
Sum-networks from undirected graphs: construction
and capacity analysis
Ardhendu Tripathy and Aditya Ramamoorthy

Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011
Email: {ardhendu,adityar}@iastate.edu

Abstract—We consider a directed acyclic network with mul-
tiple sources and multiple terminals where each terminal is
interested in decoding the sum of independent sources generated
at the source nodes. We describe a procedure whereby a simple
undirected graph can be used to construct such a sum-network
and demonstrate an upper bound on its computation rate.
Furthermore, we show sufficient conditions for the construction
of a linear network code that achieves this upper bound. Our
procedure allows us to construct sum-networks that have any
arbitrary computation rate p

q
(where p, q are non-negative inte-

gers). Our work significantly generalizes a previous approach for
constructing sum-networks with arbitrary capacities. Specifically,
we answer an open question in prior work by demonstrating
sum-networks with significantly fewer number of sources and
terminals.

I. INTRODUCTION

Function computation using network coding is an area that
has received significant attention in recent years (see for
instance [1]–[4]). Broadly speaking, one considers directed
acyclic networks with error free links, a set of source nodes
that generate independent information and terminal nodes that
demand a certain function of the source values. The topology
of the network is allowed to be arbitrary. The most general
formulation is evidently quite complex to study as depending
on the function the demands can be arbitrarily complex and
contain for instance multiple unicast as a special case, a
problem which is well recognized to be hard (see for instance
the discussion in [5], [6]). Accordingly, several simplified
settings have been considered in the literature. The work of
[1], [2] considers general functions, but networks with only
one terminal. A different line of work considers networks
with multiple terminals that each need a simple function such
as the sum [3], [4]. Significant prior work [7]–[9] considers
information theoretic issues in function computation where the
sources are dependent but the network structures are simple in
the sense that there are direct links between sources and the
terminals.

In this work, we consider the problem of network coding for
sum-networks. Specifically, the problem is one of multicasting
the finite field sum of source values that are available at a
set of source nodes to a designated set of terminals over a
directed acyclic network, i.e., a sum-network. The topology
of the graph denoting the network can be completely arbitrary
under the trivial restriction that there exists a path between any
terminal and each source node. We assume that the sources are
independent and that the network links are delay and error-free

but have finite capacity.
This problem was first considered in the work of [10],

where the class of networks with unit-entropy sources, unit-
capacity edges and either two sources or two terminals was
considered. For this class of networks it was demonstrated
that as long as each source is connected to each terminals,
computation of the sum was possible. In contrast, it was
shown [3] that there exist networks with three sources and
three terminals where sum computation is impossible even
though each source terminal pair is connected. Conditions on
sum computation for networks with three sources and three
terminals have also been investigated in prior work [3], [11].
More generally, one can define the notion of computation
rate [1]. Informally, a network code for a sum-network is
said to have rate r/l if in l time slots, one can multicast
the sum r times to all the terminals. A network is called
solvable if it has a (r, r) code and not solvable otherwise.
The problem of multicasting the sum can be shown to be
equivalent to the problem of multiple unicast. Specifically,
[4] shows that there is a linearly solvable equivalent sum-
network for any multiple-unicast network. Thus characterizing
the solvability of sum networks and identifying the network
resources required in order to ensure solvability of a sum-
network assumes importance.

There are several open problems for sum-networks where
the number of sources and terminals is at least three. For
instance, nontrivial sufficient conditions on the network re-
sources that allow for sum computation are not known. How-
ever, recently certain impossibility results have been obtained.
Reference [12] shows that for any integer k ≥ 2, there exists
a sum-network with three sources and four or more terminals
(and also a sum-network with three terminals and four or
more sources) with coding capacity k

k+1 for integers k ≥ 0.
Reference [13] is most closely related to our work. Given a
ratio p/q it constructs a sum-network that has capacity equal to
p/q. In this work, we propose a construction of sum networks
that significantly generalizes the work of [13] and answer some
of its open questions.

A. Main Contributions

• Asssuming coprime p and q, the work of [13], constructs a
sum-network that has 2q − 1 +

(
2q−1

2

)
sources and 2q − 1 +(

2q−1
2

)
+ 1 terminals, which can be significantly large if q is

large. An open question posed in [13] is whether sum-networks
of smaller size exist that have a capacity p/q. In this work,

ar
X

iv
:1

61
2.

07
77

3v
1

 [
cs

.I
T

]
 2

2
D

ec
 2

01
6

we answer this in the affirmative. Specifically, we construct a
large family of sum-networks that can be significantly smaller
for several values of p/q and recover their result as a special
case. We note that examples of small sum-networks with
capacity strictly smaller than one are useful in investigating
sufficiency conditions for general networks. For example, [3]
demonstrates an instance of a network with three sources and
three terminals where unit connectivity between each source
terminal pair does not suffice, implying that a sufficiency
condition for such 3-source, 3-terminal networks that only
looks at minimum connectivity between source terminal pairs
needs to consider networks where the minimum cut between
each source terminal pair is at least two.
• Our proof that the constructed sum-network has the appro-
priate capacity value is simpler than the proof of [13].
This paper is organized as follows. The problem is formally
posed in Section II, our construction is explained in Section III
and a comparison with existing results appears in Section IV.
We conclude the paper with a discussion about future work in
Section V.

II. PROBLEM FORMULATION

We consider communication over a directed acyclic graph
(DAG) G = (V,E) where V is the set of nodes and
E ∈ V × V × Z+ are the edges denoting the delay-free
communication links between them. Subset S ⊂ V denotes
the source nodes and T ⊂ V denotes the terminal nodes. The
source nodes have no incoming edges and the terminal nodes
have no outgoing edges. Each source node si ∈ S generates
an independent random process Xi, such that the sequence of
random variables Xi1, Xi2, . . . indexed by time are i.i.d. and
each Xij takes values that are uniformly distributed over a
finite alphabet A that is assumed to be a finite field such that
|A| = q. Each edge is of unit capacity and can transmit one
symbol from A per unit time. Our model allows for multiple
edges between nodes. In this case the edges are given an
additional index. For instance if there are two edges between
nodes u and v, these will be represented as (u, v, 1) and
(u, v, 2). The capacity of the edge (u, v) is defined as the
number of edges between u and v.

We use the notation In(v) to represent the set of incoming
edges at node v ∈ V . We will also work with undirected
graphs in this paper. If v is a node in an undirected graph,
then In(v) will represent the edges incident on v.

An network code is an assignment of edge functions to
each edge in E and a decoding function to each terminal
in T . The edge function for an edge connected to a source,
depends only the source values. Likewise an edge function
for an edge that is not connected to a sources depends on
the values received on its incoming edges and the decoding
function for a terminal depends only on its incoming edges. We
let the source messages be vectors of length r and the edge
functions to be vectors of length l. The decoding functions
should be such that each terminal recovers the sum of all the
source message vectors. The domain and range of the encoding
functions can be summarized as follows.

• Edge function for edge e.

