scheme can protect a file of sizeM > 2α,
for which [9, Theorem 5.4] only proves that no scheme can
protect a file of sizeM > 8α

3 .
Proof: By Proposition 3, when(n, k, d) = (4, 3, 2) and

α = β, the FR scheme can protect a file of size2α. We
then notice that(n, k, d) = (4, 3, 2) satisfies Proposition 6 and
therefore the FR scheme is optimal. As a result, no scheme
can protect a file of sizeM > 2α.

Proposition 6 shows that for certain(n, k, d) value com-
binations, the FR scheme is optimal for the entire storage-
bandwidth tradeoff curve. If we only focus on the MBR point,
we can also have the following optimality result.

Proposition 7: Considerk = n − 1 andα = dβ. For the
(n, k, d) values satisfyingn mod (n− d) = 0, we have

min
G∈GF

min
t∈DC(G)

mincutG(s, t) =
nα

2

≥ min
G∈GA

min
t∈DC(G)

mincutG(s, t)

(17)

for any arbitrary dynamic helper selection schemeA.
Proof: [9, Theorem 5.2] proved that fork = n − 1 and

α = dβ,

min
G∈GA

min
t∈DC(G)

mincutG(s, t) ≤
ndβ

2
(18)

for any arbitrary dynamic helper selection schemeA. As a
result, we only need to prove that whenn mod (n− d) = 0,
the min-cut of the FR scheme equalsndβ

2 .
Sinceα = dβ, we know by Proposition 4 that

min
G∈GF

min
t∈DC(G)

mincutG(s, t) =
n−1∑

i=1

(d− yi(π
∗
f ))β. (19)

Now, whenn mod (n−d) = 0, we have no incomplete family
in the FR scheme and the RFIP has the following form

π∗
f = (1, 2, · · · , c, 1, 2, · · · , c, · · · , 1, 2, · · · , c), (20)

where recall thatc =
⌊

n
n−d

⌋

= n
n−d

. Using (20), we get that

yi(π
∗
f ) = i− 1−

⌊
i− 1

c

⌋

. (21)

The reason behind (21) is the following. Examining the defi-
nition of yi(·), we can see thatyi(·) counts all the coordinates
j < i of π∗

f that have a family index different than the family
index at thei-th coordinate. For each coordinatei, with the aid
of (20), there are

⌊
i−1
c

⌋
coordinates inπ∗

f preceding it with the
same family index. Therefore, in total there arei− 1−

⌊
i−1
c

⌋

coordinates inπ∗
f preceding thei-th coordinate with a different

family index, thus, we get (21).
By (19) and (21), we get

min
G∈GF

min
t∈DC(G)

mincutG(s, t) =

n−2∑

i=0

(

d− i+

⌊

i
n

n−d

⌋)

β

=
n−1∑

i=0

(

d− i +

⌊

i
n

n−d

⌋)

β (22)

=

(

nd−
(n− 1)n

2
+

n−1∑

i=0

⌊

i
n

n−d

⌋)

β

=

(

nd−
(n− 1)n

2
+

n

n− d

n−d−1∑

i=0

i

)

β

=

(

nd−
(n− 1)n

2
+

n(n− d− 1)

2

)

β

=
ndβ

2
,

where we get (22) by the fact thatd − (n − 1) +
⌈
n−1
c

⌉
=

d− (n− 1)+ (n− d− 1) = 0. The proof is thus complete
Proposition 7 establishes again that the FR scheme is

optimal, among all dynamic helper schemes, fork = n − 1
and α = dβ whenevern mod (n − d) = 0. We will show
in Section V that the FR scheme and its extension, the
family-plus repair scheme, are actually alsoweakly optimal
for general(n, k, d) values. The definition of weak optimality
will be provided in Proposition 9.

V. FAMILY -PLUS REPAIR SCHEME

In the FR scheme, there are
⌊

n
n−d

⌋

complete families and

1 incomplete family (ifn mod (n− d) 6= 0). For the scenario
in which then and d values are comparable, we have many
complete families and the FR solution harvests almost all of
the benefits of choosing good helpers, see the discussion of
Proposition 6 for whichn = d+2. However, whenn is large
but d is small, we have only one complete family and one
incomplete family. Therefore, even though the FR scheme still
substantially outperforms the BR scheme, see Fig. 5 for the
case of(n, d) = (60, 10), the performance of the FR scheme is
far from optimal due to having only1 complete family. In this
section, we propose thefamily-plus repairscheme that further
improves the storage-bandwidth tradeoff whenn is large but
d is small.

The main idea is as follows. We first partition then nodes
into several disjoint groups of2d nodes and one disjoint group
of nremain nodes. The first type of groups is termed the regular
group while the second group is termed the remaining group. If
we have to have one remaining group (whenn mod (2d) 6= 0),
then we enforce the size of the remaining group to be as small
as possible but still satisfyingnremain≥ 2d+ 1. For example,
if d = 2 andn = 8, then we will have 2 regular groups and no
remaining group sincen mod (2d) = 0. If d = 2 andn = 9,
then we choose1 regular group{1, 2, 3, 4} and 1 remaining
group{5, 6, 7, 8, 9} since we need to enforcenremain≥ 2d+1.

After the partitioning, we apply the FR scheme to the
individual groups. For example, ifd = 2 andn = 8, then we

10



have two regular groups{1, 2, 3, 4} and{5, 6, 7, 8}. Applying
the FR scheme to the first group means that nodes1 and2 form
a family and nodes3 and 4 form another family. Whenever
node 1 fails, it will access helpers from outside its family,
which means that it will access nodes3 and 4. Node1 will
never request help from any of nodes5 to 8 as these nodes are
not in the same group as node1. Similarly, we apply the FR
scheme to the second group{5, 6, 7, 8}. All the FR operations
are always performed within the same group.

Another example is whend = 2 andn = 9. In this case,
we have 1 regular group{1, 2, 3, 4} and 1 remaining group
{5, 6, 7, 8, 9}. In the remaining group,{5, 6, 7} will form a
complete family and{8, 9} will form an incomplete family. If
node 6 fails, it will request help from both nodes 8 and 9. If
node 9 fails, it will request help from nodes{5, 6}, the first
d = 2 nodes of this group. Again, all the repair operations
for nodes 5 to 9 are completely separated from the operations
of nodes 1 to 4. The above scheme is termed thefamily-plus
repair scheme.

One can easily see that whenn ≤ 2d, there is only one
group and the family-plus repair scheme collapses to the FR
scheme. Whenn > 2d, there are approximatelyn2d regular
groups, each of which contains two complete families. There-
fore, the construction of the family-plus repair scheme ensures
that there are many complete families even for the scenario
of n ≫ d. In the following proposition, we characterize the
performance of the family-plus repair scheme.

Proposition 8: Consider any given(n, k, d) values and the
family-plus repair schemeF+. Suppose we haveB groups in
total (including both regular and remaining groups) and each
group hasnb number of nodes forb = 1 to B. Specifically,
if the b-th group is a regular group, thennb = 2d. If the b-
th group is a remaining group (whenn mod (2d) 6= 0), then
nb = n− 2d(B − 1). We useGF+(n, k, d, α, β) to denote the
collection of IFGs generated by the family-plus repair scheme.
We have that

min
G∈G

F+

min
t∈DC(G)

mincut(s, t) =

min
k∈K

B∑

b=1

min
H∈GF (nb,kb,d,α,β)

min
tb∈DC(H)

mincutH(s, tb),

(23)

where k is a B-dimensional integer-valued vector,K =
{(k1, k2, · · · , kB) : ∀b ∈ {1, · · · , B}, 0 ≤ kb ≤
nb,
∑B

b=1 kb = k}. Note that for any givenk, the right-hand
side of (23) can be evaluated by Proposition 3.

Proof: Observe that any IFGG ∈ GF+ is a union ofB
parallel IFGs that are inGF (nb, ·, d, α, β) where “·” means that
we temporarily ignore the placement of the data collectors.For
any data collectort in GF+ , we usekb to denote the number
of active nodes thatt accesses in groupb. Therefore, the
mincutG(s, t) is simply the summation of themincutH(s, tb)
for all b ∈ {1, · · · , B} wheretb corresponds to the “sub-data-
collector” of groupb. By further minimizing over all possible
data collectorst (thus minimizing over{kb}), we get (23).

To evaluate the right-hand side of (23), we have to try all
possible choices of thek vectors and for each givenk, we

evaluate each of theB summands by Proposition 3, which
requires checking allnb! different family index permutations.
On the other hand, for the MBR point of the family-plus repair
scheme, we can further simplify the computation complexity
following similar arguments as used in Proposition 4.

Corollary 2: The MBR point of the family-plus repair
scheme is

αMBR = γMBR = dβMBR

andβMBR can be computed by solving the following equation
(

1{n mod (2d) 6=0} ·

min(k,2d−1)−1
∑

i=0

(

d− i+

⌊
i

2

⌋)

+

d2
⌊
(k − nl)

+

2d

⌋

+

q
∑

i=0

(

d− i+

⌊
i

2

⌋))

βMBR = M,

(24)

whereM is the file size,

q = ((k − nl)
+ mod (2d))− 1, and

nl =

{

nremain, if n mod (2d) 6= 0

0, otherwise.

The proof of Corollary 2 is relegated to Appendix I.
In Fig. 5, we plot thek vs. γ curves for the BR, the FR,

and the family-plus repair schemes for the case of(n, d) =
(60, 10) using (6), Proposition 4, and Corollary 2, respectively.
As can be seen, whenk = 40, the repair-bandwidth of the
family-plus repair scheme is only28% of the repair-bandwidth
of the BR scheme (cf. the repair-bandwidth of the FR scheme
is 58% of the repair-bandwidth of the BR scheme). This
demonstrates the benefits of the family-plus repair scheme,
which creates as many complete families as possible by further
partitioning the nodes into several disjoint groups.

We are now ready to state the weak optimality of the family-
plus repair scheme for all(n, k, d) values.

Proposition 9: Consider a family-plus repair scheme de-
noted by F+, and its corresponding collection of IFGs
GF+(n, k, d, α, β). For any(n, k, d) values satisfying neither
of the (i) and (ii) conditions in Proposition 1, there existsa
pair (α, β) such that

min
G∈G

F+

min
t∈DC(G)

mincutG(s, t) >
k−1∑

i=0

min((d − i)+β, α).

(25)

The proof of Proposition 9 is relegated to Appendix J.
Propositions 9 and 1 jointly show that whenever helper

selection can improve the performance, so can the family-plus
repair scheme. We term this property the “weak optimality.”

Note that although the FR scheme in Section IV-B is optimal
for some(n, k, d, α, β) value combinations, the FR scheme is
not weakly optimal, i.e., Proposition 9 does not hold for the
FR scheme. By introducing the additional partitioning step,
the family-plus scheme is monotonically better than the FR
scheme when8 α = dβ, and is guaranteed to be weakly

8The proof is provided in Appendix J.
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optimal. Moreover, in addition to the cases of(n, k, d, α, β)
values for which FR is optimal (so is the family-plus scheme
since the family-plus scheme is monotonically better in those
cases), the family-plus scheme is optimal for some additional
(n, k, d, α, β) values.

Proposition 10: Considerk = n − 1 and α = dβ and a
family-plus repair scheme that dividesn nodes intoB groups
with n1 to nB nodes. Ifnb mod (nb − d) = 0 for all b = 1
to B, then we have

min
G∈G

F+

min
t∈DC(G)

mincutG(s, t) =
nα

2

≥ min
G∈GA

min
t∈DC(G)

mincutG(s, t)

(26)

for any arbitrary dynamic helper selection schemeA.
Remark 4:Thus far, our family-plus scheme assumes all

but one group havenb = 2d nodes and the remaining group
hasnb = nremain ≥ 2d + 1 nodes. One possibility for further
generalization is to allow arbitrarynb choices. It turns out
that Proposition 10 holds even for any arbitrary choices ofnb

values. For example, for the case of(n, k, d) = (19, 18, 4)
and α = dβ, the generalized family-plus scheme is abso-
lutely optimal if we divide the 19 nodes into 3 groups of
(n1, n2, n3) = (8, 6, 5). Also, one can prove that for any
(n, k, d, α, β) values satisfyingn 6= 5, k = n− 1, d = 2, and
α = dβ, we can always find some(n1, · · · , nB) such that the
generalized family-plus repair scheme is absolutely optimal.
See Result 6 in Section III for some other(n, k, d) value
combinations for which the generalized family-plus scheme
is optimal.

Proof: By Proposition 8 and the fact thatk = n − 1,
we must have all but onekb = nb and the remaining one
kb = nb−1. Without loss of generality, we assumek1 = n1−1
and all otherkb = nb for b = 2 to B for the minimizingk
vector in (23). Sincen1 mod (n1 − d) = 0, by Proposition 7,
the first summand of (23) must be equal ton1α

2 .
For the case ofb = 2 toB, we havekb = nb instead ofk1 =

n1 − 1. However, if we examine the proof of Proposition 7,
we can see that Proposition 7 holds even for the case ofk = n
since (i) when compared to the case ofk = n − 1, the case
of k = n involves one additional summand(d− yn(π

∗
f ))β in

(19) and (ii) (d − yn(π
∗
f )) = 0. By applying Proposition 7

again, theb-th summand of (23),b = 2 to B, must benbα
2 as

well.
Finally, by Proposition 8, we have the equality in (26)

min
G∈G

F+

min
t∈DC(G)

mincutG(s, t) =
B∑

b=1

nbα

2
=

nα

2
. (27)

The inequality in (26) is by [9, Theorem 5.4]. The proof is
thus complete.

Before closing this section, we should mention that a similar
scheme to the family-plus repair scheme was devised in [12]
for the MSR point whenn is a multiple of (d + 1). In that
scheme the nodes are divided into groups of(d + 1) nodes.
Whenever a node fails, its set of helpers is the set ofd
remaining nodes in the same group. This can be viewed as a

special example of the generalized family-plus repair scheme
by choosingnb = d+ 1 for all b = 1 to B. Each group thus
has nb

nb−d
= nb = d + 1 complete families and each family

contains onlynb−d = 1 node. As we saw for the family-plus
repair scheme above, the scheme in [12] can be easily analyzed
by noticing that the IFGs representing this scheme consist of
n

d+1 parallel graphs with parameters(n, d) = (d + 1, d). By
similar analysis as in Corollary 2, it is not hard to find the
MBR point of this scheme which is

γMBR = dM

(⌊
k

d+ 1

⌋
(d+ 1)d

2
+

2dr − r2 + r

2

)−1

,

(28)

wherer = k −
⌊

k
d+1

⌋

(d+ 1).
Note that unlike the construction in [12] that requires each

group to have(d+1) nodes and thus requiresn mod (d+1) =
0, our construction and analysis hold for arbitrary ways9 of
partitioningn nodes into separate groups ofnb nodes,b = 1 to
B. Also, our analysis in this work has characterized the entire
storage-bandwidth tradeoff. For comparison, [12] analyzed it
only for for the MSR point. In summary, the result in this
work is a much more general code construction and analysis
for arbitrary(n, k, d) values.

Also note that in addition to deriving the entire storage-
bandwidth tradeoff of the proposed family-based schemes,
one main contribution of this work is to successfully position
the family-based schemes in the context of characterizing the
benefits of optimal helper selection of regenerating codes,e.g.,
Propositions 6, 7, 9, and 10.

VI. SOME MAJOR PROOFS

A. Proof of Proposition 1

Before presenting the proof of Proposition 1, we introduce
the following definition and lemma.

Definition 1: A set ofm active storage nodes (input-output
pairs) of an IFG is called anm-set if the following conditions
are satisfied simultaneously. (i) Each of them active nodes has
been repaired at least once; and (ii) Jointly them nodes satisfy
the following property: Consider any two distinct active nodes
x and y in the m-set and without loss of generality assume
thatx was repaired beforey. Then there exists an edge in the
IFG that connectsxout andyin.

Lemma 1:Fix the helper selection schemeA. Consider an
arbitraryG ∈ GA(n, k, d, α, β) such that each active node in

G has been repaired at least once. Then there exists a
⌈

n
n−d

⌉

-
set inG.

Proof of Lemma 1:We prove this lemma by proving the
following stronger claim: Consider any integer valuem ≥ 1.
There exists anm-set in every group of(m− 1)(n − d) + 1
active nodes of which each active node has been repaired at
least once. Since theG we consider hasn active nodes, the
above claim implies thatG must contain a

⌈
n

n−d

⌉

-set.

9Our construction and analysis work for arbitrarynb partitions. On the other
hand, the optimality guarantee in Proposition 10 only holdswhen nb mod
(nb − d) = 0 for all b.
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We prove this claim by induction on the value ofm. When
m = 1, by the definition of them-set, any group of 1 active
node inG forms a 1-set. The claim thus holds naturally.

Suppose the claim is true for allm < m0, we now claim that
in every group of(m0−1)(n−d)+1 active nodes ofG there
exists anm0-set. The reason is as follows. Given an arbitrary,
but fixed group of(m0 − 1)(n− d) + 1 active nodes, we use
y to denote the youngest active node in this group (the one
which was repaired last). Obviously, there are(m0−1)(n−d)
active nodes in this group other thany. On the other hand,
since any newcomer accessesd helpers out ofn− 1 surviving
nodes, during its repair, nodey was able to avoid connecting
to at most(n− 1)− d surviving nodes (the remaining active
nodes). Therefore, out of the remaining(m0−1)(n−d) active
nodes in this group, nodey must be connected to at least
((m0 − 1)(n− d)) − (n− 1 − d) = (m0 − 2)(n− d) + 1 of
them. By induction, among those≥ (m0−2)(n−d)+1 nodes,
there exists an(m0 − 1)-set. Since, by our construction,y is
connected toall nodes in this(m0 − 1)-set, nodey and this
(m0 − 1)-set jointly form anm0-set. The proof of this claim
is complete.

