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Information Spectrum Approach to Strong Converse
Theorems for Degraded Wiretap Channels

Vincent Y. F. Tan† and Matthieu R. Bloch‡

Abstract—We consider block codes for degraded wiretap
channels in which the legitimate receiver decodes the message
with an asymptotic error probability no larger than ε but the
leakage to the eavesdropper vanishes. For discrete memoryless
and Gaussian wiretap channels, we show that the maximum rate
of transmission does not depend onε ∈ [0, 1), i.e., such chan-
nels possess thepartial strong converse property. Furthermore,
we derive sufficient conditions for the partial strong converse
property to hold for memoryless but non-stationary symmetric
and degraded wiretap channels. Our proof techniques leverage
the information spectrum method, which allows us to establish a
necessary and sufficient condition for the partial strong converse
to hold for general wiretap channels without any information
stability assumptions.

Index Terms—Strong converse, Information spectrum method,
Degraded wiretap channels, Information-theoretic security

I. I NTRODUCTION

In many modern signal processing applications [1], such
as credit card transactions, health informatics and device-to-
device communications, a sender wishes to transmit confi-
dential information to a legitimate receiver, while keeping
the information private or secret from a malicious party—
the so-called eavesdropper. This problem is well-studied in
information-theoretic security [2], [3] and is known as the
wiretap channelmodel [4] as shown in Fig.1. The task is to
reliably communicate a messageM ∈ {1, . . . , ⌈2nR⌉} from
the senderX to the legitimate receiverY while keeping the
eavesdropperZ ignorant ofM . The secrecy capacityfor the
wiretap channelW : X → Y × Z is the supremum of all
ratesR for which there exists a code that isreliable, i.e.,
Y can reconstructM with probability tending to one as the
blocklengthn tends to infinity, andsecure, i.e., the normalized
mutual information (leakage rate) of the message and the
eavesdropper’s signal1

n
I(M ;Zn) is arbitrarily small asn

grows. Wyner showed that the secrecy capacity of a degraded
(i.e.,X − Y −Z forms a Markov chain) discrete memoryless
wiretap channel is

max
PX

I(X ;Y )− I(X ;Z) bits per channel use. (1)

This result was generalized by Csiszár and Körner [5] to non-
degraded channels.
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In this paper, we relax thereliability condition of the
wiretap code. More precisely, we allow the wiretap code
to be such that the legitimate receiver decodes the message
M with an asymptotic error probability bounded above by
ε ∈ [0, 1). The wiretap code, however, must ensure thatM
andZn are asymptotically independent and just as in Bloch
and Laneman [6], we consider six measures of asymptotic
independence of varying strengths. We show that for many
classes of degraded, memoryless wiretap channels, theε-
secrecy capacity (maximum code rateR such that the error
probability is asymptotically no larger thanε) does not depend
on ε. In other words, theε-secrecy capacity is not larger than
the expression in (1) in which it is assumed that the error
probability of decodingM vanishes asymptotically. Because
we still ask that the leakage rate vanishes with the blocklength,
we say that apartial strong converseholds.

A. Related Work

In the majority of the information-theoretic security litera-
ture [2], [3], only weak converse statements are established,
typically using Fano’s inequality. However, some progresshas
been made in recent works to establishstrongconverses. For
example, the authors of [7]–[9] proved strong converses for
the multi-party secret key agreement problem and other related
problems. In particular, the authors of [8], [9] proved that the
secret key capacity does not depend on the error boundε and
the secrecy boundδ (measured according to the variational
distance) as long asε + δ < 1. Another related work is the
one by Morgan and Winter [10, Sec. VI] who used one-shot
bounds in [11] to establish a so-calledpretty strong converse
for the private capacity of a degradable quantum channel.
Specifically, they prove that the that private capacity doesnot
depend on the error boundε and the secrecy boundδ as long as√
ε+2

√
δ < 1/2.1 In the present paper, we only prove a strong

converse for(ε, δ) ∈ [0, 1) × {0} and a comparison of the
results from various related works is shown in Fig.2. There is
substantial motivation to prove strong converses because such
statements indicate that there exists asharp phase transition
between rates that are achievable and those that are not.
Codes with unachievable rates have error probabilities that

1To be more precise, the authors in [10, Thm. 14] used results
in [11] to prove that the private capacity does not depend onε′ and δ′,
both measured in terms of thepurified distancedpur(P,Q) :=

[

1 −
(
∑

x(P (x)Q(x))1/2)2
]1/2, as long asε′ + 2δ′ < 1/

√
2. This can be

translated to the true average error probabilityε and the variational distance
δ using the boundsε′ ≤

√
2ε and δ′ ≤

√
2δ (e.g. [12, Thm. 1]). Thus, one

obtains the strong converse condition
√
ε+2

√
δ < 1/2 (albeit conservative)

in terms of the error probability and variational distance.
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Fig. 1. Illustration of the wiretap channel model. The decoding error
probability must satisfylim supn→∞ Pr(M̂ 6= M) ≤ ε while the leakage
Si(PMZn , PM × PZn ) (measured according to any one of the six secrecy
metrics in Definition1) must vanish asn grows.

tend to one (or a positive number strictly less than one for the
pretty strong converse) as the blocklength grows. Unlike weak
converses, the rates are not simply bounded away from zero.
For point-to-point channel coding, Wolfowitz establishedthe
strong converse in the 1950s [13], but little attention has been
paid to strong converses for information-theoretic problems
with secrecy constraints, such as the wiretap channel.

B. Summary Of Our Approach

In this work, we adopt the information spectrum
method [14]–[16] to make strong converse statements for
various classes of degraded wiretap channels. The information
spectrum method, developed by Verdú and Han [14], [15],
is a systematic and powerful method to characterize the
fundamental limits of communication systems without the
usual assumptions of memorylessness, stationarity, ergodicity
and information stability. The information spectrum method is
also useful in establishing necessary and sufficient conditions
for the strong converse to hold [16, Sec. 3.5] which is one of
the reasons why we have adopted this approach. The use of the
information spectrum approach for general wiretap channels
was pioneered by Hayashi in [17] in which the use of channel
resolvability [15] [16, Sec. 6.3] was shown to be a useful
coding mechanism for secrecy.

C. Main Contributions

In this work, we establish that the degraded discrete mem-
oryless (and stationary) wiretap channel (DM-WTC) admits
a partial strong converse. This means that regardless of the
permissible asymptotic error probabilityε ∈ [0, 1), if the leak-
age vanishes asymptotically, the maximum rate of transmission
cannot exceed the secrecy capacity Wyner derived in (1). This
contribution is a strengthening of Wyner’s seminal result [4].
We extend our result to prove the same for the Gaussian
wiretap channel (G-WTC), strengthening the capacity result
by Leung-Yan-Cheong and Hellman [18]. Finally, we prove
that the partial strong converse holds for some classes of non-
stationary wiretap channels.

D. Paper Organization

This paper is organized as follows. In SectionII , we state the
notational conventions, describe the system model and define

✻
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Fig. 2. The strong converses for the degraded DM-WTC (Theorem 3) and
G-WTC (Theorem5) hold for (ε, δ) on the blue strip[0, 1)×{0} (i.e., partial
strong converse). Here,ε denotes the error probability andδ the variational
distance defined in (2). Morgan and Winter’s [10, Thm. 14] pretty strong
converse for the private capacity of degradable quantum channels holds for√
ε+2

√
δ < 1/2, indicated by the region in red. Tyagi and Watanabe’s strong

converse for the secret key capacity [9, Cor. 11] holds forε+δ < 1, indicated
by the union of the cyan, red and blue regions. This result improves on Tyagi
and Narayan’s strong converse for the same problem [7, Sec. VII] which holds
for (ε, δ) ∈ [0, 1)×{0}. We caution that these information-theoretic security
problems are different so the results are not directly comparable.

the partial strong converse property for the wiretap channel.
In SectionIII , we state our main results. In particular, after
recapitulating some information spectrum quantities in Section
III-A , we state general formulas for theε-secrecy capacity
and its optimistic version in SectionIII-B . These are done
for arbitrary wiretap channels where the legitimate receiver
is allowed to make an error with probability not exceeding
ε ∈ [0, 1) but the leakage is required to tend to zero. The bulk
of the contributions is contained in SectionIII-C where we
present strong converse results for specific channel models
such as the DM-WTC and the G-WTC. We conclude and
suggest avenues for future research in SectionIV. The proofs
of the theorems are contained in SectionV.