φe : Ar → Al if tail(e) ∈ S,
φe : Al|In(tail(e))| → Al if tail(e) /∈ S.

• Decoding function for the terminal ti ∈ T .

ψti : Al|In(ti)| → Ar

A network code is a linear network code if all the edge and
decoding functions are linear. For the sum-networks that we
consider, a (r, l) fractional network code solution over A is
such that the sum of r source symbols (over the finite field)
can be communicated to all the terminals in l units of time.
The rate of this network code is defined to be r/l. A network
is said to be solvable if it has a (r, r) network coding solution
for some r ≥ 1. A network is said to have a scalar solution if
it has a (1, 1) solution. The supremum of all achievable rates
is called the capacity of the network.

III. CONSTRUCTION AND CAPACITY OF A FAMILY OF SUM
NETWORKS

In this section we construct a family of sum-networks which
are not solvable even though each source terminal pair is
connected via at least one path. In fact, we will demonstrate
that there exist families of sum-networks that are not solvable
even though each source terminal pair has a minimum cut that
is strictly larger than a fixed constant. The construction of the
sum-network starts with a parallel set of b ≥ 2 edges that
we refer to as bottleneck edges in the subsequent discussion.
Each bottleneck edge has a capacity α. There are α-capacity
edges connecting carefully chosen subsets of the source nodes
S to the tail of each bottleneck edge. Similarly, α-capacity
edges connect the head of each bottleneck edge to a subset
of terminal nodes T . The choice of the various subsets of
the source nodes is made via the help of a undirected simple
connected graph1 G̃ = (Ṽ , Ẽ) where |Ṽ | = b. We arbitrarily
number the vertices in G̃ as 1, 2, . . . , |Ṽ |. Then there are
potentially the following three sets of sources in the sum-
network G.

1) S1 = {si : i = 1, 2, . . . , |Ṽ |},
2) S2 = {se : e ∈ Ẽ}, and
3) s?.

Similarly, there are three types of terminals in G.

1) T1 = {ti : i = 1, 2, . . . , |Ṽ |},
2) T2 = {te : e ∈ Ẽ}, and
3) t?,

so that T = T1 ∪ T2 ∪ {t?}. We propose two different
constructions depending on whether we include s? in the sum-
network or not. In the constructions, we assume that G̃ is
connected and that |Ẽ| ≥ |Ṽ |, i.e., it is not a tree.

1A graph is said to be simple if does not have self loops and multiple edges
between a pair of nodes.

1

2 3

4

Fig. 1. G̃ for Example 1. The dotted lines show the edge set E
C̃yc

for
Construction 2.

A. Construction 1

For the first construction we do not include s? in the
network, thus S = S1 ∪ S2. Let

X = {X1, X2, . . . , X|Ṽ |} ∪ {Xe : e ∈ Ẽ} (1)

be the set of independent random processes generated at the
respective source nodes in G.

Let In
G̃

(i) denote the edges e ∈ Ẽ that are incident to the
vertex i ∈ Ṽ in the simple graph G̃ and

Ai = {Xi} ∪ {Xe : e ∈ In
G̃

(i)}. (2)

We use Aci to denote X \Ai.
Our sum-network G can be constructed as follows. We

first include the source node set S, the terminal node set
T and the bottleneck edges B = {e1, e2, . . . , eb} where
b = |Ṽ | and each edge is of capacity α. Next, we follow the
construction algorithm below where edges (each of capacity
α) are included.
Construction Algorithm 1

1) Edges from sources to bottlenecks.
a) (si, tail(ej)) if Xi ∈ Aj for all i, j ∈ {1, 2, . . . , b},
b) (se, tail(ej)) if Xe ∈ Aj for all j ∈ {1, 2, . . . , b}.

2) Edges from bottlenecks to terminals.
a) (head(ei), ti) for all i = {1, 2, . . . , b},
b) (head(ei), te) and (head(ej), te) for all e =

(i, j) ∈ Ẽ, and
c) (head(ei), t?) for all i ∈ {1, 2, . . . , b}.

3) Direct edges.
a) (si, tj) if Xi ∈ Acj for all i, j ∈ {1, 2, . . . , b} and

(se, tj) if Xe ∈ Acj for j ∈ {1, 2, . . . , b}.
b) For all e = (i, j) ∈ Ẽ, (sk, te) if Xk ∈ Aci ∩ Acj

and (se′ , te) if Xe′ ∈ Aci ∩Acj .
Next, we illustrate an example of the above construction.

Example 1. Let G̃ be as shown in Figure 1. Then,

A1 = {X1, X(1,2), X(1,3), X(1,4)}
A2 = {X2, X(1,2), X(2,3)}
A3 = {X3, X(1,3), X(2,3), X(3,4)}
A4 = {X4, X(1,4), X(3,4)}

The corresponding sum-network G is shown in Figure 2.

s1 s2 s3 s4 s(1,2) s(2,3) s(3,4) s(1,4) s(1,3)

t1 t2 t3 t4 t(1,2) t(2,3) t(3,4) t(1,4) t(1,3) t⋆

Ac
1 Ac

2 Ac
3 Ac

4 Ac
1 ∩ Ac

2 Ac
2 ∩ Ac

3 Ac
3 ∩ Ac

4 Ac
1 ∩ Ac

4 Ac
1 ∩ Ac

3

e1 e2 e3 e4

Fig. 2. Sum-network G constructed from G̃ in Fig. 1 via Construction
1. Edges ei, i = 1, . . . , 4 represent the bottlenecks. The direct edges are
specified by means of the set that appears below each terminal.

s1 s2 s3 s4 s(1,2) s(2,3) s(3,4) s(1,4) s(1,3)

t1 t2 t3 t4 t(1,2) t(2,3) t(3,4) t(1,4) t(1,3) t⋆

Ac
1 Ac

2 Ac
3 Ac

4 Ac
2 ∩ Ac

3
Ac

3 ∩ Ac
4 Ac

1 ∩ Ac
4

Ac
1 ∩ Ac

3

e1 e2 e3 e4

s⋆

Ac
1 ∩ Ac

2

Fig. 3. Sum-network G constructed from G̃ in Fig. 1 via Construction 2
(with source s?). Edges ei, i = 1, . . . , 4 represent the bottlenecks. The direct
edges are specified by means of the set that appears below each terminal.

B. Construction 2

In the second construction, we include the source s?, i.e.,
S = S1 ∪ S2 ∪ {s?}, so that we have source X? in addition
to the sources listed in eq. (1). Recall that we assumed that
G̃ is not a tree. Let C̃yc = (V

C̃yc
, E

C̃yc
) be a subgraph of

G̃ corresponding to the shortest cycle in G̃; C̃yc may not be
unique. The following is a useful fact (proof appears in the
Appendix).

Claim 1. Suppose that nodes i, j ∈ V
C̃yc

. Then either (i, j) ∈
E
C̃yc

or (i, j) /∈ Ẽ.

The set of random processes Ai is defined as follows.