Proof of Proposition 1:
We first prove the forward direction. Assume condition (ii)

holds and consider an IFGG ∈ GA in which every active node
has been repaired at least once. By Lemma 1, there exists a⌈

n
n−d

⌉

-set inG. Since condition (ii) holds, we can consider
a data collector ofG that connects tok nodes out of this⌈

n
n−d

⌉

-set. Call this data collectort. If we focus on the edge
cut that separates sources and thek node pairs connected tot,
one can use the same analysis as in [4, Lemma 2] and derive
“mincut(s, t) ≤

∑k−1
i=0 min((d− i)+β, α)” for the givenG ∈

GA and the specific choice oft. Therefore, we have

min
G∈GA

min
t∈DC(G)

mincutG(s, t) ≤
k−1∑

i=0

min((d− i)+β, α). (29)

On the other hand, by definition we have

min
G∈GA

min
t∈DC(G)

mincutG(s, t) ≥ min
G∈G

min
t∈DC(G)

mincutG(s, t).

(30)

Then by (29), (30), and (5), we have proved that whenever
condition (ii) holds, the equality (10) is true.

Now, assume condition (i) holds. We first state the following
claim and use it to prove (10).

Claim 1: For any given dynamic helper selection schemeA
and the corresponding collection of IFGsGA, we can always
find aG∗ ∈ GA such that there exists a set of 3 active nodes
in G∗, denoted byx, y, andz such that the following three
properties hold simultaneously. (a)x is repaired beforey, and
y is repaired beforez; (b) (xout, yin) is an edge inG∗; and (c)
either (xout, zin) is an edge inG∗ or (yout, zin) is an edge in
G∗.

Suppose the above claim is true. We lett∗ denote the data
collector that is connected to{x, y, z}. By properties (a) to
(c) we can see that nodex is a vertex-cut separating source
s and the data collectort∗. The min-cut value separating
s and t∗ thus satisfiesmincutG∗(s, t∗) ≤ min(dβ, α) =

∑k−1
i=0 min((d−i)+β, α) for G∗ ∈ GA and the specific choice

of t, where the inequality follows fromx being a vertex-
cut separatings and t∗ and the equality follows from that
condition (i) being true impliesd = 1 and k = 3. By the
same arguments as used in proving the case of condition (ii),
we thus have (10) when condition (i) holds.

We prove Claim 1 by explicit construction. Start from any
G ∈ GA with all n nodes have been repaired at least once. We
choose one arbitrary active node inG and denote it byw(1).
We let w(1) fail and denote the newcomer that replacesw(1)

by y(1). The helper selection schemeA will choose a helper
node (sinced = 1) and we denote that helper node asx(1).
The new IFG after this failure and repair process is denoted
by G(1). By our constructionx(1), as an existing active node,
is repaired before the newcomery(1) and there is an edge
(x

(1)
out , y

(1)
in ) in G(1).

Now starting fromG(1), we choose anotherw(2), which
is not one ofx(1) and y(1) and let this node fail. Suchw(2)

always exists sincen is odd by condition (i). We usey(2) to
denote the newcomer that replacesw(2). The helper selection
schemeA will again choose a helper node based on the history
of the failure pattern. We denote the new IFG (after the helper
selection chosen by schemeA) as G(2). If the helper node
of y(2) is x(1), then the three nodes(x(1), y(1), y(2)) are the
(x, y, z) nodes satisfying properties (a), (b) and the first half
of (c). If the helper node ofy(2) is y(1), then the three nodes
(x(1), y(1), y(2)) are the(x, y, z) nodes satisfying properties
(a), (b) and the second half of (c). In both cases, we can
stop our construction and letG∗ = G(2) and we say that the
construction is complete in the second round. Suppose neither
of the above two is true, i.e., the helper ofy(2) is neitherx(1)

nor y(1). Then, we denote the helper ofy(2) by x(2). Note that
after this step,G(2) contains two disjoint pairs of active nodes
such that there is an edge(x(m)

out , y
(m)
in ) in G(2) for m = 1, 2.

We can repeat this process for the third time by failing a
nodew(3) that is none of{x(m), y(m) : ∀m = 1, 2}. We can
always find such a nodew(3) sincen is odd when condition
(i) holds. Again, lety(3) denote the newcomer that replaces
w(3) and the schemeA will choose a helper fory(3). The
new IFG after this failure and repair process is denoted by
G(3). If the helper ofy(3) is x(m) for somem = 1, 2, then the
three nodes(x(m), y(m), y(3)) are the(x, y, z) nodes satisfying
properties (a), (b) and the first half of (c). If the helper node
of y(3) is y(m) for somem = 1, 2, then the three nodes
(x(m), y(m), y(3)) are the(x, y, z) nodes satisfying properties
(a), (b) and the second half of (c). In both cases, we can
stop our construction and letG∗ = G(3) and we say that the
construction is complete in the third round. If neither of the
above two is true, then we denote the helper ofy(3) by x(3),
and repeat this process for the fourth time and so on so forth.

We now observe that sincen is odd, if the construction
is not complete in them0-th round, we can always start the
(m0 + 1)-th round since we can always find a nodew(m0+1)

that is none of{x(m), y(m) : ∀m = 1, 2, · · · ,m0}. On the
other hand, we cannot repeat this process indefinitely sincewe
only have a finite number ofn active nodes in the network.
Therefore, the construction must be complete in them̃-th
round for some finitẽm. If the helper ofy(m̃) is x(m) for some
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m = 1, 2, · · · m̃ − 1, then the three nodes(x(m), y(m), y(m̃))
are the(x, y, z) nodes satisfying properties (a), (b) and the
first half of (c). If the helper node ofy(m̃) is y(m) for some
m = 1, 2, · · · , m̃− 1, then the three nodes(x(m), y(m), y(m̃))
are the(x, y, z) nodes satisfying properties (a), (b) and the
second half of (c). LetG∗ = G(m̃) denote the final IFG.
The explicit construction ofG∗ and the corresponding(x, y, z)
nodes is thus complete.

The backward direction (11) is a direct result of Proposi-
tion 9. The proof of Proposition 9 is relegated to Appendix J.

B. Proof of Proposition 3

The outline of the proof is as follows.
Part I: We will first show that

min
G∈GF

min
t∈DC(G)

mincutG(s, t) ≤

min
∀πf

k∑

i=1

min ((d− yi(πf ))β, α) . (31)

The proof of Part I is provided in Appendix C.
Part II: By definition, the family repair scheme is a station-

ary repair scheme. Thus, (13) is also a lower bound on all
IFGs in GF and we quickly have

min
r∈R

k∑

i=1

min((d− zi(r))β, α) ≤

min
G∈GF

min
t∈DC(G)

mincutG(s, t) ≤

min
∀πf

k∑

i=1

min ((d− yi(πf )) β, α) . (32)

The remaining step is to prove that

min
r∈R

k∑

i=1

min((d− zi(r))β, α) =

min
∀πf

k∑

i=1

min ((d− yi(πf )) β, α) . (33)

Once we prove (33), we have (14) since (32) is true. The proof
is then complete.

The proof of Part II (i.e., (33)) is as follows. To that end,
we first prove that with the helper setsD1 to Dn specified in
a family repair scheme, we have

LHS of (31)= min
r∈R2

k∑

i=1

min((d− zi(r))β, α) (34)

whereR2 = {(r1, r2, · · · , rk) : ∀i, j ∈ {1, · · · , k}, 1 ≤ ri ≤
n, ri 6= rj if i 6= j}. That is, when evaluating the LHS of (34),
we can minimize overR2 instead of overR = {1, · · · , n}k.
We prove (34) by proving that for anyr ∈ R we can always
find a vectorr′ ∈ R2 such that

k∑

i=1

min((d− zi(r))β, α) ≥
k∑

i=1

min((d − zi(r
′))β, α).

(35)

Equation (35) implies that at least one of the minimizingr
∗ ∈

R of the LHS of (33) is also inR2. We thus have (34). The
proof of (35) is provided in Appendix D.

We now notice that anyr ∈ R2 corresponds to the
first k coordinates of a permutation of the node indices
(1, 2, 3, · · · , n). For easier reference, we user to represent
an n-dimensional permutation vector such that the firstk
coordinates ofr match r. One can viewr as the extended
version of r from a partialk-dimensional permutation to a
completen-dimensional permutation vector. Obviously, the
choice ofr is not unique. The following discussion holds for
any r.

For anyr ∈ R2, we first find its extended versionr. We
then constructπf from r by transcribing the permutation of
the node indicesr to the corresponding family indices. For
example, consider the parameter values(n, k, d) = (8, 4, 5).
Then, one possible choice ofr ∈ R2 is r = (3, 5, 2, 4) and a
correspondingr is (3, 5, 2, 4, 1, 6, 7, 8). The transcribed family
index vector isπf = (1, 2, 1, 2, 1,−2, 0, 0). We now argue
that zi(r) = yi(πf ) for all i = 1 to k. The reason is that
the definition ofyi(πf ) is simply a transcribed version of the
original definition of zi(r) under the node-index to family-
index translation. In sum, the above argument proves that for
any r ∈ R2, there exists aπf satisfying

k∑

i=1

min((d−zi(r))β, α) =

k∑

i=1

min ((d− yi(πf )) β, α) .

As a result, we have

min
r∈R2

k∑

i=1

min((d−zi(r))β, α) ≥

min
∀πf

k∑

i=1

min ((d− yi(πf )) β, α) . (36)

Jointly, (36), (34), and (32) imply (33). The proof of Propo-
sition 3 is thus complete.

C. Proof of Proposition 6

We first introduce the following corollary that will be used
shortly to prove Proposition 6.

Corollary 3: For any (n, k, d) values satisfyingd ≥ 2

and k =
⌈

n
n−d

⌉

+ 1, we consider the corresponding IFGs

GF (n, k, d, α, β) generated by the family repair schemeF .
We then have that

min
G∈GF

min
t∈DC(G)

mincut(s, t) = min
2≤m≤k

Cm, (37)

whereCm =
∑k−1

i=0 min((d − i)β, α)1{i6=m−1} + min((d −
m+ 2)β, α) for 2 ≤ m ≤ k.

The proof of Corollary 3 is relegated to Appendix H.
We now prove Proposition 6 by proving the following.

Consider any fixed(n, k, d) values that satisfy the three
conditions of Proposition 6 and anyG ∈ G(n, k, d, α, β) where
all the active nodes ofG have been repaired at least once. We
will prove the statement that suchG satisfies that there existsn2
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different data collectors, denoted byt2, · · · , tn
2
+1 ∈ DC(G),

such that

mincutG(s, tm) ≤ Cm, for 2 ≤ m ≤
n

2
+ 1, (38)

whereCm is defined as in Corollary 3. Note that the above
statement plus Corollary 3 immediately prove Proposition 6
since it says that no matter how we design the helper selection
schemeA, the resultingG (still belongs toG(n, k, d, α, β))
will have mint∈DC(G)mincutG(s, t) ≤ min2≤m≤k Cm.

We now prove the above statement. We start with the
following definition.

Definition 2: A set ofm active storage nodes (input-output
pairs) of an IFG is called an(m, p)-set if the following con-
ditions are satisfied simultaneously. (i) Each of them active
nodes has been repaired at least once; (ii) The chronologically
p-th node in them nodes, call it z, satisfies thatzin is
connected to at leastp − 2 older nodes of them nodes; and
(iii) Jointly the m nodes satisfy the following property: For
any two distinct active nodesx and y in the set ofm-active
nodes such thaty is younger thanx and y 6= z, there exists
an edge in the IFG that connectsxout andyin.

We now prove the following claim, which will later be used
to prove the desired statement.

Claim 2: Consider anyG ∈ G(n, k, d, α, β) where(n, k, d)
satisfy the three conditions of Proposition 6 and all the active
nodes ofG have been repaired at least once. In anyl active
nodes ofG, wherel is an even integer value satisfying4 ≤
l ≤ n, there exists a( l

2 + 1, p)-set for all2 ≤ p ≤ l
2 + 1.

Proof: We prove this claim by induction onl. We first
prove that the claim holds forl = 4. Consider any setH1 of 4
active nodes ofG. We will prove the existence of a(3, 2)-set
and a(3, 3)-set, separately.

• Existence of a(3, 2)-set: First, call the chronologically
fourth active node ofG, u. Since d = n − 2, u can
avoid at most 1 active node during repair andu is thus
connected to at least3− 1 = 2 older active nodes inH1.
Pick two nodes thatu is connected to and call this set of
two nodesV . Then, we claim that{u}∪V forms a(3, 2)-
set. The reason is the following. Letv1 andv2 denote the
two nodes inV and without loss of generality, we assume
v1 is older thanv2. We have thatu is connected tov1 and
v2. One can verify that{v1, v2, u} satisfy the properties
(i), (ii), and (iii) of Definition 2 since the second oldest
node z = v2. Therefore,{v1, v2, u} form a (3, 2)-set.
Note thatv2 may or may not be connected tov1.

• Existence of a(3, 3)-set: Call the chronologically third
and fourth active nodes ofH1, v and w, respectively.
Observe thatv is connected to at least2 − 1 = 1 older
active node sinced = n − 2 and v can avoid at most
one active node during repair. There are only two cases
in this scenario: Case 1,v is connected to both the
chronologically first and second active nodes; Case 2,
v is connected to only one of the chronologically first
and second active nodes. Call the active node thatv is
connected to byu (in Case 1,u can be either the first or
the second active node). Then, we claim that{u, v, w} is
a (3, 3)-set. This can be proved by verifying that{u, v, w}

satisfy the properties (i), (ii), and (iii) of Definition 2
based on the following observations. The third oldest
node isz = w in this construction. Sinced = n − 2,
w can avoid connecting to at most one of its older active
nodes. Therefore,w must be connected to at least one
of u and v. Condition (ii) in Definition 2 thus holds.
Lastly,uout andvin are connected by our construction of
u, which means that condition (iii) in Definition 2 holds.

Now, assume that the claim holds forl ≤ l0 − 2. Consider
any set ofl0 active nodes ofG and call itH2. Sinced = n−2,
each node can avoid connecting to at most 1 active node.
Therefore, the youngest node inH2, call it x, is connected
to l0 − 2 older nodes inH2. Call this set of(l0 − 2) nodes,
V2. We assumed that the claim holds forl ≤ l0 − 2, this tells
us that inV2 there exists an( l02 , p)-set for all 2 ≤ p ≤ l0

2 .
Moreover, for any( l02 , p)-set inV2 with 2 ≤ p ≤ l0

2 , denoted
by V3, we argue that the setV3 ∪ {x} is a ( l02 + 1, p)-set in
H2. The reason is that thep-th oldest node inV3 ∪ {x} must
be in V3 since2 ≤ p ≤ l0

2 . Also, nodex is connected to all
nodes inV2 ⊇ V3. Therefore,V3 ∪ {x} satisfies properties (i)
to (iii) in Definition 2 and thus form a( l02 + 1, p)-set.

We are now left with proving that there exists a( l02 +1, l02 +
1)-set in H2. By the claim in the proof of Lemma 1, there
exists anm-set in any(l0 − 1) active nodes provided thatm
satisfies2(m− 1)+ 1 ≤ l0 − 1. Since2( l02 − 1)+ 1 = l0 − 1,
there exists al02 -set in the oldest(l0 − 1) active nodes of
H2. Denote thisl0

2 -set byV4. We argue thatV4 ∪ {x} form
a ( l02 + 1, l0

2 + 1)-set wherex is the youngest node inH2.
The reason is as follows. Condition (ii) holds sincex can
avoid connecting to at most one node that is older, and thus
must connect to( l02 − 1) nodes in this set. Condition (iii) in
Definition 2 holds obviously sincex is the youngest node (the
( l02 + 1)-th node chronologically) and the firstl02 nodes are
fully connected as they form anl02 -set. Hence, the proof of
this claim is complete.

By the above claim, we have that for anyG ∈
G(n, k, d, α, β) where all the active nodes ofG have been
repaired at least once there exist all(n2 + 1, p)-sets for all
2 ≤ p ≤ n

2 + 1. We then assign one data collector to each of
these(n2 + 1, p)-sets and denote it bytp, for p = 2 to n

2 + 1.
In total, there aren2 data collectors.

We now apply a similar analysis as in the proof of [4,
Lemma 2] to prove (38). Consider the case oftp. We need
to prove that

mincutG(s, tp) ≤ Cp, (39)

wheretp is the data collector connecting to a(n2 + 1, p)-set.
Denote the storage nodes (input-output pair) of this(n2 +1, p)-
set by1, 2, . . . , n

2 +1. Define cut(U,U) betweentp ands as
the following: for eachi ∈ {0, 1, . . . , n

2 }\(p − 1), if α ≤
(d − i)β then we includexi+1

out in U ; otherwise, we include
bothxi+1

out andxi+1
in in U . For i = p− 1, if α ≤ (d− p+2)β,

then we includexp
out in U ; otherwise, we include bothxp

out

and xp
in in U . It is not hard to see that the cut-value of the

cut (U,U) is equal toCp. Therefore, we get (39). Since (39)
is for generalp, we get (38) and the proof is hence complete.
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VII. G ENERALIZED FRACTIONAL REPETITION CODES

All the previous analysis assumes that the cut-value condi-
tion alone is sufficient for deciding whether one can construct
the regenerating code under a given helper selection scheme,
i.e., Assumption 1 in Section II-E. In this section, we describe
an explicit construction of an exact-repair code, termedgener-
alized fractional repetition code, that achieves the MBR point
of the FR scheme and can be easily modified to achieve the
MBR point of the family-plus repair scheme as well. Since
the benefits of helper selection are greatest at the MBR point,
our construction completes our mission of understanding under
what condition helper selection improves the performance of
regenerating codes and how much improvement one can expect
from helper selection.

A. The Description of the Generalized Fractional Repetition
Code

Our construction idea is based on fractional repetition codes
[5]. Before describing the generalized fractional repetition
codes, we list some notational definitions. We denote the set
of nodes of complete familyi by Ni. For the last complete
family, i.e., i = c wherec =

⌊
n

n−d

⌋

, we split its nodes into
two disjoint node sets,N−c is the set of nodes in familyc that
is not in the helper set of the incomplete family nodes andNc

is the set of the remaining nodes of this complete family. We
denote the set of nodes in the incomplete family byN0. The set
of all nodes in the network is denoted byN . For example, if
(n, d) = (7, 4), then we havec = 2 complete families{1, 2, 3}
and{4, 5, 6}, and 1 incomplete family{7}. Furthermore, we
haveN1 = {1, 2, 3}, N2 = {4}, N−2 = {5, 6}; N0 = {7}.
In short, Nx contains the nodes that have family indexx.
Moreover, we assume throughout this section thatβ = 1 and
α = dβ = d, i.e., one packet is communicated per helper andd
packets are stored in each node since the generalized fractional
repetition code we describe does not require sub-packetizing.

