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Abstract—Regenerating codes (RCs) can significantly reduce have been used to further reduce the repair-bandwidth of MDS
the repair-bandwidth of distributed storage networks. Initially, codes.
the analysis of RCs was based on the assumption that during ope possible mode of operation is to let thevcomerthe
the repair process, the newcomer does not distinguish (amgn de that | the failed nodéw. / tto all
all surviving nodes) which nodes to access, i.e., the newcem noae a.rgp aces the faled no aysaccess/connectto a .
is oblivious to the set of helpers being used. Such a scheme ighe remaining nodes. On the other hand, under some practical
termed the blind repair (BR) scheme. Nonetheless, it is intuitive constraints we may be interested in letting the newcomer
in practice that the newcomer should choose to access onlydbe communicate with only a subset of the remaining nodes
“good” helpers. In this paper, a new characterization of the [12], termed thehelpers For example, reducing the number
effect of choosing the helper nodes in terms of the storage- f h | d /0 h d' duri - d th
bandwidth tradeoff is given. Specifically, answers to the filowing 0 . elpers decreases overnea uring relpalr an us
fundamental questions are given: Under what conditions dae Mitigates one of the performance bottlenecks in cloud stor-
proactively choosing the helper nodes improve the storage- age systems. In the original storage versus repair-barlwid
bandwidth tradeoff? Can this improvement be analytically quan-  analysis of RCs[[4], it is assumed that the newcomer does
tified? not distinguish/choose its helpers. We term such a solution

This paper answers the former question by providing a nec- . : S
essary and sufficient condition under which optimally choomg the blind repair (BR) schemeNonetheless, it is intuitive that

good helpers strictly improves the storage-bandwidth tractoff, the newcomer Sho‘ﬂlq choose to access.or-ﬂy those “gopd”
To answer the latter question, a low-complexity helper setgion helpers of the remaining nodes. In fact, this idea of seigcti
solution, termed the family repair (FR) scheme, is proposed and good helpers exists even in replication codes, the simplest

the corresponding storage/repair-bandwidth curve is chaacter-  redundancy technique in the earliest literature of diatat
ized. For example, consider a distributed storage network vth storage systems.

60 total number of nodes and the network is resilient against . . .
50 node failures. If the number of helper nodes is10, then To illustrate this, we consider a storage network with

the FR scheme and its variant demonstrate27% reduction in nodes numbered from to 4. Suppose that we would like
the repair-bandwidth when compared to the BR solution. This to protect against one node failure by replication. To thmt,e
paper also proves that under some design parameters, the FR e first divide the file into two fragments, fragmentsaand B,

scheme. is indeed qptlmal among all h.elper sglectlon schemesand we store fragment in nodel and fragmen®3 in node2.
An explicit construction of an exact-repair code is also prposed

that can achieve the minimum-bandwidth-regenerating poi of ~Each fragmentis replicated once by storing a copy of fragmen
the FR scheme. The new exact-repair code can be viewed as a4 in node3 and a copy of fragmenB in node4. If any one
generalization of the existingfractional repetition code. of the four nodes fails, then we can retrieve the entire file
Index Terms—Distributed storage, regenerating codes, family PY @ccessing the intact fragmemtsand B in the remaining
repair schemes, helper nodes, generalized fractional refiton three nodes. The repair process of this replication scheme i
codes, network coding also straightforward. Say nodkefails, the newcomer simply
accesses nodeand restores fragmert. We observe that the
newcomer only accesses the good helper (the one that stores
|. INTRODUCTION the lost fragment) in this replication scheme. In this sceem
ach node stores half of the file, and during the repair psyces
newcomer accesséshelper node and communicates half
5the file. For comparison, if we apply the analysis lof [4]
Iso see our discussion in the next paragraph), we will see
at if we use RCs to protect against one node failure, each
ode has to store the whole file and during the repair process,
e newcomer accessédelper and communicates the entire
. The simplest replication code is twice more efficient than
s in this example.

HE need for storing very large amounts of data reliably |
one of the major reasons that has pushed for distribut
storage systems. Examples of distributed storage syste
include data centers |[6] and peer-to-peer systems [2],. [1
One way to protect against data loss is by replication cqdi
i.e, if a disk in the network fails, it can be replaced and it
data can be recovered from a replica disk. Another way j
to use maximum distance separable (MDS) codes. Recen
regenerating codes (RCs) and its variants [4]] [15]] [124] [

10ne may think that this performance improvement over thedbtiepair
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The reason why the replication code is the superior choicedompared to a BR solution. We then characterize analyyicall
the above example is that it only chooses the good helpers die storage-bandwidth tradeoff of the FR scheme and its ex-
ing the repair process, while the analysid in [4] assumemd bl tension, the family-plus repair scheme, and prove that &éney
helper selectiol.To illustrate this, suppose the newcomer doesptimal (as good as any helper selection one can envision) in
not choose good helper nodes but chooses the helpers blindbme cases andeakly optimalin general, see the discussion
One possibility is as follows. Suppose nogldails first, and in Sectiond 1V and V.
we let the new node€ choose node as the helper. Then Finally, we provide in Section VIl an explicit constructiof
suppose nod8 fails and we let nodd again be the helper. an exact-repair code that can achieve the minimum-bantdwidt
Finally, suppose nodé fails and we let nodé be the helper. regenerating (MBR) points of the FR and family-plus repair
Since the content of all four nodes are now originating froschemes. The new MBR-point scheme is termed gbeer-
the same node (node, each node needs to store a completdized fractional repetitioncode, which can be viewed as a
copy of the file otherwise the network cannot tolerate the cageneralization of the existing fractional repetition cedg].
when nodel fails. As can be seen, blind repair is the main Numerical computation shows that for many cases (different
cause of the performance loss, i.e., every newcomer blindly, k,d) parameter values), the family-based schemes can
requests help from the same node, node 1, which lacks tlegluce 40% to 90% of the repair-bandwidth of RCs when
“diversity” necessary for implementing an efficient distried the same amount of storage space is used.
storage system. Another insightful example with parameter
values(n, k,d) = (6, 3, 3) is provided in AppendiX’A. Il. PROBLEM STATEMENT

The idea of choosing good helpers in RC has alreagy Functional-Repair Regenerating Codes with Dynamic
been used in constructing exact-repair codes aslin [[3]. [18]elper Selection
Under the subject dbcally repairable codesome progress in
analyzing this problem has been done on the minimum-stora{
point in [7], [12], [14] when helper selection is fixed ove
time (See Sectioh IlIF for an in-depth comparison with the
references). R(_eference [5] also observes .that choosing 9%%wcomer can access. From the above definitionsnthig
helpers can strictly outperform BR at the m|n|mum—bandW|dtandd values must satisfy
point. However, a complete characterization of the effdct o
choosing the helper nodes in RC, includistationary and 2<n, 1<k<n, and 1<d<n-1. 1)
dynamichelper selection, on the storage-bandwidth tradeqﬁ
is still lacking. This motivates the following open quesiso
Under what condition is it beneficial to proactively chooise t
helper nodes? Is it possible to analytically quantify theddis
of choosing the good helpers? Specifically, the answerseo
aforementioned fundamental questions were still not knowr?

In this work, we answer the first question by providin%;
a necessary and sufficient condition under which optimal
choosing the helpers strictly improves the storage-badidtwi 1, if condition B is true
tradeoff. This new necessary and sufficient characteoizati Lisy = 0, otherwise
of “under what circumstances helper selection improves the ) ] ) )
performance” is by far the most important contribution dgth N this work, we consider the helper selection/repair sehem
work since it provides a rigorous benchmark/guideline whef its most general form. Among all helper selection schemes
deSi_gning the neXt'gener_ation smart_ helper Seleaiomenm 3The following fact is proved irl[4]. Suppoge> d. If the storagex and the

It is worth reemphasizing that which helpers are “optimakepair-bandwidths of each node allow the storage network to tolerate- k)
at the current time slat depends on the history of the failurefailed nodes usinglind-repair (BR) regenerating codes, then the same storage

twork with BR codes can actually tolergte — d) failed nodes. Therefore,

patterns and the helper choices for all the previous tmﬂ%y BR regenerating code that can support the values, d) for somek > d

slots 1 to (¢ — 1), which makes it very difficult to quantify can also support the valués, d, d). By definition, any regenerating code that
the corresponding performance. Therefore, even though @i support the values:, d, d) can also support the valu¢s, k, d) for any

. . . k > d. This shows that for BR, the storage-bandwidth tradeoffhef values
main result fully answers the questiawhetheran optimal (n, k,d) is identical to that of the valueén,d,d) whenk > d. This fact

design can outperform the blind helper selection, the @ur@st prompts the authors ifi[4] to study only the case in whick d and use the
how to design the optimal helper selection scheme remaiigsults of(n, d, d) as a substitute whenever we are considering the case of

. ..k > d. As will be seen later, the above equivalence betweerf:thé, d) and
largely open. As part of the continuing quest of des@mr@e (n,d,d) cases wherk > d does not hold when considering non-blind

high-performance helper selection methods, this work algelper selection. Therefore, throughout this paper, we atcassumek < d.
proposes a Iow-complexity solution, termed faenily repair Also, in practice the parametér specifies the resilience of the system

. d the parametei specifies the repair cost. The choiceskofind d values
(FR) schemgthat can harvest the benefits of (CarerI) help%Ee generally orthogonal from a high-level design perspecny coupling

selection without incurring any additional complexity whe betweenk andd is usually imposed by the kind of storage codes used, e.g.,
replication versus Reed-Solomon versus regeneratingscedesus locally
2Since our setting considers choosing the good helpersjrigdrithe two repairable codes. Since we are studying the most genenal édrhelper-
extremes: replication codes with helper selection andregging codes with selection, we discard the assumptionkof d, which was originally used for
blind helper selection, under the same analytical framkwor the BR solution.

Following the notation of the seminal papkl [4], we denote
& total number of nodes in a storage networknbgind the
"minimum number of nodes that are required to reconstruct the
e by k. We denote byl the number of helper nodes that a

all the results in this work, we assurimaplicitly that then,

k, andd values satis@ (@). The overall file size is denoted by

M. The storage size for each nodenisand during the repair
rocess, the newcomer requestamount of traffic from each

the helpers. The total repair-bandwidth is th}ué dp. We

e the notatior(-)™ to mean(z)™ = max(z,0). We also

fine the indicator function as follows

)



a special class, termed stationary repair schemes, is asorage node of the IFG. A storage node is split into two
studied. To distinguish the special class from the mostigénenodes so that the IFG can represent the storage capacity of
form, we use the terndynamic repairschemes whenever wethe nodes. We often refer to the pair of nod€s and z?
are focusing on the most general type of helper selectisimply by storage nodé In addition to those nodes, the IFG
schemes. In addition to studying the performance of amasdata collector(DC) nodes. Each data collector node is
dynamic or stationary repair scheme, this work also proposmnnected to a set d@f active storage nodes, which represents
a new low-complexity solution, termed the family repaithe party that is interested in extracting the original addgect

schemes. Detailed discussion of dynamic repair and statjoninitially produced by the source. Fig.[ illustrates one such

repair is provided in the following. data collector, denoted by which connects té& = 2 storage
nodes. A more detailed description of the IFG is provided as
follows.

B. Dynamic Versus Stationary Repair Schemes

In general, the helper selection at current timean depend The IFG evolves with time. In the first stage of an in-

on the history of the failure patterns and the helper chdices Ijoa[gacflt?gc?(t)gva%r?hpeh"nt'?zl i%léts or;otﬁgcsimu:'ﬂezrtew
all the previous time slots 1 t@ — 1). We call such a general ) t thi nit tion by ed Fi f.g " W t
helper selection schemthe dynamic helper selectiorin represent this communication by €dges ot infinite capacly a
. . thés stage of the IFG is virtual. See Fig. 1 for illustratidinis
contrast, a much simpler way of choosing the helpers, termgta e models the encoding of the data object over the storage
stationary helper selectioffor stationary repair scheme), is 9 9 ) ) rag
described as follows. network. To represent storage capacity, an edge of capacity
Stationary RepairEach node index is associated with a connects the input node of stor_agg nodes to the corresppndin
output node. When a node fails in the storage network, we

set of indicesD; where the size oD; is d. Whenever nodé t that b " in the IFG wh h
fails, the newcomer (for nodd simply accesses those helpergeprgsen at by a new stage n he where, as shown
in Fig.[d, the newcomer connects to its helpers by edges of

4 in D; and requests amount of data from each helper. It is . ) )
called stationary since the helper choidgB:, Ds, ..., Dy} capacitys resembling the amount of data communicated from

are fixed and do not evolve over time. As can be easily segr?,fhhehlilger.'t \é\fnggtte ;??é.ag?ggng?];r?nfa';e? peO(rj]z Sggﬁé'rs
the stationary repair scheme is a special case of (dynarﬂ 8 di I : ; pt If 'F; d ' d ptli 9 Ltj_u dW 'd
helper selection, which incurs zero additional complexibhen cordingly, we reter 1o farled nodes upactive nodes and
. existing nodes byactive nodes. By the nature of the repair
compared to the BR solution. roblem, the IFG is always acyclic
For any helper selection schemeand given system param-IO ' y yclic.

eters(n, k,d, a, 3), we say that the corresponding RC with _Intuitively, each IFG reflects one qnique history of the
helper selection schemd “satisfies the reliability require- failure patterns and the helper selection choices from time

ment” if it is able to protect against any failure patterstory L t0 (¢ —1) [4]. Consider any given helper selection scheme
while being able to reconstruct the original file from ardisr A which can be either dynamic or stationary. Since there are

k surviving nodes. We consider exclusively single failure dgfinitely many different failure patterns (since we coresid

any given time. The setting of multiple simultaneous failell = 1 t© ), there are infinitely many IFGs corresponding
nodes [[5], [10], [[21] is beyond the scope of this work. to the same given helper selection schemeNe denote the

collection of all such IFGs byGa(n, k,d,«, 3). We define
. o Gg(n,k,d,a,B) = Ga(n,k,d,a, 8) as the union over all
C. Information Flow Graphs and the Existing Results p(()ssible help)er sLeJI\éétion( schemesvzle sometimes drop the

As in [4], the performance of a distributed storage systefput argument and usg, andgG as shorthands.
can be characterized by the concept of information flow gsaph Given an IFGG € G, we useDC(G) to denote the
(IFGs). This IFG depicts the storage in the network argbilection of all () data collector nodein G [4]. Each data
the Communication that takeS place during repair as W|” %”ectort c DC(G) represents one unique Way of Choosing
described in the following. k out of n active nodes when reconstructing the file. Given
an IFGG € G and a data collectot € DC(G), we use
mincutg (s, t) to denote theninimum cut valu§22] separating
s, the root node (source node) 6f andt.

The key reason behind representing the repair problem by
an IFG is that it casts the problem as a multicast scenario
[4]. This allows for invoking the results of network coding i
[1], [8]. More specifically, for any helper schemkand given
system parametels:, k, d, «, 8), the results in[[l] prove that
the following condition isnecessaryfor the RC with helper
selection schemd to satisfy the reliability requirement.

Fig. 1. An example of the information flow graph with, k, d) = (4, 2, 2).

As shown in Fig[ll, an IFG has three different kinds of érengri teglél(lg) mincutg(s, ) = M. ®)
nodes. It has a singourcenodes that represents the source
of the data object. It also has nodes andx! ,, that represent If we limit our focus to the blind repair scheme, then the abov

out



necessary condition becomes This assumption allows us to usk] (3) as the complete
. . . < 4 characterization for the RC with a given helper selection
GEG 1eDO() mincute (s, t) = M. (4) schemeA. We then note that it is possible mathematically

at when focusing 0§ 4 (G4 is by definition a strict subset

. t
Referencel[4] found a closed-form expression of the LHS 8? G) we may have

@
min min mincutg(s,t) > min min mincutg (s, t).
. . . , pt It g C€94tepC(@) c(s1) GEGteDC(@) 6(s:1)
cut = —
B Bl mineut(s.t) = ) min((d = 0)76e). () ©

If (B) is true, then the given helper selection schente
gtrictly outperforms the BR solution. Whether (or under wha
condition) [9) is true and how much the gap can be are the
two main focuses of this work.

Remark 1:As discussed in Section ITIC, the necessary
direction of Assumptioi]1 is always truél[1]. The suffi-

cannot be met. : L . . _
. cient direction of Assumptiohl1 is equivalent to the follow-
Referencel[23] further proves thai (4) is not only necessqwg statement: For any helper selection schemand any

but also sufficient for the existence of a blind RC with som{en’ k.d, o, 8) values satisfying[{3), there exists a finite field

finite field GF(q) that satisfies the reliability requirement. . o s
Namely, as long as F{5)> M is true, then there exists aGF(q) such that the corresponding RC satisfies the reliability

S . requirement. Many similar statements have been proveckin th
RC that meets the reliability requirement even for the wor q y b

: . : L g&isting workH (e.g., [23]). However, rigorous proofs are still
gszf'gb)le helper selection scheme (since we take the MINMUAL ded for the sufficiency direction of Assumptidn 1 and we

leave them as future directions of this work. On the othedhan
we have proved the following partial statement in Sediioh VI
D. The Minimum-Bandwidth and Minimum-Storage Points Sufficiency for the MBR point&or the two helper

Fix the values ofn, k, d), “(B) > M" describes the storage- selection schemes proposed in this work, termed the
bandwidth tradeoffd versusg) of the BR scheme. Two points family repair and the family repair plus schemes,
on a storage-bandwidth tradeoff curve are of special istere if the (o, 8) values correspond to the minimum-
the minimum-bandwidth regenerating code (MBR) point and bandwidth regenerating (MBR) point of the corre-
the minimum-storage regenerating code (MSR) point where sponding storage-bandwidth tradeoff, then Assump-
the former has the smallest possible repair-bandwidth gthe tion[d is provably true.
value) and the latter has the smallest possible storage per will be discussed in Section IVAD, the MBR point is
node (thea value). The expressions of the MBR and MSRhe point when good helper selection results in the largest
points @nBRr,MBR) @nd sk, vsr) Of the BR scheme improvement over the blind repair scheme. Since our focus

which allows us to numerically check whethéd (4) is tru
(or equivalently whether f{5)> M?") for any (n,k,d, a, )
values. Being a necessary condition for the blind repaiesth
implies that whenever [{5x M?” there exists a bad helper
selection schemed for which the reliability requirement

are derived in[[4]: is on quantifying the benefits of helper selection, the above
partial statement proved in Section M1l is sufficient for our
discussion.

GMBR = YMBR —
2dM
min(d, k)(2d — min(d, k) + 1)

(6) F. Comparison to Locally Repairable Codes
Recall that RCs are distributed storage codes that minimize

and the repair-bandwidth (given a storage constraint). In cariap
QMSR = .L7 ) son,locally repairable codes (LRCJecently introduced in 7],
min(d, k) are codes that minimize the number of helpers participating
MSR = dM ®) the repair of a failed node. LRCs were proposed to address the

min(d, k)(d — min(d, k) + 1) disk I/O overhead problem that the repair process can entalil

on a storage network since the number of helpers particigati

E. Characterizing the RC with Helper Selection Schetme in the repair of a failed node is proportional to the amount of

In contrast with the existing results on the BR scheme thékSk /O needed during repair. Subsequent development has

. . . een done on LRCs in [10]=[12], [14], [17].
hold for theworst possible helper selection scheme, this wor In Tablell, we compare the setting of the original RCs,

focuses on any given helper selection schehand studies the 5(:5, and the dynamic helper selection cansidered in this

impact of the given helper selection scheme on the storag/— S . .
bandwidth tradeoff of the corresponding regenerating sod ork. As first mtroduced n 4], or!gm.al RCs were proposed
under the functional-repair scenario, i.e., nodes of theage

To facilitate the discussion, we assume the following steteat o -
network are allowed to store any combination of the original

holds for the given helper selectiof. L ) . .
Assumption 1:@) is not only necessary but alsmifficient packets as long as the reliability requirement is statisfied

for the _eX.iStence Of. an RC Wit_h helper selection schee 4y, fact, there is not yet any example in which the min-cutegasharac-
that satisfies the reliability requirement. terization is provably not achievable by any finite field.



TABLE |
THE COMPARISON TABLE AMONG BLIND-REPAIR REGENERATING CODESLOCALLY REPAIRABLE CODES, AND THE SMART-REPAIR REGENERATING
CODES

Original RC [4], [15], [16], [20], [24] | Locally Repairable Codes [7],_[LO]+ Dynamic Helper Selection
[12], [14], [17]

Repair Mode Functional/Exact-Repair Exact-Repair Functiondll Repair
Helper Selection || Blind Stationary (Fixed over time) Dynamic (helper choices may depend
on failure history)

(n, k,d) range Allow for arbitrary (n, k, d) values

(1) Designed fork < d. (1) Designed fork > d.

(2) Can still be applied to the case ¢f (2) Can still be applied to the case of

k > d with reduced efficiency. k < d with reduced efficiency.

Contribution Storage/repair-bandwidth tradeoff fqr Storage/repair-bandwidth characterizp-First exploration of the storage/repait-

the worst possible helper selection tion for the specific stationary helpgr bandwidth tradeoff for the optimal dy
selection of the proposed exact-repairnamic helper selection

local code, which may/may not be op-
timal

subsequent works [3]_T15]. T16]. [19], [20], [24], RCs wereand exact-repair. Some recent developments [10] [11] in
considered under the exact-repair scenario in which nodeRCs consider using RCs in the construction of the codes
have to store the same original packets at any given tinteerein (as local codes) in an attempt to examine the repair-
In contrast, LRCs are almost always considered under thandwidth performance of LRCs. This approach, however,
exact-repair scenario. However, in this work, for RCs witls not guaranteed to be optimal in terms of storage/repair-
dynamic helper selection, we consider functional-repair dandwidth tradeoff.

the mode of repair as we aim at understanding the absolutén this work, we present the first exploration of the optimal
benefits/limits of helper selection in RCs. Albeit our sejti storage-bandwidth tradeoff for RCs that alldynamic helper

is under functional-repair, in Sectidn_VIl, we are able tgelectiorfor arbitrary(n, k, d) values, including both the cases
present an explicit construction of exact-repair codes thef £ > d and k¥ < d. The closest setting in the existing
achieve the optimal or weakly optimal minimum-bandwidthterature is in a very recent work iri|[9]. That work finds
point of the functional-repair. For comparison, existingrits  upper bounds on the file siz& whena = dg anda = 3

[5], [15] design an exact-repair scheme that achieves tfer functional-repair with dynamic helper selection. Howg
minimum-bandwidth regenerating (MBR) point of the “blind{9] considers the case & = n — 1 only. Also, it is not clear
functional-repair”. The main difference is that our exegpair whether the provided upper bounds fler= n — 1 are tight
construction achieves the MBR point of the “smart-funcéiibn or not. A byproduct of the results of this work shows that
repair”. the upper bounds iri_[9] are tight in some cases and loose in

Table [] also summarizes the differences between RQ¥hers, see Corollafyl 1 and Propositighs 7 10.