II. SYSTEM MODEL AND DEFINITIONS

In this section, we state our notation and the definitions of
the various problems we consider in this paper.

A. Basic Notations

Random variables (e.g.,X) and their realizations (e.g.,x)
are denoted by upper case and lower case serif font, respec-
tively. Sets are denoted in calligraphic font (e.g., the alphabet
of X is X ). We use the notationXn to denote a vector of
random variables(X1, . . . , Xn). In addition,X = {Xn}n∈N

is a general sourcein the sense that each member of the
sequenceXn = (X

(n)
1 , . . . , X

(n)
n ) is a random vector. The

consistency condition (i.e.,X(n)
i = X

(m)
i for all m < n and

1 ≤ i ≤ m) need not hold. Ageneral broadcast channel
W = {Wn : Xn → Yn×Zn}n∈N is a sequence of stochastic
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mappings fromXn to Yn×Zn. The set of all probability dis-
tributions with support on an alphabetX is denoted asP(X ).
We use the notationX ∼ PX to mean that the distribution of
X is PX . The joint distribution formed by the product of the
input distributionPX ∈ P(X ) and the channelW : X → Y
is denoted byPX × W . Information-theoretic quantities are
denoted using the notations in Han’s book [16], e.g.,H(X)
for entropy,I(X ;Y ) for mutual information andD(P‖Q) for
relative entropy. All logarithms are to an arbitrary base. We
also use the discrete interval notation[i : j] := {i, . . . , j}.

Thevariational distancebetween two measures or distribu-
tionsP andQ on the same spaceX is defined as

V(P,Q) := sup
A⊂X

∣

∣P (A)−Q(A)
∣

∣, (2)

whereA ⊂ X runs over the class of measurable subsets of
X . For an arbitrary sample spaceX , the definition of the
variational distance in (2) is equivalent to

V(P,Q) =
1

2

∫

X

∣

∣p(x)− q(x)
∣

∣ dλ(x), (3)

whereλ is a common dominating measure ofP andQ and
p(x) = dP/dλ and q(x) = dQ/dλ denote their respective
densities. Furthermore,V(P,Q) = P (A∗) − Q(A∗) where
A∗ = {x : p(x) ≥ q(x)}.

The probability density function of the normal distribution
N (y;µ, σ2) is defined as

N (y;µ, σ2) :=
1√
2πσ2

exp

(

− (y − µ)2

2σ2

)

. (4)

B. System Model

We consider a general wiretap channel, which is simply a
general broadcast channelW = {Wn : Xn → Yn×Zn}n∈N.
Terminal X denotes the sender, terminalY denotes the le-
gitimate receiver, and terminalZ denotes the eavesdropper.
We would like to reliably transmit a messageM from the
terminal X to terminal Y, and at the same time, design
the code such that terminalZ, the eavesdropper, obtains
no information aboutM . More precisely, the eavesdropper’s
signal or observationZn is required to beasymptotically
independentof M . There are various ways to quantify asymp-
totic independence. We adopt the methodology of Bloch and
Laneman [6] and consider six metrics of varying strengths that
quantify asymptotic independence.

Definition 1. Letη > 0 be an arbitrary constant,P := PMZn ,
Q := PM × PZn and (M,Zn) ∼ P . Consider the following
measures of independence, also known assecrecy metrics:

S1(P,Q) := D(P‖Q), (5)

S2(P,Q) := V(P,Q), (6)

S
η
3(P,Q) := Pr

(

log
P (M,Zn)

Q(M,Zn)
> η
)

, (7)

S4(P,Q) :=
1

n
D(P‖Q), (8)

S5(P,Q) :=
1

n
V(P,Q), (9)

S
η
6(P,Q) := Pr

( 1

n
log

P (M,Zn)

Q(M,Zn)
> η

)

. (10)

BecauseD(P‖Q) = D(PMZn‖PM × PZn) = I(M ;Zn)
the mutual information, secrecy metricsS1 andS4 correspond
to strong [19], [20] and weak secrecy [4] respectively. These
are the most common metrics in the information-theoretic
security literature [2], [3]. We say thatSi dominatesSj if
Si(PMZn , PM × PZn) → 0 implies that Sj(PMZn , PM ×
PZn) → 0 and we denote this bySi � Sj . Bloch and
Laneman [6, Prop. 1] showed that there exists an ordering of
the above six secrecy metrics. In particular, for anyη1, η2 > 0,

S1 � S2 � S
η1

3 � S4 � S5 � S
η2

6 . (11)

Given the wiretap channelW = {Wn}n∈N, we define its
Yn- andZn-marginalsas

Wn
Y (y|x) :=

∑

z∈Zn

Wn(y, z|x), and (12)

Wn
Z(z|x) :=

∑

y∈Yn

Wn(y, z|x), (13)

where(x,y, z) ∈ Xn × Yn ×Zn is a tuple of vectors.

Definition 2. An (n,Mn, εn, δn)-wiretap code for secrecy
metric i ∈ [1 : 6] consists of (see Fig.1)

1) A message setMn = [1 : Mn];
2) A stochastic encoderQXn|M : Mn → Xn and
3) A decoderϕn : Yn → Mn

such that the average error probability satisfies

1

Mn

∑

m∈Mn

∑

x∈Xn

QXn|M (x|m)Wn
Y (Yn \ ϕ−1

n (m)|x) ≤ εn

(14)
and the information leakage satisfies

Si(PMZn , PM × PZn) ≤ δn (15)

whereM ∈ Mn is the message random variable which is
uniformly distributed overMn.

We remark that secrecy metricsSη3 and S
η
6 depend on an

additional parameterη > 0 but to simplify notation, we do not
make the dependence of the code onη explicit. This should
not cause any confusion in the sequel.

We now define achievable rates and capacities for the
general wiretap channel.

Definition 3. Let ε ∈ [0, 1) and i ∈ [1 : 6]. Let R ∈ R be
called an(ε, i)-achievable ratefor the general wiretap channel
W if there exists a sequence of(n,Mn, εn, δn)-wiretap codes
for secrecy metrici such that

lim sup
n→∞

εn ≤ ε, lim
n→∞

δn = 0, and lim inf
n→∞

1

n
logMn ≥ R.

(16)
Define the(ε, i)-secrecy capacity(or simply(ε, i)-capacity) of
the wiretap channelW as

C(i)
ε (W) := sup{R : R is (ε, i)-achievable}. (17)

Define the(i)-secrecy capacity(or simply(i)-capacity) of the
wiretap channelW as

C(i)(W) := C
(i)
0 (W). (18)
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We note that the error probability is allowed to be any
number in [0, 1) but the secrecy metric is required to tend
to zero as the blocklength grows. From the ordering of the
secrecy metrics in (11), we know that for everyε ∈ [0, 1), we
have

C(i)
ε (W) ≤ C(j)

ε (W), if i ≤ j. (19)

For the definition of the partial strong converse property,
we find it useful to first consideroptimistic analogues [16,
Def. 3.9.1] [21, Thm. 4.3] [22, Thm. 7] of fundamental limits,
such as the capacity in Definition3.

Definition 4. Let ε ∈ (0, 1] and i ∈ [1 : 6]. Let R ∈ R be
called an(ε, i)-optimistically achievable ratefor the general
wiretap channelW if for all sequences of(n,Mn, εn, δn)-
wiretap codes for secrecy metrici satisfying

lim inf
n→∞

1

n
logMn ≥ R and lim

n→∞
δn = 0, (20)

we must also have

lim inf
n→∞

εn ≥ ε. (21)

Define the(ε, i)-optimistic secrecy capacity(or simply (ε, i)-
optimistic capacity) of the wiretap channelW as

C
(i)

ε (W) := inf{R : R is (ε, i)-optimistically achievable}.
(22)

Define the (i)-optimistic secrecy capacity(or simply (i)-
optimistic capacity) of the wiretap channelW as

C
(i)
(W) := C

(i)

1 (W). (23)

Following [23], and by contrapositive, we note that the
(ε, i)-optimistic capacity can equivalently be defined as the
supremum of all numbersR ∈ R for which there exists a
sequence of(n,Mn, εn, δn)-wiretap codes for secrecy metric
i such that

lim inf
n→∞

εn < ε, lim
n→∞

δn = 0, and lim inf
n→∞

1

n
logMn ≥ R.

