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Abstract

In this paper, we introduce a new way of constructing and decoding multipermutation codes.
Multipermutations are permutations of a multiset that may consist of duplicate entries. We first
introduce a new class of matrices called multipermutation matrices. We characterize the convex
hull of multipermutation matrices. Based on this characterization, we propose a new class of
codes that we term LP-decodable multipermutation codes. Then, we derive two LP decoding
algorithms. We first formulate an LP decoding problem for memoryless channels. We then
derive an LP algorithm that minimizes the Chebyshev distance. Finally, we show a numerical
example of our algorithm.

1 Introduction

Using permutations and multipermutations in communication systems dates back to [1], where
Slepian considered using multipermutations as a data transmission scheme in the additive white
Gaussian noise (AWGN) channel. In recent years, there has been a growing interest in permutation
codes due to their applications in various areas such as power line communications (PLC) [2] and
flash memories [3]. For PLC, permutation codes are proposed to deal with permanent narrow-
band noise and impulse noises while delivering constant transmission power (see also [4]). For flash
memories, information is stored using the charge level of memory cells. Jiang et al. proposed using
the relative rankings among cells to modulate information [3]. This approach is able to reduce
the errors caused by charge leakage. Further, it alleviates the over-injection problem during cell
programming (cf. [3]).

In this paper, we consider coding using multipermutations. Loosely speaking, multipermuta-
tions are permutations that contain duplicates. Each multipermutation is a permutation of the
multiset {1, 1, . . . , 1, 2, . . . , 2, . . . ,m, . . . ,m}. We associate each set of multipermutations with a
multiplicity vector r = (r1, . . . , rm), where ri is the number of entries with value i in the multiset.
In the literature, codes using multipermutations are referred as constant-composition codes when
the Hamming distance is considered [5]. When r1 = r2 = · · · = rm, the multipermutations under
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consideration are known as frequency permutation arrays [6]. Recently, multipermutation codes
under the Kendall tau distance and the Ulam distance are studied in [7] and [8] respectively. There
are two motivations for coding using multipermutations: First, the size of the codebook based on
multipermutations can be larger than that based on (multiple) permutations. Second, the number
of distinct charges a flash memory can store is limited by the physical resolution of the hardware,
which means that using permutations over large alphabets is impractical.

LP-decodable permutation codes are proposed by Wadayama and Hagirawa in [9]. Indeed, the
construction in [9] is already defined over multipermutations. However, there are two issues to
this construction. First, multipermutations are described using permutation matrices in [9]. As a
result, the number of variables used to describe a multipermutation is larger than necessary. Since
multipermutations consist of many replicated entries, the information that describe the relative
positions among these replicated entries are redundant. This suggests that we can reduce the
number of variables used to specify multipermutations.

In order to elaborate the second issue, we briefly review some concepts. In [9], a codebook
is obtained by permuting an initial vector s with a set of permutation matrices. If s contains
duplicates, then there exists two different permutation matrices P1 and P2 such that sP1 = sP2.
This means that we cannot differentiate between sP1 and sP2 by the matrices P1 and P2. The
consequence is that minimizing the Hamming distance of two multipermutations is not equivalent
to minimizing the Hamming distance between two permutation matrices1.

In this paper, we introduce the concept of multipermutation matrices to represent multipermu-
tations which, we will see, will address the above two problems. Multipermutation matrices and
multipermutations have a one-to-one relationship. Using multipermutation matrices to represent
multipermutations reduces the number of variables needed to characterize a multipermutation.
Further, due to the one-to-one relationship, minimizing the Hamming distance of two multipermu-
tations is equivalent to minimizing the Hamming distance between the two corresponding multiper-
mutation matrices. In order to construct codes that can be decoded using LP decoding, we develop
a simple characterization of the convex hull of multipermutation matrices. The characterization
is analogous to the well known Birkhoff polytope. These tools we introduce are the basis for all
the code constructions that follow. They may also be of independent interests to the optimization
community.

In Section 4, we use the characterization of multipermutation matrices to define LP-decodable
multipermutation codes. We explore several connections between LP-decodable multipermutation
codes and the LP-decodable permutation codes proposed in [9]. In particular, we show that both
frameworks are sufficient to describe any multipermutation code. In other words, the interesting
question is whether there are good codes (in terms of rate and error performance) that can be
described efficiently. We show an easy description of a code construction from [10], which has
known rate and distance properties.

Our third set of contributions is our LP decoding formulations (Section 5). First, we derive LP
decoding algorithms for arbitrary memoryless channels. For the AWGN channel, our formulation
is equivalent to the one proposed in [9]. For the discrete memoryless q-ary symmetric channel, the
LP decoding objective is equivalent to minimizing the Hamming distance. Second, we derive an LP
decoding algorithm that minimizes the Chebyshev distance. We show some preliminary numerical
results for the code from [10] that is described in Section 4.