Ai =

{
{Xi} ∪ {Xe : e ∈ In

G̃
(i)} ∪ {X?} if i ∈ V

C̃yc
,

{Xi} ∪ {Xe : e ∈ In
G̃

(i)} otherwise.

Following the definition of the sets Ai, the steps outlined
in Construction 1 can be followed to construct most of the
sum-network G. Following this, the additional source s? is
connected to each ei where i ∈ V

C̃yc
. Each terminal in T that

does not have a path from s? to it, is provided a direct edge s?
to it. This concludes the construction of G. For an example,
check Figure 3 for a sum-network constructed from Figure 1
with the choice of C̃yc as indicated in caption.

C. Upper bound on the capacity of G

We derive an upper bound on the capacity of G assuming
that we followed Construction 2 so that source s? exists. The
corresponding upper bound for Construction 1 follows in a
similar manner. Suppose that there exists a (r, l) fractional
network code assignment φe, e ∈ E and decoding functions
ψt, t ∈ T so that all the terminals in T can recover the sum
of sources denoted by Z =

∑
i∈Ṽ Xi +

∑
e∈Ẽ Xe + X?. As

such we have three types of sources, corresponding to (i) the
vertices of G̃, (ii) the edges of G̃ and (iii) the starred source.
We use a generic index to refer to all these types of sources.
For instance,

∑
β∈Ak Xβ would equal

∑
i:Xi∈Ak,i∈Ṽ

Xi +∑
e:Xe∈Ak,e∈Ẽ

Xe + 1{k∈V
C̃yc
}X?, where 1 is the indicator

function.

Lemma 1. For terminal t ∈ T , if edge (head(ek), t) exists,
then terminal t can compute

∑
β∈Ak Xβ from the function

value on ek.

Proof: Consider terminal tk for k ∈ Ṽ . It is connected
to head(ek). By assumption, it is able to recover Z from
the information transmitted on its incoming edges. In the
discussion below we let φek(X) refer to the value that the
network code assigns on edge ek, where we emphasize that
φek(X) only depends on sources in the set Ak. Suppose we
cannot decode the sum

∑
β∈Ak Xβ from the value of φek(X).

This implies that we can find two different instantiations of
source symbols x and x′ such that
• φek(x) = φek(x′) but

∑
β∈Ak xβ 6=

∑
β∈Ak x′β , and

• xβ = x′β for β ∈ Ack.
Thus, even though Z 6= Z ′, ψtk(x) = ψtk(x′) as φe(x) =
φe(x

′) for all e ∈ In(tk). Thus, the terminal tk is unable to
compute the sum which is a contradiction.

In a similar manner the following lemma can be shown to
hold.

Lemma 2. Any terminal te for e = (i, j) ∈ Ẽ is able to
compute

∑
β∈Ai∪Aj Xβ from the function values on edges ei

and ej in G.

Theorem 1. The rate of a fractional network coding solution
for the sum-network G constructed by the procedure above is
upper bounded by α|Ṽ |

|Ẽ|+|Ṽ |+1
.

Proof: We assume that there is a valid network code such
that each terminal is able to compute the sum Z. Consider a
terminal te where e = (i, j) ∈ Ẽ. In this case te can compute
(from Lemma 1 and 2), the following partial sums
•
∑
β∈Ai Xβ .

•
∑
β∈Aj Xβ .

•
∑
β∈Ai∪Aj Xβ .

Thus, it can compute
∑
β∈Ai Xβ +

∑
β∈Aj Xβ −∑

β∈Ai∪Aj Xβ . Now, if e participates in the cycle C̃yc
we obtain Xe + X?, which can be observed by noting that
Ai ∩ Aj = {Xe, X?}. It can also be seen that if edge
(i, j) /∈ E

C̃yc
then at least one of i or j do not participate

in C̃yc (cf. Claim 1). In this case the previous operation
would simply provide Xe. Terminal t? is connected to all the
bottleneck edges. Thus, it can obtain the following symbols.

Y1e = Xe +X? if e ∈ E
C̃yc

Y1e = Xe if e /∈ E
C̃yc

Following this step, t? can compute
∑
β∈Ak Xβ −∑

e:Xe∈Ak Y1e. Note that Ak contains only one source cor-
responding to the vertices, namely Xk. Now, if k /∈ V

C̃yc
,

then it is evident that Y1e = Xe for all e ∈ In
G̃

(k), so
that

∑
β∈Ak Xβ −

∑
e:Xe∈Ak,e∈Ẽ

Y1e = Xk. Alternatively, if
k ∈ V

C̃yc
, then

∑
β∈Ak Xβ −

∑
e:Xe∈Ak,e∈Ẽ

Y1e = Xk−X?.
Thus at the end of this operation, t? has the following symbols.

Y2k = Xk −X? if k ∈ V
C̃yc

Y2k = Xk if k /∈ V
C̃yc

Note that a cycle has the same number of edges and nodes.
Thus,

∑
k∈Ṽ Y2k +

∑
e∈Ẽ Y1e =

∑
i∈Ṽ Xi +

∑
e∈Ẽ Xe.

However, terminal t? already knows Z, thus it can compute
X? and consequently the value of all the sources. Therefore,
under the assumption that all the terminals can compute the
sum of sources, we can conclude that t? is able to compute
all the individual source symbols present in the sum-network.

It can be observed that the minimum cut between the set of
all the sources and t? is α|Ṽ |. Then under a valid fractional
(r, l)-network code we must have(

ql
)α|Ṽ | ≥ (qr)

|Ẽ|+|Ṽ |+1 (3)

=⇒ r

l
≤ α|Ṽ |
|Ẽ|+ |Ṽ |+ 1

. (4)

This concludes the proof.
Thus for the sum network constructed in Example 1 we

must have, for a (r, l)-network coding solution

r

l
≤ 4α

4 + 5 + 1
=

2α

5
. (5)

Remark 1. It can be seen that following the line of proof
above for the case of Construction 1 (without source s?), one
arrives at a capacity upper bound of α|Ṽ |

|Ẽ|+|Ṽ |
.

Remark 2. In Construction 2, we chose to connect the starred
source to only a carefully chosen subset of the bottleneck
edges. If instead we had connected it to all the bottleneck
edges (for instance), the starred terminal could only recover
the source, under conditions on the characteristic of the field
A. This dependency on characteristic is evaluated and shown
for an example sum-network in the Appendix. Our choice of
the subset of bottleneck edges avoids this dependence on the
field characteristic.

There is further work done in [14], in which it is shown
that the computation capacity (taking into account both linear
and non-linear network codes) of a sum-network is strongly
dependent on the finite field A chosen for computation and
communication.

D. Achievability scheme for G

For certain classes of undirected simple connected graphs,
the corresponding sum-network is such that we can demon-
strate a linear network coding scheme that achieves the upper
bound in Theorem 1. Towards this end, we first assign non-
negative integers to variables m(i,j)(i) and m(i,j)(j), for all
(i, j) ∈ Ẽ, that satisfy certain constraints. The constraints
depend on whether we use Construction 1 or 2 for constructing
G and are given below.
Feasible solution for Construction 1.

m(i,j)(i) +m(i,j)(j) = b, ∀(i, j) ∈ Ẽ. (CODE-FEAS-1)∑
j:(i,j)∈In

G̃
(i)

m(i,j)(i) ≤ |Ẽ|, ∀i ∈ Ṽ .