(24)
The first condition in (24) explains the termoptimistic. Indeed,
by the definition of lim inf the error probability is only
required to be smaller thanε for infinitely manyn as opposed
to for all sufficiently largen, implied by the first condition
in (16) for the (pessimistic) capacity. Note that our definition
of the optimistic capacity in Definition4, or equivalently the
conditions in (24), is slightly different from those in Chen
and Alajaji [21, Def. 4.9] and Steinberg [22, Thm. 7]. Our
definition has the advantage that it allows us to characterize
the (ε, i)-optimistic secrecy capacity as anequality for all
ε ∈ (0, 1]. We refer the reader to [14, Sec. IV] and [16,
Rmk. 1.6.3] for a discussion of this subtlety.

From the ordering of the secrecy metrics in (11), we know
that for everyε ∈ (0, 1], we have

C
(i)

ε (W) ≤ C
(j)

ε (W), if i ≤ j. (25)

It is also easily seen from the definitions that for alli ∈ [1 : 6],

C(i)(W) ≤ C
(i)
(W). (26)

Equality in (26) is particularly significant as can be seen from
the following definition.

Definition 5. A wiretap channelW is said to satisfy thepartial
strong converse under secrecy metrici ∈ [1 : 6] if

C(i)(W) = C
(i)
(W). (27)

The qualifier partial is used because we still insist that
the information leakage, represented byδn, tends to zero.
The strong converse thus only pertains to the probability of
decoding error in (14). This definition of the partial strong
converse corresponds to that presented by Han [16, Sec. 3.7]
and Hayashi and Nagaoka in [24]. Clearly, if W satisfies the
partial strong converse under secrecy metrici, bothC(i)

ε (W)

andC
(i)

ε (W) do not depend onε. More precisely, the partial
strong converse implies that

C(i)
ε (W) = C(i)(W) ∀ ε ∈ [0, 1) and (28)

C
(i)

ε (W) = C
(i)
(W) ∀ ε ∈ (0, 1]. (29)

However, as discussed in [16, Rmk. 3.5.1], Definition5
implies (28)–(29) but not the other way round.

III. M AIN RESULTS

In this section, we state our results. First, we generalize the
results in [6], [17] and characterizeC(i)

ε (W) and C
(i)

ε (W)
for general wiretap channels. We then state our main result,
namely that degraded DM-WTC admit the partial strong
converse. We also show that certain classes of non-stationary
wiretap channels and the Gaussian wiretap channel possess
the partial strong converse property.

A. Basic Quantities in Information Spectrum Analysis

To state our results concisely, we recall some definitions
from information spectrum analysis [16], [25]. For a general
sequence of random variablesB = {Bn}n∈N, define

ε- p-lim inf
n→∞

Bn :=sup
{

r : lim sup
n→∞

Pr(Bn ≤ r)≤ε
}

(30)

for ε ∈ [0, 1), and

ε- p-lim sup
n→∞

Bn :=sup
{

r : lim inf
n→∞

Pr(Bn ≤ r)<ε
}

(31)

for ε ∈ (0, 1]. Notice the strict inequality in (31), which
differs from the non-strict inequality in (30). The p-lim inf
and p-lim sup are defined as0-p-lim inf and 1-p-lim sup
respectively. For any general pair of random variables(V,Y)
with joint distributionPVY := {PV nY n}n∈N, define, for each
n, the normalized information density random variables

ın(V
n;Y n) :=

1

n
log

PY n|V n(Y n|V n)

PY n(Y n)
. (32)

Given {ın(V n;Y n)}n∈N, we may now define

Iε(V;Y) := ε-p-lim inf
n→∞

ın(V
n;Y n) (33)

Iε(V;Y) := ε-p-lim sup
n→∞

ın(V
n;Y n) (34)
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The properties ofIε(V;Y) and Iε(V;Y) are described in
[25, Sec. 2.4]. Whenε = 0 in (33) and ε = 1 in (34), we
leave out the subscripts, i.e., we define

I(V;Y) := I0(V;Y), and I(V;Y) := I1(V;Y). (35)

In information spectrum analysis,I(V;Y) and I(V;Y) are
termed thespectral inf- and sup-mutual information ratesre-
spectively. They are respectively thep-lim inf andp-lim sup
of the sequence of random variables{ın(V n;Y n)}n∈N.

B. Capacity and Strong Converse Results for General Wiretap
Channels

The following theorem is a straightforward extension of
the results in [6], [17]. For completeness, a proof sketch is
provided in SectionV-A.

Theorem 1 (General Formula). For i ∈ [2 : 6], the (ε, i)-
capacity and the(ε, i)-optimistic capacity of any general
wiretap channelW are

C(i)
ε (W) = sup

V−X−(Y,Z)

Iε(V;Y) − I(V;Z), and (36)

C
(i)

ε (W) = sup
V−X−(Y,Z)

Iε(V;Y) − I(V;Z). (37)

The suprema are over the set of all sequences of distributions
PVX = {PV nXn}n∈N or equivalently over all Markov chains2

V − X − (Y,Z) where the distribution of(Y,Z) given X

corresponds to the wiretap channelW.

Using the definition of the partial strong converse in Def-
inition 5, we immediately obtain the following corollary,
applicableonly to secrecy metricsSi, i ∈ [2 : 6].

Corollary 2 (General Partial Strong Converse). For any
wiretap channelW and any secrecy metricSi, i ∈ [2 : 6],
the partial strong converse property holds if and only if

sup I(V;Y) − I(V;Z) = sup I(V;Y) − I(V;Z), (38)

where the suprema are understood to be the same as in
Theorem1.

C. Strong Converse Theorems for Specific Wiretap Channel
Models

1) Degraded Discrete Memoryless Wiretap Channels:A
physically degraded, or simplydegraded, wiretap channelW
is one in which for everyn ∈ N, and for every(x,y, z) ∈
Xn × Yn ×Zn,

Wn(y, z|x) = Wn
1 (y|x)Wn

2 (z|y) (39)

for some channelsWn
1 : Xn → Yn andWn

2 : Yn → Zn. In
other words,Xn − Y n −Zn forms a Markov chain for every
n ∈ N. A DM-WTC has alphabetsX ,Y,Z that are finite sets
and the channel isstationaryandmemorylessin the sense that

Wn
1 (y|x) =

n
∏

i=1

W1(yi|xi), andWn
2 (z|y) =

n
∏

i=1

W2(zi|yi)

(40)

2The notationA− B−C means thatAn − Bn − Cn forms a Markov
chain for alln ∈ N.

for every(x,y, z) ∈ Xn×Yn×Zn. It is known from Wyner’s
seminal work on the wiretap channel [4] that the capacity of a
degraded DM-WTCW : X → Y×Z (under the weak secrecy
criterionS4) is

CDM

s (W ) := max
PX

I(X ;Y |Z) = max
PX

I(X ;Y )− I(X ;Z),

(41)
where the mutual information quantities are calculated accord-
ing to Pr(Y = y, Z = z|X = x) = W (y, z|x). The second
equality in (41) follows from the fact thatX − Y − Z forms
a Markov chain (degradedness) soI(X ;Y |Z) = I(X ;Y Z)−
I(X ;Z) = I(X ;Y ) − I(X ;Z). Wyner’s weak converse [4,
Eq. (35) in Sec. IV] assumes that the probability of decoding
error vanishes asymptotically. The first of our main resultsis
a strengthening of Wyner’s seminal result.

Theorem 3 (Degraded DM-WTCs). Any degraded DM-WTC
W : X → Y × Z satisfies the partial strong converse under
any secrecy metricSi, i ∈ [1 : 6]. Consequently, the(i)-
capacities and(i)-optimistic capacities ofW = {W} are
equal toCDM

s (W ) for all i ∈ [1 : 6].

A proof of this theorem is provided in SectionV-B. The
basic idea is to lower bound the(1)-capacityC(1)(W) (ca-
pacity under secrecy metricS1) with CDM

s (W ) and to upper

bound the(6)-optimistic capacityC
(6)

(W) (optimistic capac-
ity under secrecy metricS6) with the same quantityCDM

s (W ).