1This is defined as the number of disagreeing entries (cf. Section 3).
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2 Preliminaries

In this section, we briefly review the concept of permutation matrices and the code construction
approach proposed by Wadayama and Hagiwara in [9].

It is well known that every permutation from the symmetric group Sn corresponds to a unique
n×n permutation matrix. A permutation matrix is a binary matrix such that every row or column
sums up to 1. In this paper, all permutations and multipermutations are row vectors. Thus, if P
is the permutation matrix for a permutation π, then π = ıP where ı = (1, 2, . . . , n) is the identity
permutation. We let Πn denote the set of all permutation matrices of size n× n.

Definition 1 (cf. [9]) Let K and n be positive integers. Assume that A ∈ Z
K×n2

, b ∈ Z
K , and let

“E” represent “≤” or “=”. A set of linearly constrained permutation matrices is defined by

Π(A, b,E) := {P ∈ Πn|A vec(P ) E b}, (2.1)

where vec(·) is the operation of concatenating all columns of a matrix to form a column vector.

Definition 2 (cf. [9]) Assume the same set up as in Definition 1. Suppose also that s ∈ R
n is

given. The set of vectors Λ(A, b,E, s) given by

Λ(A, b,E, s) := {sP ∈ R
n|P ∈ Π(A, b,E)} (2.2)

is called an LP-decodable permutation code. s is called an “initial vector”.2

Note the vector s may contain duplicates as follows

s = (t1, t1, . . . , t1
︸ ︷︷ ︸

r1

, t2, t2, . . . , t2
︸ ︷︷ ︸

r2

, . . . , tm, tm, . . . , tm
︸ ︷︷ ︸

rm

), (2.3)

where ti 6= tj for i 6= j and there are ri entries with value ti. In this paper, we denote by
r = (r1, . . . , rm) the multiplicity vector. Note that

∑m
i=1 ri = n. Let t := (t1, t2, . . . , tm). Further,

we let Ii := {
∑i−1

l=1 rl + 1,
∑i−1

l=1 rl + 2, . . . ,
∑i−1

l=1 rl + ri} for all i = 1, . . . ,m. These are index sets
such that sj = ti for all j ∈ Ii. We will use these sets several times throughout the paper.

At this point, it is easy to observe that the vector s can be uniquely determined by t and
r. In the following section, we introduce the definition of multipermutation matrices that are
parameterized by r. Each multipermutation matrix corresponds to a permutation of s. We will
use t to represent a vector with distinct entries throughout the paper in order to keep consistency.

3 Multipermutation matrices

In this section, we introduce the concept of multipermutation matrices. Although as in (2.2), we
can obtain a multipermutation of length n by multiplying a permutation matrix of size n×n and an
initial vector of length n, this mapping is not one-to-one. Thus |Λ(A, b,E, s)| ≤ |Π(A, b,E)|, where

2In this paper, we always let the initial vector be a row vector. Then sP is again a row vector. This is different
from the notations followed by [9], where the authors consider column vectors.
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the inequality can be strict if there is at least one i such that ri ≥ 21. As a motivating example,
let a multipermutation be x = (1, 2, 1, 2). Consider the following two permutation matrices

P1 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







and P2 =







0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0







.

Then x = sP1 = sP2, where s = (1, 1, 2, 2). In fact there are a total of four matrices that can
produce x.

We first define multipermutation matrices. Given a fixed multiplicity vector, each multipermu-
tation matrix corresponds to a unique multipermutation. Then, we discuss their connections to
permutation matrices. Finally, we show a theorem that characterizes the convex hull of multiper-
mutation matrices, a theorem that is crucial for our code constructions.

3.1 Introducing multipermutation matrices

A multipermutation can be thought of as a “ranking” that allows “draws”. Formally, let r be a
multiplicity vector of length m and let n :=

∑m
i=1 ri. Consider the following multiset parameterized

by r and m
{1, 1, . . . , 1
︸ ︷︷ ︸

r1

, 2, 2, . . . , 2
︸ ︷︷ ︸

r2

, . . . ,m,m, . . . ,m
︸ ︷︷ ︸

rm

}.

Then a multipermutation is a permutation of this multiset. Note that values of m and n can
be calculated from the vector r. Thus we denote by M(r) the set of all multipermutations with
multiplicity vector r.

Definition 3 Given a multiplicity vector r of length m and n =
∑m

i=1 ri, we call a m× n binary
matrix X a multipermutation matrix parameterized by r if

∑m
i=1Xij = 1 for all j and

∑n
j=1Xij =

ri for all i. Denote by M(r) the set of all multipermutation matrices parameterized by r.

With this definition, it is easy to build a bijective mapping between multipermutations and
multipermutation matrices. When the initial vector is (t1, . . . , tm), the mapping M(r) 7→ M(r)
can be defined as follows: Let x denote a multipermutation, then it is uniquely represented by the
multipermutation matrix X such that Xij = 1 if and only if xj = ti. Conversely, to obtain the
multipermutation x, one only need to multiply the vector (1, . . . ,m) by X.