LRCs, and smart helper RCs in terms of the helper selection

mechanisms. The original RCs are codes that do not perform I1l. PREVIEW OF THE RESULTS

helper selection at all, i.e., BR, while LRCs are codes that

can perform stationary helper selection only. In this wavk,
consider the most general setting in which codes are allo
to have dynamic helper selection. Surprisingly, we are a
to find a stationary helper selection scheme that is weal
optimal among all dynamic schemes and strictly optimal f
a range of(n, k, d) values.

Another dimension in this comparison table is thek, d)
values that each of the three codes addresses. The orighsal
were designed for storage networks with larealues as they
perform rather poorly when applied to smadllvalues. LRCs,
on the other hand, are designed for _smaN/aIues, and for repair-bandwidth per node that can outperform BR.
that reason, they perform poorly whéernis large. In contrast,

the codes we present in this work are designed for arbitraré/REf\SUIt 2:For (n’k’q) o (6,4,4), the RCs with fa”.“'y .
(n, k, d) values, reépair (FR) proposed in this paper are absolutely optimal in

. . - terms of the storage-bandwidth tradeoff among all RCs with
The comparison above illustrates the main differences g 9

the goals/contributions of each scenario. Namely, theirmalg ('ﬂ/namlc helper selection. In Figl 2, the storage-bandwidth

RCs are concerned with the storage/repair-bandwidth cbrfz%\detradEOff curve of the FR _scheme, the optimal helper S.eIBCt.IO
. . scheme, is plotted against the BR scheme with file size
for the worst possible helper selection. LRCs, however, are

concerned with only data. st_orage (ignpring repair-bandWid_ 5A (weakly) optimal exact-repair code construction is alsovjrled in
of the codes when restricting to stationary helper selactiGectioavil

In the following, we give a brief preview of our results
ough concrete examples to illustrate the main contidbst
Mﬁfthis work. Although we only present here specific examples

a preview, the main results in Sectlod IV are for general
f, k,d) values.

Result 1: For (n,k,d) = (6,3,4), RCs with BR are
absolutely optimal, i.e., there exists no RCs with dynamic
|Qelper selection that can outperform BR. Since LRCs with
symmetric repair can be viewed as a specially-designed sta-
tionary helper selection with exact-repair, this also iiepthat
for (n,k,d) = (6,3,4) there exists no LRCs with symmetric



M = 1. In Section V], we provide an explicit construction 1.2 : = =

of an exact-repair code that can achigvey) = (4, %), 11l :Eﬁ,ﬂ'é?ﬁ;‘?gfﬁ:ﬁ?e
the MBR point of the storage-bandwidth tradeoff curve of

the FR scheme in Fidl] 2. If we take a closer look at Eig. 2 r AN |
there are 3 corner points on the FR scheme curve and th - 0.9} e 1
are (a,7) = (0.25,1), (2,7), and (y;,17). Since the wo 5 | S |
corners(a,v) = (0.25,1) and (%, 2) can be achieved by the 3 N

scheme in[[28] and the new corner poitt,v) = (+5, =) & 07} AR J
is proved to be achievable in Propositibnl 11, we can thu 5 gl |
achieve the entire optimal tradeoff curve in Hig. 2 by space §

sharing while no other scheme can do better, as proved

Proposition[6. In fact, for(n,k,d) = (6,4,4), the random 0.4 1
LRCs in [12] designed fory = oo have to satisfyM < |
ka = 4a, i.e., can at most perform as good as the MSR poir

(a.,_v_) = (0.25,1) of_ the BR scheme. Moreover, the LR_Cs 02 05 06 07 08 0.9 1
utilizing MBR codes in[[11] perform equally to the MBR point Storage a

(o, y) = (0.4,0.4) of the BR scheme. Both LRC constructions

in [11] and [12] are strictly suboptimal and perform worsarth Fig. 3. Storage-bandwidth tradeoff curves of RCs with BRsuerRCs with
the proposed family repair scheme, which is provably opitim&R for (. k,d) = (5,3,2) and file sizeM = 1.

for (n,k,d) = (6,4,4).

Resul 4:For (n, k,d) = (20,10, 10), we do not know what

12 w w w - w is the absolutely optimal dynamic helper selection scheme.
110 Absolutely Optimal Scheme|| -\ - however, have that the FR scheme again outperforms the
: = = = Blind Repair Scheme . .
BR scheme. Fid.]4 shows a tradeoff curve comparison between
1r | the FR scheme and the BR scheme.
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Fig. 2. Storage-bandwidth tradeoff curves of RCs with BRsusrRCs with
the absolutely optimal scheme (FR) fon, k,d) = (6,4,4) and file size
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Storage a

Result 3:For (n, k,d) = (5,3,2), we do not know what is
the absolutely optimal dynamic helper selection scheme. @g. 4. storage-bandwidth tradeoff curves of RCs with BRsuerRCs with
the other hand, the proposed FR scheme again outperfoffRdor (n, k,d) = (20, 10, 10) and file sizeM = 1.
the BR scheme. Fid.]3 shows a tradeoff curve comparison
between the FR scheme and the BR scheme. An interestingResult 5:For (n,d) = (60,10), we do not know what is
phenomenon is that the tradeoff curve of the FR scheme hhe absolutely optimal dynamic helper selection. Howewer,
only one corner poinfa, v) = (0.5,0.5) and we can achieve Fig.[H, we plot ak versus repair-bandwidth curve to compare
this point by an exact-repair scheme, see Propodifibn 1fe Nthe blind repair scheme to the FR scheme when restricting to
that this exact-repair scheme f(a,~v) = (0.5,0.5) has the the minimum-bandwidth (MBR) points. The curve of the MBR
same storage consumption as the MSR point of the original RRCs in [11] is also provided in the same figure. Note that the
((er, ) = (0.5, 1)) while using strictly less than the bandwidthfamily-plus repair scheme in the figure, described in Sefdp
of the MBR point of the original RC(fv,y) = (%, %)). Since is an extension of the FR scheme to cover the case when
the tradeoff curve of the FR scheme has only 1 corner point,>> d. Examining Fig[5, we can see that the BR scheme
it also suggests that with smart helper selection, it is iptess performs very poorly compared to the other codes whés
to achieve minimum-storage (MSR) and minimum-bandwidtarge. Comparing the plots of the family-plus repair scheme
(MBR) simultaneously. the plot of the MBR LRCs, we can see that the MBR LRCs



perform equally wherk is very large but performs poorly constructions[[11],[[12] are other ways of designing smart
otherwise (say wher: = 10). From this, we see that RCshelper repair solutions for a subset (@f, k, d) values.
with the family-plus repair scheme perform well for arbitra

(n, k,d) values as discussed in Table I. A. When Is It Beneficial to Choose the Good Helpers?

Recall that we only considér, k, d) values that satisfy{1).

S N e Family Repair Scheme ] _Proposition 1:If at least one of the following two con-
Family—plus Repair Scheme ditions is true: ()d = 1, & = 3, andn is odd; and (i)
50F = = = MBR Locally Repairable Codes || k< [ﬁ , then for any arbitrary dynamic helper selection
45k == Blind Repair Scheme | .
schemeA and any arbitrary«, 8) values, we have
40f 1 1
351 1 min min mincutg(s,t) = min((d —i)"3,a). (10
U | ain min G(s,t) = D _min((d = )", a). (10)
30 =0
25} 1 That is, even the best dynamic repair scheme cannot do better
20t 1 than the BR solution. Conversely, for afwy, k, d) values that
satisfy neither (i) nor (ii), there exists a helper seletsocheme
15¢ | _
A and a pair of(«, 8) values such that
101 1
St 1 k—1
0 0.2 04 06 08 1 élélgn teglér(lc) mincutg (s, t) > Zmin((d —i)7B,a). (11)
Storage a = Repair Bandwidth y A i=0

) ) ) ) Moreover, for the saméa, 5) values and the same helper
E:)@fr']t‘r’%o:&e’zl)"azlu&\o’erlsol;sarﬁg?;{ébgzgﬂdiClu'”’e comparison at the MBR o action schemet that satisfy [ZIL), if the file sizeV also
7 ’ satisfies [(B), then there exists a finite field (@Fsuch that
Result 6: Although the main focus of this work is onWe can explicitly construct an RC that meets the reliability
investigating the benefits of helper selection, a byproddct "€guirement. y , _
our results is a new explicit construction of locally repaie 1€ Proof of Propositiofil1 is presented in Secfion VI-A.
codes (LRCs) for arbitrary(n, k,d, a, 8) values satisfying BY hoticing that the right-hand sides of {10) arldl(11)

« = df. Numerically, the proposed LRCs demonstrate god;He idpntical to[(5), Propo.s?tiolﬁ] ,1 .thus answers the central
performance in al(n, k, d) cases. Analytically, it achieves theduestion: Under what conditions is it beneficial to choose th
absolutely optimal MBR points (using the smallest possib@0d helpers?

bandwidth among all dynamic helper selection schemes) for

all (n,k,d,«, ) values satisfying (i)n # 5, k = n — 1, B. The Family Repair Schemes and Their Notation

andd = 2; (i) nis even,k = n —1, andd = 3; (i) o quantify the benefits of smart helper selection, we
n ¢ {7,9}, k=n—1,andd = 4; (v) n is eveny ¢ {8,14}, propose a new helper selection scheme, which is termed the
k=mn—1,andd =5; and (vV)n ¢ {10,11,13}, k =n —1, family repair (FR) schemand is a sub-class of stationary
andd = 6. This result is the combination of Propositibnl 1Qepair schemes. To describe the FR scheme, we first arlyitrari

and the explicit code construction in SectfonlVIl. sort all storage nodes and denote themibio n. We then
define acomplete familyas a group ofn — d) physical nodes.
IV. THE MAIN RESULTS The first (n — d) nodes are grouped as the first complete

Our main results include two parts. In Section 1V-A, Wgamily and the Secor_‘d” — ) nodes are grouped as the

answer the question “When is it beneficial to choose tﬁseeCOhOI complete family ‘_’jl,nd 50 on and SO forth. In total, there

good helpers?” In Section IVIC, we quantify the potentifl"® {ﬁJ complete families. The remaining mod (n — d)

benefits of good helper selection by characterizing thegwr nodes are grouped as amcomplete family The helper set

bandwidth tradeoff of the family repair (FR) scheme propbse”: of any nodei in a complete family contains all the nodes

in Section(IV-B. Since the FR scheme is a special exampletin the same family of nodé. That is, a newcomer only

of the general dynamic helper selection, the improvement $#€ks help fromoutsideits family. The intuition is that we

the FR scheme over the blind repair (BR) scheme servesV¥uld like each family to preserve as much information (or

a lower bound for the improvement of the optimal dynamiéduivalently as diverse information) as possible. To timat, e

repair scheme over the BR scheme. we design the helper selection sets such that each newcomer
It is worth noting that the first part, answering when ifefrains from requesting help from its own family. For any

is beneficial to choose good helpers, is of more importang@de in the incomplete famifj,we set the corresponding

since it completely solves an open fundamental probleFQ.i ={1,---,d}.

At the same time, the second part can be viewed as ap _— _
All the concepts and intuitions are based on complete familiThe

attempt towards finding the optimal hglper selecti_on Scrmrr]ﬁcomplete family is used to make the scheme consistent ppticable to
for general(n, k, d) values. For comparison, the existing LRGhe case whem mod (n — d) # 0.



For example, suppose that, d) = (8,5). There ar& com- tinuing from the previous example, one instance of family
plete families{1, 2,3} and{4, 5,6}, andl incomplete family, index permutations isry = (1,1,0,2,0,—2,1,2). A rotat-
{7,8}. Then if node4 fails, the corresponding newcomer willing family index permutation (RFIPy} is a special family
access nodes$l,2,3,7,8} for repair since nodes 1, 2, 3, 7,index permutation that puts the family indices bfl(12) in an
and 8 are outside the family of node 4. If ndtdéa member of (n —d) x || table column-by-column and then reads it

the incomplete family) fails, the newcomer will access rod@ow-by-row. Fig.[6 illustrates the construction of the RFIP
1to5 for repair. _ for the case of(n,d) = (8,5). The input is the family
By the above definitions, we have in tothﬁ—d] number index vector(1,1,1,2,2,-2,0,0) and the output RFIF?T}

of families, which are indexed from to | -~ |. However, s (1,2,0,1,2,0,1,-2).
since the incomplete family has different properties frara t

complete families, we replace the index of the incomplefe. Quantifying the benefits of the Family Repair scheme
famll)g with 0. Therefore, the family indices become from 1o quantify the gap in[{11) (or equivalently the gap[ih (9))
toc = {ﬁJ and then0, wherec is the index of the last for the best dynamic helper selection scheme, we analyze the
Complete family. If there is no incomplete family, we simplyperformance of the stationary/FR schemes and use it as a lowe
omit the index0. Moreover, by our construction, any membebound for the gap of(11).

of the incomplete family ha®, = {1,--- ,d}. That is, it will Proposition 2: Consider any stationary repair schermde
request help fronall the members of the firgt— 1) complete and denote its collection of helper sets §§;, Do, ..., D, }.
families, but only fromthe firstd — (n — d)(¢c — 1) = n mod We then have

(n — d) members of the last complete family. Among the k

(n — d) members in the last complete family, we thus need tQpin,  min mincut(s,t) > mianin((d — 2(r))B, a),
distinguish those members who will be helpers for inconglet?€94 teDC(G) reR =

family members, and those who will not. Therefoves add (13)

a negative sign to _the family |nd|cgs of those who will notl vere r is a k-dimensional integer-valued vectoR} —
be helpers for the incomplete family.

. ) . Alri,ro, o yrg) + Vi € {1,---,k}1 < r; < n} and
. dF.rom t?ethabove 3|scussmn, \(/jv_e can_ nO\;\:c “S.tl thedfamllg/i(r) = |{r; : j < i,r; € Dy,}|. For example, suppose
indices of then nodes as am-dimensionalfamily index = 6, k — 4, Dy — {1,4}, andr = (1,2,1,3), then we

vector Consider the same example as listed above Wh‘?{g\/em — 3andzu(r) = [{r; : j < 4,r; € D3}| = 1. (The
= = |{r; : J T =1.

(n,d) = (8,5). There are two complete families, nOde%ilouble appearances of = r3 = 1 are only counted as one.)

1 to3 and no_des 4 to 6. Nodes 4 aqd 8 belong 1o .theThe proof of Propositiofi]2 is relegated to Appendix B.

incomplete family and thus have fa.mlly |n(.jex 0. The third Proposition 2 above establishes a lower bound on the cut

nghb:rir?ict)rrlr? Teetceo?:n?icl) mmgﬁgzgly’ngﬂ;g?&f Z?r:?;ir capacity of any stationary repair scheme. Therefore, when

both D- — Dp ~ [ y Q= {1 2 e 5) Thérefore designing any stationary scheme, one simply needs to choose

Tace thz tamil ’ ind’ex of nodve ’6 b§/2 .In sum the: (n,k,d,a, B) values and the helper sef¥ so that the right-

:‘,Zl?nirlepindex vectorof);his (n,d) = (8.5) exar.n e bec’omes hand side of[(2I3) is no less than the file sik¢. However,

(1,1 3; 2,2.-2.0,0) Mathe?ﬁaticzllly ’we can wﬁte the family since we do not have equality ih {13), the above construction
Pt ' is sufficient but not necessary. That is, we may be able to

index vector as use smaller and 5 values while still guaranteeing that the

,_”ji\ e n mod (n—d) resu[ting stationary regenerating code meets the reliabil
1,---,1,2,---,2,---, C,---,C , requirement.
When we focus on the family repair scheme introduced
n—d—(n mod (n—d)) n mod (n—d) in Section[1V-B, a special example of stationary repair, the
ﬁ m (12) inequality [I3) can be further sharpened to the following
7 R ' equality.

Proposition 3: Consider any given FR schenié with the
corresponding IFGs denoted By (n, k, d, o, 8). We have that

(1,1,1,2,2,-2,0,0) Insert column-by-column Read row-by-row
— o min  min mincutg(s,t) =
1 9 0 1 9 0 GegGr teDC(G)
] k
Ll 2fjo| F1]2]o min ) min((d-yi(ms))f,e),  (14)
] HEar]
1|2 11 |2 . : :
L]t ] . wherer; can be any family index permutation apg(r) is
i L20IR0L computed as follows. If the-th coordinate ofry is 0, then
Fig. 6. The construction of the RFIP fén, d) = (8, 5). yi(my) returns the number of satisfying both (i); < ¢ and

(if) the j-th coordinate> 0. If the i-th coordinate ofr is not
A family index permutatiornis a permutation of the family 0, theny; () returns the number of satisfying both (i)j < ¢
index vector defined in((12), which we denote hby. Con- and (ii) the absolute value of thgeth coordinate ofr, and



the absolute value of theth coordinate ofr; are different. seen in Fig[h, fork > 19, the FR scheme needs ordg%
For example, ifry = (1,2,-2,1,0,0,1,2), thenys(ms) = 3  of the repair-bandwidth of the BR solution. Even for the case
andys(my¢) = 5. of £k = 10, i.e., (n,k,d) = (60,10, 10) which is still within
The proof of Propositiohl3 is presented in Secfion VI-B. the range of the parameter valués< d) considered by the
Remark 2:In general, the minimum cut of an IFG mayBR scheme, the FR scheme needs ordy; of the repair-
exist in the interior of the graph. When computing the mirbandwidth of the BR solution.
cut value in the left-hand side of (13), we generally need Unfortunately, we do not have a general formula for the
to exhaustively consider all possible cuts for alye G4, least beneficial point, the MSR point, of the FR scheme. Our
which is why we have to choosec R in (I3) that allows for best knowledge for computing the MSR point is the following
repeated values in the coordinatesraind we can only prove  Proposition 5: For arbitrary(n, k, d) values, the minimum-
the inequality (lower bound) i (13). storage of[(I¥) isvsr = %. If the (n, k, d) values also
Recall that the family index permutatiory is based on the gatisfy ¢ > £, then the correépondin@MSR - If
family index vector of all “currently active nodes.” Propos d < k, then the correspondingyisg < %_

tion [3 thus implies that when focusing on the family repair The proof of Propositiofi]5 is relegated to Appendix G.

schemeF’, we can reduce the search scope and consider onI)B s -
' . . y Propositiori b, we can quickly computgsg andBuvsr
those cuts that directly separadtecurrently active nodes from whend > k. If d < k, then we still havenysy —

the rest of the IFG (sed_(IL4)). This allows us to explicitl%

compute the corresponding min-cut value with equality. other than directly applying the formula in Propositidn 3
Combining Propositioil3 andi(3), we can derive the new Remark 3:If wg ccfn?lgarg the expressions oprroposifE)n 5

storage-bandwidth tradeoff(vs. ) for the FR scheme. For and the MSR point of the BR scheme provided [ (7) and

: A
example, Figl 14 plots: versusy = dj for the (n, k. d) values ) of Sectior TI-D), Propositiofl5 implies that the FR scheme
(20,10,10) with file size M = 1. As can be seen in Figl 4, joes not do better than the BR scheme at the MSR point
the MBR point (the smallest value) of the FR scheme useSyhen g > .. However, it is still possible that the FR scheme

only 72% of the repair-bandwidth of the MBR point of thgan do better than the BR scheme at the MSR point when

BR scheme {ypr = 0.13 vs. 0.18). It turns out that for ; _ ;. one such example is the example we considered in
any (n, k, d) values, the biggest improvement always happe@%ctionm] when(n, k,d) = (5,3,2). For this example, we
at the MBR poinﬂ The intuition is that choosing the QOOdhaveaMSR — M guer = M andywsg = M for the FR

- 2 4 -2

helpers is most beneficial when the per-node storag®no  ¢-heme wherghsr —  is derived by searching over all
longer a bottleneck (thus the MBR point). N LA ;
family index permutations ; in (I4). For comparison, the BR
. scheme haswisr = &, fusr = 4%, andywsr = M. This
D. The MBR and MSR Points of the FR Scheme shows that the FR scheme can indeed do better at the MSR

The right-hand side of {14) involves taking the minimunoint whend < k in terms of the repair-bandwidth although
we do not have a closed-form expression for this case.

M
E(d—k+1)"

M
min(d,k)
ut we do not know how to compute the exact valuggtr

n—d
ing the entire storage-bandwidth tradeoff is of complexit&

k
over a set ofO (L) entries. As a result, comput-

Is the family repair scheme optimal?

k
o ((m) ) The following proposition shows that if we The results presented above quantify the performance bene-

are interested in the most beneficial point, the MBR poinfits of one particular helper selection scheme, the FR scheme
then we can compute the correspondimgand 3 values in \When compared to the BR scheme, the improvement of
polynomial time. the FR scheme can be substantial for sofmek,d) value
Proposition 4: For the MBR point of [IH), i.e., when is  combinations. At the same time, it is still important to see
sufficiently large, the minimizing family index permutatiés  how close to optimal is the FR scheme among all, stationary
the RFIP7} defined in Section IV-B. That is, the, 8, andy  or dynamic, helper selection schemes. In the following, we
values of the MBR point can be computed by prove that the FR scheme is indeed optimal for s¢mék, d)
dM values.
aMBR = MWBR = dfMBR = Zk (d— ,(W*))' (15) Proposition 6: For the(n, k, d) values satisfying simultane-
=1 YilTy ously the following three conditions (@is even, (ii)n = d+2,
The proof of Propositionl4 is relegated to Appendix F. and (i) k = 2 +1; we have
We use Propositiofil4 to plot the reliability requirement
k versus the repair-bandwidth for the MBR point when gelignptegléf(lc) mincutg (s, t) > Jnin teglé?G) mincute (s, t)
(n,d) = (60,10) in Fig.[d. Since the network is protected (16)
against(n — k) simultaneous node failures, the larger the
the less resilient is the network, and the smaller the naggssfor any arbitrary dynamic helper selection schemand any
repair-bandwidthy = d3 to maintain the network. As can bearbitrary (o, ) values.
The proof of Propositiofl6 is presented in Secfion VI-C.