This then allows us to assert thatC(1)(W) = C
(6)

(W)

showing from (19), (25) and (26) that C(i)(W) = C
(i)
(W)

for all i ∈ [1 : 6], i.e., the partial strong converse holds
under all6 secrecy metrics. The lower bound ofC(1)(W) is
straightforward and follows by using the connection between
secrecy and channel resolvability [6], [17], independent and
identically distributed (i.i.d.) random codes and standard (large
deviation) concentration bounds [26]. This sequence of steps
is already well known. See for example [6, Remark 3] or the
papers by Hayashi [17], [27] and Hanet al.[28] on secrecy and
reliability exponents for the wiretap channel. The interesting
part of the proof is in the upper bound of

C
(6)

(W) = sup
V−X−(Y,Z)

I(V;Y) − I(V;Z). (42)

The difficulty arises because we need to upper bound and
subsequently single-letterize the supremum of the difference
between two limit superiors in probability. To perform these
tasks, we leverage the proof technique for [16, Thm. 3.7.2]
and combine several known results and techniques from the
information-theoretic security literature.

2) Non-Stationary Wiretap Channels:The assumption of
degradedness in Theorem3 is rather strong but appears
essential in the proof. We do not think that the assumption
concerning memorylessness is critical (cf. [23, Cor. 3]), but
we defer the study of wiretap channels with memory to
future work. Instead we examine conditions under which the
stationarity assumption may be relaxed. In this section, we
assume that the wiretap channel is degraded in the sense
of (39) but the components have the following non-stationary
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structure:

Wn
1 (y|x) =

n
∏

i=1

W1i(yi|xi), andWn
2 (z|y) =

n
∏

i=1

W2i(zi|yi).

(43)
That is, the channels themselves may differ across time but
the channel noises are nonetheless independent. We define the
i-th wiretap channel asWi(y, z|x) := W1i(y|x)W2i(z|y). The
main and eavesdropper’s channels are defined asWY,i(y|x) :=
W1i(y|x) andWZ,i(z|x) :=

∑

y∈Y W1i(y|x)W2i(z|y) respec-
tively. These channels have Shannon capacitiesC(WY,i) and
C(WZ,i) respectively. We further assume that all component
channels{WY,i}i∈N and {WZ,i}i∈N are weakly symmetric
[2, Def. 3.4]. Recall that a discrete memoryless channel
V : X → Y is weakly symmetric if the rows of the channel
transition probability matrix are permutations of each other
and the column sums

∑

x∈X V (y|x) are independent ofy.
Under the condition that the channels are degraded and weakly
symmetric, Leung-Yan-Cheong [29] (also see [2, Prop. 3.2])
showed that the secrecy capacity is the difference of the
capacities of the main and eavesdropper’s channels, i.e.,

CDM

s (Wi) = C(WY,i)− C(WZ,i). (44)

Note that (44) is a consequence of the fact that the (unique)
capacity-achieving input distributions of the channelsWY,i

and WZ,i are the same and, in particular, they are uniform
on X . See van Dijk [30] for further discussions. With these
preparations, we are in a position to state the following result:

Theorem 4 (Non-Stationary Wiretap Channels). Consider the
degraded, discrete, memoryless but non-stationary wiretap
channel in(43). Assume that all{WY,i}i∈N and {WZ,i}i∈N

are weakly symmetric channels. Under any secrecy metric
Si, i ∈ [1 : 6], the partial strong converse holds forW =
{Wn}n∈N if the following limits exist:

lim
n→∞

1

n

n
∑

i=1

C(WY,i), and lim
n→∞

1

n

n
∑

i=1

C(WZ,i). (45)

The proof of this theorem can be found in SectionV-C.
For the purposes of comparison, consider a point-to-point,

discrete, memoryless and non-stationary channelV n(y|x) =
∏n

i=1 Vi(yi|xi). Let PȲi
be the unique [31, Cor. 2 to

Thm. 4.5.2] capacity-achieving output distribution ofVi. It
satisfiesPȲi

(y) > 0 for all y ∈ Y if all outputs are
reachable [31, Cor. 1 to Thm. 4.5.2]. Further assume that3

sup
i∈N

max
x∈X

Var

[

log
Vi(Y |x)
PȲi

(Y )

]

< ∞. (46)

Then, it is easy to show from the strong converse theorem for
general channels [16, Thm. 3.5.1] and the relation between
limits in probability and usual limits [16, Thm. 3.5.2] that the
strong converse forV := {V n =

∏n

i=1 Vi}n∈N holds if and
only if

lim inf
n→∞

1

n

n
∑

i=1

C(Vi) = lim sup
n→∞

1

n

n
∑

i=1

C(Vi). (47)

3This condition is automatically satisfied by weakly symmetric channels as
PȲi

(Y ) = 1/|Y| with probability one for alli. Indeed, (46) is satisfied if the
minimum values of the capacity-achieving output distributions are uniformly
bounded away from zero, i.e.,infi∈N miny∈Y PȲi

(y) > 0.

In other words,limn→∞
1
n

∑n
i=1 C(Vi) exists. Indeed, the

left-hand-side of (47) is the capacity [16, Rmk. 3.2.3] of
the channelV, while if we assume (46), the right-hand-
side is the optimistic capacity (a statement generalizing [25,
Example 5.14]). Thus, the equivalent condition in terms of the
existence of the limits of the Cesàro means1

n

∑n
i=1 C(WY,i)

and 1
n

∑n

i=1 C(WZ,i) in Theorem4 is a generalization of
channels without secrecy constraints to degraded (but weakly
symmetric) wiretap channels.

Of course, the existence of the two limits is only asufficient
condition for the partial strong converse to hold. It appears to
be rather challenging to assert that it is alsonecessary, or to
find an alternate (and stronger) characterization that is both
necessary and sufficient.

3) Gaussian Wiretap Channels:We now demonstrate that
the assumption of discreteness in Theorem3 is not critical. In
fact, we can make a partial strong converse statement for the
(memoryless, stationary) G-WTC in which all the alphabets
are the real lineR and the channel laws are

WY(y|x) := N (y;x, σ2
1), andWZ(z|x) := N (z;x, σ2

2),
(48)

and we assume thatσ2 > σ1. Observe that by defining
W1(y|x) = WY(y|x) andW2(z|y) := N (z; y, σ2

2 − σ2
1), we

see that the G-WTCW (y, z|x) = W1(y|x)W2(z|y) is de-
graded. In fact, to be more precise, it isstochastically degraded
but we will not differentiate between physical degradedness
and stochastic degradedness since the capacities and optimistic
capacities are identical, a direct consequence of [3, Lem. 2.1].
For every blocklengthn ∈ N, the input codewordXn is
required to satisfy the almost sure power constraint

Pr(Xn ∈ Fn) = 1 (49)

where
Fn := {x ∈ R

n : ‖x‖22 ≤ nS} (50)

is the (n − 1)-sphere with radius
√
nS and S > 0 is

the permissible power. Recall from Leung-Yan-Cheong and
Hellman [18] that the capacity of the G-WTC, under secrecy
metricS4 (weak secrecy) and assuming that the probability of
decoding error vanishes asymptotically, is

CG

s (W ;S) :=
1

2
log

(

1 +
S

σ2
1

)

− 1

2
log

(

1 +
S

σ2
2

)

. (51)

Thus the capacity of the G-WTC is the difference between the
Shannon capacities of the main and eavesdropper’s channels.
We strengthen the main result in [18] as follows:

Theorem 5 (Gaussian Wiretap Channels). The (memoryless,
stationary) G-WTC satisfies the partial strong converse under
any secrecy metricSi, i ∈ [1 : 6]. Consequently, the(i)-
capacities and(i)-optimistic capacities ofW = {W} under
the cost constraint in(49) are equal toCG

s (W ;S) for all
i ∈ [1 : 6].

The proof of this theorem, which builds on that of Theo-
rem 3, is provided in SectionV-D.

One of the additional complications (vis-à-vis Theorem3)
we have to overcome is the need to carefully handle the
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almost sure cost constraint in (49) to ensure the statement
holds for S1. Similarly to the proof of Theorem5, one can
show, using the discretization procedure outlined in Hanet
al. [28, Sec. VI], that the degraded Poisson wiretap channel,
studied by Laourine and Wagner [32], admits a partial strong
converse.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proved partial strong converse theorems for
various classes of degraded wiretap channels, including DM-
WTCs and G-WTCs. We discuss three promising avenues for
further research.