Example 4 Let the multiplicity vector be r = (2, 3, 2, 3), let t = (1, 2, 3, 4) and let

x = (2, 1, 4, 1, 2, 3, 4, 4, 2, 3).

Then the corresponding multipermutation matrix is

X =







0 1 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1 0 0







.

The row sums of X are (2, 3, 2, 3) respectively. Further, x = tX.
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t is called the “initial vector”. More generally, t could depend on the physical modulation
technique and does not have to be the vector (1, . . . ,m). For this generic setting, we have the
following lemma.

Lemma 5 Let t be an initial vector of length m with m distinct entries. Let X and Y be two
multipermutation matrices parameterized by a multiplicity vector r. Further, let x = tX and
y = tY . Then x = y if and only if X = Y .

Proof First, it is obvious that if X = Y then x = y. Next, we show that if X 6= Y then x 6= y.
We prove by contradiction. Assume that there exists two multipermutation matrices X and Y

such that X 6= Y and x = y. Then

x− y = t(X − Y ).

Since X 6= Y , there exists at least one column j such that X has a 1 at the k-th row and Y has
a 1 at the l-th row where k 6= l. Then the j-th entry of t(X − Y ) would be tk − tl 6= 0 due to the
fact that all entries of t are distinct. This contradict the assumption that x− y = 0.

At this point, one may wonder why this one-to-one relationship matters. We now discuss two
important aspects in which multipermutation matrices are beneficial.

3.1.1 The Hamming distance

The Hamming distance between two multipermutations is defined as the number of entries in which
the two vectors differ from each other. More formally, let x and y be two multipermutations, then
dH(x,y) = |{i|xi 6= yi}|. Due to Lemma 5, we can express the Hamming distance between two
multipermutations using their corresponding multipermutation matrices.

Lemma 6 Let X and Y be two multipermutation matrices. With a small abuse of notations, de-
note by dH(X,Y ) the Hamming distance between the two matrices, which is defined by dH(X,Y ) :=
|{(i, j)|Xij 6= Yij}|. Then

dH(X,Y ) = 2dH(x,y),

where x = tX and y = tY ; recall that t is an initial vector with distinct entries. Furthermore,

dH(X,Y ) = tr(XT (E − Y )),

where tr(·) represents the trace of the matrix and E is an n× n matrix with all entries equal to 1.
3

Proof For each entry i such that xi 6= yi, the i-th column of X differs from the i-th column of Y
by two entries. As a result, the distance between multipermutation matrices is double the distance
between the corresponding multipermutations.

Next, tr(XT (E − Y )) =
∑

ij Xij(1 − Yij). If Xij = Yij then Xij(1 − Yij) = 0. Otherwise

Xij(1− Yij) = 1. Therefore dH(X,Y ) = tr(XT (E − Y )).

We note that if we were to represent a multipermutation using a permutation matrix and an
initial vector that contains duplicates, then we cannot get a direct relationship between the Ham-
ming distance of two multipermutations and the Hamming distance of their permutation matrices.
This is the second issue with the representation of [9] discussed in the introduction.

3We note that tr(XT
Y ) =

∑
i,j

XijYij is the Frobenius inner product of two equal-sized matrices.
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Example 7 Let the initial vector be s = (1, 1, 2, 2). Consider two permutation matrices P1 and
P2, where P1 is the identity matrix and

P2 =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







.

Then dH(sP1, sP2) = 0, however dH(P1,P2) = 8.
Alternatively, we can use t = (1, 2) as the initial vector and use multipermutation matrices.

Then there is a unique X =

(
1 1 0 0
0 0 1 1

)

such that s = tX.

We make an important observation from Example 7: The mapping from permutation matrix
to multipermutation is not one-to-one. In Example 7, both P1 and P2 are mapped to the same
vector. This is because s contains duplicates.

3.1.2 Reduction on the number of variables

Another advantage of using multipermutation matrices is that they require fewer variables to de-
scribe multipermutations (cf. the first issue discussed in the introduction). The multipermutation
matrix corresponding to a length-n multipermutation has size m × n, where m is the number of
distinct values in the multipermutation.

This benefit can be significant when the multiplicities are large, i.e., m is much smaller than
n. For example, a triple level cell (TLC) flash memory has 8 states per cell. If a multipermutation
code has blocklength 1000, then one needs an 8 × 1000 multipermutation matrix to describe a
codeword. The corresponding permutation matrix has size 1000 × 1000.

3.2 Geometry of multipermutation matrices

In this section we prove an important theorem that characterizes the convex hull of all multiper-
mutation matrices. We review the Birkhoff-von Neumann theorem for permutation matrices and
then use it to prove our main theorem.

We first review the definition of doubly stochastic matrices. We refer readers to [11] and
references therein for more materials on doubly stochastic matrices.

Definition 8 An n× n matrix Q is doubly stochastic if

• Qij ≥ 0;

•
∑n

i=1 Qij = 1 for all j and
∑n

j=1Qij = 1 for all i.