7If we compare the min-cut value of FR in{14) with the min-catue of Note that for any(n k d) values Satisfying conditions (I)
BR in (§), we can see that the greatest improvement happeea thie new D)

term (d — y;(my))B < o for all <. These are the mathematical reasons why.? (iii) in PrOPQSitionB' they must also Sat.is_fy neither '@r
the MBR point sees the largest improvement. (i) in Propositior1. As a result, by Propositibh 1, therésex




some helper selection scheme that strictly outperform8te coordinates inr} preceding thé-th coordinate with a different
scheme. Propositidd 6 further establishes that amongadkth family index, thus, we gef(21).
schemes strictly better than the BR scheme, the FR scheme By (I9) and [21L), we get
indeed optimal. o2 _
We also note that [9, Theorem 5.4] proves that wles min  min  mincute(s,t) = (d s { i J) 5
n — 1 anda = B, no dynamic helper selection scheme can G€9r teDC(G)

= n—d
protect a file of size> giﬁ. Combining Propositions| 3 and 6, n—1 Oz.
we can strictly sharpen this result for the casgwofk, d) = = Z (d —i+ | J) Ié] (22)
(4,3,2) anda = 3. i=0 n—d
Corollary 1: When (n,k,d) = (4,3,2) anda = 3, no (n—1)n ol
dynamic helper scheme can protect a file of siet > 2q, = <nd i — + Z { D J) B
for which [, Theorem 5.4] only proves that no scheme can i=0 L n—

protect a file of sizem > 5. (n—1)n n &K
Proof: By Propositior( 8, wher(n, k,d) = (4,3,2) and = | nd— + i

a = f, the FR scheme can protect a file of size. We 2 nod =0
then notice thatn, k, d) = (4, 3, 2) satisfies Propositida 6 and — (nd _(n=Dn + n(n —d— 1)) 38
therefore the FR scheme is optimal. As a result, no scheme 2 2
can protect a file of sizé\l > 2a. ] _ ndp

Proposition[6 shows that for certaim, k, d) value com- 2

binations, the FR scheme is optimal for the entire storaggnere we get[(22) by the fact that— (n — 1) + |'n_71'| _
bandwidth tradeoff curve. If we only focus on the MBR point,; _ (n—1)+ (n—d—1) = 0. The proof is thus comcpletﬂ

we can also have the following optimality result. Proposition[¥ establishes again that the FR scheme is
Proposition 7: Considerk = n —1 anda = df5. For the  gptimal, among all dynamic helper schemes, foe= n — 1
(n, k, d) values satisfying: mod (n —d) = 0, we have and o = djB whenevern mod (n — d) = 0. We will show
min  min  mincute(s,£) = no in S_ectionm that the FR scheme and its extension, the
G€EGr teDC(Q) ’ 2 family-plus repair scheme, are actually alseakly optimal
> min  min_ mincutg(s, t) for general(n, k, d) values. The definition of weak optimality
GE€Ga teDC(G) will be provided in Propositiofi]9.
17)
for any arbitrary dynamic helper selection scherhe V. FAMILY -PLUS REPAIR SCHEME
Proof: [9, Theorem 5.2] proved that fof = n —1 and | the FR scheme, there a}gl"—dJ) complete families and
a=dp, 1 incomplete family (ifn mod (n — d) # 0). For the scenario
min  min mincute(s, £) < ndf (18) in which then_ gndd values are comparable, we have many
G€Ga teDC(G) ) complete families and the FR solution harvests almost all of

the benefits of choosing good helpers, see the discussion of
Propositior 6 for whichn = d + 2. However, whem: is large

but d is small, we have only one complete family and one
incomplete family. Therefore, even though the FR schenfie sti
substantially outperforms the BR scheme, see [Hig. 5 for the

for any arbitrary dynamic helper selection scherheAs a
result, we only need to prove that whenmod (n — d) = 0,
the min-cut of the FR scheme equé%@.

Sincea = dB3, we know by Propositiohl4 that

. . . n—l § case of(n, d) = (60, 10), the performance of the FR scheme is
gellgnp tegléf(lc) mincutg (s, t) = Z(d —vi(73))B. (19) far from optimal due to having only complete family. In this
=1 section, we propose thHamily-plus repairscheme that further

Now, whenn mod (n—d) = 0, we have no incomplete family improves the storage-bandwidth tradeoff whens large but
in the FR scheme and the RFIP has the following form  d is small.
The main idea is as follows. We first partition thenodes
mp= (1,261,200 6000 1,2, 0), (20) " into several disjoint groups @d nodes and one disjoint group
of nremain NOdes. The first type of groups is termed the regular
group while the second group is termed the remaining grdup. |
i 1J we have to have one remaining group (Whemod (2d) # 0),

where recall that = {ﬁJ = —I-. Using [20), we get that

yi(my) =1i—1— L (21) then we enforce the size of the remaining group to be as small
as possible but still satisfyingremain> 2d + 1. For example,

The reason behind (R1) is the following. Examining the defif d = 2 andn = 8, then we will have 2 regular groups and no

nition of 3;(-), we can see thaj;(-) counts all the coordinatesremaining group since mod (2d) = 0. If d =2 andn = 9,

j < of  that have a family index different than the familythen we choosé regular group{1,2,3,4} and 1 remaining

index at thei-th coordinate. For each coordinatevith the aid group{5, 6, 7,8,9} since we need to enforegemain> 2d+ 1.

of (20), there ar¢ 1 | coordinates inr} preceding it with the  After the partitioning, we apply the FR scheme to the

same family index. Therefore, in total there are1 — {%J individual groups. For example, if = 2 andn = 8, then we

c
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have two regular group§l, 2, 3,4} and{5,6,7,8}. Applying evaluate each of thé& summands by Propositidd 3, which
the FR scheme to the first group means that nadesl2 form  requires checking alh,! different family index permutations.
a family and nodes and 4 form another family. Whenever On the other hand, for the MBR point of the family-plus repair
node 1 fails, it will access helpers from outside its family,scheme, we can further simplify the computation complexity
which means that it will access nodasand4. Node 1 will  following similar arguments as used in Propositidn 4.
never request help from any of nodeto 8 as these nodes are Corollary 2: The MBR point of the family-plus repair
not in the same group as nodeSimilarly, we apply the FR scheme is
scheme to the second grogip, 6, 7, 8}. All the FR operations
are always performed within the same group.

Another example is whed = 2 andn = 9. In this case, andp\gr can be computed by solving the following equation

QOMBR = YMBR = dBMBR

we have 1 regular groupl,2,3,4} and 1 remaining group min(k.2d—1)—1
{5,6,7,8,9}. In the remaining group{5,6,7} will form a 1 . ’ d—i i
complete family and8, 9} will form an incomplete family. If {n mod (2d)70} Z )t

node 6 fails, it will request help from both nodes 8 and 9. If =

q .
node 9 fails, it will request help from nodg, 6}, the first a2 {WJ + Z (d i+ VD BupR = M,
d = 2 nodes of this group. Again, all the repair operations 2 0 2

for nodes 5 to 9 are completely separated from the operations (24)
of nodes 1 to 4. The above scheme is termedfémeily-plus

: where M is the file size,
repair scheme

One can easily see that when< 2d, there is only one ¢ = ((k —m)" mod (2d)) - 1, and
group and the family-plus repair scheme collapses to the FR Tremain if 7 mod (2d) % 0
scheme. Whem > 2d, there are approximately; regular n; = .

. . d. . 0, otherwise
groups, each of which contains two complete families. There

fore, the construction of the family-plus repair schemeuees  The proof of Corollary P is relegated to Appendix .

that there are many complete families even for the scenaridn Fig.[d, we plot thek vs. v curves for the BR, the FR,

of n > d. In the following proposition, we characterize theand the family-plus repair schemes for the cas€rmofd) =

performance of the family-plus repair scheme. (60, 10) using [6), Propositionl4, and Corolldry 2, respectively.
Proposition 8: Consider any giverin, k, d) values and the As can be seen, wheh = 40, the repair-bandwidth of the

family-plus repair schemé&'*. Suppose we havB groups in family-plus repair scheme is on8% of the repair-bandwidth

total (including both regular and remaining groups) andheaof the BR scheme (cf. the repair-bandwidth of the FR scheme

group hasn, number of nodes fob = 1 to B. Specifically, is 58% of the repair-bandwidth of the BR scheme). This

if the b-th group is a regular group, then, = 2d. If the b- demonstrates the benefits of the family-plus repair scheme,

th group is a remaining group (whenmod (2d) # 0), then which creates as many complete families as possible bydurth

ny =n—2d(B—1). We useGr+(n, k,d, a, §) to denote the partitioning the nodes into several disjoint groups.

collection of IFGs generated by the family-plus repair sske ~ We are now ready to state the weak optimality of the family-

We have that plus repair scheme for all, &, d) values.
. . . Proposition 9: Consider a family-plus repair scheme de-
min  min mincut(s,?) = noted by F'™, and its corresponding collection of IFGs

Geg DC(G
r 1EDELE) Gr+(n,k,d,a, B). For any(n, k,d) values satisfying neither

B
min min min _ mincut (s, &), of _the (i) and (ii) conditions in Propositidd 1, there exists
kEK £ HEGr (ny,kp,d,a,B) t, EDC(H) pair (o, 8) such that
(23)
. . . . kil

where k is a B-dimensional integer-valued vectol = min  min  mincutg(s, ) > me((d — )8, ).
{(kl,kg,-'- k) : Vb € {1, ,B},O < k < Gegpy teDC(G) =0
Np, Zle ky = k}. Note that for any giverk, the right-hand (25)

side of [23) can be evaluated by Proposifion 3.
Proof: Observe that any IFGF € G+ is a union of B

The proof of Propositioh]9 is relegated to Appendix J.

) Propositiond ® andl1 jointly show that whenever helper
parallel IFGS.tth[ are ifr (1, -, d, , ) where “” means that selection can improve the performance, so can the familg-pl
we temporarily ignore the placement of the data collecteos. repair scheme. We term this property the “weak optimality.”
any dz?\ta collectot in G+, we us_ekb to denote the number Note that although the FR scheme in Secfion IV-B is optimal
of. active nodgs .that accesses in group. T.herefore, the for some(n, k, d, o, 8) value combinations, the FR scheme is
]fnmcllllzc’(s’t) is simply Lhe summation Ofdthmmﬁmf(sk; té’) not weakly optimal, i.e., Propositionl 9 does not hold for the
orallbe {1,---, B} wheret, corresponds to the “sub-datarp ccheme. By introducing the additional partitioning step

collector” of groupb. By_f‘ﬂ”_he_r minimizing over all possible the family-plus scheme is monotonically better than the FR
data collectorg (thus minimizing over &, }), we get[28).m scheme whéha — dB, and is guaranteed to be weakly
To evaluate the right-hand side ¢f{23), we have to try all

possible choices of th& vectors and for each givek, we 8The proof is provided in AppendiX J.
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optimal. Moreover, in addition to the cases (of, k,d,«, 5) special example of the generalized family-plus repair s@he
values for which FR is optimal (so is the family-plus schemiey choosingn, = d + 1 for all b = 1 to B. Each group thus
since the family-plus scheme is monotonically better instho has n:‘jd = np = d + 1 complete families and each family
cases), the family-plus scheme is optimal for some additiorcontains onlyn, —d = 1 node. As we saw for the family-plus
(n,k,d,«, B) values. repair scheme above, the scheme. in [12] can be easily amialyze
Proposition 10: Considerk = n — 1 anda = df8 and a by noticing that the IFGs representing this scheme consist o
family-plus repair scheme that dividesnodes intoB groups i parallel graphs with parametefs,d) = (d + 1,d). By
with n; to np nodes. Ifn, mod (n, —d) = 0 for all b =1 similar analysis as in Corollaryl 2, it is not hard to find the

to B, then we have MBR point of this scheme which is
. . . no 1
t t) = — k d+1)d 2dr —r?
B Bl M0 = = (| | 451 25
> min  min mincutg(s,t) (28)

T GEGa teDC(G)

(26) .
_ _ _ wherer =k — Lmll(dﬂ).
for any arbitrary dynamic helper selection scherhe Note that unlike the construction in [12] that requires each
Remark 4:Thus far, our family-plus scheme assumes aﬁroupto havéd+1) nodes and thus requiresmod (d+1) =
but one group have;, = 2d nodes and the remaining groufy qoyr construction and analysis hold for arbitrary Vapé
hasn, = nwemain > 2d + 1 nodes. One possibility for further , itioningn nodes into separate groupsigfnodes) = 1 to
generalization is to allow arbitrary,, choices. It turns out g ajso. our analysis in this work has characterized the entir
that Propositiof 110 holds even for any arbitrary choicesof storage-bandwidth tradeoff. For comparisdn; [12] analyite
values. For example, for the case @f, k,d) = (19,18,4) oniy for for the MSR point. In summary, the result in this
and o = dj, the generalized family-plus scheme is absQgqy is a much more general code construction and analysis
lutely optimal if we divide the 19 nodes into 3 groups of,, arbitrary (n, k, d) values.
(n1,n2,n3) = (8,6,5). Also, one can prove that for any aigo note that in addition to deriving the entire storage-
(n, k,d, a, B) values satisfying: # 5, k =n — 1, d = 2, and  panqyidth tradeoff of the proposed family-based schemes,
a = djj, we can always find som@u,, - -, np) such thatthe one ain contribution of this work is to successfully pasiti
generalized family-plus repair scheme is absolutely olim ¢ tamily-pased schemes in the context of characterizieg t

See Result 6 in Sectiop Il for some othémn, k,d) value ponefits of optimal helper selection of regenerating coeles,
combinations for which the generalized family-plus SChen}@roposition{B[]?E]Q, arld 110.
is optimal.

Proof: By Proposition[8 and the fact that = n — 1,
we must have all but oné, = n; and the remaining one
ky = ny—1. Without loss of generality, we assurhg=n1—1 A. Proof of Propositiof]L
and all otherk, = n; for b = 2 to B for the minimizingk
vector in [23). Sincer; mod (ny —d) = 0, by Propositiori 17
the first summand of(23) must be equalg*.

For the case df = 2 to B, we havek, = n,;, instead ofk; =
ny — 1. However, if we examine the proof of Propositioh 7
we can see that Propositibh 7 holds even for the cage-of:
since (i) when compared to the casekof= n — 1, the case
of k = n involves one additional summartd — y,,(7}))3 in
(9 and (i) (d — yn(7})) = 0. By applying Propositiof]7
again, theb-th summand of[(23)p = 2 to B, must be™s< as
well.

Finally, by Propositioi 18, we have the equality in](26)

VI. SOME MAJORPROOFS

Before presenting the proof of Propositioh 1, we introduce
' the following definition and lemma.

Definition 1: A set of m active storage nodes (input-output
pairs) of an IFG is called am-set if the following conditions
are satisfied simultaneously. (i) Each of theactive nodes has
been repaired at least once; and (ii) Jointly théodes satisfy
the following property: Consider any two distinct activedes
x andy in the m-set and without loss of generality assume
thatz was repaired beforg. Then there exists an edge in the
IFG that connects:o,; and yin.

Lemma 1:Fix the helper selection schem® Consider an
arbitrary G € G 4(n, k,d, o, 8) such that each active node in
5 G has been repaired at least once. Then there exi%ﬁé&g}—

. . . npa  no set inG.
Glengli teglg(lG) mincute(s, ) = Z T2 27) Proof of Lemmdll:We prove this lemma by proving the
_ o _ _following stronger claim: Consider any integer value> 1.
The inequality in [(ZB) is by[[9, Theorem 5.4]. The proof isrhere exists ann-set in every group ofm — 1)(n — d) + 1
thus complete. B active nodes of which each active node has been repaired at

Before closing this section, we should mention that a similgaast once. Since th€ we consider has. active nodes, the
scheme to the family-plus repair scheme was devised ih [ RS, ; LW
for the MSR point whem is a multiple of (d + 1). In that Hove claim implies that? must contain & 7=7 | -set.
scheme the nodes are divided into groupg®#- 1) nodes. _ _ _ »

. . . Our construction and analysis work for arbitrary partitions. On the other
Whenever a node fails, its set of helpers is the setdof hand, the optimality guarantee in Propositiod 10 only haldeen n; mod
remaining nodes in the same group. This can be viewed ag@— d) = 0 for all b.

12



We prove this claim by induction on the value.af When Zf;ol min((d—14)* 8, a) for G* € G4 and the specific choice
m = 1, by the definition of then-set, any group of 1 active of ¢, where the inequality follows fromx being a vertex-
node inG forms a 1-set. The claim thus holds naturally.  cut separatings and t* and the equality follows from that

Suppose the claim is true for all < mg, we now claim that condition (i) being true impliesl = 1 and k = 3. By the
in every group ofimg —1)(n —d) + 1 active nodes ofF there same arguments as used in proving the case of condition (ii),
exists anmg-set. The reason is as follows. Given an arbitrarye thus have[{10) when condition (i) holds.
but fixed group of(mg — 1)(n — d) + 1 active nodes, we use We prove Claini L by explicit construction. Start from any
y to denote the youngest active node in this group (the ofite G4 with all n nodes have been repaired at least once. We
which was repaired last). Obviously, there &ne, —1)(n—d) choose one arbitrary active node Ghand denote it byw®).
active nodes in this group other thgn On the other hand, We letw) fail and denote the newcomer that replac€$)
since any newcomer accessékelpers out of: — 1 surviving by y(!). The helper selection schemewill choose a helper
nodes, during its repair, nodewas able to avoid connectingnode (sinced = 1) and we denote that helper node &3).
to at most(n — 1) — d surviving nodes (the remaining activeThe new IFG after this failure and repair process is denoted
nodes). Therefore, out of the remainifig, —1)(n—d) active by GM). By our construction:(!), as an existing active node,
nodes in this group, nodg must be connected to at leasis repaired before the newcomef!) and there is an edge
((mo —1)(n—d)) — (n—1—d) = (mg—2)(n —d) + 1 of (xieh,y) in GO
them. By induction, among those (mo—2)(n—d)+1 nodes, ~ Now starting fromG™), we choose anothew®), which
there exists arim — 1)-set. Since, by our constructiop,is is not one ofz(!) andy™) and let this node fail. Suck(?
connected tall nodes in this(mg — 1)-set, nodey and this always exists since is odd by condition (i). We usg® to
(mo — 1)-set jointly form anm,-set. The proof of this claim denote the newcomer that replaee$). The helper selection
is complete. schemeA will again choose a helper node based on the history

Proof of Propositiorf1L: of the failure pattern. We denote the new IFG (after the trelpe

We first prove the forward direction. Assume condition (iipelection chosen by schem# as G). If the helper node
holds and consider an IFG € G4 in which every active node of y? is z(), then the three nodes ),y y()) are the
has been repaired at least once. By Lenfitha 1, there existsray, z) nodes satisfying properties (a), (b) and the first half

—n_|-set inG. Since condition (ii) holds, we can consideff (IC)- |f1 thezhelper node 0f® is y"), then the three nodes
a data collector ofG; that connects td: nodes out of this (' 4'",y®)) are the(z,y, z) nodes satisfying properties

_n_|.set. Call this data collectdr If we focus on the edge (&), (P) and the second half of (c). In both cases, we can

n—d |~ - ; * _ (2)
cut that separates soure@and thek node pairs connected to stop our f:on_structlon an(_j et G and we say that the_
construction is complete in the second round. Supposeeareith

one can use the iviating gnaly5|§ "f; " [4 Lemma 2] and de%\f?he above two is true, i.e., the helperyP) is neitherz()
mincut(s, £) < 3o min((d—i)" 5, a)" for the given(s € nory(Y). Then, we denote the helpergf) by 2(?). Note that
G 4 and the specific choice af Therefore, we have v ,\/(\/2) . Per: y = INC
after this step(z'\*) contains two dlsgomt pairs of active nodes
. . . . . such that there is an edge’r, ™) in G® for m =1,2.
Jain min mincutg(s,?) < »  min((d — i)¥B,a). (29)  We can repeat this process for the third time by failing a
€G4 teDC(G) - 3) . (m) ,,(m)
nodew®) that is none of{z(™) 4™ : ¥m = 1,2}. We can
On the other hand, by definition we have always find such a node® sincen is odd when condition
(i) holds. Again, lety®® denote the newcomer that replaces
i i incut t) > mi i incut t). (3) ' 3)
Join  min  mincu a(s,t) > min min  mincu a(s,t). w® and the schemel will choose a helper fo®). The
(30) new IFG after this failure and repair process is denoted by
G®). If the helper ofy(® is z("™) for somem = 1,2, then the
Then by [29), [(30), and[5), we have proved that whenevgiree nodegz ("), (™), 4/(3)) are the(z, y, z) nodes satisfying

N
[u

-
Il
=)

condition (ii) holds, the equality (10) is true. properties (a), (b) and the first half of (c). If the helper aod
Now, assume condition (i) holds. We first state the followingf () is y(™ for somem = 1,2, then the three nodes
claim and use it to prové (10). (™), y(m) () are the(z, y, z) nodes satisfying properties

Claim 1: For any given dynamic helper selection schefne (a), (b) and the second half of (c). In both cases, we can
and the corresponding collection of IF@s, we can always stop our construction and le¥* = G and we say that the
find aG* € G4 such that there exists a set of 3 active nodesnstruction is complete in the third round. If neither o th
in G*, denoted byz, y, and z such that the following three above two is true, then we denote the helpey/@t by 2,
properties hold simultaneously. (a)is repaired beforg, and and repeat this process for the fourth time and so on so forth.
y is repaired before; (b) (xou, yin) is an edge inG*; and (c) We now observe that since is odd, if the construction
either (zout, zin) IS @an edge iNG* or (yout, zin) iS @an edge in is not complete in theng-th round, we can always start the
G*. (mo + 1)-th round since we can always find a nodg"o+!)