First, in this paper, we were only concerned with the
transmission of a single message from the sender to the
legitimate receiver. Csiszár and Körner [5] considered the
broadcast channel with confidential messages model in which
two messages are to be sent, both to the legitimate receiver and
only one to the eavesdropper. The eavesdropper’s signal is to
be asymptotically independent of the non-intended message. It
may be possible to prove a partial strong converse in this multi-
terminal system but we note that the information spectrum
technique does not extend in a straightforward manner to show
that discrete memoryless multi-terminal systems, such as the
multiple-access channel [33], admit the strong converse thus
new techniques must be developed.

Second, as in [23], it may be possible to use the tech-
niques contained herein to study wiretap channels with limited
memory (such as channels with additive Markov noise) and
show that they admit a partial strong converse. However,
wiretap channels with Markov memory have not been studied
previously.

Finally, and most ambitiously, it would be interesting to
study whether afull, and not partial or pretty [10], strong con-
verse holds for some classes of wiretap channels, i.e., whether
the capacity depends on(ε, δ) for ε + δ < 1. However, this
appears to require general capacity formula with non-vanishing
error probability and non-vanishing leakage, which in turn
requires the evaluation a convenient non-asymptotic converse
bound for channel resolvability. Initial work on refinements of
non-asymptotic and asymptotic channel resolvability bounds
has been conducted by Watanabe and Hayashi [34]. On a
separate note, one-shot (non-asymptotic) bounds on the wire-
tap capacity for non-zero(ε, δ) were proved by Renes and
Renner [11] using min- and max-entropy calculus.

V. PROOFS

A. Proof Sketch of Theorem1

Proof: We prove the achievability statement for the
strongest secrecy metricS2 and the converse statement for
the weakest secrecy metricS6.

For achievability, fix a sequence of input distributions
PVX = {PV nXn}n∈N. For each messagem ∈ [1 : Mn],
generate a subcodebookC(m) consisting ofM̃n/Mn randomly
and independently generated sequencesv(l), l ∈ [1 + (m −
1)M̃n/Mn : mM̃n/Mn], each according toPV n . The code-
book is revealed to all parties including the eavesdropper.
Given m ∈ [1 : Mn], the encoder chooses an indexL

uniformly at random from[1 + (m− 1)M̃n/Mn : mM̃n/Mn]
and generatesx(m) ∼ PXn|V n(·|v(L)) as the channel input.

Let γ > 0. Given y ∈ Yn, the legitimate receiver finds
the unique messagêm such that(v(l),y) ∈ T (n)

γ for some
v(l) ∈ C(m̂), where

T (n)
γ :=

{

(v,y) :
1

n
log

PY n|V n(y|v)
PY n(y)

≥ 1

n
log M̃n + γ

}

.

(52)
Let εn be the average error probability of the legitimate
receiver (over the random message and the random code) given
by (14). By a standard calculation, we have

εn ≤ PV nY n

(

(Vn × Yn) \ T (n)
γ

)

+ exp(−nγ). (53)

From ε-capacity [16, Sec. 3.4] andε-optimistic capacity
analysis [21, Thm. 4.3] (or simply by applying the definitions
of T (n)

γ , Iε and Iε to (53)), we know that ifM̃n is chosen
such that

1

n
log M̃n ≤ Iε(V;Y) − 2γ, (54)

then lim supn→∞ E[εn] ≤ ε, where the expectation is over
the random code. Similarly ifM̃n is chosen such that

1

n
log M̃n ≤ Iε(V;Y) − 2γ, (55)

then lim infn→∞ E[εn] < ε. From thesecrecy from resolv-
ability condition in [6, Lem. 2], we know that if

1

n
log M̃n − 1

n
logMn ≥ I(V;Z) + 2γ (56)

then limn→∞ E[S2] = 0. Now because averaged over the
random code,S2 tends to zero, by a Markov inequality
argument (see proof of [35, Thm. 1] for example), there exists
a sequence of codes such that both the reliability and security
conditions are satisfied. This completes the direct part of
Theorem1 upon eliminatingM̃n from the above inequalities,
taking lim infn→∞, and finally takingγ ↓ 0.

For the converse, by using the Verdú-Han lemma [14,
Lem. 4] we know that iflim supn→∞ εn ≤ ε, for everyγ > 0,
we must have that

1

n
logMn ≤ Iε(V;Y) + γ, (57)

for some chainV − X − (Y,Z) and alln sufficiently large
(depending onγ). The auxiliary random processV represents
the sequence of messages which are uniform on the message
sets{Mn}n∈N. Similarly, if lim infn→∞ εn < ε, we must
have that

1

n
logMn ≤ Iε(V;Y) + γ. (58)

Furthermore, [36, Lem. 4] tells us that ifS6 → 0, we must
have that

I(V;Z) = 0. (59)

This follows directly from the definition ofS6 in (10) and
the spectral sup-mutual information rate. SubtractingI(V;Z)
from (57) and (58), maximizing over all chainsV−X−(Y,Z)
to make the bound code-independent, and finally taking
lim infn→∞ and γ ↓ 0 completes the converse proof of
Theorem1.
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B. Proof of Theorem3

Proof: Here we prove that any degraded DM-WTC
W : X → Y ×Z satisfies the partial strong converse for any
secrecy metrici ∈ [1 : 6]. We proceed in two steps. First, we
show thatC(1)(W) ≥ CDM

s (W ) (whereW is the stationary,
memoryless channel induced byW ) and second, we show that
C

(6)
(W) ≤ CDM

s (W ).
To show thatC(1)(W) ≥ CDM

s (W ), we adopt the strategy
in [6, Sec. V.C]. Particularize the supremum overPVX by
choosingV = X andPX to be a sequence of product dis-
tributions induced by anyPX̄ ∈ argmaxPX∈P(X ) I(X ;Y |Z).
Then, it suffices to appeal to [6, Rmk. 3] which says that if

qn := Pr

(

1

n
log

Wn
Z(Z

n|Xn)

PZn(Zn)
≥ 1

n
log

M̃n

Mn

− γ

)

(60)

decays exponentially inn then S1 → 0. This remark was
also made by Kobayashiet al. [37, Sec. V], and is a simple
consequence of a bound presented by Csiszár in [20, Lem. 1]
relating mutual information to variational distance. Choose
M̃n to be the smallest integer exceedingexp[n(I(X ;Y )−2γ)]
(so the decoding error probability tends to zero), and choose
Mn to be the largest integer smaller thanexp[n(I(X ;Y ) −
I(X ;Z)− 4γ)] = exp[n(CDM

s (W )− 4γ)]. The mutual infor-
mations are computed with respect to the distributionPX̄×W .
Now, we see that (60) indeed decays exponentially (Chernoff
bound) and soC(1)(W) ≥ CDM

s (W )− 4γ. Finally, let γ ↓ 0.

Now, we prove thatC
(6)

(W) ≤ CDM
s (W ). Starting

from (42), for every Markov chainV−X− (Y,Z), we have

I(V;Y) − I(V;Z) ≤ I(V;Y,Z) − I(V;Z) ≤ I(V;Y|Z)
(61)

where the final inequality follows from the sub-additivity of
p-lim sup [16, Sec. 1.3], i.e., that

p-lim sup
n→∞

(An+Bn) ≤ p-lim sup
n→∞

An+p-lim sup
n→∞

Bn. (62)

We further upper boundI(V;Y|Z) in (61). By a conditional
version of the data processing inequality [14, Thm. 9],

I(V;Y|Z) ≤ I(X;Y|Z) (63)

becauseV −X− (Y,Z) forms a Markov chain. Thus,

C
(6)

(W) ≤ sup
X

I(X;Y|Z) (64)

for any general wiretap channelW = {Wn}n∈N. Now,
it suffices to simplify the spectral sup-conditional mutual
information rate in (64) and, in particular, to show that

sup
X

I(X;Y|Z) ≤ CDM

s (W ), (65)

whereCDM
s (W ) is the capacity of the degraded DM-WTC

defined in (41). At this point, we note that Koga and Sato [38]
argued (without proof) thatsupX I(X;Y|Z) ≤ CDM

s (W ) for
degraded DM-WTCs, but (65) is stronger as we optimize the
spectral sup- (instead of the spectral inf-) conditional mutual
information rate. Hence, an immediate corollary of (65) is

Koga and Sato’s claim [38]. For this purpose, define the
conditional channel

WY|Z(y|x, z) :=
W (y, z|x)

∑

y∈Y W (y, z|x) . (66)

We proceed to show (65) by first considering the sequence of
random variables

ın(X
n;Y n|Zn) :=

1

n
log

Wn
Y|Z(Y

n|Xn, Zn)

PY n|Zn(Y n|Zn)
(67)

where X = {Xn}n∈N is an arbitrary input that induces
the output random variables(Y,Z) = {(Y n, Zn)}n∈N. Let
PȲ Z̄ ∈ P(Y ×Z) be a single-letter capacity-achieving output
distribution, i.e., a distribution onY × Z such that

PȲ Z̄(y, z) :=
∑

x∈X

PX̄(x)W (y, z|x) (68)

for somePX̄ ∈ P(X ) that achieves themax in (41). By the
same logic as [31, Cor. 2 to Thm. 4.5.2],PȲ |Z̄ is unique. In
contrast,PZ̄ is not necessarily unique but, as we will see, this
is inconsequential for the subsequent derivations.