The set of all doubly stochastic matrices is called the Birkhoff polytope.

The set of all doubly stochastic matrices has a close relationship with the set of permutation
matrices. Namely,

Theorem 9 (Birkhoff-von Neumann Theorem, cf. [11]) The permutation matrices constitute
the extreme points of the set of doubly stochastic matrices. Moreover, the set of doubly stochastic
matrices is the convex hull of the permutation matrices.

6



This theorem is the basis for the code construction method in [9]. Namely, the LP relaxation for
codes defined by Definition 2 is based on the Birkhoff polytope. In order to LP decoding algorithms
using our definition of multipermutation matrices, we prove a similar theorem that characterizes
the convex hull of multipermutation matrices.

Denote by M(r) the convex hull of all multipermutation matrices parameterized by r, i.e.
M(r) = conv(M(r)). M(r) can be characterized by the following theorem.

Theorem 10 Let r ∈ Z
m
+ and Z be a m× n matrix such that

(a)
∑m

i=1 Zij = 1 for all j = 1, . . . , n.

(b)
∑n

j=1 Zij = ri for all i = 1, . . . ,m.

(c) Zij ∈ [0, 1] for all i and j.

Then Z is a convex combination of multipermutation matrices parameterized by r. Conversely,
any convex combination of multipermutation matrices satisfies the conditions above.

Proof Consider a multipermutation x = (x1, . . . , xn) where each xk ∈ {1, . . . ,m}. Without
loss of generality, we assume that x is in increasing order. Recall in Section 2, we let Ii =
{
∑i−1

l=1 rl + 1, . . . ,
∑i

l=1 rl} be the index set for the i-th symbol. Then xk = i if k ∈ Ii. Let X be
the corresponding multipermutation matrix. Then X has the following form

X =













1 . . . 1
︸ ︷︷ ︸

r1
0

1 . . . 1
︸ ︷︷ ︸

r2
. . .

0 1 . . . 1
︸ ︷︷ ︸

rm













,

where Xik = 1 if k ∈ Ii and Xik = 0 otherwise.
Note that all multipermutation matrices parameterized by a fixed r are column permutations of

each other. Of course, as already pointed out, not all permutations lead to distinct multipermuta-
tion matrices. To show that any Z satisfying (a)-(c) is a convex combination of multipermutation
matrices, we show that there exists a stochastic matrix Q such that Z = XQ. Then by The-
orem 9, Q can be expressed as a convex combination of permutation matrices. In other words,
Q =

∑

h αhPh where Ph ∈ Πn are permutation matrices; αh ≥ 0 for all h and
∑

h αh = 1. Then
we have

Z = X
∑

h

αhPh =
∑

h

αh(XPh),

where XPh is a column permuted version of the matrix X, which is a multipermutation matrix of
multiplicity r. This implies that Z is a convex combination of multipermutation matrices.

We construct the required n × n matrix Q in the following way. For each i ∈ (1, 2, . . . ,m), let
qi be a length-n column vector, qij =

1
ri
Zij for j = 1, . . . , n. Then the n× n matrix

QT := [q1|q1| . . . |
︸ ︷︷ ︸

r1 of them

. . . |qi|qi| . . . |
︸ ︷︷ ︸

ri of them

. . . |qm|qm . . .
︸ ︷︷ ︸

rm of them

]. (3.1)
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In other words, Qkj =
1
ri
Zij for all k ∈ Ii and j = 1, . . . , n. We now verify that Z = XQ and that

Q is doubly stochastic, which by our discussions above implies that Z is a convex combination of
column permutations of X.

1. To verify Z = XQ, we need to show that Zij =
∑n

k=1XikQkj. Since X is a binary matrix,

n∑

k=1

XikQkj =
∑

k:Xik=1

Qkj.

In addition, since x is sorted, Xik = 1 if and only if k ∈ Ii. By the definition of Q, Qkj =
1
ri
Zij

for all k ∈ Ii. Therefore

∑

k:Xik=1

Qkj = ri
Zij

ri
= Zij .

2. Next we verify that Q is a double stochastic matrix. Since 0 ≤ Zij ≤ 1 for all i, j, Qij ≥ 0
for all i, j. By the definition of Q, the sum of each row is ‖qi‖1 for some i. Thus ‖qi‖1 =
∑n

j=1
1
ri
Zij = 1 by condition (b). The sum of each column is

n∑

k=1

Qkj =

m∑

i=1

∑

k∈Ii
Qkj

=

m∑

i=1

∑

k∈Ii

1

ri
Zij =

m∑

i=1

Zij = 1,

where the last equality is due to condition (a).

To summarize, for any given real matrix Z satisfying condition (a)-(c) we can find a doubly stochas-
tic matrix Q such that Z = XQ for a particular multipermutation matrix X. This implies that
Z is a convex combination of multipermutation matrices.

The converse is easy to verify by the definition of convex combinations and therefore is omitted.