Suppose the above claim is true. We fietdenote the data that is none of{z(™) y(™) : vm = 1,2,--- mg}. On the
collector that is connected tfx,y, z}. By properties (a) to other hand, we cannot repeat this process indefinitely sigce
(c) we can see that nodeis a vertex-cut separating sourceonly have a finite number of active nodes in the network.

s and the data collectot*. The min-cut value separatingTherefore, the construction must be complete in theh
s and t* thus satisfiesmincutg-(s,t*) < min(dB,«) = round for some finiten. If the helper ofy(™) is (™ for some
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m = 1,2,---7m — 1, then the three nodeg: (™), y(™ y(™))  Equation[[3b) implies that at least one of the minimizirige
are the(z,y, 2) nodes satisfying properties (a), (b) and th& of the LHS of [338) is also inR,. We thus have[(34). The
first half of (c). If the helper node of(™ is 3™ for some proof of (38) is provided in AppendixID.
m=1,2,---,1m — 1, then the three nodgg:(™), y(™) 4 (7)) We now notice that any € R, corresponds to the
are the(z,y, z) nodes satisfying properties (a), (b) and thérst k£ coordinates of a permutation of the node indices
second half of (c). LetG* = GU™ denote the final IFG. (1,2,3,---,n). For easier reference, we uSeto represent
The explicit construction ofs* and the correspondin@;, y,z) an n-dimensional permutation vector such that the fikst
nodes is thus complete. coordinates off matchr. One can viewr as the extended
The backward directiof(11) is a direct result of Propositersion ofr from a partial k-dimensional permutation to a
tion[d. The proof of Propositionl 9 is relegated to Apperidix &omplete n-dimensional permutation vector. Obviously, the
choice ofr is not unique. The following discussion holds for

" anyr.
B. Proof of Propositio . L .
_ P B ] For anyr € R,, we first find its extended versioh We
The outline (?f t_he proof is as follows. then constructr; from T by transcribing the permutation of
Part I: We will first show that the node indices to the corresponding family indices. For
min  min mincute(s,t) < example, consm_ler the parameter \_/aIlQesk,d) = (8,4,5).
GEGr teDC(Q) Then, one possible choice ofe Ry isr = (3,5,2,4) and a
k corresponding is (3,5,2,4,1,6,7,8). The transcribed family
Ivnin min ((d — yi(7y)) B, @) . (31) index vector ist; = (1,2,1,2,1,-2,0,0). We now argue
= that z;(r) = y;(ny) for all ¢ = 1 to k. The reason is that
The proof of Part | is provided in Appendix C. the definition ofy;(w;) is simply a transcribed version of the

Part II: By definition, the family repair scheme is a station@fginal definition of z;(r) under the node-index to family-
ary repair scheme. Thud_{13) is also a lower bound on §idex translation. In sum, the above argument proves tat fo

IFGs in G and we quickly have anyr € Ry, there exists ar; satisfying
a k k
min » min((d — z(r))B3,a) < . .
reR Z min((d—z;(r))5,a) = Z min ((d — yi(7y)) B, ).
. . . i=1 i=1
min  min  mincutg(s,t) <
Gegr teDC(G) As a result, we have
k
. . k
glﬂ%? — min ((d - yz(ﬂ—f)) Ba Oé) . (32) m}%l mln((d—zz(r))ﬂ, Oé) >
1= re iz
=1
The remaining step is to prove that k
A min >~ min ((d = yi(r)) B.a) . (36)
min » min((d — z;(r))5, @) = =1
refi Jointly, (38), [3#), and{32) imply(33). The proof of Propo-
k sition[3 is thus complete.
min > min ((d - (7)) B,0) . (33)
i =1
C, Proof of P iti
Once we provd (33), we have {14) sintel(32) is true. The proof r09 0. ropositiofLJs ) .
is then complete. We first introduce the following corollary that will be used

The proof of Part Il (i.e.,[(33)) is as follows. To that endShortly to prove Propositiof 6. o
we first prove that with the helper sel® to D,, specified in ~ Corollary 3: For any (n, k,d) values satisfyingd > 2

a family repair scheme, we have andk = [ﬁ] + 1, we consider the corresponding IFGs

& Gr(n,k,d, o, 8) generated by the family repair schenfe

LHS of (31)= mgl min((d — z;(r))8, «) (34) We then have that
relz <

=t min  min  mincut(s,t) = min Cp,, (37)
WhereRg = {(Tl,T‘Q,"- ,T]g) : VZ,] € {1, ,k},l <r, < Gegr teDC(G) Zsmsk
n,ri #rj |_f i ;é j}. That is, when evaluating the LHS ¢Ff__g€34),where c, = Zi:()l min((d — )8, @)1 14m_1} + min((d —
we can minimize over?; instead of over? = {1,--- ,n}". | 2)8,a) for 2 < m < k.

We prove [(3#) by proving that for any e R we can always

The proof of Corollar is relegated to Appendix H.
find a vectorr’ € R, such that : LB g ppendix

We now prove Propositiof] 6 by proving the following.
k k Consider any fixed(n, k,d) values that satisfy the three
Z min((d — z;(r))B, o) > Z min((d — z;(r")) 8, a). conditions of Proposition]6 and ady € G(n, k, d, o, 3) where
i=1 i=1 all the active nodes off have been repaired at least once. We
(35)  will prove the statement that suchsatisfies that there exists
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different data collectors, denoted By, -- , 21 € DC(G), satisfy the properties (i), (ii), and (iii) of Definitioh] 2

such that based on the following observations. The third oldest
) n node isz = w in this construction. Sincé = n — 2,
mincutg (s, tm) < Cp, for 2 <m < 5t L, (38) w can avoid connecting to at most one of its older active

nodes. Thereforeyy must be connected to at least one
of u andv. Condition (ii) in Definition[2 thus holds.

Lastly, uoy andv;, are connected by our construction of
u, which means that condition (iii) in Definitidd 2 holds.

whereC,, is defined as in Corollarly]3. Note that the above
statement plus Corollarfyl 3 immediately prove Proposifibn 6
since it says that no matter how we design the helper setectio
schemeA, the resultingG (still belongs toG(n, k, d, «, 3))

will have min;cpe (g mincute (s, t) < mina< <k Crn. Now, assume that the claim holds_ fox lo_— 2. Consider
We now prove the above statement. We start with tiffly Set ofiy active nodes oy and call itHs. Sinced = n—2,
following definition. each node can avoid connecting to at most 1 active node.

Definition 2: A set of m active storage nodes (input-output Nerefore, the youngest node i, call it z, is connected
pairs) of an IFG is called atwn, p)-set if the following con- 0 lo — 2 older nodes inf,. Call this set of(/y — 2) nodes,
ditions are satisfied simultaneously. (i) Each of theactive V2- We assumed that the claim holds fox I/, — 2, this tells
nodes has been repaired at least once; (ii) The chronolggica's that inVs there exists ar(’y, p)-set for all2 < p < %.
p-th node in them nodes, call itz, satisfies thatz, is Moreover, for any(‘, p)-set inV; with 2 < p < 2, denoted
connected to at leagt— 2 older nodes of then nodes: and by Vs, we argue that the sé; U {«} is a (‘¢ + 1,p)-set in
(iii) Jointly the m nodes satisfy the following property: Forf2. The reason is that theth oldest node iz U {z} must
any two distinct active nodes andy in the set ofm-active D€ in Vs since2 < p < %. Also, nodex is connected to all
nodes such thag is younger than: andy # z, there exists hodes inVz 2 V. Therefore,V3 U {z} satisfies properties (i)

an edge in the IFG that Conneat&t and Yin- to (|||) in Definition and thus form d%) + 1,p)-Set.
We now prove the following claim, which will later be used We are now left with proving that there exist$£§+1, %HL
to prove the desired statement. 1)-set in H,. By the claim in the proof of LemmAl 1, there

Claim 2: Consider anyG € G(n, k,d, o, 3) where(n, k,d) eXists anm-set in any(lo — 1) active nodes provided that
satisfy the three conditions of Proposition 6 and all thevact satisfies2(m — 1) +1 < lo — 1. Since2(%¢ — 1)+ 1 =1 — 1,
nodes ofG have been repaired at least once. In aractive there exists a-set in the oldes(l, — 1) active nodes of
nodes ofG, wherel is an even integer value satisfying< H. Denote this-set by V. We argue that/, U {z} form
I < n, there exists 44 + 1,p)-set for all2 < p < £ + 1. a(l +1,% + 1)-set wherex is the youngest node it.

Proof: We prove this claim by induction oh We first The reason is as follows. Condition (ii) holds singecan
prove that the claim holds fdr= 4. Consider any sefl; of 4 avoid connecting to at most one node that is older, and thus
active nodes of7. We will prove the existence of €,2)-set must connect tq%’ — 1) nodes in this set. Condition (jii) in
and a(3, 3)-set, separately. Definition[2 holds obviously since is the youngest node (the

« Existence of a(3,2)-set: First, call the chronologically (% + 1)-th node chronologically) and the first nodes are
fourth active node ofG, u. Sinced = n — 2, u can fully connected as they form a@l-set. Hence, the proof of
avoid at most 1 active node during repair amds thus this claim is complete. =
connected to at leagt— 1 = 2 older active nodes it . By the above claim, we have that for ang ¢
Pick two nodes that: is connected to and call this set ofd (1, k. d, o, ) where all the active nodes & have been
two nodesV. Then, we claim thafu} UV forms a(3,2)- repaired at least once there exist &} + 1,p)-sets for all
set. The reason is the following. Let andv, denote the 2 < p < 3 + 1. We then assign one data collector to each of
two nodes in” and without loss of generality, we assuméhese(s + 1, p)-sets and denote it by, for p =2 to 7 + 1.
vy is older thanu,. We have that: is connected te; and In total, there arej; data collectors.
v9. One can verify thafvy, v, u} satisfy the properties We now apply a similar analysis as in the proof of [4,
(i), (ii), and (iii) of Definition[2 since the second oldestLemma 2] to prove[(38). Consider the casetpf We need
nodez = v,. Therefore,{v1, v, u} form a (3,2)-set. to prove that
Note thatve may or may not be connected tg.

« Existence of a(3,3)-set: Call the chronologically third mincute (s, t,) < Cp, (39)
and fourth active nodes aoff;, v and w, respectively.

Observe that is connected to at leagt— 1 = 1 older wheret, is the data collector connecting to(g + 1, p)-set.
active node sincel = n — 2 and v can avoid at most Denote the storage nodes (input-output pair) of (#is-1, p)-
one active node during repair. There are only two casest by1,2,..., % + 1. Define cut(U,U) betweent, ands as
in this scenario: Case 1y is connected to both thethe following: for eachi € {0,1,...,5}\(p — 1), if a <
chronologically first and second active nodes; Case @] — i)3 then we includez’’! in U; otherwise, we include

out

v is connected to only one of the chronologically firsbothz%!! andzi* in U. Fori=p—1,if a < (d—p+2)8,

out

and second active nodes. Call the active node thist then we includer?, in U; otherwise, we include both?”
connected to by, (in Case 1u can be either the first or and z{, in U. It is not hard to see that the cut-value of the
the second active node). Then, we claim thatv,w} is cut (U,U) is equal toC),. Therefore, we gef(39). Since(39)

a(3,3)-set. This can be proved by verifying thiat, v, w} is for generap, we get [3B) and the proof is hence complete.
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VII. GENERALIZED FRACTIONAL REPETITION CODES graph, which is denoted b§ = (V, E) whereV denotes the

All the previous analysis assumes that the cut-value con8ft of vertices oty and E’ denotes its set of edges. As will be
tion alone is sufficient for deciding whether one can comstrudescribed, the graph consists of two disjoint groups of sdge
the regenerating code under a given helper selection schefAEPhG has the following properties:

i.e., Assumptiofill in SectidnTlE. In this section, we déser 1) vV = {1,2,.--,n}. Each vertexi in V corresponds to
an explicit construction of an exact-repair code, terrgeder- physical nodei in N. For convenience, throughout our
alized fractional repetition codehat achieves the MBR point discussion, we simply say vertéxc N, if the physical
of the FR scheme and can be easily modified to achieve the node that vertex corresponds to is inV,.
MBR point of the family-plus repair scheme as well. Since2) Two verticesi € N, andj € N, are connected by an
the benefits of helper selection are greatest at the MBR point  edge inE if |z| # |y| and (z,y) ¢ {(0,—c¢), (—c,0)}.
our construction completes our mission of understandirfgun The collection of all those edges is denoted By
what condition helper selection improves the performarfce 03) Two verticesi € Ny andj € N_. are connected by an
regenerating codes and how much improvement one can expect edge inE. The collection of all those edges is denoted
from helper selection. by E.

4) From the above construction, we hakle= E U E. We
A. The Description of the Generalized Fractional Repetitio  further assume that all the edges are undirected and there
Code are no parallel edges 6.

Our construction idea is based on fractional repetitioresod  Fig.[7 illustrates the graph representation for the geizeml
[5]. Before describing the generalized fractional rep@iit fractional repetition code wittn, d) = (10, 6). We graphically
codes, we list some notational definitions. We denote the $gpresent edges ifi by solid lines and edges ifi by dashed
of nodes of complete family by ;. For the last complete |jnes.
family, i.e.,i = ¢ wherec = Lﬁ , we split its nodes into
two disjoint node setsy_.. is the set of nodes in family that
is not in the helper set of the incomplete family nodes and
is the set of the remaining nodes of this complete family. We
denote the set of nodes in the incomplete family\y The set
of all nodes in the network is denoted BY. For example, if
(n,d) = (7,4), then we have = 2 complete familie{1, 2, 3}
and {4,5,6}, and 1 incomplete famil{7}. Furthermore, we
haveNl = {1,2,3}, Ny = {4}, N_o = {5,6}; Ng = {7}

In short, N, contains the nodes that have family index
Moreover, we assume throughout this section that 1 and
a = df =d, i.e., one packet is communicated per helper@nd
packets are stored in each node since the generalizedfratti
repetition code we describe does not require sub-packgtizi

The goal of generalized fractional repetition codes is to

protect a file of size

k Fig. 7. A graph representation of the generalized fractioepetition code
M= Z (d—yi(x})) packets (40) for (n,d) = (10,6).
=1
against any(n — k) simultaneous failures. Frori (40), we can For any physical nodg we usef'I(i) to denote the family
easily see that the larger the value, the more relaxed theindex ofi. We define the following three sets:
reliability requirement is, and the larger the file sizé¢ the
generalized fractional repetition code can protect. i =
To handle all possiblgn, k,d) values, the construction of {(,7)

1 <i<j<nl1<|FIG)| <[FI(j)| <c}
the generalized fractional repetition code is quite coogtéd. 2 (i, )
7)

1<i<j<n,1<FI®i) <ec FI(j) =0}
1<j<i<n,FI(i)=0,FI(j) = —c}.

The core idea of these codes stems from a graph represantatio
of the distributed storage system. Although the proposerJ[?’] ={(i,j
generalized fractional repetition codes can still be aoeséd
without the aid of this graph, the graph representation isOne can easily verify that the union of the first two sets,
inevitable for gaining intuition about their constructiamd 1J!" U1, can be mapped bijectively to the edge #igtand
facilitating their analysis. For that reason, we base otaitiel the third setlJi®) can be mapped bijectively to the edge set
discussion of the generalized fractional repetition castethe E. The difference between setf!) to 135 and E, E, andE
graph. In the following, we start the description of thesdem is that the setsJ!"! to 1JI®] focus onordered pairswhile the
by introducing their graph representation. edges inE correspond to unordered vertex pairs (undirected
The graph representation: Each physical node in the edges). Also, we can see that there drel¥oll=INoD) pairs
distributed storage system is represented by a vertex in thel)®, d|Ny| pairs in1J12, and [N_.| - |No| pairs in 1JE.
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Thus, in total, there are Specifically, theseN_.| packets will now be stored in node
(n = |No|)(d — | No|) w € N_., one _for eachw. Repeat this cogstrqction for all
+d|No| + |N_c| - | No| (41) w € Ny. After this second step, each edgeArnJ £ has been
2 assigned one distinct coded packet and each nod¥ is
distinct pairs in the overall index s&t") U 1J2 U 1JB), This N1U--- N.UN_.UN, now stores exactly packets. After the
implies that the total number of edges of graphis |E| = initial random-construction phase, we enter the secondgha
(n—\NOI)QM +d|No| + |N_¢| - [ No|. the verification phase. In this phase, we fix the packets and

Coded packets generationEach edge of grapty corre- deterministically check whether they satisfy Property g (b
sponds to one coded packet that is stored in the distribuf@f construction the coded packets always satisfy Profigrty
Storage System_ More Speciﬁca”y' each ec(gﬁj) c E The fOIIOW|ng lemma states that W|th h|gh probablllty, the
represents a packet; ;) that is stored in the two physicalrandomly generated packets will satisfy Property 2.
nodesi and, i.e., both nodes andj store an identical copy
of the packetP, ;. On the other hand, each edgjej) € E
represents a packéy; ; that is only stored in one of its two -
vertices, the corresponding vertex M._.. One can verify by ©n€ probability,
examining thelJ[! to 1) index sets defined previously that”TOPey 2.
each physical node stores exaatly= d packets.

We now describe how to generate fhe')| + [1J12] + [1)]]
coded packets (thé’; ; and Py,j) packets depending on
whether (¢, j) € E or (i,j) € E) from the to-be-protected
file of M packets, where\ is specified by[(40). To that end,

) : : Lemmal2 implies that with high-probability, the random
\(/)vfeﬂzrg%(:jsgee;he following two properties on the coded paCkectgnstruction will lead to a deterministic set of coded paske

~ . that satisfies Properties 1 and 2. In the rare event that the
Property 1: Any coded packetP;, j,) corresponding to St pert v

R i . Jo) random construction does not satisfy Property 2, we simply
some (io, jo) € 1J*7 is a linear combination of thé’;, i)) repeat the random construction until we find a set of coded

for all jy satisfying (j1,40) € 1P In total, there arel such packets that satisfies Properties 1 and 2. Note that this con-

J1 indices. Specifically, the packet correspondingH@, j,) struction is performed off-line during the design stagec®n

is stored only in nodg since (io, jo) € E and P, j,) is @ the coded packets are found by random construction, we will

linear combination of the! packets stored in nodg. fix the coded packets for future use. Also, the construction
We now describe the second required property. Recall thétnot unique. We may be able to use some other method of

there arg No| = n mod (n—d) nodes in the incomplete family constructioft All our subsequent discussion holds as long as

and they are nodegn — d) + 1 to c(n — d) +|No| wherec is the final coded packets satisfy Properties 1 and 2.
the family index of the last complete family. For any subset

of the total |E| packets, define.,,, m = 1 to [Ny, as the
number of packets that correspond to all edgefia=s EUE We now provide a detailed example on the construction of
connected to the vertege(n — d) +m) € Ny. Defineay as a generalized fractional repetition code. Suppsgk, d) =
the number of packets in this subset that correspond to edgest, 4). Then, there are two complete famili¢s, 2,3} and
that are not connected to any of the verticesNp. Define {4,5,6} and1 incomplete family{7}. We will have that the
a.count 2 ag + Z'rivjl min(a.,,d). In sum, we can compute RFIP iS7rj; =(1,2,0,1,-2,1,—2) and the file size isM =
a valuea.count from any subset of edges. 11 packets, sed (40). By (1), we ha\ig| = 15, |E| = 13,

Property 2: The |E| coded packets satisfy that we must band|E| = 2. Then, we choose GE28) and randomly generate
able to reconstruct the original file from any subset of p&kehe first|E| = 13 packets and their coding vectors are
(edges) that satisfiescount > M.

We now argue that we can always find a set Bf coded
packets that satisfy the above two properties. Specificaly
can use a two-phase approach to generate the packets. We
first independently and uniformly randomly generatg =
w + d|Ny| linearly encoded packets from the
M packets of the original file. These packets are fixed and
arbitrarily assigned to the edges i (one for each edge).
After this first step, all physical nodes store exactlpackets
except those nodes iN_., each of which now stores exactly
(d — |No|) packets. Now, from each node im € Ny, we
generate independently and uniformly a random set\of,| 10The computational complexity during the design stage isthetmain

Iinearly encoded packets from thbpackets stored im. We focus in this work. Therefore, we opted to use the random eoustruction
demonstrate the existence of a desired code. For prattipementation,

fix th | d packets and assign th itragj]
IX these newly generate pgc ets an assign them arkytrag me finite-algebra-based construction could drasticatlyice the complexity
to each of thelN_.| edges in{(u,w) € E : Vw € N_.}. of the construction.

Lemma 2:When GKgq) is large enough, with close-to-
the above random construction will satisf

The proof of Lemmal2 is relegated to Appenfik K.
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|Mo|, definea,, as the number of packets in this subset that
correspond to the edges inc = Einc U Einc that are incident

(4,4) ~ Coding vector for?; ;) to vertexu,, € M. Define qy as the number of the other
(1,7) (1,0,0,0,0,0,0,0,0,0,0) packets in this subset, i.e., those packets not correspgrali
(2,7) (0,1,0,0,0,0,0,0,0,0,0) anP/ edges that are incident fa. Define a.count 2 ap +
(3,7) (0,0,1,0,0,0,0,0,0,0,0) 2771:{:0‘1 min(a,,,d). Then we must be able to reconstruct the
(4,7) (0,0,0,1,0,0,0,0,0,0,0) original file of size M if a.count > M.
We can again use the concept of random linear network cod-

(1,4) (6,0,0,0,1,0,0,0,0,0,0) ing to prove the existence of a code satisfying Property 1 and
(1,5) (0,0,0,0,0,1,0,0,0,0,0) the modified Property 2 in a similar way as in Lemia 2. The
(1,6) (0,0,0,0,0,0,1,0,0,0,0) correctness of the proposed generalized fractional tégpeti
(2,4) (0,0,0,0,0,0,0,1,0,0,0) codes for family-plus repair schemes can be proved in aaimil

way as when proving the correctness for family repair scteeme
(2,5) (0,0,0,0,0,0,0,0,1,0,0) provided in Sectiof VII-B. We omit the detailed proofs since
(2,6) (0,0,0,0,0,0,0,0,0,1,0) the proofs are simple extensions of the proofs we provide for
(3,4) (0,0,0,0,0,0,0,0,0,0,1) the FR scheme with only the added notational complexity of
(3,5) (21,56,81,119,67,80,87,118, 19,51, 39) handling different groups of nodes in the family-plus repai
3.6) schemes.