Feasible solution for Construction 2.

m(i,j)(i) +m(i,j)(j) = b, ∀(i, j) ∈ Ẽ. (CODE-FEAS-2)∑
j:(i,j)∈In

G̃
(i)

m(i,j)(i) ≤ |Ẽ|+ 1, ∀i ∈ Ṽ .

∑
i∈V

C̃yc

|Ẽ|+ 1−
∑

j:(i,j)∈In
G̃
(i)

m(i,j)(i)

 ≥ b.
As will be evident shortly, the existence of the variables
m(i,j)(i) allow us to construct the achievability scheme that
matches the upper bound in Theorem 1. Such feasible assign-
ments do not exist for all graphs. However, for a large class of
graphs, we can in fact arrive at an assignment. For instance, for
a simple, regular graph where |Ṽ | is even, it can be seen that
m(i,j)(i) = |Ṽ |/2, ∀(i, j) ∈ Ẽ results in a feasible assignment
for CODE-FEAS-1. The following claim can be shown (the
proof appears in the Appendix).

Claim 2. If G̃ is a regular graph or a biregular bipartite
graph, then CODE-FEAS-1 has a feasible solution.

1) Linear network code for Construction 1: We construct a
(r, l) network code for the sum-network G constructed above,
by choosing r = |Ṽ | and l = |Ṽ | + |Ẽ|. In the discussion
below, we assume that α = 1. However, it will be evident
that the case of higher α is a simple extension of the scheme
for α = 1. Here we describe the encoding function φei for
bottleneck edge ei, and assign the other edges to simply
forward the messages that they receive.

We number the edges in Ẽ in an arbitrary order, so that
the edges can be indexed as ẽ1, . . . , ẽ|Ẽ|. Then the source
processes can be represented as a vector X̄ of dimension
r(|Ṽ |+ |Ẽ|) as shown below.

X̄ = [XT
1 XT

2 . . . XT

|Ṽ |
XT
ẽ1 X

T
ẽ2 . . . XT

ẽ
|Ẽ|

]T

where Xi, i = 1, . . . , |Ṽ |, Xẽi , i = 1, . . . , |Ẽ| are each of
dimension r× 1. Recall that tail(ei) is connected to the set of
sources in Ai, thus φei(X̄) is only a function of the sources
in Ai. Moreover, head(ei) is connected to terminals ti and te,

where e ∈ In
G̃

(i) and also t?. We partition the vector φei(X̄)
as follows.

φei(X̄)T = [φei(X̄)T1 φei(X̄)Tê1 . . . φei(X̄)Tê|In(i)|]

where φei(X̄)1 is of dimension r × 1. Furthermore,
ê1, . . . , ê|In

G̃
(i)| ∈ In

G̃
(i) and φei(X̄)êj is of dimension

mêj (i)× 1 (mêj (i) is obtained from CODE-FEAS-1). We set

φei(X̄)1 =
∑
β∈Ai

Xβ

Next, for êj = (u, i) ∈ In
G̃

(i), we set

φei(X̄)êj =

{
[Imêj (i)×mêj (i) 0]X(u,i) if i < u

[0 Imêj (i)×mêj (i)]X(u,i) otherwise.

It is evident that the assignment for the encoding function
φei(X̄) discussed above is feasible since

1) it is a function only of sources in Ai, and
2) the row dimension of the transformation is

r +
∑
êj∈In(i)mêj (i) ≤ |Ṽ |+ |Ẽ|.

Theorem 2. The sum of sources Z, can be computed at all
the terminals with the encoding functions specified above.

Proof: The terminal ti, i = 1, . . . , |Ṽ | is connected to
head(ei) in G for i ∈ {1, . . . , |Ṽ |}. Therefore, from φei(X̄)1
it recovers

∑
β∈Ai Xβ . Furthermore, it has access to the set

of sources in Aci via direct edges. Thus, it can compute the
sum.

Next, consider a terminal te where e = (i, j) ∈ Ẽ such that
i < j. From the assignment above it can be seen that te can
recover Xe since[

φei(X̄)e
φej (X̄)e

]
=

[
[Ime(i)×me(i) 0]X(i,j)

[0 Ime(j)×me(j)]X(i,j)

]
= Xe,

since me(i) + me(j) = b = r. Next, note that
∑
β∈Ai Xβ +∑

β′∈Aj Xβ′ − Xe =
∑
β∈Ai∪Aj Xβ , since Ai ∩ Aj = Xe.

Moreover, te, gets all the sources (Ai∪Aj)c via direct edges.
Thus, it can compute the sum.

Finally, for t?, note that by previous arguments, it can
recover any Xe, e ∈ |Ẽ| from the bottleneck edges. Following
this, it can recover Xi = φei(X̄)1−

∑
e∈In

G̃
(i)Xe for all i ∈ Ṽ

and consequently the sum.

Example 2. We describe the edge functions and decoding
procedure for the case when G̃ = K3, i.e. the complete
graph on three vertices. We note that the following assignment
satisfies the constraints in CODE-FEAS-1.

m(1,2)(1) = 1 m(1,2)(2) = 2,

m(1,3)(1) = 2 m(1,3)(3) = 1, and

m(2,3)(2) = 1 m(2,3)(3) = 2.

The linear encoding functions are shown in Fig. 4.

X̄ =
[
XT

1 XT
2 XT

3 XT
(1,2) XT

(1,3) XT
(2,3)

]T

φe1(X̄) =

 I3 03×3 03×3 I3 I3 03×3
0 0 0 [1 0] 0 0
0 0 0 0 [I2 0] 0

 X̄

φe2(X̄) =

 03×3 I3 03×3 I3 03×3 I3
0 0 0 [0 I2] 0 0
0 0 0 0 0 [1 0]

 X̄

φe3(X̄) =

 03×3 03×3 I3 03×3 I3 I3
0 0 0 0 [0 1] 0
0 0 0 0 0 [0 I2]

 X̄

Fig. 4. Encoding functions for the sum-network constructed from K3

(see discussion in Example 2). It can observed that t1,2 can be satis-
fied since can recover the first component of X(1,2) from φe1 (X̄) and
the remaining components from φe2 (X̄), following which it can recover
X1 + X2 + X(1,2) + X(2,3) + X(1,3). It has X3 available via a direct
edge. In a similar fashion, it can be verified that all terminals can be satisfied.