4 LP-decodable multipermutation code

4.1 Linearly constrained multipermutation matrices

Using multipermutation matrices as defined in Definition 3, we define the set of linearly constrained
multipermutation matrices analogous to that in [9]. Recall that we denote by M(r) the set of all
multipermutation matrices parameterized by the multiplicity vector r = (r1, . . . , rm) and n :=
∑m

i=1 ri.

Definition 11 Let K, m and n be positive integers. Assume that A ∈ Z
K×(mn), b ∈ Z

K , and let
“E” represent “≤” or “=”. A set of linearly constrained multipermutation matrices is defined by

ΠM(r,A, b,E) := {X ∈ M(r)|A vec(X) E b}, (4.1)

where r is the multiplicity vector.

8



Definition 12 Let K, m and n be positive integers. Assume that A ∈ Z
K×(mn), b ∈ Z

K , and let
“E” represent “≤” or “=”. Suppose also that t ∈ R

m is given. The set of vectors ΛM(r,A, b,E, t)
given by

ΛM(r,A, b,E, t) := {tX ∈ R
n|X ∈ ΠM(r,A, b,E)} (4.2)

is called an LP-decodable multipermutation code.

We can relax the integer constraints and form a code polytope. Recall that M(r) is the convex
hull of all multipermutation matrices parameterized by r.

Definition 13 The polytope P
M(r,A, b,E) defined by

P
M(r,A, b,E) := M(r)

⋂

{X ∈ R
m×n|A vec(X) E b}

is called the “code polytope”. We note that PM(r,A, b,E) is a polytope because it is the intersection
of two polytopes.

We now briefly discuss these definitions and point out some key ingredients to notice.

• Definition 11 defines the set of multipermutation matrices. Due to Lemma 5, this set uniquely
determines a set of multipermutations. The actual codeword that is transmitted (or stored
in a memory system) is also determined by the initial vector t, where t is determined by the
modulation scheme used in the system. Definition 12 is exactly the set of codewords after
taking t into account.

• Definition 13 is for decoding purposes. It will be discussed in detail in Section 5. As a preview,
we note that we formulate an optimization problem with variables within the code polytope
P
M(r,A, b,E). In this optimization problem, the objective function is related to the initial

vector t but the constraints are not. Therefore P
M(r,A, b,E) is not parameterized by t.

• P
M(r,A, b,E) is defined as the intersection between two polytopes. It is not defined as the

convex hull of ΛM(r,A, b,E, t), which is usually harder to describe. However, this intersection
may introduce fractional vertices, i.e. X ∈ R

m×n and Xij ∈ (0, 1). Because of this, we call
P
M(r,A, b,E) a relaxation of conv(ΛM(r,A, b,E, t)).

4.2 Connections to LP-decodable permutation codes

In this section, we discuss both LP-decodable permutation codes and LP-decodable multipermu-
tation codes. We first show that both code construction frameworks are able to describe arbitrary
codebooks. This means that neither definition reduces the code design space in terms of possi-
ble codebooks. In other words, they are able to achieve the capacity of multipermutation codes
in any scenario when the optimal decoding scheme is used. In addition, we show that given an
LP-decodable multipermutation code (defined by Definition 12), there exist an LP-decodable per-
mutation code (defined by Definition 2) that produces the same codebook with the same number
of linear constraints.

Lemma 14 Both the LP-decodable permutation code and the LP-decodable multipermutation code
are able to describe arbitrary codebooks of multipermutations.

9



Proof Denote by C the desired codebook. Then for any multipermutation y /∈ C, we can construct
a linear constraint per Definition 2 and Definition 12 such that only y is excluded by this constraint.

We first consider multipermutation matrices. Without loss of generality, we assume that the
initial vector t under consideration has distinct entries. Therefore there exists a unique Y such
that y = tY . We now construct the following linear constraint

tr(X(E − Y )) ≥ 1. (4.3)

By Lemma 6, this constraint implies that the Hamming distance between y and x has to be greater
than or equal to 1. Adding this constraint excludes only y from the codebook. Because y is the
only vector at distance 0.

Now consider permutation matrices and assume that the initial vector s contains duplicates.
We can use the same exclusion method to eliminate all permutation matrices P such that y = sP .

From the arguments above, we know that for any codebook, we can exclude all non-codewords
by adding linear constraints. This implies that both the LP-decodable permutation code and the
LP-decodable multipermutation code are able to describe an arbitrary codebook.

We note that Lemma 14 does not guarantee that the codebook can be expressed efficiently using
linear constraints. In Proposition 15, we show that once we have an LP-decodable multipermutation
code, we can obtain an LP-decodable permutation code with the same number of constraints.

Proposition 15 Let t be a length-m initial vector. Let r be the multiplicity vector for t. Then for
any A and b that defines an LP-decodable multipermutation code ΛM(r,A, b,E, t), cf. (4.2), there
exist an A′ such that ΛM(r,A, b,E, t) = Λ(A′, b,E, s), where s is obtained by repeating each entry
of t ri times (i.e. Eq. (2.3)).