—
D

88,114,62,103,41, 70,49, 114, 86,106, 14). We also note that the proposed code construction is termed

Then, we generate the addition@l packets by mixing the the generalized fractional repetition codes because i

packets in any given. € Ny. The newly generated codingthe main ingredient of representing the code construction
vectors are as a graph with each edge representing a packet. Such a

representation leads to straightforward arguments that th
proposed codes can be exactly repaired by communicating

(i,4)  Coding vector forF; ; the missing copy from the other helper. On the other hand,
(7,5) (35,98,27,4,0,0,0,0,0,0,0) the proposed solution has the new ingredient of the edges
(7,6) (55,119,33,72,0,0,0,0,0,0,0). in £ which allows the code construction to handle arbitrary

. . _ _ parameter values while still being an exact-repair codee On
One can easily verify, with the aid of a computer, that botfajor contribution of the code construction in this workds t
Properties 1 and 2 hold for the above choices of coded packsts the generalized fractional repetition codes in the ednt

(coding vectors). _ _ of quantifying the benefits of intelligent helper node sétet
The correctness of the proposed generalized fractional reyd to show that the generalized fractional repetition sode
etition codes for FR will be proved in Section VII-B. achieve the MBR point of the FR scheme predicted by the

We note that the generalized fractional repetition cod@gire min-cut-value-based characterization.

described above can be modified and used to construct afpe remaining part of Sectidn VIl is dedicated exclusively
explicit exact-repair code that can achieve the MBR poi proving that the generalized fractional repetition casle
of the family-plus repair scheme. This is achieved by firg |egitimate exact-repair regenerating code that achitves
applying the same graph construction of the above genethlia/BRr point of the FR scheme described in Proposition 4.
fractional repetition codes to each group of the familysplupractitioners may consider skipping the proofs and go tjrec
repair scheme, i.e., the edge representation of each gregRhe conclusion section, Sectibn VIIl.
consists of the two edge sefsand E. Then, since the repair  Remark 5: The original fractional repetition code ifl[5] is
of the family-plus scheme occurs within each group seplrateyn explicit exact-repair code for the case when the product
we enforce Property 1 for each individual group so that we c&fy is even, but[[5] does not provide any construction when
maintain the exact-repair property. Finally, we need toue®s ;4 is odd. Moreover, the performance of the construction of
that any subset ok nodes (which could be across multiplq5j depends heavily on “the underlying regular graph.” inc
groups) can be used to reconstruct the original file. Theeefo[5] does not discuss how to choose the regular graphs, it is
we have to ensure that the coded packets satisfy a modifigft clear how to optimize the performance of the fractional
version of Property 2. repetition codes if_|5]. For comparison, our construct®an

In the following we briefly describe how to do this mOd‘exact-repair code applicable &l possible(n, k, d) combina-
ification with a slight abuse of notation. Recall that in th@ong we provide a new way of optimally designing the regular
family-plus repair scheme, only the incomplete group has @pd possibly irregular graphs, and prove that our construict

incomplete family. Denote the set of incomplete family n®deyways achieves the MBR point of the FR scheme.
in the incomplete group by/, and the graph of the incomplete

roup byGinc = (Vine, Einc). The new property imposed on the
gackgtsybé::com((esmc nc) propery imp B. Proofs for the GFR Code

Modified Property 2: Index the vertices inVly C Vinc by In this subsection, we first argue that the above generalized
{u1,uz,- -+, ujng) }- FOr any given subset of the total packetfractional repetition code can be exactly repaired using th
(across all groups) and any given satisfyingl < m < FR scheme. First, consider the case that nofdéls for some
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1 € NyUNyU---UN.UNy (those inN\N_.). Thed packets coded packets) to reconstruct the originidl file packets.

stored in nodé thus need to be repaired. We then notice that Since thea, 3, and M values in [4D) match the MBR
thed packets in node correspond to the edges inE that are point of the FR scheme, Propositibnl 11 shows that the explic-
incident to nodei. Therefore, each of thosé packets to be itly constructed generalized fractional repetition coddeed
repaired is stored in another nogeAlso by our construction, achieves the MBR point of the FR scheme predicted by the
the neighbors of nodeare indeed the helper s&x; of the FR  min-cut-based analysis.

scheme. Therefore, the newcomiaran use the FR scheme to The rest of this section is dedicated to the proof of Propo-
decide which nodes to be the helpers and request the helmsition[11.

to send the intact copies of the to-be-repaideplackets (one Proof: Consider an arbitrarily given set df nodes in
intact copy from each of the helpers). the distributed storage network, denoted $iyDenote nodes

For example, suppose we reconsider the example ab@yes that belong toN; by S; 249N N;. We now consider
where (n, k,d) = (7,4,4). Node4 € N, stores thed = 4 the set of edges that are incident to the given node set
packets corresponding to edgdes1), (4,2), (4,3), and(4,7). g, j.e., those edges have at least one end being iand
Suppose that node 4 fails. Since each of the ndde3, 3,7}  each of the edges corresponds to a distinct packet stored in
store one of the packets of node 4 and node 4 can receive gagesS. Recall that for any set of edges, we can compute
packet from each of thé = 4 helper nodes during repair, nodehe corresponding.count value as defined in Property 2 of
4 can always restore the exact packBt$ 1), F42), F4,3), our code construction. The following is a procedure, termed

andF, 7 that it initially stored. Observe that in the same waygounT, that computes the valuecount of the edges incident
all nodes inN; UN2 U---UN.U N, can be repaired exactly.tg §:

Therefo_re, we are left to show how nodes in the Bet. can 1) We first defineGy = (Vi,E1) = G = (V,E) as the
be repaired exactly.

Suppose nodé in N_, fails. We again notice thatd —
n mod (n—d)) of its d packets correspond to edgesfnand
their corresponding neighbors are also in the helpefsebf vertex in the order byy;. That is, we have thaf_, —
the FR scheme. Therefore, the newcomeran use the FR (v b |S o +1<i - k) andysl U US.U S; _
scheme to decide which nodes to be the helpers and request {v 1 <i<k- |S_ |}— ¢
(d—mn mod (n—d)) out of itsd helpers to send one of the to- i o
be-repaired packets. If we dig deeper, thGge- n mod (n

original graph representation of the generalized fraetion
repetition code. Choose an arbitrary order for the vertices
in .S such that all nodes i¥_. come last. Call the-th

2) Sete(S) = 0, wheree(S) will be used to compute

t.
d)) helpers are the nodes that have family indices belonging N;f/)\;mdo the following step sequentially for — 1 to
tO{l,"',C—l}. | |—]€

To restore the remaining mod (n — d) packets, we notice

) : 3) Consider vertex;. We first compute
first that by our construction, these packets correspontido t

edges in{(i,w) € E :w € Ny}. By our code construction, for z; =|{(vi,j) € BE;NE:j € N}+

anywo € No, P; ) IS @ linear combination of thé packets 1 ' Z 1 .

{Plwo.j) : (wo,j) € E,j =1,2,---,d} stored in nodew, € {vieS-c} {(wvi)eBNE}

Ny. Thus, during repair, newcomércan ask physical node e

wo t0 compute the packeﬁ(iﬁwo) and send the final result. Li{.ieBiien>IN-_.1}- (42)

In a similar fashion, newcomere N_. can repair all other Oncez; is computed, update(S) = e(S) + z;. Remove
packetsFy; ) for all w € No. Therefore, newcomer can all the edges incident te; from G;. Denote the new
exactly repair all the remaining mod (n — d) packets as graph byGis1 = (Vig1, Eit1).

well.

Intuitively, we first “count” the number of edges @; that
belongs toF and is connected to the target vertgxnamely,
the |{(vi,j) € E;NE : j € N}| term in [42). Then, if
the target vertex; € S_., we compute one more term in the
following way. For each edgg:, v;) € E;NE, if the following
inequality holds, we also count this specific, v;) edge:

Considering the same example above, n6de N_, can
restore packets corresponding £66, 1), (6,2),(6,3)} C E
by receiving copies of these packets from no@bﬂ 3} and
can request the packet of ed¢e 7) € E from node7 e
Np. Node7 can generate that packégﬁ 7) by computing the
corresponding linear combination from the packets it store
i.e., the packets; 1y, Pr72), P(73), and P(7 4. This shows
that nodes inV_. can also be exactly repaired, hence, all the {(u,j) € E;:j € N} > [N_|. (43)
nodes in a generalized fractional repetition code can betkgxa
repaired when following the FR helper selection scheme. That is, we check how many edges (including thos&iand

The following proposition shows that the generalized fradd E) are connected ta. We count the single edde:, v;) if
tional repetition code with FR helper selection can protetiiere are still at leagtN_.|+1) edges inZ; that are connected
against any(n — k) simultaneous failures. to u. Collectively, this additional counting mechanism for the

Proposition 11: Consider the generalized fractional repeticase ofv; € S_. gives the second term in(42). After counting
tion code with any given(n, k,d) values. For any arbitrary the edges incident to;, we remove those edges from future
selection ofk nodes, one can use all tte packets stored in counting rounds (rounds ) so that we do not double count
thesek nodes (some of them are identical copies of the sarffte edges in any way.
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Claim 3: After finishing the subroutine QUNT, the final the second term if(42).
e(S) value is exactly the value af.count. The new constraint put in Step 3 thus ensures that the final
Proof of Claim[3: outpute(S) is the value ofa.count. We now need to prove
The proof of the above claim is as follows. We first not¢hat for any setS of £ nodes, the correspondirgS) > M.
that in the subroutine, we order the nodesSiiin the specific Assuming this is true, we can then invoke Property 2, which
order such that all nodes ifi_. are placed last. Therefore, inguarantees that we can reconstruct thé¢ packets of the
the beginning of the subroutined®NT, all thev; vertices do original file from the coded packets storedn
not belong toS_.. Therefore, the second term [n{42) is zero. The proof ofe(S) > M consists of two additional claims.
Sincewv; ¢ S_., all the edges connected tg are in E. The Claim 4: Suppose there exists a nodes S_. and a node
first term of [42) thus ensures that we count all those edges N.\S.. Then
in this subroutine. Since we remove those counted edges in
each step (from&; to G,+1), we do not double count any e(5) =e(SU{b}\a). (44)
of the edges. Therefore, before we start to encounter axver®aim[4 will be used to prove the following claim.
v; € S_., the subroutine correctly counts the number of edgesClaim 5: For any arbitrarily given se, there exists an

incident to thev; for all 1 < j < 4. feR={(ry,ro ) :Vie{l, - k},1<r <n}
We now consider the second half of the subroutine, i.&uch that

whenv; € S_.. We then notice that the subroutine still counts k

all those edges i through the first term in(42). The only e(S) = Z(d — z(F)), (45)

difference between QUNT and a regular counting procedure =1

is the second ter_m i (42). That is, when counting any edgev'v'}]erezi(-) is as defined in Propositidd 2.
E, we need to first check whether the total number of edg@%ing the above claims. we have

in G; incident tou is greater thanN_.|. To explain why we '

have thisconditional countingmechanism, we notice that in k

the original graphG, each node: € Ny has|{(u,j) € E : a.count = e(S) = Y (d — z(F)) (46)
je N} =dand|{(u,j) € E:je N} =|N_.| Therefore, i=1

the total number of edges connectedutds |{(u,j) € E : o

j € N} =d+ |N_.|. Note that during the counting process, 2 min (d = zi(r)) (47)
those counted edges are removed from the graph during each 1?

step. Since7; is the remaining graph after removing all those . .

counted edges in the previogs— 1) steps, if we still have N H%en;(d —uils)) (48)
{(u,j) € E; : j € N}| > |N_.|, then it means that we have i

only removed strictly less tha@+|N_.|)—|N_.| = d number - Z(d — yi(h)) (49)
of edges in the previou§ — 1) counting rounds. The above —

argument thus implies that in the previois— 1) counting - M. (50)
rounds, we have only counted d edges that are incident to

nodeuw. where [46) follows from Clairil5[{47) follows from taking the

Without loss of generality, we assume thatis the m- minimum operation,[(48) follows from the proof of Proposi-
th node of Ny. Then it means that thes, value (the tion[3, (49) follows from the optimality of the RFIP, arid {50)
number of edges connected ) computed thus far (until follows from (40). By Property 2, we have thus proved that
the beginning of thei-th counting round) is still strictly the kd packets stored in any set &f nodes can be used to
less thand. Therefore, when computing the objective valu#intly reconstruct the original file of sizé1.
a.count = ag + 3, min(a,,,d), the to-be-considered edge The proofs of ClaimEl4 arld 5 are provided in the following.
(vi,u) in the second term of(#2) will increment,, value  Proof of Claim[4:
by 1 and thus increment.count by 1. Since our goal is to We consider ©UNT for the setS” = S U {b}\a and we
correctly compute the.count value by this subroutine, the denote nodes irt’ that belong toN; by S 29N N;. To
subroutine needs to include this edge into the computati@void confusion whert’ is used as input to the subroutine
which leads to the second term [n{42). CouNT, we call the new graphs during the counting steps of

On the other hand, if the total number of edgesGinthat CounT by G, = (V/, E!), the new vertices by, and the
are adjacent ta is < |[N_.[, it means that we have removechew z; by 2. Since the subroutine @NT can be based on
> (d+ |N—.|]) = |N—¢| = d number of edges in the previousany sorting order of nodes iffi (and inS’) as long as those
counting rounds. That is, when counting those edges adjaceades inN_. come last, we assume that the nodesiare
to u, we have already included/encounteredi such edges sorted in a way that node is the very first node ir5_... For
in the previous(i — 1) rounds. As a result, the correspondingonvenience, we say that nodeis the io-th node inS and
an, value is> d. Therefore, when computing the objectivave assume that all the firgi, — 1)-th nodes are not irv_.
value a.count = ag + »_,, min(a,,d), the to-be-considered and all the nodes following théiy, — 1)-th node are inS_..
edge(v;, u) will increment the value ofi,,, by 1 butwill not Namely,ig = |S| —|S_c|]+1=%k+1—|S_.|. We now use
increment thea.count value. In the subroutine @JNT, we the same sorting order &f and apply it toS’. That is, the
thus do not count the edges i, anymore, which leads to i-th node ofS is the same as theth node inS’ except for
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the case ofi = ig. The igp-th node ofS’ is set to be node We now consider round§, + 1) to k. We observe that by
b. One can easily check that the sorting ordersSond S’ our constructionv; = v; € S”, C S_. forig +1 < ¢ < k.
both satisfy the required condition in Step 1 of the subrauti Moreover, sincev;, = a € S_. andv; = b € S;, both

COUNT. verticesa andb are initially not connected to any vertices in
We will run CounT on both.S and S U {b}\a in parallel S_.andS’_ respectively (those; andv] with ip+1 < i < k)
and compare the resultindS) ande(S U {b}\a). since vertices of the same family are not connected. Thexefo

Itis clear that in rounds 1 tGi; — 1), the subroutine GUNT  replacing theip-th nodev;, = a by v; = b will not change
behaves identically when applied to the two different s¢ts the value of the first term il (42) when computing for the
and S’ = S U {b}\a since their first(iy — 1) vertices are i-th round wherey + 1 <i < k.

identical. We now consider thig-th round and argue that the \ne now consider the second term Bfl(42). For ang So,
total number of edges if;, incident tov;  is equal to the total any edge incident ta has been counted in the firgly — 1)
number of edges incident tg, in E;,. Recall thab anda have ounds since we assume that when we are runniog\er
the same helper sets since they are from the same compl{ene 5 set, we examine the nodes f... in the very last.
family. Specifically, the edges iy incident tov;, =a € S_c  Therefore, there is no edge of the forw, u) in E; (resp.
that have been counted in the fifsg — 1) rounds are of the (v],u) € E}) with u € S, since those edges have been
form (u,a) for all u € {v1,v2,--+ ,vi,—1} N(SoUS1U---U  removed previously. Therefore, the summation ovet N,
Se-1). Also note that in the original grapt, there are exactly can be replaced by € Ny\S, during theio-th round to the

d edges incident to nodec S_. (some of them are ity and  ._th round. On the other hand, for amye N\ S, if there is
some of them inE). Therefore, inE;, (after removing those an edge connecting:, «) € E, then by our construction there

previously counted edges), there &de-|{v1, va, -+, vi,—1}N  is an edgeb, u) € E. Therefore, in the,-th round, the same
(SoUS1U---US.—1)[) number of edges that are incident tqyumber of edges incident to is removed regardless whether
Vi - we are usingS as the input to the subroutineoONT or we

Similarly, the edges inF; incident tov; = b € S; that are usings’ as the input to the subroutinedDNT. As a resul,
have been counted previously are of the fofmb) for all jn the beginning of thei, + 1)-th round, for anyu € Ny, we
u € {v1, vz, ,vip—1} N (SpUSL U~ --USc_1) sincev; =v;  pave the following equality
for1 <i<ig—1landS, =5, for0 <z <c—1.Also
note that, in the original grap&’, there are exactlyl edges
incident to nodeb € S, (all of them are inE’). Therefore, {(u,j) € Bi:j € N} =|{(u,j) € E{:j €N} (51)
in E; (after removing those previously counted edges), there

are(d—[{vy,v2, -+, vig—1}N(SoUS1U---USc—1)|) number yhen; — ;o 1+ 1. Moreover, for anyu € Ny\So, we remove
of edges that are incident tef, = b. o one and only one edge:, v;) in thei-th round. Sincey; = v/

We now argue that all the edgesm0 that are mmdgnt 0 forall i = ig+1 to k, we have[(5lL) for al = iy + 1 to k as
a will contribute to the computation af;,. The reason is that \e|| The above arguments thus prove that the second term of
nodea is the first vertex inS_.. Therefore, when in thé-th @2) does not change regardless whether we count Svar
counting round, no edge of the for(n, v) whereu € No\So ¢/ aAga resulty’, = x; forig+1 < i < k. Sincee(S) = (")

andv € N_. has ever been counted in the previdus— 1)  tor 41| & rounds of the counting process, we have thus proved
rounds. Also, since we choodes N \S to begin with, when ).

running GUNT on S, for all u € Ny\Sy at least one edge, . )

edge(u, b), is not counted during the >ir${0—1) rounds. As a Proof of Claiml3:

result, for anyu € Ny\So, in theio-th round, at least{ (u, v) : For any node sef, by iteratively using Claini4, we can

v € N_.}|+1=|N_.|+1 edges incident ta are still in E5;, ~construct anqther node sst such._thate(S) = e(S’) while

(not removed in the previous,—1) rounds). This thus implies €ither (Case i)5” . = 0; or (Case ii)S” . # 0 and S = N.

that the second term of (42) will be non-zero. Therefore, & @ result, we can assume without loss of generality that

the io-th iteration of Step 3 of GUNT, all the edges inE;, We have either (Case §_. = {); or (Case ii)S_. # () and

incident tov;, = a are counted. The;, value computed in Sc = Ne to begin with.

(42) thus becomes;, = d— |[{vi,va, -+ ,vip—1 N (SoUS1 U We first consider the former case. Liebe any vector inR

<o U Seq)]. such that itsr; = v; for 1 < i < k, i.e., 7; equals the node
The previous paragraph focuses on theth round when index of the vertexv;. We will run the subroutine GUNT

running the subroutine @UNT on S. We now consider the sequentially fori = 1 to & and compare the increment of

ip-th round when running GUNT on S’. We argue that all ¢(S) in each round, denoted hy; in (42), to the:-th term

the edges inz; that are incident td will contribute to the (d — z;(¥)) in the summation of the RHS of (45). Consider

computation ofr} . The reason is that nodec S;. Therefore, the i-th round of counting for somé < i < &, and assume

all edges incident td belong toE’. As a result, all the edgesthat the corresponding vertex belongs to they-th family,

in £ that are incident té will contribute to the computation i.e., v; € N,. SinceS_. = 0 in this case, we have; ¢

of z; through the first term in[(42). We thus haw¢ = S_. and the second term i _(42) is always 0. Therefore, the

K2

d—|{v1,v9,  ,0ip—1} N(SoUSTU---US._1)]. procedure ©UNT is indeed counting the number of edges
Sincex;, = zj,, we thus have:(S) = ¢(S’) after the first in E that are incident taS without the special conditional
ip counting rounds. counting mechanism in the second term [of] (42). Therefore,
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we have

XT; = |{(’l}l,j)€ElﬂE]€N}|

=d—|{v; ¢ Ny:v; € 5,1 <j<i-1}, (52)
whered is the number of2 edges in the original grap@ that
are incident tov; and [{v; ¢ N, :v; € S,1 <j<i—1}|is
the number of edges removed during the fiist 1) counting
rounds. On the other hand, by the definition of functig),
our construction ofr, and the assumption th&t . = 0, we
always havd{v; ¢ N, :v; € 5,1 <j <i— 1} = z(r). As
a result,x; = (d — z;(t)) for i« = 1 to k and our explicitly
constructed vector satisfies[(4b).

We now turn our attention to the second case whiep+ ()
andS. = N.. Letr be any vector inR such that its; = v; for
1 <i < k. Recall that there ark nodes in the sef. Definej*
as the value that simultaneously satisfiek @) S_.| < j* <k
and (ii) there are exactly entries in the firstj* coordinates
of r that are inN\Ny. If no value satisfies the above two
conditions simultaneously, s¢t = k£ + 1. We now construct
another vector from r as follows: Replace the values of the
(j* + 1)-th coordinate to thé:-th coordinate ofr by n, the
node index of the last node iNy and denote the final vector
by .

We will now prove that the above explicit construction of
r satisfies the desired property in{45). The proof is divided
into two cases:

Case 1:There exists such a* satisfying (i) and (ii). We
will run the subroutine ©QUNT again and comparg; to the
i-th term (d — z;(T)).

We then observe the following facts:

1) In CouNT, from 1 1 to (k — |S_.|]). For anyi in
this range, we must havEI(v;) # —c, i.e., the family
index of nodev; is not —¢, since we run the subroutine
COUNT using a specific ordering of the nodes3nwhich
examines the nodes ifi_. in the very last. As a result,
the second term of (42) is always zero. Thereforé (52) still
holds. By the definition of function; (-), our construction
of ¥, and the fact thal < i < k — |S_.| (implying no
v; e S_.forall1 <j<i—1), we getz; =d— z(F)
forall 1 <i<k—|S_.|

We now consider the case bt k — |S_.| + 1 to j* of
Step 3. For any in this range, we have; € S_.. We
now argue that{(u,j) € E; : j € N}| > |N_.| for all
edges(u,v;) € E; N E satisfyingu € Ny. The reason is
that(u, v;) € E; implies that node: is not counted in the
previous(i—1) rounds, i.e.u # vy forall 1 <4 <i—1.
Therefore, an edge ofu,v) is removed if and only if
there is a = v; for somev; that is notinNy. Since there
are exactlyd vertices in{vy,vs,...,v;-} that are not in

2)

1 <i < j* can remove at mostl — 1) edges incident to
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3)

rewrite

r; = [{(vi,j) € E; : j € N}
:d—|{Uj¢NCUN_c:’UjES,lSjSi—l}l.