The goal of generalized fractional repetition codes is to
protect a file of size

M =

k∑

i=1

(
d− yi(π

∗
f )
)

packets (40)

against any(n− k) simultaneous failures. From (40), we can
easily see that the larger thek value, the more relaxed the
reliability requirement is, and the larger the file sizeM the
generalized fractional repetition code can protect.

To handle all possible(n, k, d) values, the construction of
the generalized fractional repetition code is quite complicated.
The core idea of these codes stems from a graph representation
of the distributed storage system. Although the proposed
generalized fractional repetition codes can still be constructed
without the aid of this graph, the graph representation is
inevitable for gaining intuition about their constructionand
facilitating their analysis. For that reason, we base our detailed
discussion of the generalized fractional repetition codeson the
graph. In the following, we start the description of these codes
by introducing their graph representation.

The graph representation: Each physical node in the
distributed storage system is represented by a vertex in the

graph, which is denoted byG = (V,E) whereV denotes the
set of vertices ofG andE denotes its set of edges. As will be
described, the graph consists of two disjoint groups of edges.
GraphG has the following properties:

1) V = {1, 2, · · · , n}. Each vertexi in V corresponds to
physical nodei in N . For convenience, throughout our
discussion, we simply say vertexi ∈ Nx if the physical
node that vertexi corresponds to is inNx.

2) Two verticesi ∈ Nx and j ∈ Ny are connected by an
edge inE if |x| 6= |y| and (x, y) /∈ {(0,−c), (−c, 0)}.
The collection of all those edges is denoted byĒ.

3) Two verticesi ∈ N0 and j ∈ N−c are connected by an
edge inE. The collection of all those edges is denoted
by Ẽ.

4) From the above construction, we haveE = Ē ∪ Ẽ. We
further assume that all the edges are undirected and there
are no parallel edges inG.

Fig. 7 illustrates the graph representation for the generalized
fractional repetition code with(n, d) = (10, 6). We graphically
represent edges in̄E by solid lines and edges iñE by dashed
lines.

1

2

3 4
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6

7
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9
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N1

N2

N
−2

N0

Fig. 7. A graph representation of the generalized fractional repetition code
for (n, d) = (10, 6).

For any physical nodei, we useFI(i) to denote the family
index of i. We define the following three sets:

IJ
[1] =

{(i, j) : 1 ≤ i < j ≤ n, 1 ≤ |FI(i)| < |FI(j)| ≤ c}

IJ
[2] = {(i, j) : 1 ≤ i < j ≤ n, 1 ≤ FI(i) ≤ c, FI(j) = 0}

IJ
[3] = {(i, j) : 1 ≤ j < i ≤ n, FI(i) = 0, F I(j) = −c}.

One can easily verify that the union of the first two sets,
IJ

[1] ∪ IJ
[2], can be mapped bijectively to the edge setĒ, and

the third setIJ[3] can be mapped bijectively to the edge set
Ẽ. The difference between setsIJ[1] to IJ

[3] andĒ, Ẽ, andE
is that the setsIJ[1] to IJ

[3] focus onordered pairswhile the
edges inE correspond to unordered vertex pairs (undirected
edges). Also, we can see that there are(n−|N0|)(d−|N0|)

2 pairs
in IJ

[1], d|N0| pairs in IJ
[2], and |N−c| · |N0| pairs in IJ

[3].
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Thus, in total, there are

(n− |N0|)(d − |N0|)

2
+ d|N0|+ |N−c| · |N0| (41)

distinct pairs in the overall index setIJ[1] ∪ IJ
[2] ∪ IJ

[3]. This
implies that the total number of edges of graphG is |E| =
(n−|N0|)(d−|N0|)

2 + d|N0|+ |N−c| · |N0|.
Coded packets generation:Each edge of graphG corre-

sponds to one coded packet that is stored in the distributed
storage system. More specifically, each edge(i, j) ∈ Ē
represents a packetP(i,j) that is stored in the two physical
nodesi andj, i.e., both nodesi andj store an identical copy
of the packetP(i,j). On the other hand, each edge(i, j) ∈ Ẽ

represents a packet̃P(i,j) that is only stored in one of its two
vertices, the corresponding vertex inN−c. One can verify by
examining theIJ[1] to IJ

[3] index sets defined previously that
each physical node stores exactlyα = d packets.

We now describe how to generate the|IJ[1]|+ |IJ[2]|+ |IJ[3]|
coded packets (theP(i,j) and P̃(i,j) packets depending on
whether(i, j) ∈ Ē or (i, j) ∈ Ẽ) from the to-be-protected
file of M packets, whereM is specified by (40). To that end,
we impose the following two properties on the coded packets
of the edges.

Property 1: Any coded packetP̃(i0,j0) corresponding to
some(i0, j0) ∈ IJ

[3] is a linear combination of theP(j1,i0)

for all j1 satisfying(j1, i0) ∈ IJ
[2]. In total, there ared such

j1 indices. Specifically, the packet corresponding toP̃(i0,j0)

is stored only in nodej0 since(i0, j0) ∈ Ẽ and P̃(i0,j0) is a
linear combination of thed packets stored in nodei0.

We now describe the second required property. Recall that
there are|N0| = n mod (n−d) nodes in the incomplete family
and they are nodesc(n− d)+ 1 to c(n− d)+ |N0| wherec is
the family index of the last complete family. For any subset
of the total |E| packets, defineam, m = 1 to |N0|, as the
number of packets that correspond to all edges inE = Ē ∪ Ẽ
connected to the vertex(c(n − d) + m) ∈ N0. Definea0 as
the number of packets in this subset that correspond to edges
that are not connected to any of the vertices inN0. Define
a.count

∆
= a0 +

∑|N0|
m=1 min(am, d). In sum, we can compute

a valuea.count from any subset of edges.
Property 2: The |E| coded packets satisfy that we must be

able to reconstruct the original file from any subset of packets
(edges) that satisfiesa.count ≥ M.

We now argue that we can always find a set of|E| coded
packets that satisfy the above two properties. Specifically, we
can use a two-phase approach to generate the packets. We
first independently and uniformly randomly generate|Ē| =
(n−|N0|)(d−|N0|)

2 + d|N0| linearly encoded packets from the
M packets of the original file. These packets are fixed and
arbitrarily assigned to the edges in̄E (one for each edge).
After this first step, all physical nodes store exactlyd packets
except those nodes inN−c, each of which now stores exactly
(d − |N0|) packets. Now, from each node inu ∈ N0, we
generate independently and uniformly a random set of|N−c|
linearly encoded packets from thed packets stored inu. We
fix these newly generated packets and assign them arbitrarily
to each of the|N−c| edges in{(u,w) ∈ Ẽ : ∀w ∈ N−c}.

Specifically, these|N−c| packets will now be stored in node
w ∈ N−c, one for eachw. Repeat this construction for all
u ∈ N0. After this second step, each edge inĒ ∪ Ẽ has been
assigned one distinct coded packet and each node inN =
N1∪· · ·Nc∪N−c∪N0 now stores exactlyd packets. After the
initial random-construction phase, we enter the second phase,
the verification phase. In this phase, we fix the packets and
deterministically check whether they satisfy Property 2 (by
our construction the coded packets always satisfy Property1).
The following lemma states that with high probability, the
randomly generated packets will satisfy Property 2.

Lemma 2:When GF(q) is large enough, with close-to-
one probability, the above random construction will satisfy
Property 2.

The proof of Lemma 2 is relegated to Appendix K.

Lemma 2 implies that with high-probability, the random
construction will lead to a deterministic set of coded packets
that satisfies Properties 1 and 2. In the rare event that the
random construction does not satisfy Property 2, we simply
repeat the random construction until we find a set of coded
packets that satisfies Properties 1 and 2. Note that this con-
struction is performed off-line during the design stage. Once
the coded packets are found by random construction, we will
fix the coded packets for future use. Also, the construction
is not unique. We may be able to use some other method of
construction.10 All our subsequent discussion holds as long as
the final coded packets satisfy Properties 1 and 2.

We now provide a detailed example on the construction of
a generalized fractional repetition code. Suppose(n, k, d) =
(7, 4, 4). Then, there are two complete families{1, 2, 3} and
{4, 5, 6} and1 incomplete family{7}. We will have that the
RFIP isπ∗

f = (1, 2, 0, 1,−2, 1,−2) and the file size isM =
11 packets, see (40). By (41), we have|E| = 15, |Ē| = 13,
and|Ẽ| = 2. Then, we choose GF(128) and randomly generate
the first |Ē| = 13 packets and their coding vectors are

10The computational complexity during the design stage is notthe main
focus in this work. Therefore, we opted to use the random codeconstruction
to demonstrate the existence of a desired code. For practical implementation,
some finite-algebra-based construction could drasticallyreduce the complexity
of the construction.
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(i, j) Coding vector forP(i,j)

(1, 7) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(2, 7) (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(3, 7) (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

(4, 7) (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

(1, 4) (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

(1, 5) (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

(1, 6) (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

(2, 4) (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

(2, 5) (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

(2, 6) (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

(3, 4) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(3, 5) (21, 56, 81, 119, 67, 80, 87, 118, 19, 51, 39)

(3, 6) (88, 114, 62, 103, 41, 70, 49, 114, 86, 106, 14).

Then, we generate the additionalẼ packets by mixing the
packets in any givenu ∈ N0. The newly generated coding
vectors are

(i, j) Coding vector forP̃(i,j)

(7, 5) (35, 98, 27, 4, 0, 0, 0, 0, 0, 0, 0)

(7, 6) (55, 119, 33, 72, 0, 0, 0, 0, 0, 0, 0).

One can easily verify, with the aid of a computer, that both
Properties 1 and 2 hold for the above choices of coded packets
(coding vectors).

The correctness of the proposed generalized fractional rep-
etition codes for FR will be proved in Section VII-B.

We note that the generalized fractional repetition codes
described above can be modified and used to construct an
explicit exact-repair code that can achieve the MBR point
of the family-plus repair scheme. This is achieved by first
applying the same graph construction of the above generalized
fractional repetition codes to each group of the family-plus
repair scheme, i.e., the edge representation of each group
consists of the two edge sets̄E andẼ. Then, since the repair
of the family-plus scheme occurs within each group separately,
we enforce Property 1 for each individual group so that we can
maintain the exact-repair property. Finally, we need to ensure
that any subset ofk nodes (which could be across multiple
groups) can be used to reconstruct the original file. Therefore,
we have to ensure that the coded packets satisfy a modified
version of Property 2.

In the following we briefly describe how to do this mod-
ification with a slight abuse of notation. Recall that in the
family-plus repair scheme, only the incomplete group has an
incomplete family. Denote the set of incomplete family nodes
in the incomplete group byM0 and the graph of the incomplete
group byGinc = (Vinc, Einc). The new property imposed on the
packets becomes

Modified Property 2: Index the vertices inM0 ⊂ Vinc by
{u1, u2, · · · , u|M0|}. For any given subset of the total packets
(across all groups) and any givenm satisfying 1 ≤ m ≤

|M0|, defineam as the number of packets in this subset that
correspond to the edges inEinc = Ēinc∪ Ẽinc that are incident
to vertexum ∈ M0. Define a0 as the number of the other
packets in this subset, i.e., those packets not corresponding to
any edges that are incident toM0. Define a.count

∆
= a0 +

∑|M0|
m=1 min(am, d). Then we must be able to reconstruct the

original file of sizeM if a.count ≥ M.
We can again use the concept of random linear network cod-

ing to prove the existence of a code satisfying Property 1 and
the modified Property 2 in a similar way as in Lemma 2. The
correctness of the proposed generalized fractional repetition
codes for family-plus repair schemes can be proved in a similar
way as when proving the correctness for family repair schemes
provided in Section VII-B. We omit the detailed proofs since
the proofs are simple extensions of the proofs we provide for
the FR scheme with only the added notational complexity of
handling different groups of nodes in the family-plus repair
schemes.

We also note that the proposed code construction is termed
the generalized fractional repetition codes because it borrows
the main ingredient of representing the code construction
as a graph with each edge representing a packet. Such a
representation leads to straightforward arguments that the
proposed codes can be exactly repaired by communicating
the missing copy from the other helper. On the other hand,
the proposed solution has the new ingredient of the edges
in Ẽ which allows the code construction to handle arbitrary
parameter values while still being an exact-repair code. One
major contribution of the code construction in this work is to
put the generalized fractional repetition codes in the context
of quantifying the benefits of intelligent helper node selection
and to show that the generalized fractional repetition codes
achieve the MBR point of the FR scheme predicted by the
pure min-cut-value-based characterization.

The remaining part of Section VII is dedicated exclusively
to proving that the generalized fractional repetition codeis
a legitimate exact-repair regenerating code that achievesthe
MBR point of the FR scheme described in Proposition 4.
Practitioners may consider skipping the proofs and go directly
to the conclusion section, Section VIII.

Remark 5:The original fractional repetition code in [5] is
an explicit exact-repair code for the case when the product
nd is even, but [5] does not provide any construction when
nd is odd. Moreover, the performance of the construction of
[5] depends heavily on “the underlying regular graph.” Since
[5] does not discuss how to choose the regular graphs, it is
not clear how to optimize the performance of the fractional
repetition codes in [5]. For comparison, our construction is an
exact-repair code applicable toall possible(n, k, d) combina-
tions; we provide a new way of optimally designing the regular
and possibly irregular graphs, and prove that our construction
always achieves the MBR point of the FR scheme.

B. Proofs for the GFR Code

In this subsection, we first argue that the above generalized
fractional repetition code can be exactly repaired using the
FR scheme. First, consider the case that nodei fails for some
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i ∈ N1∪N2∪· · ·∪Nc∪N0 (those inN\N−c). Thed packets
stored in nodei thus need to be repaired. We then notice that
thed packets in nodei correspond to thed edges inĒ that are
incident to nodei. Therefore, each of thosed packets to be
repaired is stored in another nodej. Also by our construction,
the neighbors of nodei are indeed the helper setDi of the FR
scheme. Therefore, the newcomeri can use the FR scheme to
decide which nodes to be the helpers and request the helpers
to send the intact copies of the to-be-repairedd packets (one
intact copy from each of the helpers).

For example, suppose we reconsider the example above
where (n, k, d) = (7, 4, 4). Node 4 ∈ N2 stores thed = 4
packets corresponding to edges(4, 1), (4, 2), (4, 3), and(4, 7).
Suppose that node 4 fails. Since each of the nodes{1, 2, 3, 7}
store one of the packets of node 4 and node 4 can receive one
packet from each of thed = 4 helper nodes during repair, node
4 can always restore the exact packetsP(4,1), P(4,2), P(4,3),
andP(4,7) that it initially stored. Observe that in the same way,
all nodes inN1 ∪N2 ∪ · · · ∪Nc ∪N0 can be repaired exactly.
Therefore, we are left to show how nodes in the setN−c can
be repaired exactly.

Suppose nodei in N−c fails. We again notice that(d −
n mod (n−d)) of its d packets correspond to edges inĒ and
their corresponding neighbors are also in the helper setDi of
the FR scheme. Therefore, the newcomeri can use the FR
scheme to decide which nodes to be the helpers and request
(d−n mod (n−d)) out of itsd helpers to send one of the to-
be-repaired packets. If we dig deeper, those(d−n mod (n−
d)) helpers are the nodes that have family indices belonging
to {1, · · · , c− 1}.

To restore the remainingn mod (n− d) packets, we notice
first that by our construction, these packets correspond to the
edges in{(i, w) ∈ Ẽ : w ∈ N0}. By our code construction, for
anyw0 ∈ N0, P̃(i,w0) is a linear combination of thed packets
{P(w0,j) : (w0, j) ∈ Ē, j = 1, 2, · · · , d} stored in nodew0 ∈
N0. Thus, during repair, newcomeri can ask physical node
w0 to compute the packet̃P(i,w0) and send the final result.
In a similar fashion, newcomeri ∈ N−c can repair all other
packetsP̃(i,w) for all w ∈ N0. Therefore, newcomeri can
exactly repair all the remainingn mod (n − d) packets as
well.

Considering the same example above, node6 ∈ N−2 can
restore packets corresponding to{(6, 1), (6, 2), (6, 3)} ⊆ Ē
by receiving copies of these packets from nodes{1, 2, 3} and
can request the packet of edge(6, 7) ∈ Ẽ from node7 ∈
N0. Node7 can generate that packetP̃(6,7) by computing the
corresponding linear combination from the packets it stores,
i.e., the packetsP(7,1), P(7,2), P(7,3), andP(7,4). This shows
that nodes inN−c can also be exactly repaired, hence, all the
nodes in a generalized fractional repetition code can be exactly
repaired when following the FR helper selection scheme.

The following proposition shows that the generalized frac-
tional repetition code with FR helper selection can protect
against any(n− k) simultaneous failures.

Proposition 11: Consider the generalized fractional repeti-
tion code with any given(n, k, d) values. For any arbitrary
selection ofk nodes, one can use all thekd packets stored in
thesek nodes (some of them are identical copies of the same

coded packets) to reconstruct the originalM file packets.
Since theα, β, and M values in (40) match the MBR

point of the FR scheme, Proposition 11 shows that the explic-
itly constructed generalized fractional repetition code indeed
achieves the MBR point of the FR scheme predicted by the
min-cut-based analysis.

The rest of this section is dedicated to the proof of Propo-
sition 11.

Proof: Consider an arbitrarily given set ofk nodes in
the distributed storage network, denoted byS. Denote nodes
in S that belong toNi by Si

∆
= S ∩ Ni. We now consider

the set of edges that are incident to the given node set
S, i.e., those edges have at least one end being inS and
each of the edges corresponds to a distinct packet stored in
nodesS. Recall that for any set of edges, we can compute
the correspondinga.count value as defined in Property 2 of
our code construction. The following is a procedure, termed
COUNT, that computes the valuea.count of the edges incident
to S:

1) We first defineG1 = (V1, E1) = G = (V,E) as the
original graph representation of the generalized fractional
repetition code. Choose an arbitrary order for the vertices
in S such that all nodes inS−c come last. Call thei-th
vertex in the order byvi. That is, we have thatS−c =
{vi : k − |S−c| + 1 ≤ i ≤ k} andS1 ∪ · · · ∪ Sc ∪ S0 =
{vi : 1 ≤ i ≤ k − |S−c|}.