Proof We first construct A′ using A. Then, we show that for every codeword in ΛM(r,A, b,E, t),
it is also in Λ(A′, b E, s). Finally, we show the converse.

We construct A′ row-by-row using A. That is, row l of A′ is obtained from row l of A for all
l. We start by letting a be the first row of A. Then the constraint induced by a is a vec(X) E b,
where X is a multipermutation matrix and b is the first value in b. Since a is a length-mn vector,
we can relabel the entries of vector a by

a = (a11, a21, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)

Then a vec(X) E b can be rewritten as

∑

i∈{1,...,m},j∈{1,...,n}
aijXij E b (4.4)

Denote by a′ the first row of A′. We label entries of a′ by

a′ = (a′11, a
′
21, . . . , a

′
n1, a

′
12, . . . , a

′
n2, . . . , a

′
1n, . . . , a

′
nn).

Let Ii be the index set for symbol i. We construct a′ by letting a′kj = aij for all k ∈ Ii and
j = 1, . . . , n. In other words, the constraint a′ vec(P ) E b is equivalent to

∑

i∈{1,...,m},j∈{1,...,n}
aij




∑

k∈Ii
Pkj



 E b (4.5)
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For every row of A, we repeat the above construction to obtain the corresponding row of A′.
Now we show that for each c ∈ ΛM(r,A, b,E, t), c ∈ Λ(A′, b,E, s), where A′ is define by our

definitions above. Since c ∈ ΛM(r,A, b,E, t), there exist a multipermutation matrix X such that
A vec(X) E b and that c = tX. We construct a permutation matrix as follows: Let P be a n× n
permutation matrix. We divide the rows of P into m blocks Bi, where each Bi is a ri × n matrix
that contains rows k ∈ Ii of P . By Definition 3, we know that the i-th row of X contains exactly
ri non-zero entries. We label these entries by j1, j2, . . . , jri . In other words, Xij1 = · · · = Xijri

= 1.
Then, for all l = 1, . . . , ri, we let the l-th row of Bi be a vector with a 1 at the jl-th entry. For
example, if the i-th row of X is (1, 0, 1, 0), then the i-th block of P is

Bi =

(
1 0 0 0
0 0 1 0

)

.

Then it is easy to verify that P is a permutation matrix, that P satisfies (4.5), and that
sP = tX. We omit the details here.

Finally, we show that for each c ∈ Λ(A′, b,E, s), c ∈ ΛM(r,A, b,E, t). Let P be the permu-
tation matrix such that c = sP and that P ∈ Π(A′, b,E). We construct matrix X by letting
Xij =

∑

k∈Ii Pkj. Then X is the multipermutation matrix for vector c and X ∈ ΠM(r,A, b,E).

Therefore c ∈ ΛM(r,A, b,E, t).

4.3 Examples of LP-decodable multipermutation codes

We provide two examples that leverage our code construction in Definition 12.

Example 16 (Derangement) We say that a permutation π is a derangement if πi 6= i. For
multipermutations, we can consider a generalized derangement defined as follows. Let

ı = (1, 1, . . . , 1
︸ ︷︷ ︸

r1

, 2, 2, . . . , 2
︸ ︷︷ ︸

r2

, . . . ,m,m, . . . ,m
︸ ︷︷ ︸

rm

).

Let x be a multipermutation obtained by permuting ı. We say that x is a derangement if xi 6= ıi
for all i.

In [9], the authors use Definition 2 to define such a set of permutations by letting tr(P ) = 0,
where P is a permutation matrix. We now extend this construction using Definition 12. Using the
same notations in Section 2, we let the linear constraints be

∑

j∈Ii
Xij = 0 for all i = 1, . . . ,m.

Suppose the initial vector t = (1, 2, . . . ,m), then these constraints imply that symbol i cannot appear
at positions Ii. For example, let t = (1, 2, 3) and r = (2, 2, 2). Then the valid multipermutations
are

(3, 3, 1, 1, 2, 2), (2, 2, 3, 3, 1, 1), (2, 3, 1, 3, 2, 1),

(2, 3, 1, 3, 1, 2), (2, 3, 3, 1, 2, 1), (2, 3, 3, 1, 1, 2),

(3, 2, 1, 3, 2, 1), (3, 2, 1, 3, 1, 2), (3, 2, 3, 1, 2, 1),

(3, 2, 3, 1, 1, 2).
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Example 17 In [10], the authors study multipermutation codes under the Chebyshev distance. The
Chebyshev distance between two permutations (also multipermutations) x and y is defined as

d∞(x,y) = max
i

|xi − yi|. (4.6)

The following code construction is proposed in [10]:

Definition 18 Let r = (r, r, . . . , r) be a length-m vector. Let d be an integer such that d divides
m. We define

C(r,m, d) = {x ∈ M(r)|∀i ∈ {1, . . . ,mr}, xi ≡ i mod d}. (4.7)

This code has cardinality ( (ar)!(r!)a )
d where a = m/d. It was shown in [10] that the minimum Chebyshev

distance of this code is d. Further, the rate of the code is observed to be relatively closer to a
theoretical upper bound on the rate derived in [10] when r is larger. However no encoding or
decoding algorithms are presented in [10].