By the definition of functionz;(-) and our construction
of ¥, we getz; = d—z;(¢) forall k—|S_.|+1 < i < j*.
We now consider the¢;* + 1)-th to the k-th round of
Step 3. We claim that

xi:d—|51USQU~-~USC|. (53)

The reason behind this is the following. Sinfe+ 1 <

1 < k, we havev;, € S_.. For anyu € Ny\Sp (those

u € Sp have been considered in the first — |S_.|)
rounds), there aréd + |[N_.|) number edges incident
to w in the original graphG. On the other hand, since
¢ > j* + 1 and by our construction, there atieentries

in the first j* coordinates off that are are not inVy,
we must have removed at leagtedges incident ta:
during the first(¢ — 1) counting rounds as discussed in
the previous paragraph. Therefore, the number of incident
edges inE; that are incident tou € Ny\Sp must be

< |N_.|]. The second term of{#2) is thus zero. As a
result, thex; computed forv; will only include those
edges inE; N E incident to it. Since any; € S_. only
has(d — | No|) number of edges i to begin with, we
have that

:Z?l':(d—|N0|)—|81US2U"'US¢;71|

where|S; U Se U--- U S._1]| is the number of edges in
E that have been removed during the fifst- 1) rounds.
Since S. = N, in the scenario we are considering and
since|N.| = |Nog| = n mod (n — d) in the family repair
scheme, we can consequently rewriteas

Ii:d—|S1US2U"'USC|

for (j*41) <i < k. Recall that in the newly constructed
t, the values of thgj* + 1)-th coordinate to thek-th
coordinate aren, which belongs toN,. Thus, by the
definition of functionz;(-), we can see that each of these
coordinates only contributes

Zl(f‘) = |{f7 S N\(N_CUNO) 1<y §2—1}|
=|{f; € N\(N-cUNy) : 1 <j < j}|
— 1S USU---US,|

(54)

where [[5%) follows from the fact that in the construction
of ¥, the (% + 1)-th to the k-th coordinates ofr are
always of valuen € Ny. Hence, we getr; = d — z;(F)

for (j*+1) <i<k.

We have proved for this case that=d — z;(T) fori =1

Ny, it means that the firsti — 1) counting rounds where to k. Therefore, we ge{{(45).

Case 2:No such j* exists. This means that one of the
such a node:. Since nodes has(d + |[N_.|) number of following two sub-cases is true. Case 2.1: even when chgosin
incident edges in the original grafgh, we know that the the largestj* = k, we have strictly less thad entries that
inequality |{(u, j) € E; : j € N}| > |N_.| must hold are not inN,. Case 2.2: Even when choosing the smallest
in the i-th round. As a result, the second term [of](42) ig* = k£ — |S_.|, we have strictly more thad entries that are
non-zero when = k —|S_.| + 1 to j* and we can thus not in Ny.



time 1 time 2

Case 2.1 means that we haxed vertices inS that are not Node 1
in Ny, which implies that all vertices irt together do not
share more thad edges with any of the vertices iNy\ Sp.
Therefore, in Step 3 of GUNT, if v; € S_., then there will be
> |N_.| edges inE; that are incident ta: € Ny\Sy sinceu

failed at time 1 '
has(d + |N_.|) number of edges in the original graghand Node 4 .><‘
< d edges are removed in the fifgt— 1) rounds. As a result, , o6
the second term of (#2) will be 1 and we count all the edges in Nade § e

()

E; incident tov;. By similar arguments as used in a previous NW,; @
proof (when proving the scenario &f— |S_.| +1 <1 < j*),

we havez; = d — Zz(f‘) forall 1 < i < k and the proof of (a) Arbitrarily choosing the helper nodes is bad.

this case is complete. time 1

Case 2.2 is actually an impossible case. The reason is that

time 2

forany1l < i < k — |S_.|, there are exactlyS,| + |Sz| + Node 2
-+ + S| nodesuy; that are not inNVy. And we also have failed at time 2
failed at time
Z |Sm| = Z |Nm| =d. Node 4
m=1 m=1
This, together with the observation that the fitt— |S_.|) Node 5
coordinates ofr are transcribed from the distinct nodes in Nm,co;; @
S1US2U- - -US,, implies that we cannot have strictly more than
d entries that are not itV in the first(k —|S_.|) coordinates (b) Choosing the helper nodes properly is good.

of r. Case 2.2 is thus an ImpOSSIble case. g. 8. An example illustrating the importance of choosihg helper nodes
From the above arguments, the proof of Claim 5 is compleuer (n, k,d, o, B) = (6,3,3,3,1) and file sizeM = 7.

VIII. CONCLUSION in the following how the helper choice at time 2 (for replagin

In practice, it is natural that the newcomer should accessde 3) will substantially affect the reliability of the ttibuted
only those “good” helpers. This paper has provided a nepgssatorage network.
and sufficient condition under which optimally choosing doo Choice 1: Suppose the helpers of node 3 in time 2 are nodes
helpers improves the storage-bandwidth tradeoff. We hisee a1, 2, and 4. See Fifj. 8{a). Now we consider the data collector
analyzed a new class of low-complexity solutions termed thewhich would like to reconstruct the original file of size 7
family repair schemgncluding its storage-bandwidth tradeofffrom nodes 1, 3, and 4. By noticing that one of the edge cuts
the expression of its MBR point, and its (weak) optimalityffrom the virtual source to the data collector has value 6 (see
Moreover, we have constructed an explicit exact-repairecodhe red dashed curve in Fig. §(a)), it is thus impossible for
the generalized fractional repetition codthat can achieve the the data collector to reconstruct the original file. In fagg
MBR point of that scheme. have from Sectiof II-D that, when the newcomer chooses its

The main goal of this work is to characterize, for the firgtelpers blindly, to protect a file of siz& = 7, the minimum
time in the literature, when and by how much dynamic helpegpair-bandwidth needed & pr = 370 Therefore, the repair-
selection improves RCs. We thus considered the scenariobahdwidthj3 = 1 (our parameter values ate, k,d, o, ) =
single failures only in a similar way as in the original RGe6, 3, 3, 3, 1)) is not enough to meet the reliability requirement
paper [4]. Since a practical system can easily have multipfhen a BR scheme is used, which agrees with the discussion
failures, as ongoing work, we are studying the helper select above.

problem under the multiple failures scenario. Choice 2: Suppose the helpers of node 3 in time 2 are nodes
4, 5, and 6. See Fig. 8(b). Now we consider the same data
APPENDIXA collectort that accesses nodes 1, 3, and 4. One can verify that

ANOTHER EXAMPLE ILLUSTRATING THE BENEFITSOF  the min-cut value from source to the data collectot is 7,
HELPERSELECTION which is equal to the target file size 7. Furthermore, one can

Fig.[8 shows another example that illustrates how choosififeck the res($) — 1 = 19 different ways of setting up the
the helpers properly can allow for smaller storage and repadata collectors and they all havgincut(s,t) > 7. The above
bandwidth. The parameters of the storage network in the$servation illustrates that helper selection choice (€&ha)
figure are(n,k,d,o,3) = (6,3,3,3,1). The goal of this can strictly improve the min-cut value of the network.
example is to store a data object of siz2¢ = 7 such that The choice of the helpers in this example follows the
the network can tolerate — k = 3 failures. Without loss family repair (FR) scheme described in Section IV-B. In
of generality, we assume that node 4 fails in time 1 and ti8ection[IV-D, it is proved rigorously that not only we can
helpers of the newcomer (replacing node 4) are nodes 1, 2, amgrove the min-cut value in the end of the first 2 time slots,
3. Now assume that node 3 fails in time 2. We will demonstrateit the min-cut-value is alway® 7 even after arbitrarily
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many failure/repair stages with intelligent helper se@cfor edge can be from? , ,
each time slot. We can thus meet the reliability requirement edges ofz$ areinC.
with intelligent helper selection. This example with pasders o If 23 € U and only one of-; or ry is in Dm, since one
(n,k,d, o, B) = (6,3,3,3,1) is thus another evidence that of the incoming edges of? is from eitherz! , or 22
good helper selection can strictly improve the system perfo  then at leasfd — 1) incoming edges of3, are inC.
mance, i.e., reducing the total repair-bandwigtinom 3.5 (the e If 23 € U andry,m2 ¢ D,,, then at leastl incoming
smallest possible when BR is used)3tgsince our system has edges ofz? are inC.

then at least{d — 2) incoming

out’

d=3andfs=1). Therefore, these edges relatedaty),, contribute a value of
at leastmin((d — z3(r))3, @) to the min-cut value, where the

APPENDIX B definition of z3(r) takes care of the second to the fifth cases.

PROOF OFPROPOSITIONZ] In the same manner, we can prove that the chronologi-

caIIy i-th output node inU contributes at least a value of

in((d — z(r))B, «) to the min-cut value. If we sum all the
contnbutlons of the oldest output nodes ol/ we get [13),
a lower bound on the min-cut value.

The proof of Propositionl2 below follows the proof &f [4
Lemma 2].

Consider any IFGG € G4 where A is a stationary repair
scheme. Consider any data collectaf G and call the set of
k active output nodes it connectsa Since all the incoming
edges oft have infinite capacity, we can assume without loss
of generality that the minimum cU, U) satisfiess € U and

APPENDIXC
PROOF OFINEQUALITY (31)

vV CcT. Denote the smallest IFG i (n, k,d, «, 8) by Goy. Specif-
Let C denote the set of edges in the minimum cut. Ldeally, all its nodes are intact, i.e., none of its nodes has
z. . be the chronologically-th output node inT, i.e., from failed before. Denote its active nodes arbitrarilypg, - - -, n.

the oldest to the youngest. SinteC U, there are at leagt Consider the family index permutation of the FR schefme
output nodes i, We now consider the oldestoutput nodes that attains the minimization of the nght hand side[ofl (aaj
of U, i.e.,z}, toak . Fori=1tok, letr; denote the node call it ;. Fail each active node ifil, 2, .- - ,n} of Gy exactly
index ofz, . Obviously, the vector A (r1,--- ,7x) belongs ©ONC€ in a way ~that the sequence of the family |nd|ces of the
to R. failed nodes ist;. Along this failing process, we repair the
failed nodes according to the FR schefieFor example, let
(n,d) = (8,5) and suppose the minimizing family index per-
mutation is7; = (1,2,1,-2,0,0, 1, 2). Then, if we fail nodes
1,4,2,6,7,8, 3, and 5 in this sequence, the corresponding
the_oldest node nti] aII the incoming edges aof, must family index sequence will b&1,2,1,—2,0,0,1,2), which
be inC. matches the giveriy. Note that the node failing sequence is
From the above discussion, these edges related,tp con- not unique in our construction. For example, if we fail nodes
tribute at least a value ahin((d —z1(r))3, «) to the min-cut 3 5 2 6, 8, 7, 1, and 4 in this sequence, the corresponding
value since by definitior (r) = 0. Now, considerz?,,, we family index vector is still(1,2,1,—2,0,0, 1,2). Any node
have three cases: failing sequence that matches the givienwill suffice in our
o If 22, € U, then the edgéz? ,22,,) isin C. construction. We call the resulting new IFG.
o If 22 € U andr; € D,,, since one of the incoming edges Consider a data collectot in G’ that connects to the
of z2, can be fromz! ,, then at leastd — 1) incoming oldest k& newcomers. (Recall that in our constructiofy;
edges ofzZ are inC. has exactlyn newcomers.) Now, by the same arguments
. If z3 € U andr, ¢ D,,, since no incoming edges ofas in [4, Lemma 2], we will prove thatincute(s,t) =
are fromz! ., then alld incoming edges of2, are 3% min ((d — (7)) 8, ) for the specifically constructed
|n C G’ and t. Number the storage nodes (input-output pair) of

Therefore, these edges relatedat}),, contribute a value of the k nodest is connected to byl,2,... k. Define cut
at leastmin((d — z»(r))4, ) to the min-cut value, where the (U, U) betweent and s as the following: for eachi ¢

definition of 25 (r) takes care of the second and the third casel: - - -» ¥}, if @ < (d — y;(7;))3 then we includexy,, in
Cons|dem;out’ we have five cases: U OtherW|Se we include bothl ut and (E%n in U. It is not

If I € U, then the edgéz? )isin C. hard to see that the cut-value of the ¢df, U) is equal to

° in»’ out ~

o If 23 € U andr, = ry € D,,, since one of the incoming Z —_y min ((d — yi(7s)) B, a). .
edges ofz% can be fromz2,,, then at least(d — 1) Since the left-hand side df (B1) further takes the minimum
incoming edges ofd. are m"é Note that there cannot overGr and all data collectors we have proved the inequality

be an incoming edge of? from z!,, sincez? only
connects to active output nodes at the time of repair and
xd . is no longer active since?,, (of the same node index APPENDIXD
ry = rl) has been repaired aftef,. PROOF OFINEQUALITY (33)
o If 23 € U; r1,m € D,,; andry # ro; since one of  We prove [(35) by explicit construction. For any vectoe
the |ncom|ng edges of? can be fromz!,, and another R, we will use the following procedure, ODIFY, to gradually

out

Considerz! ,, we have two cases:

o If :vi e U, then the edgérl  xl,.) isinC.
. If 21 € U, sincez), has an in-degree of and z} is
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modify r in 4 major steps until the end result is the desirednd r; have the same value). Therefore, there are at most
r' € R, that satisfies[(35). A detailed example illustrating, _ (n—d) |2 | +1) = (nmod (n — d)) — 1 number

procedure MoDIFY is provided in AppendikE to complementst coordinates ofr referring to a node in the incomplete
the following algorithmic description of MIDIFY. family. However, if we have anothéi’, j') pair hasry = r;/

Step L:If there arei, j € {1,---,k} such thati < j and pejonging to the incomplete family, then it means that the
the i-th and thej-th coordlr_wates oir_f_zlre _equal, 1.e.y; =7, coordinates ofr can refer to at mostn mod (n — d)) — 2
then we can do the following modification. For conveniencgistinct nodes of the incomplete family (sineg andr;, are
we denote the value of; = r; by h. Suppose that node equal). Since there are mod (n — d) distinct nodes in the
belongs to thek-th family. We now check whether there isincomplete family, there must exist-avalue such that node
any valuey satisfying simultaneously (fy € {1,2,---,n}\h; 4 pelongs to the incomplete family anddoes not appear in
(if) node v is also in theQ-th family; and (iii) v is not equal any one of the coordinates of This contradicts the fact that
to any of the coordinates af If such~ exists, we replace the \ye have exhausted Step 1 before moving on to Step 2.
j-th c.oordinate of by ». Specifically, after this modification, \we now consider Cases 1, 2.1, and 2.2, separately. If the
we will haver; = h andr; = 1. _ r vector is in Case 1, then suahbelongs toR, and our

Repeat this step until either there is no repeated r;, Or  construction is complete. If belongs to Case 2.2, then do
until no suchy can be found. ~ Step 3. Ifr belongs to Case 2.1, do Step 4.

Step 2:After finishing Step 1, we perform the following  Step 3:We use(s, j) to denote the pair of values such that
modification. If there still are distinct, j € {1,---,k} such r, =, andi < j. Denote the value of; = r; by h. Since
thatr; = r; andi < j, then we again denote the value ofve are in Case 2.2, nodebelongs to the incomplete family.
=T by h. Supppse nodé belongs to theQ-th fgm|ly. Find the largestj; € {1,---,n} such that node;, = h
Consider the following two cases. If th@-th family is the and find the largesj. € {1,---,n} such thatr;, belongs
incomplete family, then no further modification will be madeto the incomplete family. Ifj; = j,, then we keep: as is.

If the Q—th_ _fam_ily is a complete family, then do theif j; # j,, then we swap the values of, andr,,. Recall
following modification. that we use- 2 | - | to denote the family index of the last

Find the larges§; € {1,--- ,n} such that node;, = h and Ll T
i s o J1 complete family. We now choose arbitrarily~avalue from
find the Igrgesyg e{1,--- 2n} such thatrj? belqngs to the {(n—d)(c—1)+1,...,(n—d)c}. Namely,y is the index of
Q-th/famlly (the same family of nod#). If j1 = j2, thenwe 51,46 of the last complete family. Fix thevalue. We then
setr’ =r. If j; # j, then we swap the values of, andr;, replacer;, by the arbitrarily chosen.

to constructr’. That is, we first set’ = r for all coordinates If the value of one of the coordinates ef(before setting
except for thej;-th and thejs-th coordinates, and then sei;rj2 — ) is 7, then after setting;, = 7 we will have some
rj, = T andrj, = ;. After we have constructed new ;" S "satisfyingr, — rj, = 7. In this case, we start over
depen_dmg on whetheii = j> or not, We now (_:heck whether qon, Step 1. If none of the coordinates of(before setting
there is any value; € {1,---,n} satisfying simultaneously ;. ~_ .y has valuey, then one can easily see that after setting
(i) nodey belongs to a complete family (not necessarily thg, — + there exists na < j satisfying s = r; belong to a

Q-th family); and (ii)-y is not equal to any of the coordinate%gmmete family” since we are in Case 2.2 to begin with. In

! H 3 H !
of r'. If such~ exists, we replace thg,-th coordinate oft’  is case we are thus either in Case 1 or Case 2.2. If the new

) T
by 7, i.e., setr}, =v. r is now in Case 1, then we stop the modification process. If
Repeat this step until the above process does not changefie newr is still in Case 2.2, we will then repeat this step

value of any of the coordinates of. Step 3).

After finishing the above two steps, the current veator Step 4:We use(i, j) to denote the pair of values such that
must be in one of the following cases. Case 1: No tWp — ;. andi < j. Denote the value of; = r; by h. Since
coordinates are equal, i.ey, 7 ; for all pairsi < j; Case 2. e are in Case 2.1, node belongs to a complete family.
there exist a pai < j such thatr; = r;. We have two gyppose, is in the Q-th complete family. Find the largest
sub-cases for Case 2. Case 2.1: All suely) pairs must ; < (1 ... n} such that node;, = h and find the largest
satisfy that node; belongs to a complete family. Case 225 ¢ {1,---,n} such thatr;, belongs to theQ-th complete
All such (i,7) pairs must satisfy that node; belongs to family. If j, = j», then we keepr as is. If j; # jo, then we
the incomplete family. Specifically, the above construttiogyap the values of;, andr;,. We now find ay value such
(Steps 1 and 2) has eliminated the sub-case that §6/i¢ that (i) nodey belongs to the incomplete family; and (i)
pair hasr; = r; belonging to a complete family and somgs not equal to any of the coordinatesofNote that suchy
other (i, j) pair hasr; = r; belonging to the incomplete yajye always exists. The reason is that since we are now in
family. The reason is as follows. Suppose sof¥gj) pair Case 2.1 and we have finished Step 2, it means that any node
hasr; belonging to a complete family. Since we have f|n|shegl that belongs to a complete family must appear in one of the
Step 2, it means that any nodethat belongs to a complete ., yinates of. Therefore, there are at ledst—d) | -2 | +1
family must appear in one of the coordinatesroBince there number of coordinates af referring to a node in gﬁg of the

are (n — d) | 75 | number of nodes belonging to complete,,yhjete families. This in turn implies that there are at mos
families, at leastn — d) {ﬁJ + 1 number of coordinates n — ((n — d) {ﬁJ + 1) = (n mod (n —d)) — 1 number of
of r must refer to a node in a complete family (since coordinates of referring to a node in the incomplete family.
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Since there are mod (n—d) distinct nodes in the incompletethe case ofn = j;. Suppose node belongs to theQ),-th
family, there must exist & value such that node belongs family. We first notice that by the definition af,,(-) and the
to the incomplete family and does not appear in any one ofdefinition of the family repair scheméz,,,(w) — z,,(r)) is
the coordinates of. equal to the number of distinct nodes in teth family that

Once they value is found, we replace thg-th coordinate appear in the firs{j. — 1) coordinates of minus the number
of r by v, i.e.,rj, = . If the newr is now in Case 1, then of distinct nodes in the&),-th family that appear in the first
we stop the modification process. Otherwisenpust still be in  (j2 — 1) coordinates ofw. For easier reference, we call the
Case 2.1 since we replacg, by a~ that does not appear in formerterml and the latteterm2 and we will quantify these
before. In this scenario, we will then repeat this step (ep two terms separately.

An example demonstrating the above iterative process isSince we start Step 2 only after Step 1 cannot proceed any
provided in AppendiXE. further, it implies that all distinctn — d) nodes of family@

To prove that this construction is legitimate, we need tmust appear in- otherwise we should continue Step 1 rather
prove that the iterative process ends in a finite number af.tinthan go to Step 2. Then by our specific constructionjof
To that end, for any vectar, define a non-negative functionall distinct (n — d) nodes of familyQ must appear in the first
T(r) by (j2 —1)-th coordinates of. Thereforeterml = (n—d). Since
N . ) there are exactlyn — d) distinct nodes in th&).-th family,
T(r) =[{(i,j) +i < j,ri = r; is @ complete family node+  p e definitionyofterrr)ﬂ, we must havererm2 < (n — d).