For simplicity in notation, define

(X) := p-lim sup
n→∞

ın(X
n;Y n|Zn), (69)

whereX is an arbitrary input process. Since thep-lim sup is
sub-additive as in (62), by introducing the product distribution
Pn
Ȳ |Z̄

, we obtain

(X) = p-lim sup
n→∞

(

1

n
log

Wn
Y|Z (Y

n|Xn, Zn)

Pn
Ȳ |Z̄

(Y n|Zn)

− 1

n
log

PY n|Zn(Y n|Zn)

Pn
Ȳ |Z̄

(Y n|Zn)

)

(70)

≤ p-lim sup
n→∞

1

n
log

Wn
Y|Z(Y

n|Xn, Zn)

Pn
Ȳ |Z̄

(Y n|Zn)

− p-lim inf
n→∞

1

n
log

PY n|Zn(Y n|Zn)

Pn
Ȳ |Z̄

(Y n|Zn)
. (71)

The final term is non-negative following [16, Lem. 3.2.1] and
hence

(X) ≤ p-lim sup
n→∞

1

n
log

Wn
Y|Z(Y

n|Xn, Zn)

Pn
Ȳ |Z̄

(Y n|Zn)
. (72)

Now let Xn = (X
(n)
1 , . . . , X

(n)
n ), Y n = (Y

(n)
1 , . . . , Y

(n)
n )

andZn = (Z
(n)
1 , . . . , Z

(n)
n ) for each blocklengthn ∈ N. Since

the channelWn and the conditional capacity-achieving output
measurePn

Ȳ |Z̄
are memoryless,

(X) ≤ p-lim sup
n→∞

1

n

n
∑

i=1

L
(n)
i (X

(n)
i ) (73)

where the information density random variablesL
(n)
i (xi) are

defined as

L
(n)
i (xi) := log

WY|Z(Y
(n)
i |xi, Z

(n)
i )

PȲ |Z̄(Y
(n)
i |Z(n)

i )
. (74)
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Now by a result of Yasuiet al. [39, Lem. 1], we know that
for everyx ∈ X ,

E

[

log
WY|Z(Y |x, Z)

PȲ |Z̄(Y |Z)

]

≤ CDM

s (W ) (75)

where (Y, Z)|{X = x} ∼ W (·, ·|x). This follows from the
KKT conditions and straightforward differentiation of mutual
information with respect to the input distribution (cf. [31,
Thm. 4.5.1]). Note that we used the fact thatW is degraded
to establish (75). From (75) and the definition ofL(n)

i (xi)
in (74), for everyx = (x1, . . . , xn) ∈ Xn, we have

E

[

1

n

n
∑

i=1

L
(n)
i (xi)

]

≤ CDM

s (W ). (76)

Because we fixed a deterministicx and the channel is mem-
oryless, the random variables(Y (n)

i , Z
(n)
i ), i = 1, . . . , n are

independent under the channelWn(·, ·|x). By memorylessness
and Chebyshev’s inequality, for everyγ > 0,

Pr

(

1

n

n
∑

i=1

L
(n)
i (xi)≥CDM

s (W )+γ

∣

∣

∣

∣

Xn=x

)

≤ σ2
0

nγ2
, (77)

where the constantσ2
0 is defined as

σ2
0 := max

x∈X
Var

[

log
WY|Z(Y |x, Z)

PȲ |Z̄(Y |Z)

]

. (78)

The constantσ2
0 is finite becausePȲ |Z̄(y|z) is positive for

all (y, z) in view of (75) and the finiteness ofCDM
s (W ) ≤

min{log |X |, log |Y|}. Since (77) is true uniformly over every
x ∈ Xn, we may average it overx to obtain

Pr

(

1

n

n
∑

i=1

L
(n)
i (X

(n)
i ) ≥ CDM

s (W ) + γ

)

≤ σ2
0

nγ2
. (79)

The upper boundσ2
0/(nγ

2) clearly tends to zero asn → ∞.
From the definition ofp-lim sup andL(n)

i (X
(n)
i ), we have

p-lim sup
n→∞

1

n

n
∑

i=1

log
WY|Z(Y

(n)
i |X(n)

i , Z
(n)
i )

PȲ |Z̄(Y
(n)
i |Z(n)

i )
≤CDM

s (W )+γ.

(80)
Consequently, from (72) and (73), this proves that

sup
X

I(X;Y|Z) ≤ CDM

s (W ) + γ. (81)

Since γ is arbitrary, we may takeγ ↓ 0. That is, we have
proved the claim in (65), completing the proof of the partial
strong converse for degraded DM-WTCs.

C. Proof of Theorem4

Proof: We assume that the limits in (45) exist. We will
prove that

C(1)(W) ≥ lim inf
n→∞

1

n

n
∑

i=1

C(WY,i)−lim sup
n→∞

1

n

n
∑

i=1

C(WZ,i)

(82)
as well as

C
(6)

(W) ≤ lim sup
n→∞

1

n

n
∑

i=1

CDM

s (Wi). (83)

Indeed, if the limits in (45) exist, it is easy to see from (44)
that the right-hand-sides of (82) and (83) are equal and thus
C(1)(W) = C

(6)
(W). This implies thatC(i)(W) = C

(i)
(W)

for all i ∈ [1 : 6], i.e., the partial strong converse holds for
secrecy metricsSi, i ∈ [1 : 6].

For inequality (82), we first show the weaker statement:

C(2)(W) ≥ lim inf
n→∞

1

n

n
∑

i=1

C(WY,i)−lim sup
n→∞

1

n

n
∑

i=1

C(WZ,i).

(84)
For this purpose, we follow the steps in the proof of [40,
Cor. 3] for the non-stationary Gel’fand-Pinsker channel. Par-
ticularize the optimization overV −X − (Y,Z) to V = X

being uniform onXn for everyn ∈ N. Invoking Theorem1,
we then find

C(2)(W)

≥ p-lim inf
n→∞

1

n
log

Wn
Y (Y

n|Xn)

PY n(Y n)

− p-lim sup
n→∞

1

n
log

Wn
Z(Z

n|Xn)

PZn(Zn)
(85)

= p-lim inf
n→∞

1

n

n
∑

i=1

log
WY,i(Yi|Xi)

PYi
(Yi)

− p-lim sup
n→∞

1

n

n
∑

i=1

log
WZ,i(Zi|Xi)

PZi
(Zi)

(86)

= lim inf
n→∞

1

n

n
∑

i=1

C(WY,i)− lim sup
n→∞

1

n

n
∑

i=1

C(WZ,i) (87)

where (86) follows from memorylessness and (87) follows
from Chebyshev’s inequality and the fact that the alphabets
are finite. See [16, Eq. (3.2.15)] for a similar statement.

Now, we prove the stronger statement in (82) concerning
C(1)(W). Given we have proved (84), it suffices [6, Rmk. 3]
to verify that qn in (60) (which controls the variational
distance) converges to zero with rateO(1/n2). This is because
according to [20, Lem. 1],

I(M ;Zn) ≤ V(PMZn , PM×PZn) log
|Mn|

V(PMZn , PM × PZn)
.