In this paper, we first express the code construction using Definition 12. Then, we derive a
decoding algorithm in Section 5. While we have developed a tractable encoding algorithm, we do
not present it due to space limitations and as it is not the main focus of this paper.

It is easy to verify that this code corresponds to the following linear constraints.

• For all j = 1, . . . , n and i 6≡ j mod d, Xij = 0.

As a concrete example, let m = 6, r = 2 and d = 3. Then the constraints are

X21 = X31 = X51 = X61 = 0

X12 = X32 = X42 = X62 = 0

...

X1,12 = X2,12 = X4,12 = X5,12 = 0

To summarize this section, we show how to construct codes using multipermutation matrices.
Recall in Theorem 10, we characterize the convex hull of multipermutation matrices. We leverage
this characterization in the next section to develop LP decoding algorithms.

5 Channel model and LP decoding

In [9], the authors focused only on the AWGN channel. We first extend the LP decoding algorithm
to arbitrary memoryless channels. The LP decoding objective is based on log-likelihood ratios,
which is very similar to LP decoding of non-binary low-density parity-check codes proposed by
Flanagan et al. in [12]. Next, we propose an LP decoding algorithm that minimizes the Chebyshev
distance.

Throughout this section, we will use t to denote the initial vector. Without loss of generality,
we assume that t contains distinct entries. Thus the channel input space is S = {t1, . . . , tm}.

12



5.1 LP decoding for memoryless channels

We first focus on memoryless channels. More formally, let Σ be the output space of the channel.
Let x be the transmitted multipermutation, which is a codeword from an LP-decodable multi-
permutation code. Let y be the received word. Then PΣn|Sn(y|x) =

∏n
i=1 PΣ|S(yi|xi). Under

this assumption, we define a function γ : Σ 7→ R
m: γ(y) is a length-m row vector, each entry

γi(y) = log
(

1
P (y|ti)

)

. Further, we let Γ(y) = (γ(y1)
T | . . . |γ(yn)

T )T ∈ R
mn.

Then, maximum likelihood (ML) decoding can be written as

x̂ = argmax
x∈ΛM(r,A,b,E,t)

P [y|x]

= argmax
x∈ΛM(r,A,b,E,t)

n∑

i=1

log P [yi|xi]

(a)
= t

(

argmin
X∈ΠM(r,A,b,E)

n∑

i=1

γ(yi)X
C
i

)

(b)
= t

(

argmin
X∈ΠM(r,A,b,E)

Γ(y) vec(X)

)

,

whereXC
i is the i-th column ofX. Equality (a) comes from the fact that for each x ∈ ΛM(r,A, b,E

, t) there exists anX ∈ ΠM(r,A, b,E) such that x = tX. Further, since γ(yi)X
C
i = − log (P (yi|ti)),

the maximization problem can be transformed to a minimization problem. Equality (b) is simply
a change to matrix notations.

For this problem, we can relax the integer constraints ΠM(r,A, b,E) to linear constraints
P
M(r,A, b,E). Then the LP decoding problem is

minimize Γ(y) vec(X)

subject to X ∈ P
M(r,A, b,E)

(5.1)

Theorem 19 The LP decoding problem (5.1) has an ML certificate. That is, whenever LP decoding
outputs an integral solution, it is the ML solution.

Proof Suppose that X is the solution of the LP decoding problem and is integral. Then X is a
multipermutation matrix and A vec(X) E b. Therefore X ∈ ΠM(r,A, b,E). Since X attains the
maximum of the ML decoding objective, it is the ML solution.

5.1.1 The AWGN channel

In the AWGN channel, P (y|ti) =
1√
2πσ

e
(y−ti)

2

2σ2 , where σ2 is the variance of the noise. Thus

Γ(y) = K((y1 − t1)
2, . . . , (y1 − tm)2

︸ ︷︷ ︸

m

. . . (yn − t1)
2, . . . , (yn − tm)2

︸ ︷︷ ︸

m

),

where K > 0 is a scaling constant. Then

Γ(y) vec(X) = K

(
n∑

i=1

y2i +
m∑

i=1

rit
2
i − 2u vec(X)

)

,
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where u = (y1t1, . . . , y1tm
︸ ︷︷ ︸

m

. . . ynt1, . . . , yntm
︸ ︷︷ ︸

m

). Thus

argmin
X

Γ(y) vec(X) = argmax
X

tr((yT t)X). (5.2)

We note that this formulation is the same as the LP decoding problem proposed in [9]. We briefly
restate the definition of pseudodistance in [9] in the context of LP-decodable multipermutation
codes and then state the upper bound for block error probability.