2) Linear network code for Construction 2: For the second
construction, we have one additional source X? and we
construct a (r, l) network code for the sum-network with
r = |Ṽ | and l = |Ṽ |+ |Ẽ|+1. Similar to the previous case we
index the edges so that the source processes can be stacked in
a vector X̄ of dimension r(|Ṽ |+ |Ẽ|+ 1) as follows

X̄ = [XT
1 XT

2 . . . XT

|Ṽ |
XT
ẽ1 X

T
ẽ2 . . . XT

ẽ
|Ẽ|

XT
?]T

where Xi, i = 1, . . . , |Ṽ |, Xẽi , i = 1, . . . , |Ẽ| and X? are
each of dimension r×1. The constraints satisfied by variables
m(i,j)(i) is as outlined in CODE-FEAS-2. Now, for i /∈ V

C̃yc
,

the construction of φei(X̄) is exactly the same as in the
previous one.

For i ∈ V
C̃yc

, the vector φei(X̄) also contains information
from source s? as follows

φei(X̄)T = [φei(X̄)T1 φei(X̄)Tê1 . . . φei(X̄)Tê|In(i)| φei(X̄)T?]

where φei(X̄)1 is of dimension r×1. Also, ê1, . . . , ê|In
G̃
(i)| ∈

In
G̃

(i) and φei(X̄)êj is of dimension mêj (i)× 1. φei(X̄)T? is
of dimension wi × 1 where

wi = |Ẽ|+ 1−
∑

j:(i,j)∈In
G̃
(i)

m(i,j)(i).

Note that wi ≥ 0 for i ∈ V
C̃yc

owing to the second constraint
of CODE-FEAS-2.
φei(X̄)1 and φei(X̄)êj for êj /∈ EC̃yc are defined exactly

as in previous construction. For êj = (u, i) ∈ E
C̃yc

there is a
slight modification as follows.

φei(X̄)êj =

{
[Imêj (i)×mêj (i) 0](X(u,i) +X?) if i < u,

[0 Imêj (i)×mêj (i)](X(u,i) +X?) otherwise.

We let γwi =
∑
{j:j∈V

C̃yc
,j<i} wj and γ′wi =∑

{j:j∈V
C̃yc

,j>i} wj . Then, φei(X̄)? is defined as

φei(X̄)? =
[
0
wi×r(|Ẽ|+|Ṽ |)

0wi×γwi Iwi 0wi×γ′wi

]
X̄

(6)

Such an assignment for the encoding function φei(X̄) for
i ∈ V

C̃yc
is feasible as

1) tail(ei) is connected to the starred source s?, and
2) the row dimension of the transformation is

r +
∑

êj∈In
G̃
(i)

mêj (i) + wi

= r +
∑

êj∈In(i)

mêj (i) + (|Ẽ|+ 1−
∑

j:(i,j)∈In
G̃
(i)

m(i,j)(i))

= |Ẽ|+ |Ṽ |+ 1.

Theorem 3. The sum of sources Z, can be computed at all
the terminals with the encoding functions specified above.

Proof: For terminals other than t? and te where e ∈ E
C̃yc

,
the sum can be computed in the same fashion as described in
Theorem 2.

Consider terminal te where e = (i, j) ∈ E
C̃yc

such that
i < j. te is connected to head(ei) and head(ej). te can recover
the sum Xe +X? by

Xe +X? =

[
φei(X̄)e
φej (X̄)e

]
.

Note that
∑
β∈Ai Xβ +

∑
β′∈Aj Xβ′ − (Xe + X?) =∑

β∈Ai∪Aj Xβ , since Ai ∩ Aj = {Xe, X?}. Moreover, te,
gets all the sources (Ai ∪ Aj)c via direct edges. Thus, it can
compute the sum.

Terminal t? can obtain X? as follows.

XT
? =

[
φei1 (X̄)T? φei2 (X̄)T? . . . φei|V

C̃yc
|
(X̄)T?

]
,

where i1 < i2 < . . . < i|V
c̃yc
| all belong

to V
C̃yc

. This is because
∑
i∈V

C̃yc

wi =∑
i∈V

C̃yc

[
|Ẽ|+ 1−∑j:(i,j)∈In

G̃
(i)m(i,j)(i)

]
≥ b owing to

the constraints in CODE-FEAS-2. Moreover, eq. (6) shows
that the different bottleneck edges recover all the disjoint
subsets of X?.

For e /∈ E
C̃yc

, t? can recover Xe in the same way as te.
For e = (i, j) ∈ E

C̃yc
i < j, t? can recover Xe as[

φei(X̄)e
φej (X̄)e

]
−X? = Xe +X? −X?

Thus, t? can recover any Xe, e ∈ Ẽ. Following this it can be
seen that it can also recover Xi for all i ∈ Ṽ and then the
sum.

The linear network code described here assumed edges of
unit capacity. The same scheme can be used in sum-networks

where all the edges have integer edge capacity α > 1. In
order to see this, we think of every α capacity edge as a
union of α unit capacity edges between the same two vertices.
Then we can think of this modified network as a union of α
sub-networks, each of which is topologically equivalent to the
original network but consists of only unit capacity edges. We
can use the linear network code described above to achieve
the coding capacity r

l on each of these unit edge capacity
networks. Thus, at the very least, we will be able to transmit
a sum of sources ∈ Aαr to all the terminals by a repeated
application of the same network code on all α sub-networks.
Thus, this will be a rate αr

l solution to the original sum-
network. However, as evinced by Theorem 1 this is also the
upper bound on the rate and hence this repeated application
of our linear network code achieves capacity.

IV. COMPARISON WITH EXISTING RESULTS

The work most closely related to ours is by Rai & Das
[13]. They showed that there exists a sum-network that has
coding capacity p

q for any p, q and constructed a linear code
that achieves capacity on an instance of such a sum-network.
They also pointed out that finding sum-networks that have the
same coding capacity but with fewer sources and terminals
was an open problem. We now demonstrate that our approach
is a strict generalization of the work of [13].

Their construction for a network with capacity p/q starts
by constructing a base network that has a capacity of 1/q.
The base network only has unit capacity edges. The edges are
replicated p times to obtain a network with capacity p/q. We
now show that our approach gives their result as a special case
when G̃ is chosen to be the complete graph on 2q−1 vertices.

Example 3. Consider G̃ to be a complete graph on 2q − 1
vertices. This graph has a feasible assignment to constraints in
CODE-FEAS-1 by Claim 2. Construct the sum-network G from
G̃ without using the extra source s?. Then, by using Theorems
1 and 2 the coding capacity of G is 2q−1

2q−1+(2q−1
2)

= 1
q . By

replicating each edge p times, we obtain a coding rate of p/q.

However, it is important to note that our framework allows
us more parameters, which can be chosen to obtain stronger
results in the sense that specific coding rates can be achieved
by using fewer sources and terminals.

Example 4. Suppose that the approach of [13] was used to
construct a sum-network with capacity 2/5. It can be verified
that this requires a sum-network with 45 sources and 46
terminals. In contrast, in our approach we can choose G̃ to be
the graph in Fig. 1 (a feasible assignment for CODE-FEAS-2
can be easily derived). In this case, we obtain a sum-network
G (with source s?) with capacity 4

4+5+1 = 2
5 . However, our

sum-network only has 9 sources and 10 terminals.