2|{(i,7) : i < j,r; = r; is an incomplete family nod¢. The above arguments show thatm2 < terml = (n — d),

One can then notice that in this iterative constructionr;evethh, implies the desired inequality, (w) -2y (r) = 0 when

time we create a new’ vector that is different from the """ /% . . .

input vectorr, the value ofT’(r) decreases by at least 1. As We.now consider the case when > j». _In this case,
a result, we cannot repeat this iterative process indelﬁvnitewe still h_ave #m(W) 2 zn(r). The reason is that by our
When the process stops, the final veatomust be in Case 1, cOnStruction, we havev;, = v # r;, = r; = w;. For any

Therefore, the procedure dbIFY converts any vector € R ?he>ref{3 2r'e Zm(r) Onl}ﬁ ggu:istrtzes;ﬂ?;jtei :eﬂjz Oonn(ire]é
to a new vector’ € R, such that all coordinate values of 2m(W) Wi u g well.

r’ are distinct. What remains to be proved is that along 1} her g.and’Zm(v:]) ﬂTaythsomet@es;)e Iargertth_?:ﬁn(:),t
above 4-step procedure, the inequaliyl (35) always hoIUzsntTtheFien N9 gn whe fer Ilel n<ewg2<ek _wmI_OF % € fac
is, the value onfZl min((d — z;(r))8, @) is non-increasing atzy, (W) 2 2 (r) for all 1 < m < k implies (33).

along the process. The detailed proof of the non—increasipl_g’i\low’ we consider the case whein 7 ,jQ' which |mpl|es

k . : : tr;, = h # r;, and Step 2 swaps thg-th and thej,-th
2_i=1 Min((d—2(r))5, o) will be provided shortly. From the coordinates of. Note that after swapping, we can see that if
above discussion, we have provéd](35). ' bping,

In the rest of this appendix, we prove the correctness of apply the samg, and; construction to thaewswapped

MobIFY. For each step of MDIFY, we user to denote the \ézg';or(,)ft'heil Wev\\l/velllszl)\;\?ihzt ]rQe E‘}éi;hetﬁ';(\:’:lsjéog |nbthe
input (original) vector andv to denote the output (modified) J1 = J2s pacing f. by

vector. In what follows, we will prove that theandw vectors v will not Qecrease the value,,(w) for any m = 110 k
always satisfy and [55) still holds. As a result, we only need to prove that

swapping thej;-th and thej,-th coordinates ofr does not
k k decrease the value of,(r).
> min((d — z(w))B,0) <Y min((d — z(r))8, @). To that end, we slightly abuse the notation and us¢o
i=1 i=1 (55) denote the resulting vector after swapping theth and the
Jjo-th coordinates of (but before replacing;, by ~). For the
In Step 1 of the procedure, suppose that we found sucase ofl < m < j;, we havez,,(w) = z,(r) since for
~. Denote the vector after we replaced tli¢h coordinate 1 <m < j; — 1, 1, = wp, and bothr;, andw;, =r;, are
with v by w. We observe that fot < m < j, we will have from the same familyQ. Forj; +1 <m < jy — 1, we have
Zm(r) = z;m (W) sincer,, = w,, overl <m < j—1andthe z,(w) > z,(r). The reason is as follows. We first observe
new w; = v belongs to thel-th family, the same family as that w;, = r;, # r;, = r, = w;. Foranyj; +1 < m <
noder;. Forj + 1 <m < k, we will havez,,(w) > z,,(r). j2—1, z,(r) only counts the repeateq = r,, once (since by
The reason is that by our construction, we have= v # our construction ofj; we naturally havej; > ¢). Therefore,
r; =1, = w;. For anym > j, zp,(r) only counts the repeatedz,,(w) will count the samew; as well. On the other hand,
r; = r; once. Thereforez,,(w) will count the samew; as z,,(w) may sometimes be larger thag,(r), depending on
well. On the other hand;,,(w) may sometimes be larger tharwhether the newv;, € D,,, or not. We thus have,,(w) >
zm/(r), depending on whether the new € D,,, or not. The =z,,(r) for j1 +1 <m < jo — L.
fact thatz,,(w) > z,,(r) for all m =1 to k implies [55). For the case ofm = j,, we notice thatw;, = r;
In Step 2, ifj; = j2, then we will not swap the valuesandr;, are from the sam&)-th family. Therefore, we have
of r;, andr;,. On the other handj; = j» also means that z,,(w) = z,(r). For the case of, +1 < m < k, we argue
rj, = rj, = h. In this casew is modified fromr such that thatz,,(w) = z,(r). This is true because of the definition of
wj, = if such a~ is found. Forl <m < js —1, z,, (W) = z,(-) and the fact that both < m andj, < m. In summary,
zm/(r) sincer,, = w,, over this range ofn. We now consider we have provec,,(w) > z,(r) for m = 1 to k, which
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implies [55). and (ii) appear in the firsj; — 1) coordinates ofw plus the
In Step 3, we first consider the casejpf= j», which means number of distinct nodes in the incomplete family that appea
thatr;, = rj, is replaced withy, a node from the last completein the first(j; — 1) coordinates ofw.
family. For1 <m < j; — 1, since we have.,, = w,, for all We will now quantify these two terms separately. Since we
1 <m < j —1, we must havez,,,(r) = z,(w). We now have finished executing Step 1 and by the constructios of
consider the case oh = j;. By the definition ofz,,(-) and all (n — d) nodes in theQ-th family must appear in the first
the definition of the family repair schemés,,(w) — z,,(r)) (51 — 1) coordinates ofr, which are the same as the first
is equal to the number of distinct nodes in the incompletg; — 1) coordinates ofw. Therefore, the value oferml is
family that appear in the firgtj; — 1) coordinates of minus n mod (n—d) if the Q-th family is the last complete family or
the number of distinct nodes in the last complete family th&k — d) if it is one of the firstc— 1 complete families. We now
simultaneously (i) belong to the helper set of the incongletjuantifyterm2. For when the)-th family is the last complete
family and (ii) appear in the firsfj; — 1) coordinates ofw. family, since there are exactly mod (n — d) distinct nodes
For easier reference, we call the formerml and the latter in the incomplete family, by the definition aérm?2, we must
term2 and we will quantify these two terms separately. haveterm2 < n mod (n — d). When theQ-th family is not
Since we have finished executing Step 1, it means ththe last complete familyterm2 < (n — d) since the number
all » mod (n — d) nodes in the incomplete family appear irof distinct nodes in the incomplete family ismod (n — d)
the vectorr. By our construction ofj;, all n mod (n — d) and the number of distinct nodes in the last complete family
nodes in the incomplete family must appear in the firshat do not belong to the helper set of the incomplete farsily i
(j1 — 1) coordinates of. Thereforeterml = n mod (n—d). (n—d—n mod (n—d)) and their summation is. n—d. The
Since there are exactly mod (n — d) distinct nodes in the above arguments show thairm2 < terml for both cases,
last complete family that belong to the helper set of thehich implies the desired inequality,(w) — z,,,(r) > 0 for
incomplete family, by the definition oferm2, we must have m = j;.
term2 < nmod (n — d). The above arguments show that For j; + 1 < m < k, sincer;, = h = r; was a repeated
term2 < terml = n mod (n — d), which implies the desired node, then it was already not contributing #g,(r) for all
inequality z,,, (W) — zp,(r) > 0. m > ji. Thus, z;,(w) > zp,(r) for all m = j; +1 to k.
For the case of1 +1 = j2+1 < m, we also have,,(w) > (Please refer to thg, + 1 < m case in Step 3 for detailed
zm/(r). The reason is that by our construction, we haye = elaboration.) In summary, after Step 4, assuming- jo, we
v # 1y, =1 = w,. For anym > ja, z,(r) only counts havez,,(w) > z,(r) for all m = 1 to k, which implies [55).
the repeated; = r;, once. Thereforez,,,(w) will count the Finally, we consider the case gfi # j2. Namely, we
samew; as well. On the other hand,,(w) may sometimes be swap thej;-th and thej,-th coordinates of before executing
larger thanz,, (r), depending on whether the new, € D,,,, the rest of Step 4. We can use the same arguments as used
or not. We have thus proved that,(w) > z,(r) for all in proving the swapping step of Step 2 to show that the
m = 1 to k, which implies [55). inequality [55) holds after swapping. The proof of Step 4 is
We now consider the case ¢f # j>. Namely, we swap the thus complete.
j1-th and thejs-th coordinates of before executing the rest
of Step 3. We can use the same arguments as used in proving APPENDIX E

the swapping step of Step 2 to show that after swapping, We A\ |LLUSTRATIVE EXAMPLE FOR THE MODIFY

still have z,,(w) > z,,(r) fc_>r all m =1 to k&, which implies PROCEDURE
(55). The proof of Step 3 is complete. ) )
In Step 4, we again consider the casejof= j first. In For illustration, we apply the procedure dwiFy to the

this caser;, = h is replaced withy, a node of the incomplete following example with(n,d) = (8,5) and some arbitrary
family. Forl < m < j; — 1, 2 (W) = 2 (r) SINCEWm = T1m k. Recall that_famlly 1 contains nodgs, 2, 3}, famlly 2 (last
over this range ofn. Form = j;, we have to consider two COMPplete family) contains nodd, 5, 6}, and the incomplete
cases. If theQ-th family is the last complete family, thenfamily, family 0, contains node$7,8}. Suppose the initiat
(2m(W) — zm(r)) is equal to the number of distinct nodes iY€Ctor isr = (1,2,2,2,4,7,7, 7). We will use MODIFY to
the Q-th family that simultaneously (i) belong to the helpefOnvertr to a vectorr’ € R,
set of the incomplete family and (ii) appear in the figst—1) e first enter Step 1 of the procedure. We ob@r\ﬂaa'.[
coordinates ofr, minus the number of distinct nodes in thés = 74 = 2 (i = 3 and;j = 4) and node 2 belongs to the first
incomplete family that appear in the firgt —1) coordinates of family. Since node 3 is also in fam|l_y 1landitis not presgnt in
w. For easier reference, we call the formem1 and the latter T» We can choose = 3. After replacingr, by 3, the resulting
term?2. If, however, theQ-th family is not the last complete Vector isr = (1,2,2,3,4,7,7,7). Next, we enter Step 1 for
family, then (z,, (W) — zm(r)) is equal to the difference of thg s.econd_t|me. We .ol.)serve that = s = 7. Since node
another two terms. We slightly abuse the notation and refri in family 0 and it is not present in, we can choose
again to the two terms aerml and term2 whereterml is 7 = 8. The resulting vector is = (1,2,2,3,4,7,7,8). Next,
the number of distinct nodes in ti@-th family that appear in We enter Step 1 for the third time. For the newwe have
the first(j; — 1) coordinates of andterm2 is the number of | ) )

We also observe that, = r3 = 2 and we can choose= 2 andj = 3

qiStinCt nodes in the last Complete fam”y th.at Simu“amu instead. Namely, the choice ¢, j) is not unique. In MDIFY, any choice
(i) does not belong to the helper set of the incomplete famidgtisfying our algorithmic description will work.
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re =r3 = 2 andrg = r; = 7, but for both cases we cannotThe reason behind(b8) is that (§ > 1 and we thus
find the desiredy value. As a result, we cannot proceed angave at least one summand in the RHS[ofl (14); and (ii) the
further by Step 1. For that reason, we enter Step 2. first summand is alwaysain(dj, ) sincey,(wy) = 0 for
We observe that for, = r3 = 2, we find j; = 3, the last any family index permutationry. Supposeanpr # dB8*.
coordinate ofr equal to2, and j, = 4, the last coordinate Obviously, we havev,gr < dS8* by the construction of8*.
of r that belongs to family 1. By Step 2, we swap and Therefore, we must haveyipr < dB8*. However, we then
r4, and the resultant vector is= (1,2,3,2,4,7,7,8). Now, have the following contradiction
since node 5 belongs to family 2, a complete family, and it is . s
not present i, we can choose = 5. After replacingr;, by M < glompr, fusr) < g(dB%, 87) =M, (59)
7, the resultant vector is = (1,2,3,5,4,7,7,8). Next, we where the first inequality is by knowing thétaisr, SMBR)
enter Step 2 for the second time. Although= 77 = 7, we satisfies the reliability requirement, the second inequaliby
notice that node 7 is in family 0. Therefore, we do nothing i(&8), and the equality is by the construction ®f.
Step 2. The above arguments prove thaisr = dBvpr. This
After Step 2, the latest vector isr = (1,2,3,5,4,7,7,8), also implies that when considering the MBR point, instead of

which belongs to Case 2.2. Consequently, we enter Step 3filiting ar; that minimizes[(I4), we can focus on finding a
Step 3, we observe that = 7, the last coordinate af being 7; that minimizes

7, andj, = 8, the last coordinate of that belongs to the .
incomplete family, family 0. Thus, we swap andrg, and the d— (s 60
resultant vector i = (1,2,3,5,4,7,8,7). Now, we choose Z( yi(7y)) (60)

arbitrarily a~ value from{4,5,6}, the last complete family. . ) . .
Suppose we chodgaw — 6. The resultant vector is — instead, i.e., we remove the minimum operation[ofl (14) and

(1,2,3,5,4,7,8,6). Since we have no other repeated nodégnore the constﬁnﬁ, ;’]Vhifh dﬁes r)o.t Qgper}d OTf \;Ve
of family 0, the procedure finishes at this point. Indeed, w&€ NOW Set to show that; Is the minimizing family index
can see that the final vectet = (1,2,3,5,4,7,8,6) € Ra, permutation at the MBR point.

=1

which has no repeated nodes and is the result expected. First, define
k
APPENDIXF Yoftset(f) = Y (i — 1 — yi(my)). (61)
PROOF OFPROPOSITIONZ! =1
For fixed (n, k, d) values, define functiog as Notice that a family index permutation that minimizggser(-)
. . . also minimizes[{60). Therefore, any minimizing family ixde
9(a, B) = gun o mincute(s, t). (56)  permutation for[(60), call itr'pin, must satisfy
We first note that by[{14), we must havgds, 5) = mp Yoftset( ") = lglinyoﬁset(ﬁf)- (62)
Tf

for some integern. The value ofm depends on thén, k, d)

values and the minimizing family index permutation, but ~ Consider the following two cases:

does not depend ofi. We then defings* as thes value such ~ Case 1:nmod (n — d) = 0, i.e., we do not have an
that g(dB, ) = M. We will first prove thatfypr = 4* by incomplete family.

contradiction. Supposévsr # 3*. Since(a, 8) = (df*, 3*) Consider any family index permutation; and letl; be
is one way that can satisfy(a, 3) = M, the minimum- the number of the firsk coordinates ofr; that have valug.
bandwidth consumptiomBysr must satisfy Sypr < A*. Recall that there is no incomplete family in this case. Ssppo
Therefore, we must havésr < 8*. However, we then have the i-th coordinate ofr; is m. Then, we notice that the

the following contradiction. expression (i—1)—y;(ms)" counts the number of appearances
of the valuem in the firsti — 1 coordinates ofry (recall that
M < g(anpr, fusr) < (00, fupr) = there is no incomplete family in this case). Therefore, we ca
g(dBuBr, BuBr) < g(dB™, %) =M,  rewrite [61) by
®7) l l i
where the first inequality is by knowing th&twsr, SMBR) _ o C o
satisfies the reliability requirement; the second ineduaiby Yotse(77) ;(Z b+ ;(Z Dot ; (=1
the definition ofg(a, §); the first equality is by[(14); and the (63)

third inequality (the only strict inequality) is by the fatttat
g(dB,B) = mgp for all § and by the assumption ¢fypr <
£*; and the last equality is by the construction@f.

The above arguments show thatigr = 5*. To prove that

aupr = dB*, we first prove I1; — ;] < 1 for all 4, satisfyingl < i,/ < Ld. (64)
—

9(a, B) < g(dp, B), if o < df. (58) Proof: We first prove the only if direction by contra-

12\We can also choosg = 4 or 5. For those choices, the iterative proceséj'cuqn; The reason is as fO_HOWS- it > lj +_1 for Somel
will continue a bit longer but will terminate eventually. 1 <i,j < ", then we consider another family permutation

We now prove the following claim.
Claim 6: The above equation implies that a family index
permutation is a minimizing permutatim‘}“i“ if and only if
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7 and denote its correspondirigvalues by!’, such that of 7, with values in{1,2,---,c}, i.e., it counts all the values

l=1-1, l;- = [; + 1, and all otherls remain the same. before thej;-th coordinate except for the valuesc and 0.

Clearly from [63), suchr’, will result in strictly smaller Thus, we have that

yoﬁset(w}) < Yofiset(7s). Note that suchw} with the new

l; = li—1,1; =1; +1 always exists. The reason is the

following. By the definition ofl; and the fact thatry is a ‘ ‘

family index permutation, we have < I, < (n — d) for all yj,(mp) =1 —1— )\[{10’{1) - A[{lfcl]? (66)

j=1,---,-"5. The inequalityl; > [;+1 then implies]; > 1

andl; < (n—d)— 1. Therefore, out of the first coordinates

of 7¢, at least one of them will have value and out of the

last (n — k) coordinates ofry, at least one of them will have \here /\[16.7'1) is the number of 0 values preceding thig

valuej. We can thus swap arbitrarily one of the family indicetsn d{ ) te iner and A9 is th b . |

i from the firstk coordinates with another family indgxfrom coordinate inmy an (jrc} IS the number of—c vaiues

the last(n — k) coordinates and the resulting will have the preceding thej-th coordinate inm;. Now, swap thej,-

desired!’ and 1’ : th coordinate and thg;-th coordinate ofr¢, and call the
g J

G . o )
We now prove the if direction. To that end, we first obsen/&eW family index permut:_;ltlonrf. Spemﬁcally, my has .the
n_ same values as; on all its coordinates except at thye-

H n—d . __
that the equality) ;" l; = k always holds because of OUlty coordinate it has the value 0 and at theth coordinate

construction ofl;. Then [64) implies that we can uniquelys pas the value—c. For 1 < m < j» — 1, we have that
i istributi =1 .. iy oy = .

decide thedistribution of {l; : i = 1,---, 725} even t_houigh Y () = ym (7y) since the firs — 1 coordinates of the two

we do not know what is the minimizing permutationf™ ¢, iy index permutations are equal. Moreover, since tlagee

yet. For example, if:25 = 3, k =5, I, to [ satisfy [64), and |, hegative values before thg-th coordinate ofr’., we have
the summatiori; + I; + I3 is k = 5, then amond;, I2, and

I3, two of them must be 2 and the other one must be 1. On
the other hand, we observe that the valug/g@te(-) depends
only on the distribution of;}, see[(6B). As a result, the above

arguments prove that any; satisfying [64) is a minimizing v (W/f) —p—1— ¢[{1().,]a"z) (67)
7.rmin_ 72\t )
f
|

Finally, by the construction of the RFIR}, it is easy to
verify that the RFIPr} satisfies[(64). Therefore, the RF#
is a minimizing permutation for this case. ,

Case 2:nmod (n — d) # 0, i.e., when we do have an”/2
incomplete family. In this case, we are again interested inFor j, + 1 < m < ji — 1, if the m-th coordinate ofr/
minimizing (60), and equivalently minimizind {61). To thatis eitherc or —¢, then ym () = ym(my) + 1; otherwise,
end, we first prove the following claim. Ym () = ym(7y). The reason behind this is that the function

Claim 7: Find the largesti < ji < k such that thej;-th  y,,(7;) now has to take into account the new O at the
coordinate ofry is 0. If no suchj; can be found, we setth coordinate when then-th coordinate is either or —c.

J1 = 0. Find the smallest < j, < k such that thej-th  When the value of then-th coordinate is in{1,---,c— 1},
coordinate ofry is a negative number if no such can be then by the definition of,,.(-), we havey,, (7)) = ym(7y).
found, we setj, = k + 1. We claim that if we construcf; The last situation to consider is when the value of theh
and j, based on ar; that minimizestzl(d —yi(my)), we  coordinate ig0. In this case, we still havg,,, () = yum(7y)
must havej; < jo. sincey,,(7;) already does not count the value on teth
Proof: We prove this claim by contradiction. Considecoordinate ofr; since it is a negative value.

a minimizing family index permutatiorn; and assumg, < .
j1. This megans, b);/ our cgnstruction, J;hhtg < ?1 < Denote the numberofand—c \_/alues fr?m thegiQﬂL)l)_th
k. Since thej,-th coordinate ofr; is a negative number by coordinate to the;j, —1)-th coordinate ofry by ¢~ ). We
construction,y;, (r;) counts all coordinates before thg-th ~Nave that
coordinate ofr; with values in{1,2,---,¢ — 1,0}, i.e., it
counts all the values before thg-th coordinate except for
the valuesc and —c¢, wherec is the family index of the last , _ [1,42) Giasjr)

. . (7 — _1_/\ »J2) J2,J1 68
complete family. Thus, knowing that there are re values i (my) = {c} d){c,fc}’ (68)
before thej-th coordinate ofry, we have that

whereqb[{lo’{z) is the number of 0 values i, preceding the
-th coordinate.

. 1,j
yio () = o = 1= ALY, (65) _ _

‘ since thej;-th coordinate ofr’, has a—c value. Finally, for
where A[lc’”) is the number ofc values before thejr-th j; +1 < m < n, we have thatym(w}) = ym(my) since
coordinate. Similarly, since thf -th coordinate is O, we havethe order of the values preceding theth coordinate in a

thaty;, (7,) counts all coordinates before thigth coordinate permutation does not matter fgr, (). By the above, we can
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now compute the following difference of m in the first (i — 1) coordinates ofr;. If m = 0, then

N N by the definition ofy;(ws), we have that(i — 1) — y;(7y)
Z(d yi(rs)) Z d — yi(w represents the number of appearances of 0-andh the first

! — i(mp) (i —1) coordinates ofr;. However, by the construction ¢f,

we havei < j;. Sincej; < j2, we havei < j,. This implies
that in the first(; — 1) coordinates ofr;, none of them is of
value —c. As a result, we have thdt — 1) — y;(7y) again
i represents the number of appearances of 0 in the(firstl)

(yl(ﬁf) yi(my)) (69) coordinates ofr.