2) Set e(S) = 0, where e(S) will be used to compute
a.count.
Now, do the following step sequentially fori = 1 to
|S| = k:

3) Consider vertexvi. We first compute

xi =|{(vi, j) ∈ Ei ∩ Ē : j ∈ N}|+

1{vi∈S−c} ·
∑

u∈N0

1{(u,vi)∈Ei∩Ẽ}·

1{|{(u,j)∈Ei:j∈N}|>|N−c|}. (42)

Oncexi is computed, updatee(S) = e(S)+xi. Remove
all the edges incident tovi from Gi. Denote the new
graph byGi+1 = (Vi+1, Ei+1).

Intuitively, we first “count” the number of edges inGi that
belongs toĒ and is connected to the target vertexvi, namely,
the |{(vi, j) ∈ Ei ∩ Ē : j ∈ N}| term in (42). Then, if
the target vertexvi ∈ S−c, we compute one more term in the
following way. For each edge(u, vi) ∈ Ei∩Ẽ, if the following
inequality holds, we also count this specific(u, vi) edge:

|{(u, j) ∈ Ei : j ∈ N}| > |N−c|. (43)

That is, we check how many edges (including those inĒ and
in Ẽ) are connected tou. We count the single edge(u, vi) if
there are still at least(|N−c|+1) edges inEi that are connected
to u. Collectively, this additional counting mechanism for the
case ofvi ∈ S−c gives the second term in (42). After counting
the edges incident tovi, we remove those edges from future
counting rounds (rounds> i) so that we do not double count
the edges in any way.
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Claim 3: After finishing the subroutine COUNT, the final
e(S) value is exactly the value ofa.count.
Proof of Claim 3:

The proof of the above claim is as follows. We first note
that in the subroutine, we order the nodes inS in the specific
order such that all nodes inS−c are placed last. Therefore, in
the beginning of the subroutine COUNT, all thevi vertices do
not belong toS−c. Therefore, the second term in (42) is zero.
Sincevi /∈ S−c, all the edges connected tovi are in Ē. The
first term of (42) thus ensures that we count all those edges
in this subroutine. Since we remove those counted edges in
each step (fromGi to Gi+1), we do not double count any
of the edges. Therefore, before we start to encounter a vertex
vi ∈ S−c, the subroutine correctly counts the number of edges
incident to thevj for all 1 ≤ j < i.

We now consider the second half of the subroutine, i.e.,
whenvi ∈ S−c. We then notice that the subroutine still counts
all those edges in̄E through the first term in (42). The only
difference between COUNT and a regular counting procedure
is the second term in (42). That is, when counting any edge in
Ẽ, we need to first check whether the total number of edges
in Gi incident tou is greater than|N−c|. To explain why we
have thisconditional countingmechanism, we notice that in
the original graphG, each nodeu ∈ N0 has |{(u, j) ∈ Ē :
j ∈ N}| = d and |{(u, j) ∈ Ẽ : j ∈ N}| = |N−c|. Therefore,
the total number of edges connected tou is |{(u, j) ∈ E :
j ∈ N}| = d+ |N−c|. Note that during the counting process,
those counted edges are removed from the graph during each
step. SinceGi is the remaining graph after removing all those
counted edges in the previous(i − 1) steps, if we still have
|{(u, j) ∈ Ei : j ∈ N}| > |N−c|, then it means that we have
only removed strictly less than(d+|N−c|)−|N−c| = d number
of edges in the previous(i − 1) counting rounds. The above
argument thus implies that in the previous(i − 1) counting
rounds, we have only counted< d edges that are incident to
nodeu.

Without loss of generality, we assume thatu is the m-
th node of N0. Then it means that theam value (the
number of edges connected tou) computed thus far (until
the beginning of thei-th counting round) is still strictly
less thand. Therefore, when computing the objective value
a.count = a0 +

∑

m min(am, d), the to-be-considered edge
(vi, u) in the second term of (42) will incrementam value
by 1 and thus incrementa.count by 1. Since our goal is to
correctly compute thea.count value by this subroutine, the
subroutine needs to include this edge into the computation,
which leads to the second term in (42).

On the other hand, if the total number of edges inGi that
are adjacent tou is ≤ |N−c|, it means that we have removed
≥ (d + |N−c|)− |N−c| = d number of edges in the previous
counting rounds. That is, when counting those edges adjacent
to u, we have already included/encountered≥ d such edges
in the previous(i− 1) rounds. As a result, the corresponding
am value is≥ d. Therefore, when computing the objective
value a.count = a0 +

∑

m min(am, d), the to-be-considered
edge(vi, u) will increment the value ofam by 1 butwill not
increment thea.count value. In the subroutine COUNT, we
thus do not count the edges iñEi anymore, which leads to

the second term in (42).
The new constraint put in Step 3 thus ensures that the final

output e(S) is the value ofa.count. We now need to prove
that for any setS of k nodes, the correspondinge(S) ≥ M.
Assuming this is true, we can then invoke Property 2, which
guarantees that we can reconstruct theM packets of the
original file from the coded packets stored inS.

The proof ofe(S) ≥ M consists of two additional claims.
Claim 4: Suppose there exists a nodea ∈ S−c and a node

b ∈ Nc\Sc. Then

e(S) = e(S ∪ {b}\a). (44)

Claim 4 will be used to prove the following claim.
Claim 5: For any arbitrarily given setS, there exists an

r̃ ∈ R = {(r1, r2, · · · , rk) : ∀i ∈ {1, · · · , k}, 1 ≤ ri ≤ n}
such that

e(S) =

k∑

i=1

(d− zi(r̃)), (45)

wherezi(·) is as defined in Proposition 2.
Using the above claims, we have

a.count = e(S) =

k∑

i=1

(d− zi(r̃)) (46)

≥ min
r∈R

k∑

i=1

(d− zi(r)) (47)

= min
πf

k∑

i=1

(d− yi(πf )) (48)

=
k∑

i=1

(d− yi(π
∗
f )) (49)

= M. (50)

where (46) follows from Claim 5, (47) follows from taking the
minimum operation, (48) follows from the proof of Proposi-
tion 3, (49) follows from the optimality of the RFIP, and (50)
follows from (40). By Property 2, we have thus proved that
the kd packets stored in any set ofk nodes can be used to
jointly reconstruct the original file of sizeM.

The proofs of Claims 4 and 5 are provided in the following.
Proof of Claim 4:
We consider COUNT for the setS′ = S ∪ {b}\a and we

denote nodes inS′ that belong toNi by S′
i

∆
= S′ ∩ Ni. To

avoid confusion whenS′ is used as input to the subroutine
COUNT, we call the new graphs during the counting steps of
COUNT by G′

i = (V ′
i , E

′
i), the new vertices byv′i, and the

new xi by x′
i. Since the subroutine COUNT can be based on

any sorting order of nodes inS (and inS′) as long as those
nodes inN−c come last, we assume that the nodes inS are
sorted in a way that nodea is the very first node inS−c. For
convenience, we say that nodea is the i0-th node inS and
we assume that all the first(i0 − 1)-th nodes are not inS−c

and all the nodes following the(i0 − 1)-th node are inS−c.
Namely,i0 = |S| − |S−c| + 1 = k + 1 − |S−c|. We now use
the same sorting order ofS and apply it toS′. That is, the
i-th node ofS is the same as thei-th node inS′ except for
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the case ofi = i0. The i0-th node ofS′ is set to be node
b. One can easily check that the sorting orders ofS andS′

both satisfy the required condition in Step 1 of the subroutine
COUNT.

We will run COUNT on bothS andS ∪ {b}\a in parallel
and compare the resultinge(S) ande(S ∪ {b}\a).

It is clear that in rounds 1 to(i0−1), the subroutine COUNT

behaves identically when applied to the two different setsS
and S′ = S ∪ {b}\a since their first(i0 − 1) vertices are
identical. We now consider thei0-th round and argue that the
total number of edges inE′

i0
incident tov′i0 is equal to the total

number of edges incident tovi0 in Ei0 . Recall thatb anda have
the same helper sets since they are from the same complete
family. Specifically, the edges inE incident tovi0 = a ∈ S−c

that have been counted in the first(i0 − 1) rounds are of the
form (u, a) for all u ∈ {v1, v2, · · · , vi0−1} ∩ (S0 ∪ S1 ∪ · · · ∪
Sc−1). Also note that in the original graphG, there are exactly
d edges incident to nodea ∈ S−c (some of them are in̄E and
some of them inẼ). Therefore, inEi0 (after removing those
previously counted edges), there are(d−|{v1, v2, · · · , vi0−1}∩
(S0 ∪ S1 ∪ · · · ∪ Sc−1)|) number of edges that are incident to
vi0 .

Similarly, the edges inE′
i0

incident to v′i0 = b ∈ S′
c that

have been counted previously are of the form(u, b) for all
u ∈ {v1, v2, · · · , vi0−1}∩ (S0∪S1∪· · ·∪Sc−1) sincev′i = vi
for 1 ≤ i ≤ i0 − 1 andS′

x = Sx for 0 ≤ x ≤ c − 1. Also
note that, in the original graphG′, there are exactlyd edges
incident to nodeb ∈ S′

c (all of them are inĒ′). Therefore,
in E′

i0
(after removing those previously counted edges), there

are(d−|{v1, v2, · · · , vi0−1}∩(S0∪S1∪· · ·∪Sc−1)|) number
of edges that are incident tov′i0 = b.

We now argue that all the edges inEi0 that are incident to
a will contribute to the computation ofxi0 . The reason is that
nodea is the first vertex inS−c. Therefore, when in thei0-th
counting round, no edge of the form(u, v) whereu ∈ N0\S0

andv ∈ N−c has ever been counted in the previous(i0 − 1)
rounds. Also, since we chooseb ∈ Nc\S to begin with, when
running COUNT on S, for all u ∈ N0\S0 at least one edge,
edge(u, b), is not counted during the first(i0−1) rounds. As a
result, for anyu ∈ N0\S0, in thei0-th round, at least|{(u, v) :
v ∈ N−c}|+1 = |N−c|+1 edges incident tou are still inEi0

(not removed in the previous(i0−1) rounds). This thus implies
that the second term of (42) will be non-zero. Therefore, at
the i0-th iteration of Step 3 of COUNT, all the edges inEi0

incident tovi0 = a are counted. Thexi0 value computed in
(42) thus becomesxi0 = d−|{v1, v2, · · · , vi0−1}∩ (S0∪S1∪
· · · ∪ Sc−1)|.

The previous paragraph focuses on thei0-th round when
running the subroutine COUNT on S. We now consider the
i0-th round when running COUNT on S′. We argue that all
the edges inE′

i0
that are incident tob will contribute to the

computation ofx′
i0

. The reason is that nodeb ∈ S′
c. Therefore,

all edges incident tob belong toĒ′. As a result, all the edges
in E′

i0
that are incident tob will contribute to the computation

of x′
i0

through the first term in (42). We thus havex′
i0

=
d− |{v1, v2, · · · , vi0−1} ∩ (S0 ∪ S1 ∪ · · · ∪ Sc−1)|.

Sincexi0 = x′
i0

, we thus havee(S) = e(S′) after the first
i0 counting rounds.

We now consider rounds(i0 +1) to k. We observe that by
our constructionv′i = vi ∈ S′

−c ⊂ S−c for i0 + 1 ≤ i ≤ k.
Moreover, sincevi0 = a ∈ S−c and v′i0 = b ∈ S′

c, both
verticesa and b are initially not connected to any vertices in
S−c andS′

−c respectively (thosevi andv′i with i0+1 ≤ i ≤ k)
since vertices of the same family are not connected. Therefore,
replacing thei0-th nodevi0 = a by v′i0 = b will not change
the value of the first term in (42) when computingxi for the
i-th round wherei0 + 1 ≤ i ≤ k.

We now consider the second term of (42). For anyu ∈ S0,
any edge incident tou has been counted in the first(i0 − 1)
rounds since we assume that when we are running COUNT

on theS set, we examine the nodes inS−c in the very last.
Therefore, there is no edge of the form(vi, u) in Ei (resp.
(v′i, u) ∈ E′

i) with u ∈ S0 since those edges have been
removed previously. Therefore, the summation overu ∈ N0

can be replaced byu ∈ N0\S0 during thei0-th round to the
k-th round. On the other hand, for anyu ∈ N0\S0, if there is
an edge connecting(a, u) ∈ Ẽ, then by our construction there
is an edge(b, u) ∈ Ē. Therefore, in thei0-th round, the same
number of edges incident tou is removed regardless whether
we are usingS as the input to the subroutine COUNT or we
are usingS′ as the input to the subroutine COUNT. As a result,
in the beginning of the(i0 +1)-th round, for anyu ∈ N0, we
have the following equality

|{(u, j) ∈ Ei : j ∈ N}| = |{(u, j) ∈ E′
i : j ∈ N}| (51)

when i = i0 + 1. Moreover, for anyu ∈ N0\S0, we remove
one and only one edge(u, vi) in the i-th round. Sincevi = v′i
for all i = i0 +1 to k, we have (51) for alli = i0 +1 to k as
well. The above arguments thus prove that the second term of
(42) does not change regardless whether we count overS or
S′. As a result,x′

i = xi for i0+1 ≤ i ≤ k. Sincee(S) = e(S′)
for all k rounds of the counting process, we have thus proved
(44).

Proof of Claim 5:

For any node setS, by iteratively using Claim 4, we can
construct another node setS′ such thate(S) = e(S′) while
either (Case i)S′

−c = ∅; or (Case ii)S′
−c 6= ∅ andS′

c = Nc.
As a result, we can assume without loss of generality that
we have either (Case i)S−c = ∅; or (Case ii)S−c 6= ∅ and
Sc = Nc to begin with.

We first consider the former case. Letr̃ be any vector inR
such that itsr̃i = vi for 1 ≤ i ≤ k, i.e., r̃i equals the node
index of the vertexvi. We will run the subroutine COUNT

sequentially fori = 1 to k and compare the increment of
e(S) in each round, denoted byxi in (42), to thei-th term
(d − zi(r̃)) in the summation of the RHS of (45). Consider
the i-th round of counting for some1 ≤ i ≤ k, and assume
that the corresponding vertexvi belongs to they-th family,
i.e., vi ∈ Ny. SinceS−c = ∅ in this case, we havevi /∈
S−c and the second term in (42) is always 0. Therefore, the
procedure COUNT is indeed counting the number of edges
in Ē that are incident toS without the special conditional
counting mechanism in the second term of (42). Therefore,
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we have

xi = |{(vi, j) ∈ Ei ∩ Ē : j ∈ N}|

= d− |{vj /∈ Ny : vj ∈ S, 1 ≤ j ≤ i− 1}|, (52)

whered is the number of̄E edges in the original graphG that
are incident tovi and |{vj /∈ Ny : vj ∈ S, 1 ≤ j ≤ i− 1}| is
the number of edges removed during the first(i− 1) counting
rounds. On the other hand, by the definition of functionzi(·),
our construction of̃r, and the assumption thatS−c = ∅, we
always have|{vj /∈ Ny : vj ∈ S, 1 ≤ j ≤ i− 1}| = zi(r̃). As
a result,xi = (d − zi(r̃)) for i = 1 to k and our explicitly
constructed vector̃r satisfies (45).

We now turn our attention to the second case whenS−c 6= ∅
andSc = Nc. Let r be any vector inR such that itsri = vi for
1 ≤ i ≤ k. Recall that there arek nodes in the setS. Definej∗

as the value that simultaneously satisfies (i)k−|S−c| ≤ j∗ ≤ k
and (ii) there are exactlyd entries in the firstj∗ coordinates
of r that are inN\N0. If no value satisfies the above two
conditions simultaneously, setj∗ = k + 1. We now construct
another vector̃r from r as follows: Replace the values of the
(j∗ + 1)-th coordinate to thek-th coordinate ofr by n, the
node index of the last node inN0 and denote the final vector
by r̃.

We will now prove that the above explicit construction of
r̃ satisfies the desired property in (45). The proof is divided
into two cases:

Case 1:There exists such aj∗ satisfying (i) and (ii). We
will run the subroutine COUNT again and comparexi to the
i-th term (d− zi(r̃)).

We then observe the following facts:

1) In COUNT, from i = 1 to (k − |S−c|). For any i in
this range, we must haveFI(vi) 6= −c, i.e., the family
index of nodevi is not−c, since we run the subroutine
COUNT using a specific ordering of the nodes inS, which
examines the nodes inS−c in the very last. As a result,
the second term of (42) is always zero. Therefore (52) still
holds. By the definition of functionzi(·), our construction
of r̃, and the fact that1 ≤ i ≤ k − |S−c| (implying no
vj ∈ S−c for all 1 ≤ j ≤ i − 1), we getxi = d − zi(r̃)
for all 1 ≤ i ≤ k − |S−c|.

2) We now consider the case ofi = k − |S−c|+ 1 to j∗ of
Step 3. For anyi in this range, we havevi ∈ S−c. We
now argue that|{(u, j) ∈ Ei : j ∈ N}| > |N−c| for all
edges(u, vi) ∈ Ei ∩ Ẽ satisfyingu ∈ N0. The reason is
that(u, vi) ∈ Ei implies that nodeu is not counted in the
previous(i−1) rounds, i.e.,u 6= vi′ for all 1 ≤ i′ ≤ i−1.
Therefore, an edge of(u, v) is removed if and only if
there is av = vj for somevj that is not inN0. Since there
are exactlyd vertices in{v1, v2, . . . , vj∗} that are not in
N0, it means that the first(i− 1) counting rounds where
1 ≤ i ≤ j∗ can remove at most(d− 1) edges incident to
such a nodeu. Since nodeu has(d+ |N−c|) number of
incident edges in the original graphG, we know that the
inequality |{(u, j) ∈ Ei : j ∈ N}| > |N−c| must hold
in the i-th round. As a result, the second term of (42) is
non-zero wheni = k − |S−c|+ 1 to j∗ and we can thus

rewrite

xi = |{(vi, j) ∈ Ei : j ∈ N}|

= d− |{vj /∈ Nc ∪N−c : vj ∈ S, 1 ≤ j ≤ i− 1}|.