As another example, we can construct a network with
capacity 5/13 that is significantly smaller.

Example 5. Let G̃ be the Petersen graph [15], which is a
3-regular graph on 10 vertices (see Figure 5). Construct sum-

1

2

3 4

5

6

7

8 9

10

Fig. 5. Petersen graph.

network G (with source s?). For this, choose the shortest cycle
as V

C̃yc
= {1, 2, 3, 4, 5}. The assignment for the variables in

CODE-FEAS-2 can be done as follows

m(i,j)(i) =

4 if i ∈ V

C̃yc
and j /∈ V

C̃yc
,

6 if i /∈ V
C̃yc

and j ∈ V
C̃yc

, and

5 otherwise.

wi = 2 for all i ∈ V
C̃yc

.

The coding capacity of G can be verified to be 10
10+ 3×10

2 +1
=

5
13 and it has 26 sources and 26 terminals. However, the
approach of [13] would need 2 × 13 − 1 +

(
2×13−1

2

)
= 325

sources and 326 terminals.

To a certain extent we can analyze the parameters that can
be obtained by considering regular graphs. Let G̃ be a d-
regular graph on b vertices, hence d ≤ b− 1. Then the upper
bounds that we have on the coding rate for Constructions 1
and 2 respectively are

r

l
≤ αb

b+ db
2

=
2α

2 + d
, (7)

and
r

l
≤ αb

b+ db
2 + 1

. (8)

Without loss of generality consider p/q where p and q are
coprime. It can be seen that (7) can achieve any such p/q by
setting α = p and d = 2q − 2. The resulting G is a 2q − 2-
regular graph on atleast 2q − 1 vertices, in which case it is
just the complete graph on 2q − 1 vertices. This recovers the
result of [13].

We can also choose G̃ to be a biregular bipartite graph with
nl vertices of degree dl each in one part and nr vertices of
degree dr each in the other part. Without the source s?, the
coding capacity for a network constructed from such a graph
is

nl + nr

nl + nr + nldl+nrdr
2

=
2

2 + nldl+nrdr
nl+nr

=
2

2 + dav
(9)

where dav is the average degree of the graph. Here dav is not
necessarily an integer and thus opens up more possibilities
of coding capacities that can be achieved from this graph
construction as opposed to (7) where d has to be an integer.

Example 6. Consider G̃ to be the complete bipartite graph
K3,5. The sum-network G constructed from this graph has
coding capacity 2

2+ 3×5+5×3
8

= 8
23 and has 23 sources and 24

terminals. The approach of [13] would require 45 +
(
45
2

)
=

1035 sources and 1036 terminals.

It can also be seen that for any specified minimum cut
between source terminal pairs, we can always choose an
appropriate regular graph G̃ so that the corresponding sum
network has a capacity strictly smaller than one. Thus, it can
be inferred that any min-cut (= α × b) between each source-
terminal pair can never guarantee solvability.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have constructed a large class of sum-
networks for which we can determine the capacity. These
sum-networks are in general, smaller (with fewer sources
and terminals) than sum-networks known to achieve the said
capacity and answer a question raised in prior work. The
construction of these sum-networks with the help of undirected
graphs allows us to identify certain graph-theoretic properties
that aid in constructing a capacity-achieving linear network
code. Future work will involve analyzing these properties in
greater detail and also examining whether there are other
combinatorial structures that can be used to construct sum-
networks.

APPENDIX

Proof of Claim 1.
We only need to rule out the possibility that (i, j) /∈ E

C̃yc
,

but (i, j) ∈ Ẽ. But this is impossible, since if (i, j) ∈ Ẽ, we
could find a shorter cycle in G̃ than C̃yc.
Proof of Claim 2.
Suppose G̃ is a k-regular graph on b vertices. If b is even,
then assigning

m(i,j)(i) =
b

2
and m(i,j)(j) =

b

2
∀(i, j) ∈ Ẽ (10)

satisfies the first two constraints. Also, it satisfies the third
constraint as ∑

j:(i,j)∈In
G̃
(i)

m(i,j)(i) =
kb

2
= |Ẽ| ∀i ∈ Ṽ . (11)

If b is odd, then k is even and we can construct an Euler
tour [15] of G̃, i.e., a cycle that traverses every edge in Ẽ
exactly once, though it may visit a vertex any number of times.
Suppose we start at vertex 1 and the Euler tour is of the form

[(1, j1), (j1, j2), . . . , (jf , 1), (1, jf+1), . . . , (jF , u)] (12)

where f, f + 1 are such that the Euler tour passes through the
sequence of vertices jf → 1 → jf+1 and F is such that the
edge (jF , u) is the last edge traversed on the Euler tour.

Then we can arrange the variables m(i,j)(i) ∀(i, j) ∈ Ẽ as
a one-to-one correspondence with (12) in the following way

[m(1,j1)(1),m(1,j1)(j1),m(j1,j2)(j1), . . . , (13)
m(jf ,1)(1),m(1,jf+1)(1), . . . ,m(jF ,1)(1)]

Assigning consecutive terms in (13) alternately as
⌊
b
2

⌋
and⌈

b
2

⌉
, we see that for every vertex i, the value assigned to

m(iin,i)(i) is different from m(i,iout)(i), where the Euler tour
progresses in the order iin → i → iout. We can see that such
an assignment satisfies the first constraint.

Also since there are only two possible values, we conclude
that there are equal number of variables m(i,j)(i) with values
equal to

⌊
b
2

⌋
and

⌈
b
2

⌉
for all i ∈ Ṽ . Hence, we have ∀i ∈ Ṽ∑

j:(i,j)∈In
G̃
(i)

m(i,j)(i) =

k

2

⌊
b

2

⌋
+
k

2

⌈
b

2

⌉
=
kb

2
= |Ẽ|

Next, consider a biregular bipartite simple graph G̃ with nl
vertices in one part and nr vertices in the other part. Each
vertex in the first part has degree dl and each vertex in the
other part has degree dr. Since G̃ is simple, we must have that
dl ≤ nr and dr ≤ nl. Every edge e in the graph is of the form
(il, ir) where il is a vertex in one part while ir is a vertex
in the other part. Then it is easy to see that the following
assignment satisfies the constraints in CODE-FEAS-1.

me(il) = nl,

me(ir) = nr,

as ∀l, r ∈ Ṽ and ∀e ∈ Ẽ

me(l) +me(r) = nl + nr = b, and∑
ei:ei∈In(l)

mei(l) = dl × nl = |Ẽ|.

Explanation regarding Remark 2.
We evaluate, over two different finite fields, the computation
capacity of an example sum-network shown in Figure 6. The
structure of the sum-network is better understood with the help
of the following four subsets of the source nodes.

A1 = {s1, s(1,2), s(1,3), s(1,4), s?}, (14)
A2 = {s2, s(1,2), s(2,3), s?},
A3 = {s3, s(1,3), s(2,3), s(3,4), s?},
A4 = {s4, s(1,4), s(3,4), s?}.