We now proceed with our analysis while only considering
thoser satisfyingj: < j» as constructed in Claif 7. Léf
be the number of the firgt coordinates ofry that have values

i=1

(yi(my) = yi(my))

[l Il
.
< i M =
I

.
Il

J
= (1o (7)) = 3o (7)) + 627 + (. (7)) — v, (7))

[°N

(70) j or —j. We can then rewritd (61) by
_ ( 1,52) ¢ Jz)) ¢(32,71) . .
- {0} femc} T SN .
(/\[l,jl) + /\[1-,31) 1 (1,52) —¢ (42, 31)) yof‘fset(ﬂf) = Z(Z - 1) + Z(Z - 1)+
{o} {=c} c} {e,—c} i=1 i=1
1
(71) s | 722l
=N+ A - o (=Dt 3 (=1 (73)
> 0’ (72) i=1 i

The above equation implies that a family index permutation
where [€9) follows fromy;(r’;) = yi(7y) for all i < j2 and is a minimizing permutatior7r?1in if and only if either
for all < > j;; (Z0) follows from our analysis abouyt (m )

yi(7;) +1 when thei-th coordinate ofr; belongs to{ —c, ¢} lo =nmod (n — d), o
and y;(}) = yi(ry) otherwise, and there are th {fjj:)} |l — ;| <1 forall 4, satisfyingl <i,j <c, (74)
coordinates between thig,+1)-th coordinate and thgj, —1)- l; > 1o for all ¢ satisfyingl <i < c.

th coordinate ofr’; that satisfyy;(7) = vi(ms) + 1; (ZI) or
EI?Y\)IS;T\)?JE?B:) gl@)asg(:gé)[lfglgoivslf;(lnnrrg(;thvsefar\:;[i;ga [I; = 1;] < 1,for all i, j satisfying0 <i,j <ec. (75)

—c value at thejp-th coordlnate ofrs. By (72), we have that If we compare[(74) and(75) with (64) in Claim 6, we can see
7' has a strictly smalleerZl(d —y;(+))". As a result, the that [75) is similar to[(64). The reason we need to consider
case ofj; > jo is impossible. the situation described i _(I74) is that the rangdfs from

By the construction of; and j, it is obvious thatj; # j,. 0 to n mod (n — d) while the range of all othet;s is from
Hence, we must havg, < j,. The proof of this claim is O to (n — d). Therefore, we may not be able to makeas
complete. m close to othei;s (within a distance of 1) as we would have

Claim[7 provides a necessary condition on a minimizing pdroped for due to this range discrepancy. For some cases, the
mutation vector. We thus only need to consider permutatiol@ggestl; we can choose i mod (n — d), which gives us the
for which j; < j». That is, instead of taking the minimumfirst scenario when all the remainirigs are no less than this
over all m;, we now take the minimum over only thosg largest possiblé, value. If [, can also be made as close to
satisfyingji < ja. the rest ofl;s, then we have the second scenario.

This observation is critical to our following derivationh@ ~ The proof that[(74) and(T5) are the if-and-only-if conditio
reason is that if we consider a permutatiop that hasl < on;"" can be completed using the same arguments as in the
ja < j1 < k, then the expression(J; — 1) — y;, (w;)" is not proof of Claim®. Finally, notice that the RFI¥; satisfies[(74)
equal to the number of appearances of the valirethe first or (Z8) and hag < j». As a result,;r; must be one of the
j1 — 1 coordinates ofr; (recall that by our construction theminimizing permutationsr?™. The proof of this proposition
j1-th coordinate ofr; is 0). Instead, by the definition af(-), is hence complete.
(j1 —1) —yj;, (m¢) is the number of appearances of the values
0 and —c in the first (j; — 1) coordinates ofr;. Therefore, APPENDIXG
we cannot rewrite[(81) a5 (b3) if < j» < j1 < k. PROOF OFPROPOSITIONT

On the other hand, Claifid 7 implies that we only need to We first consider the case wher> k. We havenysg > 24
consider those; satisfyingj; < j». We now argue that given since otherwise the MSR point cannot satigfyy (3) even when
any 7; satisfyingj; < jo, for all i = 1 to k, the expression plugging in 8 = oo in (14). Define
(i—1)—y,(7y) is now representing the number of appearances A
of m and—m in the first(i— 1) coordinates ofr;, wherem is Ymax = 158X D8, Y1 (ms)- (76)
theabsolute valuef thei-th coordinate ofr¢. The reason is as By (Id), we have that thén, 3)

air
follows. Letm denote the absolute value of théh coordinate P
of ;. If m # 0, then by the definition of;(7;), we have (a, B) = (M, M > (77)
that (i — 1) — y;(7;) represents the number of appearances k" k(d = Ymax)
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satisfies [(B) sincéd — yi(m7))B > (d — ymax)B = 42 = APPENDIXH

a. Therefore,2 is not only a lower bound ofwsg but is PROOF OFCOROLLARY[3
also achievable, i.eqansr = 4. Now, for any (a, §) pair First consider the case wheh> k — 1 = [%1 Since
satisfying 3} e

there are[ﬁw number of families (complete plus incomplete

(0. 8) = (M [3) (78) families) andk = [ﬁl + 1, any family index permutation
kY has at least one pair of indices of the same family in its first
k coordinates. Usind_(14), this observation implies that

for somefs < m, we argue that[{3) does not hold min  min mincut(s, t)
) )

anymore. The reason is the following. When= #! and GeGr teDC(C
B < 2 — we plug in therS vector that maximize$ (76) k
g k(d ymax) S . . = i i d — Y > i C
into (14). Therefore, for at least oné < &, we will have = pn min ((d —yi(7y)) 6, @) 2 min Cp,.
(d — yio (79))B < a = 4. This implies “(13)< M” when i=1 T
froe =~ k" - (80)
evaluated usingr;. By taking the minimum over alr;, we
still have “(14) < M. Therefore, the above choice 6fi, 5)  Now definew[fm] as a family index permutation such that its
cannot meet the reliability re/auwement at the MSR point. Afst 1 coordinates, in this order, ae2,--- ,m — 1,1, m +
aresult, we havéhisr = rz=) —- 1,--,¢,0 if nmod(n —d) # 0 and definer;" as
We now argue thag,.x = k—1. According to the definition 1,2,... m —1,1,m+1,---,¢cif n mod (n —d) = 0. Since
of functiony;(-), y; < k—1. Recall that the size of a helper setll the k& coordinates have different values except the first
is d, which is strictly larger thark — 1. We can thus simply set coordinate and then-th coordinate have equal value and
the values of the firstk—1) coordinates ofr; to be the family since they have ne-c value, we have
indices of the(k—1) distinct helpers (out of distinct helpers) k
of a npde and place the faml_ly |nd.ex of this node on hid me ((d - (ngn])) 8, a) —C,,. (81)
coordinate. Such a permutatian will have y,(7;) =k — 1. P
_ M =
Therefore, we hfalve proved th_ailqsf{ = R@AT) Thus, we get the equality ifL.(37).
We now consider the remaining case in whi¢h< k. To . n
. . We now consider the case whér< k—1 = | -2 |. Before
that end, we first notice that for ariy, k, d) values we have ) i n—d
lproceedlng, we first argue that among &ll, k,d) values

iﬁ > 1 number of complete families. Also recall that™ =~ baon ol f havi .
amily 1 is a complete family and all familieg 1 are the satisfying [1), the only possible cases of having | 52 | ~1

helpers of family 1, and there are thdsiumber of nodes in &€ €itherd =1 ord =n — 1. The reason behind this is the

n

total of family index# 1. We now consider a permutationfollowing. Supposel < | 725 | — 1. For any2 < d <n —2,
7% in which all its firstd coordinates are family indices notwe have

equal to 1 and its lagtn — d) coordinates are of family index n [ d
1. Observe that if we evaluate the objective function of the 0= {n _ d-‘ —1l-d= |1+ m-‘ —1-d
right-hand side of[{14) using?, out of thek summands, of T d
i =1 to k, we will have exactlyl non-zero terms since (i) by =\ d-‘ —d
the definition ofy;(-), we always havey;(r$) < (i — 1) and Fd
therefore, when < d, we always havéd — y;(7%)) > 1; (i) < _-‘ —d (82)
whenever > d, the corresponding term(w;) = d due to the 2
special construction of the;. As a result, when a sufficiently B {—%, if dis even
large 8 is used, we have 1%01’ if dis odd
) <0, (83)
Zmin((d —vi(7}))B, a) = da. (79) where we get[(82) by our assumption that< n — 2 and
i=1 (83) follows from the assumption that > 2. The above

contradiction implies eitheel = 1 or d = n — 1. Since

The above equality impliesnisr > 2%. Otherwise if Corollary[3 requiresi > 2, the only remaining possibility
QaMSR < %, then we will have ‘[T4)< M” when using the is d =n— 1. Howeverk will not have a valid value since in
aforementioned$, which implies that ‘T4 M holds still  this case we havé = n —1 < k-1, which impliesk > n, an

when minimizing over alkr;. This contradicts the definition impossible paramemter value violatirig (1). Hence, the froo

that apisg and Bysr satisfy the reliability requirement. is complete.
On the other hand, we know thatysg = 2t and
Busr = £t for the BR scheme whed < k, see [[J). Since APPENDIX
the performance of the FR scheme is not worse than that of PROOF OFCOROLLARY 2
the BR scheme, we haveysg = % andfBysr < % for the Consider first the case whemmod (2d) # 0. Without
FR scheme. Hence, the proof is complete. loss of generality, assume thatz = nremain and n, = 2d
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for b = 1 to B — 1, i.e.,, the indicesh = 1to B —1 k, = 2d, which is equal t03 2%, (d — yi(n}))8; sunf? is
correspond to the regular groups and the index= B the contribution to the min-cut value from the single regula
corresponds to the remaining group. Now, applying the samgeup with k&, = (k — min(nremain, k¥)) mod (2d), which is
reasoning as in the proof of Propositibh 4 [0](23), we hawgual tozfil(d — yi(}))B; and sun® is the contribution
that aypr = YMmBr = dPusr for the family-plus repair to the min-cut value from the remaining group (groi),
scheme as well. In the following, we will prove that (i) ifwhich is equal to
k < 2d, then one minimizingk vector can be constructed

min(nremaina k)

by settingk, = 0 for b = 1to B —1 and kg = k; (i) .
if k& > 2d, then we can construct a minimizirg vector by sumi?) = Z (d = yi(m3))B. (87)
settingkp = min(nremain k) and among alb =1 to B — 1, =t
at most onek;, satisfies) < k;, < 2d. By plugging in the expressions of the RFIRS and 7}, we
To prove this claim, we first notice that since we arbave
focusing on the MBR point, we can assuméds sufficiently 2d—9 )
large. Therefore, we can replace the minimizing permutatio sumV = Z <d — it VD B =d?8,
for each summand of (23) by the RFIP (of,d) = (2d,d) = 2
for the summanad = 1 to B — 1 and of (n,d) = (nremain d) q .
for summandb = B) using the arguments in the proof of sum? = Z (d— 1+ FJ) g, and
Propositior_#. Therefore, we can rewriie](23) by i=0
min(k,2d—1)—1 .
Bk sunf® — (d— i+ H) 5, (88)
@)= pip 33 () (84 2 )

wherem, is the RFIP of(n,d) = (2d,d) forb=1to B — 1 Where(i = ((k — min(rwemain k)) mod (2d)) — 1 = ((k —
and the RFIP of(n,d) = (nremain d) for b = B. Note that Tremain) * mod (2d),) — 1 and [88) follows from the _fa_ct that
for (n,d) = (2d,d), in the FR scheme we have 2 completd(™3) = d whenj > 2d andnemain > 2d + 1. The minimum

families and no incomplete family and the RFIP in this case f§Pair-bandwidthysr thus satisfies (24). o
= (1,2,1,2,--,1,2). As a result;m, = % for all b = 1 Now, for the case whem mod (2d) = 0, in a similar

to B — 1. For (n,d) = (nremaind), We have one completefaShiO”; we can prove that la vecior minimizes the right—_
family and one incomplete family and the RFIP in this casa@nd side of[(23) at the MBR point if and only if there is
is at most oneb € {1,---,B} such thatd0 < k, < 2d. By
. _ settingm, = 7 for all b in B4), recall thatr; is the RFIP
2d coordinates (nremain—2d) coordinates for (n,d) _ (2d, d), we get
ﬂ—;:(laoalaof"alaoa _11_11"'1_1 ) (85)

(k mod (2d))—1 .
We thus haverp = w3. We now argue that a vectdt* RHS of [23)= d° {%J 8+ Z (d—z’+ ED B,
satisfying conditions (i) and (ii) stated above minimizBd)( i=0
Note first that bothy; (7F) andy; () are non-decreasing with (89)
respect to; according to our construction of the RFIP. Also
we always havey;(77) = y;(73) for all 1 <i < 2d.

We are now ready to discuss the structure of the optiknal
vector. Since for each= 1 to B, we are summing up the first
(d—y;(mp)) fromi =1 to k, and in total there ar®", k;, = k APPENDIXJ
such terms,[(84) implies that to minimiZe [23) we would like PROOF OFPROPOSITIONY
to have as many terms corresponding to “laijas possible
in the summationy_, k;, = k terms. If k < 2d, this can be

and thuspyer satisfies[(24) for this case too. The proof is
hence complete.

We first show that whenever = d3, we have

done if and only if we set alk;, to O except for onég;, value min  min mincutg(s,t) >
to be k, which is our construction (i). I > 2d, this can be  ¢€9r+ t€DC(G)
done if and only if we sekp = min(nremain k) and, forb = 1 min min mincutg(s,t), (90)

. G
to B — 1, we set allk; to either2d or 0 except for onék,. €0r teDO(G)

Knowing thatk* is of this special form, we can computewhereGr is the collection of IFGs of an FR schen#e That

the RHS of [2B) by is, whena = dg, the additional step of partitioning nodes
k — min(nremain k) into sub-groups in the family-plus scheme will monotoriigal
RHS of [23)= { remar J sumi) improve the performance when compared to the original FR
2d scheme without partitioning.
+ sumt? + sunt?), (86) Whenn < 4d, the family-plus repair scheme collapses to

ke min(rremank) | the FR scheme since each group of the family-plus scheme
where LTJ is the number ob from 1 10 B —1  peeds to have at leag nodes and when < 4d we can have
with k, = 2d in the minimizing vectork*; sum?® is the at most 1 group. Thus, trivially, we havie {90) when< 4d.
contribution to the min-cut value from those groups wittNow, we consider the case when> 4d.
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We first consider the original FR scheme (the RHI of (90)): = 1” when summing up for alk = 1 to k,. The second
In this case, the FR scheme has™ | = 1 complete family inequality follows from the assumption thdt= 1 in both

' positive. By noticing that for cases (b) and (c) the RHS 0} (25

2d coordinates  (n—2d) coordinates is indeedmin(3, ), the proof is complete.
ﬂ-; = (15071707"' 71507_17_17"' 7_1)

By Propositio{#, we have APPENDIXK
PROOF OFLEMMA 2]

min min InincutG (S, t) = Level 1 Level 2 Level 3
GeGr teDC(G)

min(k,2d—1)—1 .

3 <d—i+ H)ﬁ (91)
1=0

where [91) from the fact thaf;(r}) = d whenj > 2d.

We now turn our focus to the family-plus repair scheme.
Consider first the case whenmod (2d) = 0. If k < 2d, we
have by [[24) and{91) thdf (P0) is true since the third term on
the LHS of [24) is the RHS of (91). It > 2d, we again have
by (24) and[(911) thaf(90) is true since the second term on the
LHS of (24) is no less than the RHS ¢f {91). Now, consider
the case whem mod (2d) # 0. Similarly, we have by[{24)
and [91) that[(90) is true since the first term on the LHS of
(24) is the RHS of[(91).

We are now ready to prové (25). If neither (i) nor (ii) of
Proposition 1L is true, we must have one of the three cases:
@d>2andk > ||, (b)d =1, kK > 2, and even
n; and (c[ld = 1, k > 3, and oddn. For case (a), since

d > || — 1 whenever2 < d < n — 2 (see the proof of
Corollary[3 in AppendiXTH), we have thahin(d + 1,%) >
——|. Considering the FR scheme, we thus have that among

the firstmin(d+1, k) indices of a family index permutatiory
there is at least one family index that is repeated. Joittilg, Fio 0. The aranh of the oroof of Lemma 2
observation, Propositiofl 3, the MBR point formula [nl(15), % grap P -

and [90) imply [2b) wherx = dB. Note thatd = n — 1 is _ ) o
_ To prove this lemma, we model the problem using a finite

not possible in case (a) since we will hakve> | -2~ | =n, . . .
b (@) n—d " directed acyclic graph and then we invoke the results from

which violates [(IL). For both cases (b) and (c), since k . . ,
: : random linear network coding I[8]. The graph has a single
by (@), we haven > 4. The construction of the family-plus ource vertexs that is incident to|E| — |IJ[1P| n |U[2]| _

scheme thus will generate at least 2 groups. That is, thezvaﬁ&

—[No[)(d=|No|) i i i
of B in Propositior 8 must satisfj3 > 2. Moreover, in case 2 +d|N.0| other vertices with edges of capacity
. - 1. We call these verticdsvel 1vertices. Among these level 1
(b), we have no remaining group sineeis even. Therefore,

sincek > 2, for anyk € K defined in Propositiofi]8, therevertlces’. We.forrﬂN0| dlsj.omt groups and each group consists
2 . of d arbitrarily chosen distinct vertices. The idea is that each
are at least two distindt values withk; > 1. In case (c), we . . .
. group of them is associated with a vertex Ny. Note that
havek > 3 = miemain (NOte thalreman = 3 since we have o o ared|Ny| vertices forming|Ny| groups while there are
that 2d + 1 < nyemain < 4d — 1 by construction). Therefore, 9 9/No| group

i (n=[No|)(d—|Nol) ;
similarly, for anyk € K defined in Propositionl8, there are aatl:" See Fi92[9 for illzgtrrt;s)snthat do not form any group at
least two distinct values withk, > 1. : . » ) .
Using the above observation (at least two distiheialues eN;)év(,”l]r:] Td?]'\t;or] tr?e\t\t]?wos((j)grcgirznq th;a flgrvzlnll "f““‘fs'
havingk, > 1) and Propositiol8, we have that in both cas%v0| N |0 Eact;(cu- o) is Conr?ectegzéglan adge of_c;p_acity
b) and (c o v .
(b) © 1. We call theu; nodes, level 2 vertices and the nodes
min  min mincutg(s,t) > 2min(df, «) > min(S,«), level 3 vertices. We partition the new node pairs (edges) int
GE€dp+ teDC(G) 92y |Nol groups and each group consists|f_.| edges. We then
(92) associate each group gV_.| edges to one group aflevel 1
where the first inequality follows from (i) considering onlyvertices created previously. See Hig). 9 for illustratiomafy,
those b values withk, > 1; (ii) plugging in the min-cut for the level 1, level 2, and level 3 vertices belonging to the

formula in Propositiofil3; and (iii) only counting the firstite same group (there argVy| groups in total), we connect all

(n—|No|)(d—|Nol)

2
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the level 1 vertices in this group and all the level 2 verticesapacity. See Fid.]9 for illustration of one suthOne can

in this group by an edge with infinite capacity.

quickly verify that the min-cut-value from the sourgdo the

We now describe the relationship of the newly constructednk ¢ in the graph of Fig[19 is the.count value computed
graph in Fig[® to the graph representation of the genechliz&om the given subset of edges in the graph of Eig. 7. As a
fractional repetition code. For easier reference, we use tiesult, with a sufficiently large finite field GF), any sinkt
graph in Fig[® to refer to the newly constructed graph; argtisfyingmincut(s,t) = a.count(t) > M can successfully
use the graph in Fid.]7 to refer to the graph representatitgconstruct the original file with close-to-one probabil8ince

of the generalized fractional repetition codes. There|aAfg

the sinkt accesses only level 1 and level 3 vertices, thg;)

groups in the graph of Fidl 9 and each group correspondsp@ckets in the graph of Figl 7 that correspond to the level 1
one node inN, of the graph of Fig[7. We notice that therevertices in the graph of Fig.]9 and tie, ;) packets in the
are|E| = (o INall@INoD) 4 g Ny | number of level 1 vertices graph of Fig[¥ that correspond to the level 3 vertices in the

in the graph of Fig[ld andf| = {n—Neld=INol) | g |

number of edges it/ of the graph of FigL17. As a result, weM.
By the above arguments, the proof of Lenimha 2 is complete.

map each level 1 vertex bijectively to an edgefinThere are
|No| - |N_.| number of level 3 vertices in the graph of Hig. 9
and there aréNy| - |N_.| number ofE edges in the graph of
Fig.[d. As a result, we map each level 3 vertex bijectively to
an edge ink. (1]

We now focus on the graph of Figl 9. Assume that source
s has a file ofM packets. We perform random linear networkl[2]
coding (RLNC) [8] on the graph of Figl]9 assuming a
sufficiently large finite field GFy) is used. After we have
finished the RLNC-based code construction on the graph &3l
Fig.[@, we now describe how to map the construction back
to the edges in the graph of Figl 7. Specifically, the coded
packet corresponding t6s, u) whereu is a level 1 vertex in  [4]
the graph of Fig[19 is assigned to the edgec E (in the
graph of Fig[¥) corresponding to node We now consider
the coded packets correspondingtgv) whereu is a level 2
vertex andv is a level 3 vertex in the graph of Figl 9. Without
loss of generality, we assume that, v) belongs to the,-th
group in Fig[® and is the jo-th level 3 vertex in this group.
Then, we assign the coded packets on the €dge) to the
edgee € E (in the graph of Fig[]7) that connects thgth
node in Ny and thejo-th node inN_..

In the following, we will prove that the above code con-18]
struction (from the RLNC-based code in the graph of Eig. 9
to the generalized fractional repetition codes in the graph [9]
Fig.[d) satisfies Lemmia 2.

To prove that the above construction satisfies Property 1, ye;
notice that any coded packégioyjo) corresponding to some
(io, jo) € 1J8) in the graph of Figll7 is now mapped from a11]
(u,v) edge in Fig[® where is a level 2 vertexy is a level 3
vertex; (u,v) belongs to the,-th group in Fig[®; and is the
jo-th level 3 vertex in this group. By the graph construction iﬂ2]
Fig.[9, such a coded packet is a linear combination of theadtode
packets in Fig.9 from sourceto vertexa where thei vertices
are the level 1 vertices corresponding to theh group. Since 13]
those packets alongs, @) are theP;, ;,y packets for allj;
satisfying (j1,io) € 1J in the graph of Fig[17, we have [}
thus proved Property 1. Namely, any coded pad?@gyjo)
corresponding to som@y, jo) € 1JP is a linear combination [15]
of the packets”;, ;,) for all j; satisfying(ji,i0) € 1312,

To prove that the above construction satisfies Property 2,
for any subset of edges in the graph of [Fig. 7, we place a siik!
nodet in the graph of Fig.19 that connects to the corresponding
set of level 1/level 3 vertices in Figl 9 using edges of infinit

(5]

(6]

(7]
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graph of Fig[® jointly can reconstruct the original file ofesi

Property 2 is thus also satisfied.
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