(88)
Since log |Mn| is linear in n (cf. (16) and (20)), if the
variational distanceV(PMZn , PM ×PZn) decays asO(1/n2),
the mutual informationI(M ;Zn) decays asO(1/n). Choose
X = {Xn}n∈N such thatXn is uniform on Xn for each
n. In addition, if we chooseM̃n in (60) to be the smallest
integer exceedingexp[n(I(X;Y) − 2γ)], andMn to be the
largest integer smaller thanexp[n(I(X;Y)− I(X;Z)− 4γ)],
we have

qn ≤ Pr

(

1

n
log

Wn
Z(Z

n|Xn)

PZn(Zn)
≥ I(X;Z) + γ

)

. (89)

Furthermore, by the same argument that led to (87), we notice
that withXn uniform onXn,

I(X;Z) = lim sup
n→∞

1

n

n
∑

i=1

C(WZ,i). (90)
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Thus, for everyγ > 0, there exists an integerN ′
γ such that

for all n > N ′
γ ,

I(X;Z) +
γ

2
≥ 1

n

n
∑

i=1

C(WZ,i). (91)

Uniting (89) and (91) and invoking the memorylessness of
Wn

Z , we have

qn ≤ Pr

(

1

n

n
∑

i=1

(

log
WZ,i(Zi|Xi)

PZi
(Zi)

− C(WZ,i)
)

≥ γ

2

)

.

(92)
To prove thatqn = O(1/n2), we use a similar proof strategy
as the strong law of large numbers assuming finite fourth
moments (e.g., [41, Thm. 2.3.5]). To simplify notation, define
the zero-mean, independent (but not identically distributed)
random variables

Ji := log
WZ,i(Zi|Xi)

PZi
(Zi)

− C(WZ,i). (93)

Then by Markov’s inequality, we have

qn ≤ Pr

(

( 1

n

n
∑

i=1

Ji

)4

≥ γ4

16

)

≤ 16

n4γ4
· E
[

(

n
∑

i=1

Ji

)4
]

.

(94)

When we expand(
∑n

i=1 Ji)
4 and take expectation, the only

terms withE[Ji1Ji2Ji3Ji4 ] 6= 0 are the ones wherei1, . . . , i4
are all equal, or they take on two distinct values with each
value repeated twice amongi1, . . . , i4. In other words,

E

[

(

n
∑

i=1

Ji

)4
]

=

n
∑

i=1

E[J4
i ] + 6

∑

1≤i<j≤n

E[J2
i ]E[J

2
j ]. (95)

Now we must argue that each of the termsE[Jk
i ] for k = 2, 4

is uniformly bounded ini (but possibly dependent on|X |
and |Z|). Then, because of the normalization byn4 in (94),
we have the desired convergence rate ofqn. Indeed, it is
easy to see that for this assertion to be true, it suffices to
show that the first four moments of the information density
random variablelogWZ,i(Zi|Xi)− logPZi

(Zi) are bounded
(since the capacity terms in (93) are uniformly bounded).
Now, note thatPZi

(z) = 1/|Z| for all z ∈ Z by the weak
symmetry of the channels. Hence, it suffices to show that
E[(logWZ,i(Zi|Xi) + log |Z|)k] are uniformly bounded for
each k ∈ [1 : 4]. However, it then suffices to verify that
E[logk WZ,i(Zi|Xi)] are uniformly bounded. This immedi-
ately follows from the fact thatu ∈ [0, 1] 7→ |u logk u| is
bounded above bye−kkk (assuming natural logs).

Now we prove inequality (83). By using (75), we know that
for everyx ∈ Xn,

E

[

1

n

n
∑

i=1

L
(n)
i (xi)

]

≤ 1

n

n
∑

i=1

CDM

s (Wi), (96)

where the random variable

L
(n)
i (xi) := log

WY|Z,i(Y
(n)
i |xi, Z

(n)
i )

PȲ |Z̄,i(Y
(n)
i |Z(n)

i )
(97)

andWY|Z,i : X × Z → Y andPȲ |Z̄,i : Z → Y are induced
by Wi : X → Y×Z. Note that we leveraged the degradedness
of the channels{Wi}i∈N to arrive at (96). Define

C‡ := lim sup
n→∞

1

n

n
∑

i=1

CDM

s (Wi). (98)

By the definition oflim sup, for everyγ > 0, there exists an
integerNγ such that for alln > Nγ , we have

1

n

n
∑

i=1

CDM

s (Wi) ≤ C‡ + γ. (99)

Uniting (96) and (99), we obtain

E

[

1

n

n
∑

i=1

L
(n)
i (xi)

]

≤ C‡ + γ, (100)

for all n > Nγ . Let σ2
0 , analogously to (78), be defined as

σ2
0 := sup

i∈N

max
x∈X

Var

[

log
WY|Z,i(Y |x, Z)

PȲ |Z̄,i(Y |Z)

]

. (101)

We would now like to show thatσ2
0 is finite. By Bayes rule

and the degradedness of each channelWi,

log
WY|Z,i(Y |x, Z)

PȲ |Z̄,i(Y |Z)
= log

WY,i(Y |x)
PȲ ,i(Y )

− log
WZ,i(Z|x)
PZ̄,i(Z)

.

(102)

By using the fact thatVar[A+B] ≤ 2Var[A]+ 2Var[B], it is
enough to show that

Var

[

log
WY,i(Y |x)
PȲ ,i(Y )

]

, and Var

[

log
WZ,i(Z|x)
PZ̄,i(Z)

]

(103)

are uniformly bounded ini ∈ N. Now note thatPȲ ,i andPZ̄,i

are uniform onY andZ respectively (by the symmetry of the
channels) so

Var

[

log
WY,i(Y |x)
PȲ ,i(Y )

]

= Var
[

logWY,i(Y |x)
]

(104)

≤ E
[

log2 WY,i(Y |x)
]

(105)

≤ 4e2 · |Y| (106)

where the last inequality follows from the fact that
supu∈(0,1] |u log2 u| ≤ 4e2. A similar calculation can be done
for the second term in (103). Thusσ2

0 is finite.
By Chebyshev’s inequality and (100) (the same logic that

led to (77)), we have

Pr

(

1

n

n
∑

i=1

L
(n)
i (xi) ≥ C‡ + 2γ

∣

∣

∣

∣

Xn = x

)

≤ σ2
0

nγ2
, (107)

for all n > Nγ and allx ∈ Xn. It is also true that

Pr

(

1

n

n
∑

i=1

L
(n)
i (X

(n)
i ) ≥ C‡ + 2γ

)

≤ σ2
0

nγ2
, (108)

holds for all n > Nγ . By the definition ofp-lim sup and
L
(n)
i (X

(n)
i ),

p-lim sup
n→∞

1

n

n
∑

i=1

log
WY|Z,i(Y

(n)
i |X(n)

i , Z
(n)
i )

PȲ |Z̄,i(Y
(n)
i |Z(n)

i )
≤ C‡ + 2γ.

(109)
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Finally, from (72), we have

C
(6)

(W) ≤ sup
X

I(X;Y|Z) ≤ C‡ + 2γ. (110)

Since this holds for allγ > 0, we may takeγ ↓ 0 to complete
the proof of (83).

D. Proof of Theorem5

Proof: Similarly to the proof of Theorem3, we show that
C(1)(W) ≥ CG

s (W ;S) and C
(6)

(W) ≤ CG
s (W ;S). Note,

however, that the form of the optimistic capacityC
(6)

(W) in
(42) has to be modified to take into account the cost constraint
Pr(Xn ∈ Fn) = 1 in (49). The optimization over the chain
V−X−(Y,Z) has to be further constrained to all distributions
PVX satisfyingXn ∈ Fn for all n ∈ N.