This sum-network is a modification of the sum-network in
Figure 3. Unlike Figure 6, there is no edge (s?, tail(e4)) in
Figure 3. The inclusion of this edge is the only difference
between those two sum-networks. Let A be the finite field
alphabet which is used for communication.

Claim 3. Suppose there is a (m,n)-network code that allows
each terminal in the example sum-network to compute the finite
field sum over A of all the source messages. Let ch(A) denote
the characteristic of the finite field A. Then

• if ch(A) = 2,m/n ≤ 4/9, and
• if ch(A) 6= 2,m/n ≤ 4/10.

s1 s2 s3 s4 s(1,2) s(2,3) s(3,4) s(1,4) s(1,3)

t1 t2 t3 t4 t(1,2) t(2,3) t(3,4) t(1,4) t(1,3) t?

Ac
1 Ac

2 Ac
3 Ac

4 Ac
2 ∩ Ac

3
Ac

3 ∩ Ac
4 Ac

1 ∩ Ac
4

Ac
1 ∩ Ac

3

e1 e2 e3 e4

s?

Ac
1 ∩ Ac

2

Fig. 6. An example sum-network with 10 sources and 10 terminals. This
sum-network is obtained by including an extra edge (s?, tail(e4)) in Figure
3. We describe the direct edges to each terminal with the help of the sets
defined in Eq. (14). The direct edges to each terminal are indicated by the set
shown below it, where superscript c denotes the complement of the set.

TABLE I
THE PARTIAL SUMS OBTAINED BY CERTAIN TERMINALS AFTER THEY

SUBTRACT THE MESSAGE VALUES RECEIVED OVER THE DIRECT EDGES.

Terminal Partial sum

t1 X1 +X(1,2) +X(1,3) +X(1,4) +X?

t2 X2 +X(1,2) +X(2,3) +X?

t3 X3 +X(1,3) +X(2,3) +X(3,4) +X?

t4 X4 +X(1,4) +X(3,4) +X?

Proof: Suppose there is a (m,n)-network code that allows
each terminal to compute

Σ := X1 +X2 +X3 +X4 +X(1,2) +X(1,3)

+X(1,4) +X(2,3) +X(3,4) +X?,

where the addition is over A. Then by subtracting the values
of the source messages obtained over the direct edges, each
terminal of the form ti, i ∈ {1, 2, 3, 4} can obtain the sum
of a subset of the source messages from the information
transmitted over the edge ei. The particular partial sums
recovered are listed in Table I. Let the value of the partial
sum computed by the terminal ti, i ∈ {1, 2, 3, 4} as shown
in Table I be denoted as Pi. Since the terminal t(i,j) for
any (i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)} receives infor-
mation from both the edges ei and ej , it can carry out the
following operation and obtain a partial sum.

Pi + Pj − Σ = X(i,j) +X?. (15)

Let us consider the terminal t?. It receives information from all
the four bottleneck edges. Hence it can compute all the partial
sums listed in Table I. It can also compute all partial sums of
the form shown in Eq. (15). Note that since each Xi and X(i,j)

are uniform i.i.d. over Am, all the partial sums obtained above
are linearly independent. However, by the network code used,
the maximum number of distinct values that can be transmitted
across the four bottleneck edges is (|A|n)4. Hence we have
that

|A|4n ≥ |A|9m =⇒ m/n ≤ 4/9.

The above holds for any finite field A. Now suppose ch(A) 6=
2. Then we can obtain a tighter bound on the ratio m/n. In
particular, terminal t? can carry out the following operation
based on the values received over {e1, e2, e3, e4}.
T = P1 + P2 + P3 + P4 − (X(1,2) +X?)− (X(1,3) +X?)

− (X(1,4) +X?)− (X(2,3) +X?)− (X(3,4) +X?),

= X1 +X2 +X3 +X4 +X(1,2) +X(1,3) +X(1,4)

+X(2,3) +X(3,4) −X?.

Then t? can recover the value of X? by the operation

2−1(Σ− T),

where the inverse exists as 2 6= 0 in a finite field A which
has ch(A) 6= 2. Thus, terminal t? can obtain the values of
ten linearly independent values in Am from the information
received over the bottleneck edges. Hence,

|A|4n ≥ |A|10m =⇒ m/n ≤ 4/10.

A. Linear network codes with rate equal to the upper bound

Table II describes a linear network code for the example
sum-network which has rate = 4/9 if ch(A) = 2. Note that
each terminal t(i,j) can recover the value of X(i,j) + X?

from this network code. For instance, based on Table II,
terminal t(1,3) obtains X(1,3)[1] + X?[1], X(1,3)[2] + X?[2]
from the 5th, 6th components of φ1(X) respectively; and it
obtains X(1,3)[3] +X?[3], X(1,3)[4] +X?[4] from the 5th, 6th
components of φ3(X) respectively. The decoding function for
the terminals ti, i ∈ {1, 2, 3, 4} is immediate. For a terminal
of the form t(i,j), its decoding procedure involves computing
the following partial sum.∑

sα∈Ai

Xα +
∑
sα∈Aj

Xα − (X(i,j) +X?) =
∑

sα∈Ai∪Aj

Xα.

The source messages not present in the above partial sum are
available to t(i,j) through the direct edges, and hence it can
compute the required sum. We use the fact that ch(A) = 2
in the decoding procedure for terminal t?. Specifically, it can
carry out the operation in Eq. 16.

4∑
i=1

∑
sα∈Ai

Xα +
(
X(1,2) +X?

)
+
(
X(1,3) +X?

)
+
(
X(1,4) +X?

)
+
(
X(2,3) +X?

)
+
(
X(3,4) +X?

)
(16)

=

4∑
i=1

Xi + 3
(
X(1,2) +X(1,3) +X(1,4) +X(2,3) +X(3,4)

)
+ 9X?,

= Σ,

as 9 ≡ 3 ≡ 1 mod ch(A).
If ch(A) 6= 2, then the upper bound is 4/10 and the network

code used is as shown in Table III. Note that this network
code has the same values for its first nine components as
in the previous network code in Table II. The decoding for

TABLE II
THE FUNCTION VALUES (EACH IN A, WITH CH(A) = 2) TRANSMITTED ACROSS e1, e2, e3, e4 IN FIGURE 6. THIS NETWORK CODE HAS RATE = 4/9.

EACH MESSAGE X1, X2, X3, X4, X(1,2), X(1,3), X(1,4), X(2,3), X(3,4), X? IS A VECTOR WITH 4 COMPONENTS, AND φ1(X), φ2(X), φ3(X), φ4(X)
ARE VECTORS WITH 9 COMPONENTS EACH. THE NUMBER INSIDE SQUARE BRACKETS ADJOINING A VECTOR INDICATES A PARTICULAR COMPONENT OF

THE VECTOR. EACH TERMINAL t(i,j) FOR ANY (i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)} CAN RECOVER THE VALUE OF X(i,j) +X? FROM THIS
NETWORK CODE, WHICH IS THEN USED IN COMPUTING THE SUM OVER A.