By the definition of functionzi(·) and our construction
of r̃, we getxi = d−zi(r̃) for all k−|S−c|+1 ≤ i ≤ j∗.

3) We now consider the(j∗ + 1)-th to the k-th round of
Step 3. We claim that

xi = d− |S1 ∪ S2 ∪ · · · ∪ Sc|. (53)

The reason behind this is the following. Sincej∗ + 1 ≤
i ≤ k, we havevi ∈ S−c. For anyu ∈ N0\S0 (those
u ∈ S0 have been considered in the first(k − |S−c|)
rounds), there are(d + |N−c|) number edges incident
to u in the original graphG. On the other hand, since
i ≥ j∗ + 1 and by our construction, there ared entries
in the first j∗ coordinates of̃r that are are not inN0,
we must have removed at leastd edges incident tou
during the first(i − 1) counting rounds as discussed in
the previous paragraph. Therefore, the number of incident
edges inEi that are incident tou ∈ N0\S0 must be
≤ |N−c|. The second term of (42) is thus zero. As a
result, thexi computed forvi will only include those
edges inEi ∩ Ē incident to it. Since anyvi ∈ S−c only
has(d − |N0|) number of edges in̄E to begin with, we
have that

xi = (d− |N0|)− |S1 ∪ S2 ∪ · · · ∪ Sc−1|

where|S1 ∪ S2 ∪ · · · ∪ Sc−1| is the number of edges in
Ē that have been removed during the first(i−1) rounds.
SinceSc = Nc in the scenario we are considering and
since|Nc| = |N0| = n mod (n− d) in the family repair
scheme, we can consequently rewritexi as

xi = d− |S1 ∪ S2 ∪ · · · ∪ Sc|

for (j∗+1) ≤ i ≤ k. Recall that in the newly constructed
r̃, the values of the(j∗ + 1)-th coordinate to thek-th
coordinate aren, which belongs toN0. Thus, by the
definition of functionzi(·), we can see that each of these
coordinates only contributes

zi(r̃) = |{r̃j ∈ N\(N−c ∪N0) : 1 ≤ j ≤ i− 1}|

= |{r̃j ∈ N\(N−c ∪N0) : 1 ≤ j ≤ j∗}| (54)

= |S1 ∪ S2 ∪ · · · ∪ Sc|

where (54) follows from the fact that in the construction
of r̃, the (j∗ + 1)-th to the k-th coordinates of̃r are
always of valuen ∈ N0. Hence, we getxi = d − zi(r̃)
for (j∗ + 1) ≤ i ≤ k.

We have proved for this case thatxi = d− zi(r̃) for i = 1
to k. Therefore, we get (45).

Case 2:No such j∗ exists. This means that one of the
following two sub-cases is true. Case 2.1: even when choosing
the largestj∗ = k, we have strictly less thand entries that
are not inN0. Case 2.2: Even when choosing the smallest
j∗ = k − |S−c|, we have strictly more thand entries that are
not in N0.
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Case 2.1 means that we have< d vertices inS that are not
in N0, which implies that all vertices inS together do not
share more thand edges with any of the vertices inN0\S0.
Therefore, in Step 3 of COUNT, if vi ∈ S−c, then there will be
> |N−c| edges inEi that are incident tou ∈ N0\S0 sinceu
has(d+ |N−c|) number of edges in the original graphG and
< d edges are removed in the first(i− 1) rounds. As a result,
the second term of (42) will be 1 and we count all the edges in
Ei incident tovi. By similar arguments as used in a previous
proof (when proving the scenario ofk− |S−c|+1 ≤ i ≤ j∗),
we havexi = d − zi(r̃) for all 1 ≤ i ≤ k and the proof of
this case is complete.

Case 2.2 is actually an impossible case. The reason is that
for any 1 ≤ i ≤ k − |S−c|, there are exactly|S1| + |S2| +
· · ·+ |Sc| nodesvi that are not inN0. And we also have

c∑

m=1

|Sm| ≤
c∑

m=1

|Nm| = d.

This, together with the observation that the first(k − |S−c|)
coordinates ofr are transcribed from the distinct nodes in
S1∪S2∪· · ·∪Sc, implies that we cannot have strictly more than
d entries that are not inN0 in the first(k−|S−c|) coordinates
of r. Case 2.2 is thus an impossible case.

From the above arguments, the proof of Claim 5 is complete.

VIII. C ONCLUSION

In practice, it is natural that the newcomer should access
only those “good” helpers. This paper has provided a necessary
and sufficient condition under which optimally choosing good
helpers improves the storage-bandwidth tradeoff. We have also
analyzed a new class of low-complexity solutions termed the
family repair scheme, including its storage-bandwidth tradeoff,
the expression of its MBR point, and its (weak) optimality.
Moreover, we have constructed an explicit exact-repair code,
thegeneralized fractional repetition code, that can achieve the
MBR point of that scheme.

The main goal of this work is to characterize, for the first
time in the literature, when and by how much dynamic helper
selection improves RCs. We thus considered the scenario of
single failures only in a similar way as in the original RC
paper [4]. Since a practical system can easily have multiple
failures, as ongoing work, we are studying the helper selection
problem under the multiple failures scenario.

APPENDIX A
ANOTHER EXAMPLE ILLUSTRATING THE BENEFITSOF

HELPERSELECTION

Fig. 8 shows another example that illustrates how choosing
the helpers properly can allow for smaller storage and repair-
bandwidth. The parameters of the storage network in this
figure are (n, k, d, α, β) = (6, 3, 3, 3, 1). The goal of this
example is to store a data object of sizeM = 7 such that
the network can toleraten − k = 3 failures. Without loss
of generality, we assume that node 4 fails in time 1 and the
helpers of the newcomer (replacing node 4) are nodes 1, 2, and
3. Now assume that node 3 fails in time 2. We will demonstrate
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(b) Choosing the helper nodes properly is good.

Fig. 8. An example illustrating the importance of choosing the helper nodes
for (n, k, d, α, β) = (6, 3, 3, 3, 1) and file sizeM = 7.

in the following how the helper choice at time 2 (for replacing
node 3) will substantially affect the reliability of the distributed
storage network.

Choice 1: Suppose the helpers of node 3 in time 2 are nodes
1, 2, and 4. See Fig. 8(a). Now we consider the data collector
t which would like to reconstruct the original file of size 7
from nodes 1, 3, and 4. By noticing that one of the edge cuts
from the virtual source to the data collector has value 6 (see
the red dashed curve in Fig. 8(a)), it is thus impossible for
the data collector to reconstruct the original file. In fact,we
have from Section II-D that, when the newcomer chooses its
helpers blindly, to protect a file of sizeM = 7, the minimum
repair-bandwidth needed isβMBR = 3.5

3 . Therefore, the repair-
bandwidthβ = 1 (our parameter values are(n, k, d, α, β) =
(6, 3, 3, 3, 1)) is not enough to meet the reliability requirement
when a BR scheme is used, which agrees with the discussion
above.

Choice 2: Suppose the helpers of node 3 in time 2 are nodes
4, 5, and 6. See Fig. 8(b). Now we consider the same data
collectort that accesses nodes 1, 3, and 4. One can verify that
the min-cut value from sources to the data collectort is 7,
which is equal to the target file size 7. Furthermore, one can
check the rest

(
6
3

)
− 1 = 19 different ways of setting up the

data collectors and they all havemincut(s, t) ≥ 7. The above
observation illustrates that helper selection choice (Choice 2)
can strictly improve the min-cut value of the network.

The choice of the helpers in this example follows the
family repair (FR) scheme described in Section IV-B. In
Section IV-D, it is proved rigorously that not only we can
improve the min-cut value in the end of the first 2 time slots,
but the min-cut-value is always≥ 7 even after arbitrarily
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many failure/repair stages with intelligent helper selection for
each time slot. We can thus meet the reliability requirement
with intelligent helper selection. This example with parameters
(n, k, d, α, β) = (6, 3, 3, 3, 1) is thus another evidence that
good helper selection can strictly improve the system perfor-
mance, i.e., reducing the total repair-bandwidthγ from 3.5 (the
smallest possible when BR is used) to3 (since our system has
d = 3 andβ = 1).

APPENDIX B
PROOF OFPROPOSITION2

The proof of Proposition 2 below follows the proof of [4,
Lemma 2].

Consider any IFGG ∈ GA whereA is a stationary repair
scheme. Consider any data collectort of G and call the set of
k active output nodes it connects toV . Since all the incoming
edges oft have infinite capacity, we can assume without loss
of generality that the minimum cut(U,U) satisfiess ∈ U and
V ⊆ U .

Let C denote the set of edges in the minimum cut. Let
xi
out be the chronologicallyi-th output node inU , i.e., from

the oldest to the youngest. SinceV ⊆ U , there are at leastk
output nodes inU . We now consider the oldestk output nodes
of U , i.e.,x1

out to xk
out. For i = 1 to k, let ri denote the node

index ofxi
out. Obviously, the vectorr

∆
= (r1, · · · , rk) belongs

to R.
Considerx1

out, we have two cases:

• If x1
in ∈ U , then the edge(x1

in, x
1
out) is in C.

• If x1
in ∈ U , sincex1

in has an in-degree ofd and x1
out is

the oldest node inU , all the incoming edges ofx1
in must

be in C.

From the above discussion, these edges related tox1
out con-

tribute at least a value ofmin((d− z1(r))β, α) to the min-cut
value since by definitionz1(r) = 0. Now, considerx2

out, we
have three cases:

• If x2
in ∈ U , then the edge(x2

in, x
2
out) is in C.

• If x2
in ∈ U andr1 ∈ Dr2 , since one of the incoming edges

of x2
in can be fromx1

out, then at least(d − 1) incoming
edges ofx2

in are inC.
• If x2

in ∈ U and r1 /∈ Dr2 , since no incoming edges of
x2
in are fromx1

out, then alld incoming edges ofx2
in are

in C.

Therefore, these edges related tox2
out contribute a value of

at leastmin((d− z2(r))β, α) to the min-cut value, where the
definition ofz2(r) takes care of the second and the third cases.
Considerx3

out, we have five cases:

• If x3
in ∈ U , then the edge(x3

in, x
3
out) is in C.

• If x3
in ∈ U andr1 = r2 ∈ Dr3 , since one of the incoming

edges ofx3
in can be fromx2

out, then at least(d − 1)
incoming edges ofx3

in are in C. Note that there cannot
be an incoming edge ofx3

in from x1
out since x3

in only
connects to active output nodes at the time of repair and
x1

out is no longer active sincex2
out (of the same node index

r2 = r1) has been repaired afterx1
out.

• If x3
in ∈ U ; r1, r2 ∈ Dr3 ; and r1 6= r2; since one of

the incoming edges ofx3
in can be fromx1

out and another

edge can be fromx2
out , then at least(d − 2) incoming

edges ofx3
in are inC.

• If x3
in ∈ U and only one ofr1 or r2 is in Dr3 , since one

of the incoming edges ofx3
in is from eitherx1

out or x2
out,

then at least(d− 1) incoming edges ofx3
in are inC.

• If x3
in ∈ U and r1, r2 /∈ Dr3 , then at leastd incoming

edges ofx3
in are inC.

Therefore, these edges related tox3
out contribute a value of

at leastmin((d− z3(r))β, α) to the min-cut value, where the
definition of z3(r) takes care of the second to the fifth cases.

In the same manner, we can prove that the chronologi-
cally i-th output node inU contributes at least a value of
min((d − zi(r))β, α) to the min-cut value. If we sum all the
contributions of the oldestk output nodes ofU we get (13),
a lower bound on the min-cut value.

APPENDIX C
PROOF OFINEQUALITY (31)

Denote the smallest IFG inGF (n, k, d, α, β) by G0. Specif-
ically, all its nodes are intact, i.e., none of its nodes has
failed before. Denote its active nodes arbitrarily by1, 2, · · · , n.
Consider the family index permutation of the FR schemeF
that attains the minimization of the right-hand side of (31)and
call it π̃f . Fail each active node in{1, 2, · · · , n} of G0 exactly
once in a way that the sequence of the family indices of the
failed nodes is̃πf . Along this failing process, we repair the
failed nodes according to the FR schemeF . For example, let
(n, d) = (8, 5) and suppose the minimizing family index per-
mutation isπ̃f = (1, 2, 1,−2, 0, 0, 1, 2). Then, if we fail nodes
1, 4, 2, 6, 7, 8, 3, and 5 in this sequence, the corresponding
family index sequence will be(1, 2, 1,−2, 0, 0, 1, 2), which
matches the giveñπf . Note that the node failing sequence is
not unique in our construction. For example, if we fail nodes
3, 5, 2, 6, 8, 7, 1, and 4 in this sequence, the corresponding
family index vector is still(1, 2, 1,−2, 0, 0, 1, 2). Any node
failing sequence that matches the givenπ̃f will suffice in our
construction. We call the resulting new IFG,G′.

Consider a data collectort in G′ that connects to the
oldest k newcomers. (Recall that in our construction,G′

has exactlyn newcomers.) Now, by the same arguments
as in [4, Lemma 2], we will prove thatmincutG′(s, t) =
∑k

i=1 min ((d− yi(π̃f )) β, α) for the specifically constructed
G′ and t. Number the storage nodes (input-output pair) of
the k nodes t is connected to by1, 2, . . . , k. Define cut
(U,U) between t and s as the following: for eachi ∈
{1, . . . , k}, if α ≤ (d − yi(π̃f ))β then we includexi

out in
U ; otherwise, we include bothxi

out and xi
in in U . It is not

hard to see that the cut-value of the cut(U,U) is equal to
∑k

i=1 min ((d− yi(π̃f )) β, α).
Since the left-hand side of (31) further takes the minimum

overGF and all data collectorst, we have proved the inequality
(31).

APPENDIX D
PROOF OFINEQUALITY (35)

We prove (35) by explicit construction. For any vectorr ∈
R, we will use the following procedure, MODIFY, to gradually
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modify r in 4 major steps until the end result is the desired
r
′ ∈ R2 that satisfies (35). A detailed example illustrating

procedure MODIFY is provided in Appendix E to complement
the following algorithmic description of MODIFY.

Step 1:If there arei, j ∈ {1, · · · , k} such thati < j and
the i-th and thej-th coordinates ofr are equal, i.e.,ri = rj ,
then we can do the following modification. For convenience,
we denote the value ofri = rj by h. Suppose that nodeh
belongs to theQ-th family. We now check whether there is
any valueγ satisfying simultaneously (i)γ ∈ {1, 2, · · · , n}\h;
(ii) nodeγ is also in theQ-th family; and (iii) γ is not equal
to any of the coordinates ofr. If suchγ exists, we replace the
j-th coordinate ofr by γ. Specifically, after this modification,
we will haveri = h andrj = γ.

Repeat this step until either there is no repeatedri = rj , or
until no suchγ can be found.

Step 2:After finishing Step 1, we perform the following
modification. If there still are distincti, j ∈ {1, · · · , k} such
that ri = rj and i < j, then we again denote the value of
ri = rj by h. Suppose nodeh belongs to theQ-th family.
Consider the following two cases. If theQ-th family is the
incomplete family, then no further modification will be made.

If the Q-th family is a complete family, then do the
following modification.

Find the largestj1 ∈ {1, · · · , n} such that noderj1 = h and
find the largestj2 ∈ {1, · · · , n} such thatrj2 belongs to the
Q-th family (the same family of nodeh). If j1 = j2, then we
setr′ = r. If j1 6= j2, then we swap the values ofrj1 andrj2
to constructr′. That is, we first setr′ = r for all coordinates
except for thej1-th and thej2-th coordinates, and then set
r′j1 = rj2 and r′j2 = rj1 . After we have constructed newr′

depending on whetherj1 = j2 or not, we now check whether
there is any valueγ ∈ {1, · · · , n} satisfying simultaneously
(i) nodeγ belongs to a complete family (not necessarily the
Q-th family); and (ii)γ is not equal to any of the coordinates
of r′. If such γ exists, we replace thej2-th coordinate ofr′

by γ, i.e., setr′j2 = γ.
Repeat this step until the above process does not change the

value of any of the coordinates ofr′.
After finishing the above two steps, the current vectorr

must be in one of the following cases. Case 1: No two
coordinates are equal, i.e.,ri 6= rj for all pairsi < j; Case 2:
there exist a pairi < j such thatri = rj . We have two
sub-cases for Case 2. Case 2.1: All such(i, j) pairs must
satisfy that noderi belongs to a complete family. Case 2.2:
All such (i, j) pairs must satisfy that noderi belongs to
the incomplete family. Specifically, the above construction
(Steps 1 and 2) has eliminated the sub-case that some(i, j)
pair hasri = rj belonging to a complete family and some
other (i, j) pair hasri = rj belonging to the incomplete
family. The reason is as follows. Suppose some(i, j) pair
hasri belonging to a complete family. Since we have finished
Step 2, it means that any nodeγ that belongs to a complete
family must appear in one of the coordinates ofr. Since there
are (n − d)

⌊
n

n−d

⌋

number of nodes belonging to complete

families, at least(n − d)
⌊

n
n−d

⌋

+ 1 number of coordinates
of r must refer to a node in a complete family (sinceri

and rj have the same value). Therefore, there are at most

n −
(

(n− d)
⌊

n
n−d

⌋

+ 1
)

= (n mod (n − d)) − 1 number
of coordinates ofr referring to a node in the incomplete
family. However, if we have another(i′, j′) pair hasri′ = rj′

belonging to the incomplete family, then it means that the
coordinates ofr can refer to at most(n mod (n − d)) − 2
distinct nodes of the incomplete family (sinceri′ andrj′ are
equal). Since there aren mod (n − d) distinct nodes in the
incomplete family, there must exist aγ value such that node
γ belongs to the incomplete family andγ does not appear in
any one of the coordinates ofr. This contradicts the fact that
we have exhausted Step 1 before moving on to Step 2.