For the lower bound,C(1)(W) ≥ CG
s (W ;S), we need

to show thatqn, defined in (60), decays exponentially fast
for an appropriate choice of input distribution. This argument
is adapted from the proofs of Lemmas 2 and 5 in He and
Yener [42]. Fix a constantδ > 0 and define the product
distribution (probability density function)

PX̃n(x) :=
n
∏

i=1

N (xi; 0, S − δ). (111)

Now define the input distribution to be

PXn(x) :=
PX̃n(x)

µn

1{x ∈ Fn} (112)

where µn is the normalizing constant that ensures that
∫

PXn(x) dx = 1. This is simply a truncated version of the
jointly Gaussian distributionPX̃n in (111). Because of the
constant backoffδ > 0 from the permissible powerS in (111),
it can be seen from Cramer’s large deviations theorem on
the real line [26, Sec. 2.2] thatµn := PX̃n(Fn) tends to1
exponentially fast, i.e.,

µn = Pr

(

1

n

n
∑

i=1

X̃2
i ≤ S

)

≥ 1− exp(−nη1) (113)

for someη1 > 0 depending onδ. By the construction of the
input distribution in (112), Xn ∈ Fn with probability one,
satisfying the almost sure power constraint in (49). Using the
characterization of the variational distance in (3), we have

V(PX̃n , PXn)

=
1

2

∫

Rn

∣

∣PX̃n(x)− PXn(x)
∣

∣ dx (114)

=
1

2

∫

Fn

∣

∣PX̃n(x) − PXn(x)
∣

∣ dx

+
1

2

∫

Fc
n

∣

∣PX̃n(x) − PXn(x)
∣

∣ dx (115)

=
1

2

∫

Fn

PXn(x)
∣

∣µn − 1
∣

∣dx+
1

2
PX̃n(Fc

n) (116)

≤ 1

2
exp(−nη1) +

1

2
exp(−nη1) (117)

= exp(−nη1) (118)

where (116) follows from the definition ofPXn(x), and (118)
follows from (113). Consequently,

V(PX̃n ×Wn
Z , PXn ×Wn

Z) = V(PX̃n , PXn) (119)

≤ exp(−nη1). (120)

Let (X̃, Z̃) ∼ PX̃1
× WZ , (X̃n, Z̃n) ∼ PX̃n × Wn

Z and
(Xn, Zn) ∼ PXn × Wn

Z . By using the characterization of
the variational distance in (2) as well as the bound in (120),
we deduce that for anyβ ∈ R,
∣

∣

∣

∣

Pr

(

1

n
log

Wn
Z(Z

n|Xn)

PZ̃n(Zn)
≥ β

)

− Pr

(

1

n
log

Wn
Z(Z̃

n|X̃n)

PZ̃n(Z̃n)
≥ β

)∣

∣

∣

∣

≤ exp(−nη1).

(121)

Defineα := 1
n
log(M̃n/Mn)− γ. Let η2 > 0 be an arbitrary

constant for now. The probabilityqn in (60) can be written
and bounded as

qn = Pr

(

1

n
log

Wn
Z (Z

n|Xn)

PZn(Zn)
≥ α

)

(122)

= Pr

(

1

n
log

Wn
Z (Z

n|Xn)

PZ̃n(Zn)
− 1

n
log

PZn(Zn)

PZ̃n(Zn)
≥ α

)

(123)

≤ Pr

(

1

n
log

Wn
Z (Z

n|Xn)

PZ̃n(Zn)
− 1

n
log

PZn(Zn)

PZ̃n(Zn)
≥ α

and
1

n
log

PZn(Zn)

PZ̃n(Zn)
> −η2

)

+ Pr

(

1

n
log

PZn(Zn)

PZ̃n(Zn)
≤ −η2

)

(124)

≤ Pr

(

1

n
log

Wn
Z (Z

n|Xn)

PZ̃n(Zn)
≥ α− η2

)

+ exp(−nη2)

(125)

≤ Pr

(

1

n
log

Wn
Z (Z̃

n|X̃n)

PZ̃n(Z̃n)
≥ α− η2

)

+ exp(−nη2) + exp(−nη1) (126)

= Pr

(

1

n

n
∑

i=1

log
WZ(Z̃i|X̃i)

PZ̃(Z̃i)
≥ α− η2

)

+ exp(−nη2) + exp(−nη1) (127)

where (126) uses the bound in (121) with the identification
β = α− η2.

Choose M̃n to be the smallest integer exceeding
exp[n(12 log(1 + S/σ2

1)) − 2γ)]. It can be shown using a
standard change of output measure argument (cf. proof of
direct part of [16, Thm. 3.6.2]) that withPXn as the input
distribution in (112) and withδ set toγ/2, the decoding error
probability tends to zero. ChooseMn to be the largest integer
smaller thanexp[n(12 log(1+S/σ2

1)− 1
2 log(1+S/σ2

2)−4γ)] =
exp[n(CG

s (W ;S) − 4γ)] and η2 = γ/2. Thus, α − η2 ≥
1
2 log(1 + S/σ2

2) + γ/2. With these choices,

E

[

log
WZ(Z̃|X̃)

PZ̃(Z̃)

]

=
1

2
log
(

1 +
S − γ/2

σ2
2

)

, (128)
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and from (127),

qn ≤ Pr

(

1

n

n
∑

i=1

log
WZ(Z̃i|X̃i)

PZ̃(Z̃i)
≥ 1

2
log
(

1 +
S

σ2
2

)

+
γ

2

)

+ exp(−nη2) + exp(−nη1). (129)

By the Chernoff bound [6, Lem. 6], the probability in (129)
tends to zero exponentially fast. Thus,qn tends to zero
exponentially fast, proving the lower boundC(1)(W) ≥
CG

s (W ;S) − 4γ. Now takeγ ↓ 0 to complete the proof of
the lower bound.

For the upper bound,C
(6)

(W) ≤ CG
s (W ;S), we emulate

the proof of Theorem3 with the (now) unique capacity-
achieving output distributionPȲ Z̄ being

PȲ Z̄(y, z) = N (y; 0, S + σ2
1)N (z; y, σ2

2 − σ2
1). (130)

The derivation up to (73) holds verbatim. So we simply have
to check the condition in (76) (with CG

s (W ;S) in place of
CDM

s (W )) and the behavior of the variance corresponding
to (78). We first fix an arbitrary sequencex = (x1, . . . , xn) ∈
Fn and study the first two moments of the following informa-
tion density random variable

K(n)(x) :=
1

n

n
∑

i=1

log
WY|Z(Y

(n)
i |xi, Z

(n)
i )

PȲ |Z̄(Y
(n)
i |Z(n)

i )
. (131)

We would like to show thatE[K(n)(x)] ≤ CG
s (W ;S) and

that the variance ofK(n)(x) is O(1/n) uniform onFn. For
this task, letNn

j (for j = 1, 2) be a sequence of i.i.d. zero-
mean Gaussian random variables with varianceσ2

j . Using the
constraint‖x‖22 ≤ nS, the fact thatσ2 > σ1 (as assumed),
and the form of the output distributions in (130), it can easily
be seen thatK(n)(x) can be upper bounded as

K(n)(x) ≤ CG

s (W ;S)

+
log e

2(1 + S
σ2

1

)

(

S

σ2
1

(

1− ‖Nn
1 ‖22

nσ2
1

)

+
2〈Nn

1 ,x〉
nσ2

1

)

− log e

2(1 + S
σ2

2

)

(

S

σ2
2

(

1− ‖Nn
2 ‖22

nσ2
2

)

+
2〈Nn

2 ,x〉
nσ2

2

)

. (132)

SinceNn
1 andNn

2 have zero means and covariancesσ2
1 ·In×n

and σ2
2 · In×n respectively, the expectation ofK(n)(x) is

bounded above byCG
s (W ;S). The variance ofK(n)(x) can

be written and bounded as

Var
[

K(n)(x)
]

= Var

[

1

n
log

Wn
Y (Y

n|x)
Pn
Ȳ
(Y n)

− 1

n
log

Wn
Z(Z

n|x)
Pn
Z̄
(Zn)

]

(133)

≤ 2Var

[

1

n
log

Wn
Y (Y

n|x)
Pn
Ȳ
(Y n)

]

+ 2Var

[

1

n
log

Wn
Z(Z

n|x)
Pn
Z̄
(Zn)

]

(134)

≤ (2 log2 e)

(

9S2

4n(S + σ2
1)

+
σ2
1S

n(S + σ2
1)

)

+ (2 log2 e)

(

9S2

4n(S + σ2
2)

+
σ2
2S

n(S + σ2
2)

)

(135)

where (135) follows from direct calculations per [16,
Eq. (3.7.24)] and the fact thatx ∈ Fn. We conclude that

uniform over allx ∈ Fn, the variance ofK(n)(x) is of the
order O(1/n) (depending only onS, σ2

1 , σ
2
2) and hence the

Chebyshev argument at the end of the proof of Theorem3
holds, yieldingC

(6)
(W) ≤ CG

s (W ;S) as desired.
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