Component φ1(X) φ2(X) φ3(X) φ4(X)

1 to 4
∑

sα∈A1
Xα

∑
sα∈A2

Xα
∑

α∈A3
Xe

∑
sα∈A4

Xe

5 X(1,3)[1] +X?[1] X(1,2)[1] +X?[1] X1,3[3] +X?[3] X(1,4)[4] +X?[4]

6 X(1,3)[2] +X?[2] X(1,2)[2] +X?[2] X1,3[4] +X?[4] X(3,4)[1] +X?[1]

7 X(1,4)[1] +X?[1] X(1,2)[3] +X?[3] X2,3[2] +X?[2] X(3,4)[2] +X?[2]

8 X(1,4)[2] +X?[2] X(1,2)[4] +X?[4] X2,3[3] +X?[3] X(3,4)[3] +X?[3]

9 X(1,4)[3] +X?[3] X(2,3)[1] +X?[1] X2,3[4] +X?[4] X(3,4)[4] +X?[4]

TABLE III
THE FUNCTION VALUES (EACH IN A, WITH CH(A) 6= 2) TRANSMITTED ACROSS e1, e2, e3, e4 IN FIGURE 6. THIS NETWORK CODE HAS RATE = 4/10.
EACH MESSAGE X1, X2, X3, X4, X(1,2), X(1,3), X(1,4), X(2,3), X(3,4), X? IS A VECTOR WITH 4 COMPONENTS, AND φ1(X), φ2(X), φ3(X), φ4(X)

ARE VECTORS WITH 10 COMPONENTS EACH. THE NUMBER INSIDE SQUARE BRACKETS ADJOINING A VECTOR INDICATES A PARTICULAR COMPONENT OF
THE VECTOR. EACH TERMINAL t(i,j) FOR ANY i, j ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)} CAN RECOVER THE VALUE OF X(i,j) +X? FROM THIS

NETWORK CODE, WHICH IS THEN USED IN COMPUTING THE SUM OVER A.

Component φ1(X) φ2(X) φ3(X) φ4(X)

1 to 4
∑

sα∈A1
Xα

∑
sα∈A2

Xα
∑

α∈A3
Xe

∑
sα∈A4

Xe

5 X(1,3)[1] +X?[1] X(1,2)[1] +X?[1] X1,3[3] +X?[3] X(1,4)[4] +X?[4]

6 X(1,3)[2] +X?[2] X(1,2)[2] +X?[2] X1,3[4] +X?[4] X(3,4)[1] +X?[1]

7 X(1,4)[1] +X?[1] X(1,2)[3] +X?[3] X2,3[2] +X?[2] X(3,4)[2] +X?[2]

8 X(1,4)[2] +X?[2] X(1,2)[4] +X?[4] X2,3[3] +X?[3] X(3,4)[3] +X?[3]

9 X(1,4)[3] +X?[3] X(2,3)[1] +X?[1] X2,3[4] +X?[4] X(3,4)[4] +X?[4]

10 X?[1] X?[2] X?[3] X?[4]

all terminals except t? is the same as in the previous case.
However the decoding procedure for terminal t? has to be
different as the operation done in Eq. 16 does not return the
value Σ as both coefficients 3, 9 are not equal to 1 when
ch(A) 6= 2. From Table III, the 10th component transmitted
along each bottleneck edge is a distinct component of the
source message X?. Since the terminal t? receives information
from each bottleneck edge, it can thus obtain the value of X?.
Since t? can also find the value of X(i,j) +X? based on the
network code, it can recover the value of the message X(i,j).
Thus, all the summands in

∑
sα∈Ai Xα except Xi are known

to t? for all i ∈ {1, 2, 3, 4}; moreover, it knows the value of
the sum

∑
sα∈Ai Xα from the first four components of the

network code. Thus t? can obtain the value of each source
message using the network code and thus can compute the
required sum.

REFERENCES

[1] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: Cut-set bounds,” IEEE Trans. on Info.
Th., vol. 57, no. 2, pp. 1015–1030, Feb 2011.

[2] ——, “Linear codes, target function classes, and network computing
capacity,” IEEE Trans. on Info. Th., vol. 59, no. 9, pp. 5741–5753, Sept
2013.

[3] A. Ramamoorthy and M. Langberg, “Communicating the sum of sources
over a network,” IEEE J. Select. Areas Comm., vol. 31(4), pp. 655–665,
2013.

[4] B. K. Rai and B. K. Dey, “On network coding for sum-networks,” IEEE
Trans. on Info. Th., vol. 58, no. 1, pp. 50 –63, 2012.

[5] S. Huang and A. Ramamoorthy, “On the multiple unicast capacity of
3-source, 3-terminal directed acyclic networks,” IEEE/ACM Trans. on
Networking, vol. 22(1), pp. 285–299, 2014.

[6] ——, “An achievable region for the double unicast problem based on a
minimum cut analysis,” IEEE Trans. on Comm., vol. 61(7), pp. 2890–
2899, 2013.

[7] J. Korner and K. Marton, “How to encode the modulo-2 sum of binary
sources,” IEEE Trans. on Info. Th., vol. 25, no. 2, pp. 219–221, 1979.

[8] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. on
Info. Th., vol. 47, no. 3, pp. 903–917, 2001.

[9] V. Doshi, D. Shah, M. Médard, and S. Jaggi, “Distributed Functional
Compression through Graph Coloring,” in Data Compression Confer-
ence, 2007, pp. 93–102.

[10] A. Ramamoorthy, “Communicating the sum of sources over a network,”
in IEEE Intl. Symposium on Info. Th., 2008, pp. 1646–1650.

[11] S. Shenvi and B. K. Dey, “A Necessary and Sufficient Condition for
Solvability of a 3s/3t sum-network,” in IEEE Intl. Symposium on Info.
Th., 2010, pp. 1858–1862.

[12] B. K. Rai and N. Das, “On the capacity of ms/3t and 3s/nt sum-
networks,” in IEEE Information Theory Workshop (ITW), 2013, pp. 1–5.

[13] ——, “On the capacity of sum-networks,” in 2013 51st Annual Allerton
Conference on Communication, Control, and Computing, 2013, pp.
1545–1552.

[14] A. Tripathy and A. Ramamoorthy, “Capacity of sum-networks for
different message alphabets,” in IEEE Intl. Symposium on Info. Th.,
June 2015, pp. 606–610.

[15] R. Diestel, Graph Theory, 4th Edition. Springer, 2012.

	I Introduction
	I-A Main Contributions

	II Problem formulation
	III Construction and capacity of a family of sum networks
	III-A Construction 1
	III-B Construction 2
	III-C Upper bound on the capacity of G
	III-D Achievability scheme for G
	III-D1 Linear network code for Construction 1
	III-D2 Linear network code for Construction 2

	IV Comparison with existing results
	V Conclusions and future work
	V-A Linear network codes with rate equal to the upper bound

	References