We now consider Cases 1, 2.1, and 2.2, separately. If the
r vector is in Case 1, then suchr belongs toR2 and our
construction is complete. Ifr belongs to Case 2.2, then do
Step 3. Ifr belongs to Case 2.1, do Step 4.

Step 3:We use(i, j) to denote the pair of values such that
ri = rj and i < j. Denote the value ofri = rj by h. Since
we are in Case 2.2, nodeh belongs to the incomplete family.
Find the largestj1 ∈ {1, · · · , n} such that noderj1 = h
and find the largestj2 ∈ {1, · · · , n} such thatrj2 belongs
to the incomplete family. Ifj1 = j2, then we keepr as is.
If j1 6= j2, then we swap the values ofrj1 and rj2 . Recall

that we usec
∆
=
⌊

n
n−d

⌋

to denote the family index of the last
complete family. We now choose arbitrarily aγ value from
{(n−d) (c− 1)+1, . . . , (n−d)c}. Namely,γ is the index of
a node of the last complete family. Fix theγ value. We then
replacerj2 by the arbitrarily chosenγ.

If the value of one of the coordinates ofr (before setting
rj2 = γ) is γ, then after settingrj2 = γ we will have some
i 6= j2 satisfying ri = rj2 = γ. In this case, we start over
from Step 1. If none of the coordinates ofr (before setting
rj2 = γ) has valueγ, then one can easily see that after setting
rj2 = γ there exists noi < j satisfying “ri = rj belong to a
complete family” since we are in Case 2.2 to begin with. In
this case, we are thus either in Case 1 or Case 2.2. If the new
r is now in Case 1, then we stop the modification process. If
the newr is still in Case 2.2, we will then repeat this step
(Step 3).

Step 4:We use(i, j) to denote the pair of values such that
ri = rj and i < j. Denote the value ofri = rj by h. Since
we are in Case 2.1, nodeh belongs to a complete family.
Supposeh is in the Q-th complete family. Find the largest
j1 ∈ {1, · · · , n} such that noderj1 = h and find the largest
j2 ∈ {1, · · · , n} such thatrj2 belongs to theQ-th complete
family. If j1 = j2, then we keepr as is. If j1 6= j2, then we
swap the values ofrj1 and rj2 . We now find aγ value such
that (i) nodeγ belongs to the incomplete family; and (ii)γ
is not equal to any of the coordinates ofr. Note that suchγ
value always exists. The reason is that since we are now in
Case 2.1 and we have finished Step 2, it means that any node
γ that belongs to a complete family must appear in one of the
coordinates ofr. Therefore, there are at least(n−d)

⌊
n

n−d

⌋

+1

number of coordinates ofr referring to a node in one of the
complete families. This in turn implies that there are at most
n−

(

(n− d)
⌊

n
n−d

⌋

+ 1
)

= (n mod (n− d))− 1 number of
coordinates ofr referring to a node in the incomplete family.
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Since there aren mod (n−d) distinct nodes in the incomplete
family, there must exist aγ value such that nodeγ belongs
to the incomplete family andγ does not appear in any one of
the coordinates ofr.

Once theγ value is found, we replace thej2-th coordinate
of r by γ, i.e., rj2 = γ. If the newr is now in Case 1, then
we stop the modification process. Otherwise,r must still be in
Case 2.1 since we replacerj2 by aγ that does not appear inr
before. In this scenario, we will then repeat this step (Step4).

An example demonstrating the above iterative process is
provided in Appendix E.

To prove that this construction is legitimate, we need to
prove that the iterative process ends in a finite number of time.
To that end, for any vectorr, define a non-negative function
T (r) by

T (r) = |{(i, j) : i < j, ri = rj is a complete family node}|+

2|{(i, j) : i < j, ri = rj is an incomplete family node}|.

One can then notice that in this iterative construction, every
time we create a newr′ vector that is different from the
input vectorr, the value ofT (r) decreases by at least 1. As
a result, we cannot repeat this iterative process indefinitely.
When the process stops, the final vectorr

′ must be in Case 1.
Therefore, the procedure MODIFY converts any vectorr ∈ R
to a new vectorr′ ∈ R2 such that all coordinate values of
r
′ are distinct. What remains to be proved is that along the

above 4-step procedure, the inequality (35) always holds. That
is, the value of

∑k
i=1 min((d − zi(r))β, α) is non-increasing

along the process. The detailed proof of the non-increasing
∑k

i=1 min((d−zi(r))β, α) will be provided shortly. From the
above discussion, we have proved (35).

In the rest of this appendix, we prove the correctness of
MODIFY. For each step of MODIFY, we user to denote the
input (original) vector andw to denote the output (modified)
vector. In what follows, we will prove that ther andw vectors
always satisfy

k∑

i=1

min((d− zi(w))β, α) ≤
k∑

i=1

min((d − zi(r))β, α).

(55)

In Step 1 of the procedure, suppose that we found such
γ. Denote the vector after we replaced thej-th coordinate
with γ by w. We observe that for1 ≤ m ≤ j, we will have
zm(r) = zm(w) sincerm = wm over1 ≤ m ≤ j− 1 and the
new wj = γ belongs to theQ-th family, the same family as
noderj . For j + 1 ≤ m ≤ k, we will havezm(w) ≥ zm(r).
The reason is that by our construction, we havewj = γ 6=
rj = ri = wi. For anym > j, zm(r) only counts the repeated
ri = rj once. Therefore,zm(w) will count the samewi as
well. On the other hand,zm(w) may sometimes be larger than
zm(r), depending on whether the newwj ∈ Dwm

or not. The
fact thatzm(w) ≥ zm(r) for all m = 1 to k implies (55).

In Step 2, if j1 = j2, then we will not swap the values
of rj1 and rj2 . On the other hand,j1 = j2 also means that
rj1 = rj2 = h. In this case,w is modified fromr such that
wj2 = γ if such aγ is found. For1 ≤ m ≤ j2 − 1, zm(w) =
zm(r) sincerm = wm over this range ofm. We now consider

the case ofm = j2. Suppose nodeγ belongs to theQγ-th
family. We first notice that by the definition ofzm(·) and the
definition of the family repair scheme,(zm(w) − zm(r)) is
equal to the number of distinct nodes in theQ-th family that
appear in the first(j2− 1) coordinates ofr minus the number
of distinct nodes in theQγ-th family that appear in the first
(j2 − 1) coordinates ofw. For easier reference, we call the
former term1 and the latterterm2 and we will quantify these
two terms separately.

Since we start Step 2 only after Step 1 cannot proceed any
further, it implies that all distinct(n − d) nodes of familyQ
must appear inr otherwise we should continue Step 1 rather
than go to Step 2. Then by our specific construction ofj2,
all distinct (n− d) nodes of familyQ must appear in the first
(j2−1)-th coordinates ofr. Thereforeterm1 = (n−d). Since
there are exactly(n − d) distinct nodes in theQγ-th family,
by the definition ofterm2, we must haveterm2 ≤ (n − d).
The above arguments show thatterm2 ≤ term1 = (n − d),
which implies the desired inequalityzm(w)−zm(r) ≥ 0 when
m = j2.

We now consider the case whenm > j2. In this case,
we still have zm(w) ≥ zm(r). The reason is that by our
construction, we havewj2 = γ 6= rj2 = ri = wi. For any
m > j2, zm(r) only counts the repeatedri = rj2 once.
Therefore,zm(w) will count the samewi as well. On the
other hand,zm(w) may sometimes be larger thanzm(r),
depending on whether the newwj2 ∈ Dwm

or not. The fact
that zm(w) ≥ zm(r) for all 1 ≤ m ≤ k implies (55).

Now, we consider the case whenj1 6= j2, which implies
that rj1 = h 6= rj2 and Step 2 swaps thej1-th and thej2-th
coordinates ofr. Note that after swapping, we can see that if
we apply the samej1 andj2 construction to thenewswapped
vector, then we will havej1 = j2. By the discussion in the
case ofj1 = j2, we know that replacing the value ofrj2 by
γ will not decrease the valuezm(w) for any m = 1 to k
and (55) still holds. As a result, we only need to prove that
swapping thej1-th and thej2-th coordinates ofr does not
decrease the value ofzm(r).

To that end, we slightly abuse the notation and usew to
denote the resulting vector after swapping thej1-th and the
j2-th coordinates ofr (but before replacingrj2 by γ). For the
case of1 ≤ m ≤ j1, we havezm(w) = zm(r) since for
1 ≤ m ≤ j1 − 1, rm = wm, and bothrj1 andwj1 = rj2 are
from the same familyQ. For j1 + 1 ≤ m ≤ j2 − 1, we have
zm(w) ≥ zm(r). The reason is as follows. We first observe
that wj1 = rj2 6= rj1 = ri = wi. For anyj1 + 1 ≤ m ≤
j2−1, zm(r) only counts the repeatedri = rj1 once (since by
our construction ofj1 we naturally havej1 > i). Therefore,
zm(w) will count the samewi as well. On the other hand,
zm(w) may sometimes be larger thanzm(r), depending on
whether the newwj1 ∈ Dwm

or not. We thus havezm(w) ≥
zm(r) for j1 + 1 ≤ m ≤ j2 − 1.

For the case ofm = j2, we notice thatwj2 = rj1
and rj2 are from the sameQ-th family. Therefore, we have
zm(w) = zm(r). For the case ofj2 + 1 ≤ m ≤ k, we argue
that zm(w) = zm(r). This is true because of the definition of
zm(·) and the fact that bothj1 < m andj2 < m. In summary,
we have provedzm(w) ≥ zm(r) for m = 1 to k, which
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implies (55).
In Step 3, we first consider the case ofj1 = j2, which means

thatrj1 = rj2 is replaced withγ, a node from the last complete
family. For 1 ≤ m ≤ j1 − 1, since we haverm = wm for all
1 ≤ m ≤ j1 − 1, we must havezm(r) = zm(w). We now
consider the case ofm = j1. By the definition ofzm(·) and
the definition of the family repair scheme,(zm(w) − zm(r))
is equal to the number of distinct nodes in the incomplete
family that appear in the first(j1 − 1) coordinates ofr minus
the number of distinct nodes in the last complete family that
simultaneously (i) belong to the helper set of the incomplete
family and (ii) appear in the first(j1 − 1) coordinates ofw.
For easier reference, we call the formerterm1 and the latter
term2 and we will quantify these two terms separately.

Since we have finished executing Step 1, it means that
all n mod (n − d) nodes in the incomplete family appear in
the vectorr. By our construction ofj1, all n mod (n − d)
nodes in the incomplete family must appear in the first
(j1− 1) coordinates ofr. Therefore,term1 = n mod (n−d).
Since there are exactlyn mod (n − d) distinct nodes in the
last complete family that belong to the helper set of the
incomplete family, by the definition ofterm2, we must have
term2 ≤ n mod (n − d). The above arguments show that
term2 ≤ term1 = n mod (n − d), which implies the desired
inequalityzm(w)− zm(r) ≥ 0.

For the case ofj1+1 = j2+1 ≤ m, we also havezm(w) ≥
zm(r). The reason is that by our construction, we havewj2 =
γ 6= rj2 = ri = wi. For anym > j2, zm(r) only counts
the repeatedri = rj2 once. Therefore,zm(w) will count the
samewi as well. On the other hand,zm(w) may sometimes be
larger thanzm(r), depending on whether the newwj2 ∈ Dwm

or not. We have thus proved thatzm(w) ≥ zm(r) for all
m = 1 to k, which implies (55).

We now consider the case ofj1 6= j2. Namely, we swap the
j1-th and thej2-th coordinates ofr before executing the rest
of Step 3. We can use the same arguments as used in proving
the swapping step of Step 2 to show that after swapping, we
still havezm(w) ≥ zm(r) for all m = 1 to k, which implies
(55). The proof of Step 3 is complete.

In Step 4, we again consider the case ofj1 = j2 first. In
this case,rj1 = h is replaced withγ, a node of the incomplete
family. For 1 ≤ m ≤ j1− 1, zm(w) = zm(r) sincewm = rm
over this range ofm. For m = j1, we have to consider two
cases. If theQ-th family is the last complete family, then
(zm(w)− zm(r)) is equal to the number of distinct nodes in
the Q-th family that simultaneously (i) belong to the helper
set of the incomplete family and (ii) appear in the first(j1−1)
coordinates ofr, minus the number of distinct nodes in the
incomplete family that appear in the first(j1−1) coordinates of
w. For easier reference, we call the formerterm1 and the latter
term2. If, however, theQ-th family is not the last complete
family, then (zm(w) − zm(r)) is equal to the difference of
another two terms. We slightly abuse the notation and refer
again to the two terms asterm1 and term2 where term1 is
the number of distinct nodes in theQ-th family that appear in
the first(j1 − 1) coordinates ofr andterm2 is the number of
distinct nodes in the last complete family that simultaneously
(i) does not belong to the helper set of the incomplete family

and (ii) appear in the first(j1 − 1) coordinates ofw plus the
number of distinct nodes in the incomplete family that appear
in the first (j1 − 1) coordinates ofw.

We will now quantify these two terms separately. Since we
have finished executing Step 1 and by the construction ofj1,
all (n − d) nodes in theQ-th family must appear in the first
(j1 − 1) coordinates ofr, which are the same as the first
(j1 − 1) coordinates ofw. Therefore, the value ofterm1 is
n mod (n−d) if the Q-th family is the last complete family or
(n−d) if it is one of the firstc−1 complete families. We now
quantifyterm2. For when theQ-th family is the last complete
family, since there are exactlyn mod (n − d) distinct nodes
in the incomplete family, by the definition ofterm2, we must
haveterm2 ≤ n mod (n − d). When theQ-th family is not
the last complete family,term2 ≤ (n − d) since the number
of distinct nodes in the incomplete family isn mod (n − d)
and the number of distinct nodes in the last complete family
that do not belong to the helper set of the incomplete family is
(n−d−n mod (n−d)) and their summation is≤ n−d. The
above arguments show thatterm2 ≤ term1 for both cases,
which implies the desired inequalityzm(w) − zm(r) ≥ 0 for
m = j1.

For j1 + 1 ≤ m ≤ k, sincerj1 = h = ri was a repeated
node, then it was already not contributing tozm(r) for all
m > j1. Thus, zm(w) ≥ zm(r) for all m = j1 + 1 to k.
(Please refer to thej1 + 1 ≤ m case in Step 3 for detailed
elaboration.) In summary, after Step 4, assumingj1 = j2, we
havezm(w) ≥ zm(r) for all m = 1 to k, which implies (55).

Finally, we consider the case ofj1 6= j2. Namely, we
swap thej1-th and thej2-th coordinates ofr before executing
the rest of Step 4. We can use the same arguments as used
in proving the swapping step of Step 2 to show that the
inequality (55) holds after swapping. The proof of Step 4 is
thus complete.

APPENDIX E
AN ILLUSTRATIVE EXAMPLE FOR THE MODIFY

PROCEDURE

For illustration, we apply the procedure MODIFY to the
following example with(n, d) = (8, 5) and some arbitrary
k. Recall that family 1 contains nodes{1, 2, 3}, family 2 (last
complete family) contains nodes{4, 5, 6}, and the incomplete
family, family 0, contains nodes{7, 8}. Suppose the initialr
vector is r = (1, 2, 2, 2, 4, 7, 7, 7). We will use MODIFY to
convertr to a vectorr′ ∈ R2

We first enter Step 1 of the procedure. We observe11 that
r3 = r4 = 2 (i = 3 andj = 4) and node 2 belongs to the first
family. Since node 3 is also in family 1 and it is not present in
r, we can chooseγ = 3. After replacingr4 by 3, the resulting
vector isr = (1, 2, 2, 3, 4, 7, 7, 7). Next, we enter Step 1 for
the second time. We observe thatr7 = r8 = 7. Since node
8 is in family 0 and it is not present inr, we can choose
γ = 8. The resulting vector isr = (1, 2, 2, 3, 4, 7, 7, 8). Next,
we enter Step 1 for the third time. For the newr, we have

11We also observe thatr2 = r3 = 2 and we can choosei = 2 and j = 3
instead. Namely, the choice of(i, j) is not unique. In MODIFY, any choice
satisfying our algorithmic description will work.
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r2 = r3 = 2 and r6 = r7 = 7, but for both cases we cannot
find the desiredγ value. As a result, we cannot proceed any
further by Step 1. For that reason, we enter Step 2.

We observe that forr2 = r3 = 2, we find j1 = 3, the last
coordinate ofr equal to2, and j2 = 4, the last coordinate
of r that belongs to family 1. By Step 2, we swapr3 and
r4, and the resultant vector isr = (1, 2, 3, 2, 4, 7, 7, 8). Now,
since node 5 belongs to family 2, a complete family, and it is
not present inr, we can chooseγ = 5. After replacingrj2 by
γ, the resultant vector isr = (1, 2, 3, 5, 4, 7, 7, 8). Next, we
enter Step 2 for the second time. Althoughr6 = r7 = 7, we
notice that node 7 is in family 0. Therefore, we do nothing in
Step 2.

After Step 2, the latestr vector isr = (1, 2, 3, 5, 4, 7, 7, 8),
which belongs to Case 2.2. Consequently, we enter Step 3. In
Step 3, we observe thatj1 = 7, the last coordinate ofr being
7, and j2 = 8, the last coordinate ofr that belongs to the
incomplete family, family 0. Thus, we swapr7 andr8, and the
resultant vector isr = (1, 2, 3, 5, 4, 7, 8, 7). Now, we choose
arbitrarily a γ value from{4, 5, 6}, the last complete family.
Suppose we choose12 γ = 6. The resultant vector isr =
(1, 2, 3, 5, 4, 7, 8, 6). Since we have no other repeated nodes
of family 0, the procedure finishes at this point. Indeed, we
can see that the final vectorr′ = (1, 2, 3, 5, 4, 7, 8, 6) ∈ R2,
which has no repeated nodes and is the result expected.