Definition 20 The function

ωAWGN(X, X̂) =
‖tX‖22 − tX̂(tX)T

‖tX̂ − tX‖2
(5.3)

is called the pseudodistance where X, X̂ ∈ M(r).

Proposition 21 Let V be the set of fractional vertices for the code polytope P
M(r,A, b,E). Suppose

a codeword tX is transmitted through the AWGN channel with noise variance σ2. Then the block
error probability is upper bounded by

Perror ≤
∑

X̂ /∈V\{X}

Q

(
1

σ
ωAWGN(X, X̂)

)

, (5.4)

where Q(·) is the tail probability of the standard normal distribution.

Proof We omit the proof because it is identical to the proof of Lemma 1 in [9].

5.1.2 Discrete memoryless q-ary symmetric channel

Without loss of generality, we assume that the channel output space is the same as the input space.
Namely, S = Σ = {1, . . . ,m}. The transition probabilities are given by

P (y|x) =

{

1− p if y = x
p

m−1 otherwise.

Let e(y) be a row vector such that e(y)i = 0 if i 6= y and e(y)i = 1 if i = y. Further, we denote by
Y the matrix

Y = [e(y1)
T |e(y2)

T | . . . |e(yn)
T ].

Using these notations,

γ(y) = log

(
m− 1

p

)

1+ log

(
1

1− p
·

p

m− 1

)

e(yi).

Then,

Γ(y) vec(X) = tr

(

log

(
m− 1

p

)

ETX + log

(
1

1− p
·

p

m− 1

)

Y TX

)

,

where E is an m × n matrix with all entries equal to one. Note that tr(ETX) = n is a constant

and log
(

1
1−p ·

p
m−1

)

is a negative constant. Therefore

argmin
X

Γ(y) vec(X) = argmax
X

tr(Y TX). (5.5)

Note that this is equivalent to minimizing the Hamming distance between X and Y (cf. Lemma 6).
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5.2 LP decoding for the Chebyshev distance

Permutations codes under the Chebyshev distance are proposed by Klove et al. in [13] for flash
memories. Its extension to multipermutations is introduced in [10]. We first express the minimiza-
tion of the Chebyshev distance using a linear program. We then provide a decoding example for
the code construction in Example 17.

The decoding problem that minimizes the Chebyshev distance can be written as the following
optimization problem:

minimize max
i

|xi − yi|

subject to x ∈ ΛM(r,A, b,E, t)

We can introduce a auxiliary variable δ and rewrite the problem as

minimize δ

subject to x ∈ ΛM(r,A, b,E, t),

− δ ≤ xi − yi ≤ δ for all i.

Note that x = tX, where X ∈ ΠM(r,A, b,E), and thus the problem can be reformulated as

minimize δ

subject to X ∈ ΠM(r,A, b,E),

− δ ≤ tX − y ≤ δ,

where δ := (δ, δ, . . . , δ) is a length-n vector. Now we relax the problem to an LP

minimize δ

subject to X ∈ P
M(r,A, b,E),

− δ ≤ tX − y ≤ δ.

(5.6)

We observe that the solution of LP decoding problem above is usually not unique. Therefore we
adopt a simple rounding heuristic to obtain the final decoding result: Let x̂j = argmaxi Xij for all
j = 1, . . . , n.

Example 22 We consider the code construction with the same parameters in Example 17. This
code has minimum (Chebyshev) distance 3. Therefore the optimal decoding scheme can correct 1
error. We let the transmitted codeword be x = (1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6) and the received word
be y = (2, 1, 4, 3, 6, 5, 2, 1, 4, 3, 6, 5). The Chebyshev distance between x and y is d∞(x,y) = 1. We
also note that the Hamming distance is dH(x,y) = 12 and the Kendall tau distance is dK(x,y) = 6.

We solve the LP problem (5.6) using CVX [14]. The solution we obtain is X11 = X33 = X44 =
X66 = X17 = X39 = X4,10 = X6,12 = 0.5825, X41 = X63 = X14 = X36 = X47 = X69 = X1,10 =
X3,12 = 0.4175, X22 = X55 = X28 = X5,11 = 1 and the rest entries are zero. The minimum value
for δ is 1. Let x̂j = argmaxiXij for all j = 1, . . . , n. Then x̂ = (1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6).

15



6 Conclusions

In this paper, we develop several fundamental tools of a new multipermutation code framework. We
first propose representing multipermutations using binary matrices that we term multipermutation
matrices. In order to apply LP decoding, we characterize the convex hull of multipermutation
matrices. This characterization is analogous to the Birkhoff polytope of permutation matrices.
Using this characterization, we formulate two LP decoding problems. The first LP decoding problem
is based on minimizing the ML decoding objective. It applies to arbitrary memoryless channel.
The second LP decoding problem is based on minimizing the Chebyshev distance. We demonstrate
via an example that this LP decoding algorithm can be used to decode a code designed for the
Chebyshev distance.
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