APPENDIX F
PROOF OFPROPOSITION4

For fixed (n, k, d) values, define functiong as

g(α, β) = min
G∈GF

min
t∈DC(G)

mincutG(s, t). (56)

We first note that by (14), we must haveg(dβ, β) = mβ
for some integerm. The value ofm depends on the(n, k, d)
values and the minimizing family index permutationπf , but
does not depend onβ. We then defineβ∗ as theβ value such
that g(dβ, β) = M. We will first prove thatβMBR = β∗ by
contradiction. SupposeβMBR 6= β∗. Since(α, β) = (dβ∗, β∗)
is one way that can satisfyg(α, β) = M, the minimum-
bandwidth consumptionβMBR must satisfyβMBR ≤ β∗.
Therefore, we must haveβMBR < β∗. However, we then have
the following contradiction.

M ≤ g(αMBR, βMBR) ≤ g(∞, βMBR) =

g(dβMBR, βMBR) < g(dβ∗, β∗) = M,
(57)

where the first inequality is by knowing that(αMBR, βMBR)
satisfies the reliability requirement; the second inequality is by
the definition ofg(α, β); the first equality is by (14); and the
third inequality (the only strict inequality) is by the factthat
g(dβ, β) = mβ for all β and by the assumption ofβMBR <
β∗; and the last equality is by the construction ofβ∗.

The above arguments show thatβMBR = β∗. To prove that
αMBR = dβ∗, we first prove

g(α, β) < g(dβ, β), if α < dβ. (58)

12We can also chooseγ = 4 or 5. For those choices, the iterative process
will continue a bit longer but will terminate eventually.

The reason behind (58) is that (i)k ≥ 1 and we thus
have at least one summand in the RHS of (14); and (ii) the
first summand is alwaysmin(dβ, α) since y1(πf ) = 0 for
any family index permutationπf . SupposeαMBR 6= dβ∗.
Obviously, we haveαMBR ≤ dβ∗ by the construction ofβ∗.
Therefore, we must haveαMBR < dβ∗. However, we then
have the following contradiction

M ≤ g(αMBR, βMBR) < g(dβ∗, β∗) = M, (59)

where the first inequality is by knowing that(αMBR, βMBR)
satisfies the reliability requirement, the second inequality is by
(58), and the equality is by the construction ofβ∗.

The above arguments prove thatαMBR = dβMBR. This
also implies that when considering the MBR point, instead of
finding aπf that minimizes (14), we can focus on finding a
πf that minimizes

k∑

i=1

(d− yi(πf )) (60)

instead, i.e., we remove the minimum operation of (14) and
ignore the constantβ, which does not depend onπf . We
are now set to show thatπ∗

f is the minimizing family index
permutation at the MBR point.

First, define

yoffset(πf ) =

k∑

i=1

(i− 1− yi(πf )). (61)

Notice that a family index permutation that minimizesyoffset(·)
also minimizes (60). Therefore, any minimizing family index
permutation for (60), call itπmin

f , must satisfy

yoffset(π
min
f ) = min

∀πf

yoffset(πf ). (62)

Consider the following two cases:
Case 1:n mod (n − d) = 0, i.e., we do not have an

incomplete family.
Consider any family index permutationπf and let lj be

the number of the firstk coordinates ofπf that have valuej.
Recall that there is no incomplete family in this case. Suppose
the i-th coordinate ofπf is m. Then, we notice that the
expression “(i−1)−yi(πf )” counts the number of appearances
of the valuem in the first i− 1 coordinates ofπf (recall that
there is no incomplete family in this case). Therefore, we can
rewrite (61) by

yoffset(πf ) =

l1∑

i=1

(i − 1) +

l2∑

i=1

(i− 1) + · · ·+

l n
n−d∑

i=1

(i − 1).

(63)

We now prove the following claim.
Claim 6: The above equation implies that a family index

permutation is a minimizing permutationπmin
f if and only if

|li − lj | ≤ 1 for all i, j satisfying1 ≤ i, j ≤
n

n− d
. (64)

Proof: We first prove the only if direction by contra-
diction. The reason is as follows. Ifli > lj + 1 for some
1 ≤ i, j ≤ n

n−d
, then we consider another family permutation
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π′
f and denote its correspondingl values by l′, such that

l′i = li − 1, l′j = lj + 1, and all otherls remain the same.
Clearly from (63), suchπ′

f will result in strictly smaller
yoffset(π

′
f ) < yoffset(πf ). Note that suchπ′

f with the new
l′i = li − 1, l′j = lj + 1 always exists. The reason is the
following. By the definition oflj and the fact thatπf is a
family index permutation, we have0 ≤ lj ≤ (n − d) for all
j = 1, · · · , n

n−d
. The inequalityli > lj+1 then impliesli ≥ 1

and lj ≤ (n− d)− 1. Therefore, out of the firstk coordinates
of πf , at least one of them will have valuei; and out of the
last (n− k) coordinates ofπf , at least one of them will have
valuej. We can thus swap arbitrarily one of the family indices
i from the firstk coordinates with another family indexj from
the last(n−k) coordinates and the resultingπ′

f will have the
desiredl′i and l′j .

We now prove the if direction. To that end, we first observe
that the equality

∑ n
n−d

i=1 li = k always holds because of our
construction ofli. Then (64) implies that we can uniquely
decide thedistribution of {li : i = 1, · · · , n

n−d
} even though

we do not know what is the minimizing permutationπmin
f

yet. For example, if n
n−d

= 3, k = 5, l1 to l3 satisfy (64), and
the summationl1 + l2 + l3 is k = 5, then amongl1, l2, and
l3, two of them must be 2 and the other one must be 1. On
the other hand, we observe that the value ofyoffset(·) depends
only on the distribution of{li}, see (63). As a result, the above
arguments prove that anyπf satisfying (64) is a minimizing
πmin
f .

Finally, by the construction of the RFIPπ∗
f , it is easy to

verify that the RFIPπ∗
f satisfies (64). Therefore, the RFIPπ∗

f

is a minimizing permutation for this case.
Case 2:n mod (n − d) 6= 0, i.e., when we do have an

incomplete family. In this case, we are again interested in
minimizing (60), and equivalently minimizing (61). To that
end, we first prove the following claim.

Claim 7: Find the largest1 ≤ j1 ≤ k such that thej1-th
coordinate ofπf is 0. If no suchj1 can be found, we set
j1 = 0. Find the smallest1 ≤ j2 ≤ k such that thej2-th
coordinate ofπf is a negative number if no suchj2 can be
found, we setj2 = k + 1. We claim that if we constructj1
and j2 based on aπf that minimizes

∑k
i=1(d − yi(πf )), we

must havej1 < j2.
Proof: We prove this claim by contradiction. Consider

a minimizing family index permutationπf and assumej2 <
j1. This means, by our construction, that1 ≤ j2 < j1 ≤
k. Since thej2-th coordinate ofπf is a negative number by
construction,yj2(πf ) counts all coordinates before thej2-th
coordinate ofπf with values in{1, 2, · · · , c − 1, 0}, i.e., it
counts all the values before thej2-th coordinate except for
the valuesc and−c, wherec is the family index of the last
complete family. Thus, knowing that there are no−c values
before thej2-th coordinate ofπf , we have that

yj2(πf ) = j2 − 1− λ
[1,j2)
{c} , (65)

where λ
[1,j2)
{c} is the number ofc values before thej2-th

coordinate. Similarly, since thej1-th coordinate is 0, we have
thatyj1(πf ) counts all coordinates before thej1-th coordinate

of πf with values in{1, 2, · · · , c}, i.e., it counts all the values
before thej1-th coordinate except for the values−c and 0.
Thus, we have that

yj1(πf ) = j1 − 1− λ
[1,j1)
{0} − λ

[1,j1)
{−c} (66)

where λ
[1,j1)
{0} is the number of 0 values preceding thej1-

th coordinate inπf and λ
[1,j1)
{−c} is the number of−c values

preceding thej1-th coordinate inπf . Now, swap thej2-
th coordinate and thej1-th coordinate ofπf , and call the
new family index permutationπ′

f . Specifically,π′
f has the

same values asπf on all its coordinates except at thej2-
th coordinate it has the value 0 and at thej1-th coordinate
it has the value−c. For 1 ≤ m ≤ j2 − 1, we have that
ym(π′

f ) = ym(πf ) since the firstj2−1 coordinates of the two
family index permutations are equal. Moreover, since thereare
no negative values before thej2-th coordinate ofπ′

f , we have
that

yj2(π
′
f ) = j2 − 1− φ

[1,j2)
{0} , (67)

whereφ[1,j2)
{0} is the number of 0 values inπ′

f preceding the
j2-th coordinate.

For j2 + 1 ≤ m ≤ j1 − 1, if the m-th coordinate ofπ′
f

is either c or −c, then ym(π′
f ) = ym(πf ) + 1; otherwise,

ym(π′
f ) = ym(πf ). The reason behind this is that the function

ym(π′
f ) now has to take into account the new 0 at thej2-

th coordinate when them-th coordinate is eitherc or −c.
When the value of them-th coordinate is in{1, · · · , c − 1},
then by the definition ofym(·), we haveym(π′

f ) = ym(πf ).
The last situation to consider is when the value of them-th
coordinate is0. In this case, we still haveym(π′

f ) = ym(πf )
sinceym(πf ) already does not count the value on thej2-th
coordinate ofπf since it is a negative value.

Denote the number ofc and−c values from the(j2+1)-th
coordinate to the(j1 − 1)-th coordinate ofπ′

f by φ
(j2,j1)
{c,−c}. We

have that

yj1(π
′
f ) = j1 − 1− λ

[1,j2)
{c} − φ

(j2,j1)
{c,−c}, (68)

since thej1-th coordinate ofπ′
f has a−c value. Finally, for

j1 + 1 ≤ m ≤ n, we have thatym(π′
f ) = ym(πf ) since

the order of the values preceding them-th coordinate in a
permutation does not matter forym(·). By the above, we can

29



now compute the following difference

k∑

i=1

(d− yi(πf ))−
k∑

i=1

(d− yi(π
′
f ))

=

k∑

i=1

(yi(π
′
f )− yi(πf ))

=

j1∑

i=j2

(yi(π
′
f )− yi(πf )) (69)

= (yj2(π
′
f )− yj2(πf )) + φ

(j2,j1)
{c,−c} + (yj1(π

′
f )− yj1(πf ))

(70)

=
(

λ
[1,j2)
{c} − φ

[1,j2)
{0}

)

+ φ
(j2,j1)
{c,−c}+

(

λ
[1,j1)
{0} + λ

[1,j1)
{−c} − λ

[1,j2)
{c} − φ

(j2,j1)
{c,−c}

)

(71)

= λ
[1,j1)
{0} + λ

[1,j1)
{−c} − φ

[1,j2)
{0}

> 0, (72)

where (69) follows fromyi(π′
f ) = yi(πf ) for all i < j2 and

for all i > j1; (70) follows from our analysis aboutyi(π′
f ) =

yi(πf ) + 1 when thei-th coordinate ofπf belongs to{−c, c}

and yi(π
′
f ) = yi(πf ) otherwise, and there are thusφ(j2,j1)

{c,−c}

coordinates between the(j2+1)-th coordinate and the(j1−1)-
th coordinate ofπ′

f that satisfyyi(π′
f ) = yi(πf ) + 1; (71)

follows from (65) to (68); and (72) follows from the facts that
λ
[1,j1)
{0} ≥ λ

[1,j2)
{0} = φ

[1,j2)
{0} and thatλ[1,j1)

{−c} ≥ 1 since we have a
−c value at thej2-th coordinate ofπf . By (72), we have that
π′
f has a strictly smaller “

∑k
i=1(d − yi(·))”. As a result, the

case ofj1 > j2 is impossible.
By the construction ofj1 andj2, it is obvious thatj1 6= j2.

Hence, we must havej1 < j2. The proof of this claim is
complete.

Claim 7 provides a necessary condition on a minimizing per-
mutation vector. We thus only need to consider permutations
for which j1 < j2. That is, instead of taking the minimum
over all πf , we now take the minimum over only thoseπf

satisfyingj1 < j2.
This observation is critical to our following derivation. The

reason is that if we consider a permutationπf that has1 ≤
j2 < j1 ≤ k, then the expression “(j1 − 1)− yj1(πf )” is not
equal to the number of appearances of the value0 in the first
j1 − 1 coordinates ofπf (recall that by our construction the
j1-th coordinate ofπf is 0). Instead, by the definition ofyi(·),
(j1 − 1)− yj1(πf ) is the number of appearances of the values
0 and −c in the first (j1 − 1) coordinates ofπf . Therefore,
we cannot rewrite (61) as (63) if1 ≤ j2 < j1 ≤ k.

On the other hand, Claim 7 implies that we only need to
consider thoseπf satisfyingj1 < j2. We now argue that given
any πf satisfyingj1 < j2, for all i = 1 to k, the expression
(i−1)−yi(πf ) is now representing the number of appearances
of m and−m in the first(i−1) coordinates ofπf , wherem is
theabsolute valueof thei-th coordinate ofπf . The reason is as
follows. Letm denote the absolute value of thei-th coordinate
of πf . If m 6= 0, then by the definition ofyi(πf ), we have
that (i − 1) − yi(πf ) represents the number of appearances

of m in the first (i − 1) coordinates ofπf . If m = 0, then
by the definition ofyi(πf ), we have that(i − 1) − yi(πf )
represents the number of appearances of 0 and−c in the first
(i− 1) coordinates ofπf . However, by the construction ofj1,
we havei ≤ j1. Sincej1 < j2, we havei < j2. This implies
that in the first(i− 1) coordinates ofπf , none of them is of
value−c. As a result, we have that(i − 1) − yi(πf ) again
represents the number of appearances of 0 in the first(i− 1)
coordinates ofπf .

We now proceed with our analysis while only considering
thoseπf satisfyingj1 < j2 as constructed in Claim 7. Letlj
be the number of the firstk coordinates ofπf that have values
j or −j. We can then rewrite (61) by

yoffset(πf ) =

l0∑

i=1

(i − 1) +

l1∑

i=1

(i− 1)+

l2∑

i=1

(i− 1) + · · ·+

l⌊ n
n−d⌋∑

i=1

(i− 1). (73)

The above equation implies that a family index permutation
is a minimizing permutationπmin

f if and only if either






l0 = n mod (n− d),

|li − lj| ≤ 1 for all i, j satisfying1 ≤ i, j ≤ c,

li ≥ l0 for all i satisfying1 ≤ i ≤ c.

(74)

or

|li − lj | ≤ 1, for all i, j satisfying0 ≤ i, j ≤ c. (75)

If we compare (74) and (75) with (64) in Claim 6, we can see
that (75) is similar to (64). The reason we need to consider
the situation described in (74) is that the range ofl0 is from
0 to n mod (n − d) while the range of all otherlis is from
0 to (n − d). Therefore, we may not be able to makel0 as
close to otherlis (within a distance of 1) as we would have
hoped for due to this range discrepancy. For some cases, the
largestl0 we can choose isn mod (n−d), which gives us the
first scenario when all the remaininglis are no less than this
largest possiblel0 value. If l0 can also be made as close to
the rest oflis, then we have the second scenario.

The proof that (74) and (75) are the if-and-only-if condition
on πmin

f can be completed using the same arguments as in the
proof of Claim 6. Finally, notice that the RFIPπ∗

f satisfies (74)
or (75) and hasj1 < j2. As a result,π∗

f must be one of the
minimizing permutationsπmin

f . The proof of this proposition
is hence complete.

APPENDIX G
PROOF OFPROPOSITION5

We first consider the case whend ≥ k. We haveαMSR ≥ M
k

since otherwise the MSR point cannot satisfy (3) even when
plugging inβ = ∞ in (14). Define

ymax
∆
= max

∀πf

max
1≤i≤k

yi(πf ). (76)

By (14), we have that the(α, β) pair

(α, β) =

(
M

k
,

M

k(d− ymax)

)

(77)
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satisfies (3) since(d − yi(πf ))β ≥ (d − ymax)β = M
k

=
α. Therefore,M

k
is not only a lower bound ofαMSR but is

also achievable, i.e.,αMSR = M
k

. Now, for any (α, β) pair
satisfying

(α, β) =

(
M

k
, β

)

(78)

for someβ < M
k(d−ymax)

, we argue that (3) does not hold
anymore. The reason is the following. Whenα = M

k
and

β < M
k(d−ymax)

, we plug in theπ◦
f vector that maximizes (76)

into (14). Therefore, for at least onei◦ ≤ k, we will have
(d − yi◦(π

◦
f ))β < α = M

k
. This implies “(14)< M” when

evaluated usingπ◦
f . By taking the minimum over allπf , we

still have “(14)< M”. Therefore, the above choice of(α, β)
cannot meet the reliability requirement at the MSR point. As
a result, we haveβMSR = M

k(d−ymax)
.

We now argue thatymax = k−1. According to the definition
of functionyi(·), yi ≤ k−1. Recall that the size of a helper set
is d, which is strictly larger thank−1. We can thus simply set
the values of the first(k−1) coordinates ofπf to be the family
indices of the(k−1) distinct helpers (out ofd distinct helpers)
of a node and place the family index of this node on thek-th
coordinate. Such a permutationπf will have yk(πf ) = k− 1.
Therefore, we have proved thatβMSR = M

k(d−k+1) .

We now consider the remaining case in whichd < k. To
that end, we first notice that for any(n, k, d) values we have⌊

n
n−d

⌋

≥ 1 number of complete families. Also recall that
family 1 is a complete family and all families6= 1 are the
helpers of family 1, and there are thusd number of nodes in
total of family index 6= 1. We now consider a permutation
π◦
f in which all its first d coordinates are family indices not

equal to 1 and its last(n− d) coordinates are of family index
1. Observe that if we evaluate the objective function of the
right-hand side of (14) usingπ◦

f , out of thek summands, of
i = 1 to k, we will have exactlyd non-zero terms since (i) by
the definition ofyi(·), we always haveyi(π◦

f ) ≤ (i − 1) and
therefore, wheni ≤ d, we always have(d− yi(π

◦
f )) ≥ 1; (ii)

wheneveri > d, the corresponding termyi(π◦
f ) = d due to the

special construction of theπ◦
f . As a result, when a sufficiently

largeβ is used, we have

k∑

i=1

min((d− yi(π
◦
f ))β, α) = dα. (79)

The above equality impliesαMSR ≥ M
d

. Otherwise if
αMSR < M

d
, then we will have “(14)< M” when using the

aforementionedπ◦
f , which implies that “(14)< M” holds still

when minimizing over allπf . This contradicts the definition
thatαMSR andβMSR satisfy the reliability requirement.

On the other hand, we know thatαMSR = M
d

and
βMSR = M

d
for the BR scheme whend < k, see (7). Since

the performance of the FR scheme is not worse than that of
the BR scheme, we haveαMSR = M

d
andβMSR ≤ M

d
for the

FR scheme. Hence, the proof is complete.

APPENDIX H
PROOF OFCOROLLARY 3

First consider the case whend ≥ k − 1 =
⌈

n
n−d

⌉

. Since

there are
⌈

n
n−d

⌉

number of families (complete plus incomplete

families) andk =
⌈

n
n−d

⌉

+ 1, any family index permutation
has at least one pair of indices of the same family in its first
k coordinates. Using (14), this observation implies that

min
G∈GF

min
t∈DC(G)

mincut(s, t)

= min
∀πf

k∑

i=1

min ((d− yi(πf ))β, α) ≥ min
2≤m≤k

Cm.

(80)

Now defineπ[m]
f as a family index permutation such that its

first k coordinates, in this order, are1, 2, · · · ,m − 1, 1,m+
1, · · · , c, 0 if n mod (n − d) 6= 0 and defineπ

[m]
f as

1, 2, · · · ,m− 1, 1,m+ 1, · · · , c if n mod (n− d) = 0. Since
all the k coordinates have different values except the first
coordinate and them-th coordinate have equal value1, and
since they have no−c value, we have

k∑

i=1

min
((

d− yi

(

π
[m]
f

))

β, α
)

= Cm. (81)

Thus, we get the equality in (37).
We now consider the case whend < k−1 =

⌈
n

n−d

⌉

. Before

proceeding, we first argue that among all(n, k, d) values

satisfying (1), the only possible cases of havingd ≤
⌈

n
n−d

⌉

−1

are eitherd = 1 or d = n − 1. The reason behind this is the
following. Supposed ≤

⌈
n

n−d

⌉

− 1. For any2 ≤ d ≤ n− 2,
we have

0 ≤

⌈
n

n− d

⌉

− 1− d =

⌈

1 +
d

n− d

⌉

− 1− d

=

⌈
d

n− d

⌉

− d

≤

⌈
d

2

⌉

− d (82)

=

{

− d
2 , if d is even

1−d
2 , if d is odd

< 0, (83)

where we get (82) by our assumption thatd ≤ n − 2 and
(83) follows from the assumption thatd ≥ 2. The above
contradiction implies eitherd = 1 or d = n − 1. Since
Corollary 3 requiresd ≥ 2, the only remaining possibility
is d = n− 1. However,k will not have a valid value since in
this case we haved = n−1 < k−1, which impliesk > n, an
impossible paramemter value violating (1). Hence, the proof
is complete.

APPENDIX I
PROOF OFCOROLLARY 2

Consider first the case whenn mod (2d) 6= 0. Without
loss of generality, assume thatnB = nremain and nb = 2d
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for b = 1 to B − 1, i.e., the indicesb = 1 to B − 1
correspond to the regular groups and the indexb = B
corresponds to the remaining group. Now, applying the same
reasoning as in the proof of Proposition 4 to (23), we have
that αMBR = γMBR = dβMBR for the family-plus repair
scheme as well. In the following, we will prove that (i) if
k ≤ 2d, then one minimizingk vector can be constructed
by settingkb = 0 for b = 1 to B − 1 and kB = k; (ii)
if k > 2d, then we can construct a minimizingk vector by
settingkB = min(nremain, k) and among allb = 1 to B − 1,
at most onekb satisfies0 < kb < 2d.

To prove this claim, we first notice that since we are
focusing on the MBR point, we can assumeα is sufficiently
large. Therefore, we can replace the minimizing permutation
for each summand of (23) by the RFIP (of(n, d) = (2d, d)
for the summandb = 1 to B − 1 and of (n, d) = (nremain, d)
for summandb = B) using the arguments in the proof of
Proposition 4. Therefore, we can rewrite (23) by

(23)= min
k∈K

B∑

b=1

kb∑

i=1

(d− yi(πb))β (84)

whereπb is the RFIP of(n, d) = (2d, d) for b = 1 to B − 1
and the RFIP of(n, d) = (nremain, d) for b = B. Note that
for (n, d) = (2d, d), in the FR scheme we have 2 complete
families and no incomplete family and the RFIP in this case is
π∗
1 = (1, 2, 1, 2, · · · , 1, 2). As a result,πb = π∗

1 for all b = 1
to B − 1. For (n, d) = (nremain, d), we have one complete
family and one incomplete family and the RFIP in this case
is

π∗
2 = (

2d coordinates
︷ ︸︸ ︷

1, 0, 1, 0, · · · , 1, 0,

(nremain−2d) coordinates
︷ ︸︸ ︷

−1,−1, · · · ,−1 ). (85)

We thus haveπB = π∗
2 . We now argue that a vectork∗

satisfying conditions (i) and (ii) stated above minimizes (84).
Note first that bothyi(π∗

1) andyi(π∗
2) are non-decreasing with

respect toi according to our construction of the RFIP. Also,
we always haveyi(π∗

1) = yi(π
∗
2) for all 1 ≤ i ≤ 2d.

We are now ready to discuss the structure of the optimalk

vector. Since for eachb = 1 to B, we are summing up the first
(d−yi(πb)) from i = 1 to kb and in total there are

∑

b kb = k
such terms, (84) implies that to minimize (23) we would like
to have as many terms corresponding to “largei” as possible
in the summation

∑

b kb = k terms. If k ≤ 2d, this can be
done if and only if we set allkb to 0 except for onekb value
to bek, which is our construction (i). Ifk > 2d, this can be
done if and only if we setkB = min(nremain, k) and, forb = 1
to B − 1, we set allkb to either2d or 0 except for onekb.

Knowing thatk∗ is of this special form, we can compute
the RHS of (23) by

RHS of (23)=

⌊
k −min(nremain, k)

2d

⌋

sum(1)

+ sum(2) + sum(3), (86)

where
⌊
k−min(nremain,k)

2d

⌋

is the number ofb from 1 to B − 1

with kb = 2d in the minimizing vectork∗; sum(1) is the
contribution to the min-cut value from those groups with

kb = 2d, which is equal to
∑2d

i=1(d − yi(π
∗
1))β; sum(2) is

the contribution to the min-cut value from the single regular
group with kb = (k − min(nremain, k)) mod (2d), which is
equal to

∑kb

i=1(d − yi(π
∗
1))β; and sum(3) is the contribution

to the min-cut value from the remaining group (groupB),
which is equal to

sum(3) =

min(nremain,k)∑

i=1

(d− yi(π
∗
2))β. (87)

By plugging in the expressions of the RFIPsπ∗
1 andπ∗

2 , we
have

sum(1) =
2d−2∑

i=0

(

d− i+

⌊
i

2

⌋)

β = d2β,

sum(2) =

q
∑

i=0

(

d− i+

⌊
i

2

⌋)

β, and

sum(3) =

min(k,2d−1)−1
∑

i=0

(

d− i+

⌊
i

2

⌋)

β, (88)

where q = ((k − min(nremain, k)) mod (2d)) − 1 = ((k −
nremain)

+ mod (2d)) − 1 and (88) follows from the fact that
yj(π

∗
2) = d whenj ≥ 2d andnremain≥ 2d+1. The minimum

repair-bandwidthβMBR thus satisfies (24).
Now, for the case whenn mod (2d) = 0, in a similar

fashion, we can prove that ak vector minimizes the right-
hand side of (23) at the MBR point if and only if there is
at most oneb ∈ {1, · · · , B} such that0 < kb < 2d. By
settingπb = π∗

1 for all b in (84), recall thatπ∗
1 is the RFIP

for (n, d) = (2d, d), we get

RHS of (23)= d2
⌊
k

2d

⌋

β +

(k mod (2d))−1
∑

i=0

(

d− i+

⌊
i

2

⌋)

β,

(89)

and thusβMBR satisfies (24) for this case too. The proof is
hence complete.

APPENDIX J
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We first show that wheneverα = dβ, we have

min
G∈G

F+

min
t∈DC(G)

mincutG(s, t) ≥

min
G∈GF

min
t∈DC(G)

mincutG(s, t), (90)

whereGF is the collection of IFGs of an FR schemeF . That
is, whenα = dβ, the additional step of partitioning nodes
into sub-groups in the family-plus scheme will monotonically
improve the performance when compared to the original FR
scheme without partitioning.

Whenn < 4d, the family-plus repair scheme collapses to
the FR scheme since each group of the family-plus scheme
needs to have at least2d nodes and whenn < 4d we can have
at most 1 group. Thus, trivially, we have (90) whenn < 4d.
Now, we consider the case whenn ≥ 4d.
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We first consider the original FR scheme (the RHS of (90)).
In this case, the FR scheme has

⌊
n

n−d

⌋

= 1 complete family
and one incomplete family. The corresponding RFIPπ∗

f is thus

π∗
f = (

2d coordinates
︷ ︸︸ ︷

1, 0, 1, 0, · · · , 1, 0,

(n−2d) coordinates
︷ ︸︸ ︷

−1,−1, · · · ,−1).

By Proposition 4, we have

min
G∈GF

min
t∈DC(G)

mincutG(s, t) =

min(k,2d−1)−1
∑

i=0

(

d− i+

⌊
i

2

⌋)

β, (91)

where (91) from the fact thatyj(π∗
f ) = d whenj ≥ 2d.

We now turn our focus to the family-plus repair scheme.
Consider first the case whenn mod (2d) = 0. If k < 2d, we
have by (24) and (91) that (90) is true since the third term on
the LHS of (24) is the RHS of (91). Ifk ≥ 2d, we again have
by (24) and (91) that (90) is true since the second term on the
LHS of (24) is no less than the RHS of (91). Now, consider
the case whenn mod (2d) 6= 0. Similarly, we have by (24)
and (91) that (90) is true since the first term on the LHS of
(24) is the RHS of (91).

We are now ready to prove (25). If neither (i) nor (ii) of
Proposition 1 is true, we must have one of the three cases:
(a) d ≥ 2 and k >

⌈
n

n−d

⌉

; (b) d = 1, k > 2, and even
n; and (c) d = 1, k > 3, and oddn. For case (a), since
d >

⌈
n

n−d

⌉

− 1 whenever2 ≤ d ≤ n − 2 (see the proof of

Corollary 3 in Appendix H), we have thatmin(d + 1, k) >⌈
n

n−d

⌉

. Considering the FR scheme, we thus have that among

the firstmin(d+1, k) indices of a family index permutationπf

there is at least one family index that is repeated. Jointly,this
observation, Proposition 3, the MBR point formula in (15),
and (90) imply (25) whenα = dβ. Note thatd = n − 1 is
not possible in case (a) since we will havek >

⌈
n

n−d

⌉

= n,
which violates (1). For both cases (b) and (c), sincen ≥ k
by (1), we haven ≥ 4. The construction of the family-plus
scheme thus will generate at least 2 groups. That is, the value
of B in Proposition 8 must satisfyB ≥ 2. Moreover, in case
(b), we have no remaining group sincen is even. Therefore,
sincek > 2, for any k ∈ K defined in Proposition 8, there
are at least two distinctb values withkb ≥ 1. In case (c), we
havek > 3 = nremain (note thatnremain = 3 since we have
that 2d + 1 ≤ nremain ≤ 4d − 1 by construction). Therefore,
similarly, for anyk ∈ K defined in Proposition 8, there are at
least two distinctb values withkb ≥ 1.

Using the above observation (at least two distinctb values
havingkb ≥ 1) and Proposition 8, we have that in both cases
(b) and (c)

min
G∈G

F+

min
t∈DC(G)

mincutG(s, t) ≥ 2min(dβ, α) > min(β, α),

(92)

where the first inequality follows from (i) considering only
those b values with kb ≥ 1; (ii) plugging in the min-cut
formula in Proposition 3; and (iii) only counting the first term

“ i = 1” when summing up for alli = 1 to kb. The second
inequality follows from the assumption thatd = 1 in both
cases (b) and (c) and the fact that bothβ andα must be strictly
positive. By noticing that for cases (b) and (c) the RHS of (25)
is indeedmin(β, α), the proof is complete.

APPENDIX K
PROOF OFLEMMA 2

d
|N−c|

d
|N−c|

d
|N−c|

s t

Level 1 Level 2 Level 3

(n−|N0|)(d−|N0|)
2

ui vi

Fig. 9. The graph of the proof of Lemma 2.

To prove this lemma, we model the problem using a finite
directed acyclic graph and then we invoke the results from
random linear network coding [8]. The graph has a single
source vertexs that is incident to|Ē| = |IJ[1]| + |IJ[2]| =
(n−|N0|)(d−|N0|)

2 +d|N0| other vertices with edges of capacity
1. We call these verticeslevel 1vertices. Among these level 1
vertices, we form|N0| disjoint groups and each group consists
of d arbitrarily chosen distinct vertices. The idea is that each
group of them is associated with a vertex inN0. Note that
there ared|N0| vertices forming|N0| groups while there are
still (n−|N0|)(d−|N0|)

2 vertices that do not form any group at
all. See Fig. 9 for illustration.

Now, in addition to the sources and the level 1 vertices,
we add|N0| · |N−c| new node pairs(ui, vi) for all 1 ≤ i ≤
|N0| · |N−c|. Each(ui, vi) is connected by an edge of capacity
1. We call theui nodes, level 2 vertices and thevi nodes
level 3 vertices. We partition the new node pairs (edges) into
|N0| groups and each group consists of|N−c| edges. We then
associate each group of|N−c| edges to one group ofd level 1
vertices created previously. See Fig. 9 for illustration. Finally,
for the level 1, level 2, and level 3 vertices belonging to the
same group (there are|N0| groups in total), we connect all
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the level 1 vertices in this group and all the level 2 vertices
in this group by an edge with infinite capacity.

We now describe the relationship of the newly constructed
graph in Fig. 9 to the graph representation of the generalized
fractional repetition code. For easier reference, we use the
graph in Fig. 9 to refer to the newly constructed graph; and
use the graph in Fig. 7 to refer to the graph representation
of the generalized fractional repetition codes. There are|N0|
groups in the graph of Fig. 9 and each group corresponds to
one node inN0 of the graph of Fig. 7. We notice that there
are|Ē| = (n−|N0|)(d−|N0|)

2 +d|N0| number of level 1 vertices
in the graph of Fig. 9 and|Ē| = (n−|N0|)(d−|N0|)

2 + d|N0|
number of edges in̄E of the graph of Fig. 7. As a result, we
map each level 1 vertex bijectively to an edge inĒ. There are
|N0| · |N−c| number of level 3 vertices in the graph of Fig. 9
and there are|N0| · |N−c| number ofẼ edges in the graph of
Fig. 7. As a result, we map each level 3 vertex bijectively to
an edge inẼ.

We now focus on the graph of Fig. 9. Assume that source
s has a file ofM packets. We perform random linear network
coding (RLNC) [8] on the graph of Fig. 9 assuming a
sufficiently large finite field GF(q) is used. After we have
finished the RLNC-based code construction on the graph of
Fig. 9, we now describe how to map the construction back
to the edges in the graph of Fig. 7. Specifically, the coded
packet corresponding to(s, u) whereu is a level 1 vertex in
the graph of Fig. 9 is assigned to the edgee ∈ Ē (in the
graph of Fig. 7) corresponding to nodeu. We now consider
the coded packets corresponding to(u, v) whereu is a level 2
vertex andv is a level 3 vertex in the graph of Fig. 9. Without
loss of generality, we assume that(u, v) belongs to thei0-th
group in Fig. 9 andv is thej0-th level 3 vertex in this group.
Then, we assign the coded packets on the edge(u, v) to the
edgee ∈ Ẽ (in the graph of Fig. 7) that connects thei0-th
node inN0 and thej0-th node inN−c.

In the following, we will prove that the above code con-
struction (from the RLNC-based code in the graph of Fig. 9
to the generalized fractional repetition codes in the graphof
Fig. 7) satisfies Lemma 2.

To prove that the above construction satisfies Property 1, we
notice that any coded packet̃P(i0,j0) corresponding to some
(i0, j0) ∈ IJ

[3] in the graph of Fig. 7 is now mapped from a
(u, v) edge in Fig. 9 whereu is a level 2 vertex;v is a level 3
vertex;(u, v) belongs to thei0-th group in Fig. 9; andv is the
j0-th level 3 vertex in this group. By the graph construction in
Fig. 9, such a coded packet is a linear combination of the coded
packets in Fig. 9 from sources to vertexũ where thẽu vertices
are the level 1 vertices corresponding to thei0-th group. Since
those packets along(s, ũ) are theP(j1,i0) packets for allj1
satisfying (j1, i0) ∈ IJ

[2] in the graph of Fig. 7, we have
thus proved Property 1: Namely, any coded packetP̃(i0,j0)

corresponding to some(i0, j0) ∈ IJ
[3] is a linear combination

of the packetsP(j1,i0) for all j1 satisfying(j1, i0) ∈ IJ
[2].

To prove that the above construction satisfies Property 2,
for any subset of edges in the graph of Fig. 7, we place a sink
nodet in the graph of Fig. 9 that connects to the corresponding
set of level 1/level 3 vertices in Fig. 9 using edges of infinite

capacity. See Fig. 9 for illustration of one sucht. One can
quickly verify that the min-cut-value from the sources to the
sink t in the graph of Fig. 9 is thea.count value computed
from the given subset of edges in the graph of Fig. 7. As a
result, with a sufficiently large finite field GF(q), any sinkt
satisfyingmincut(s, t) = a.count(t) ≥ M can successfully
reconstruct the original file with close-to-one probability. Since
the sinkt accesses only level 1 and level 3 vertices, theP(i,j)

packets in the graph of Fig. 7 that correspond to the level 1
vertices in the graph of Fig. 9 and thẽP(i,j) packets in the
graph of Fig. 7 that correspond to the level 3 vertices in the
graph of Fig. 9 jointly can reconstruct the original file of size
M. Property 2 is thus also satisfied.

By the above arguments, the proof of Lemma 2 is complete.
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