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Abstract

In this work, we study a noiseless broadcast link serviigusers whose requests arise from a libraryNof
files. Every user is equipped with a cache of sizefiles each. It has been shown that by splitting all the files int
packets and placing individual packets in a random indegenchanner across all the caches, it requires at most
N/M file transmissions for any set of demands from the librarye &chievable delivery scheme involves linearly
combining packets of different files following a greedy dkgcover solution to the underlying index coding problem.
This remarkable multiplicative gain of random placemend anded delivery has been established in the asymptotic
regime when the number of packets per filescales to infinity.

In this work, we initiate the finite-length analysis of ramda@aching schemes when the number of packets
is a function of the system parametev$, N, K. Specifically, we show that existing random placement aigliel

A shorter version of this manuscript appeared in the 52ndua@hAllerton Conference on Communication, Control, and @otimg (Allerton),
2014 as an invited paperl[1].
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cover delivery schemes that achieve optimality in the adgtigpregime can have at most a multiplicative gain of
2 if the number of packets is sub-exponential. Further, for éique cover based coded delivery and a large class
of random caching schemes, that includes the existing ameshow that the number of packets required to get a
multiplicative gain ofz g is at leastO((IN/M)?). We exhibit a random placement and an efficient clique coeset
coded delivery scheme that approximately achieves thisddeund. We also provide tight concentration results that
show that the average (over the random caching involved)beuraf transmissions concentrates very well requiring

only polynomial number of packets in the rest of the paramsete

Index Terms

Coded multicasting; Caching; Index Coding; Clique-covénite-length analysis.

I. INTRODUCTION

Wireless data traffic is increasing at an alarming pace datedchby video on demand service$ [2], and the LTE
bandwidth available has not increased to cope with the asing demand. Recently, to tackle this problem, caching
at the wireless edge has been proposéd [3], [4]. Cachingddalk place at small cell/WiFi access points or at
end user devices[[5][6], by prefetching popular contenofidpeak periods to alleviate peak traffic later. It has
been shown that in the presence of some form of communichgbneen caches (e.g., device-to-device or D2D
communications), caching gains proportional to the agageegache size can be obtaingd [7], [8]. However, when
there is no direct communication between caches, convait@aching schemes are limited to local cache hit gains.

Consider that a set of demands for distinct files arrivinghat base station (in a wireless macro cell setting)
where each demand corresponds to some user mobile devibe icetl. For simplicity, consider the case when
user mobile stations are equipped with cache memory. Fileed in (say) user A's cache may or may not be
relevant to that user's demand. However, it is possible dhather user's demand is stored in the cache. This could
benefit the number of files (or its equivalent in terms of bitgt the base station needs to broadcast to satisfy all
demands if the cache content of every user is taken into atcdhe abstract problem calléadex codingtries to
model the aspect of wireless caching systems that do not lbaaé cache hits but their cache (or what is called
side informatiofh overlaps with other users’ demands. In an index coding Iprobwe haveK caching mobile
devices served by a noiseless broadcast channel. Eacmgaaévice requests a distinct file that is not there in
its cache. The broadcast transmissions can be a linear natiti of files. Each user recovers its demand using
the broadcast transmissions using its cache content. Tjeetivie is to find the minimum broadcast transmissions
(termed as broadcast rate) given a set of demands and gigba cantent for each user. This problem is known to
be extremely hard to compute and approximate even whernrlgc@abinations are done over the binary alphabet
[9]. The problem can be represented as a side informatigrhgmdnere vertices are users and a directed edge means
that one user’s caching device has the some other usersedgsicket as cached information. This problem has
received a lot of attention in the information theory liter® [10]-[12] because it) encapsulates the difficulty of
all network coding problems arzj any linear coding scheme for index coding is equivalent ioear interference

alignment scheme. We provide an example : Useequests packet and User2 requests packet and each user



has the other users’ packet. Although there idawal cache hit, the side information present at both users can be
used to reduce the number of transmissionldyy transmitting the XOR of both packets.

In another line of work, motivated by this 'index coding pesfy’ that allows using users side information to create
coded multicast transmissions for users requesting difitefiles, the problem of designing the side information is
also considered. This problem is referred to as either tleaaaching or the caching-aided coded multicasting
problem. Hereafter, we refer to this simply as the cachimplgm. The setting is same as the index coding problem
where there is a library oiV files from which user requests arise and every device has aomyewfi size M. The
difference is that there is glacement phaseavhich is free of cost, that involves populating all usertewith files
from the library. The problem has been studied where ordémappeak broadcast rate for worst-case demand, order
optimal average rate for uniform demand distribution andieoroptimal average rate for Zipf demand distribution
for the demand have been characterized. However, all theatile schemes work in the asymptotic regime when
the number of packets per file scales to infinity. In this paper consider the case of peak rate over worst-case
demand pattern. We show that existing algorithms for plas#nand delivery give very little gain even when the
file sizes are exponentially large in the number of users, darile lower bounds for a general class of random
uncoordinated placement schemes and clique cover basedrgeichemes. We also modify existing algorithms to

approximately match these bounds. A detailed review of #whing problem is given below.

A. Related Work

In the caching problem, there is a common broadcasting aggming K users through a noiseless broadcast
channel. Every user requests a file from a sef\ofiles. Each file consists of' bits or packets. Every user has
a cache of sizeVl files. Files or parts of it ('packets’) are placed in everytwaprior to transmissions assuming
that the library of file requests is known in advance. The cibje is to design a placement scheme and delivery
scheme that optimizes (or approximately optimizes) theimam number of file transmissions required over all
possible demand patterns. This problem has been well stulithe asymptotic regime whehll — oc.

A deterministic caching and delivery scheme which requ@ggﬂv) packets per file to achieve a gain&f\/ /N
was proposed il [13]. Following this, a random placemenées@hthat allows populating user caches independently
of each other was proposed in[14]. In this uncoordinatedgsteent phase, every user cacliéd’/N packets of
each filen € [1 : N] chosen uniformly at random and independently of other cachike delivery scheme is a
greedy clique cover on the side information graph inducedhieyunderlying index coding problem (refer Section
M, where a set of packets of possibly different files are Y0Rf for all packets, at least one user desiring the
file corresponding to the packet can recover the desiredgpamMy by using its cache contents. For example if
A+ B+ C was sent, a user wanting could recoverA if the user hasB andC' stored in its user cache. Tipeak
broadcast rate(lnumber of file transmissions) of this scheme was shown tarbthé limit * — o0):

K (1— M/N)

R,(M) = (KM/N)

(1 (- M/N)K) @)

Here,R,(M) denotes the peak broadcast rate. The peak rate means thecagggate over all demand patterns of



the K users from the library. More precisely, this is the averagg@qrate because it is averaged over the randomness
in caching. Note that, if coded multicasting is not used ttienrate is given byx (1 — M/N) from the gain due

to just local cache hits. It was shown through cut-set bouhés the result in[{1) was optimal up to a constant
factor. The placement and delivery algorithms that achthi®average peak rate are given in Algorithiths 1 @ahd 2

respectively.

Input: Parameterd<, M, N and F.
for every userk € [1 : K] do

for every filen € [1: N] do
| Choose a random/ F//N subset ofF’ packets of filen and place it in caché.

end
end

Output: Cache configuration for every uskre [1: K.
Algorithm 1: OldPlacement (Placement Algorithm in_[14])

Input: Parameterds, M, N and F', caches for all userg € [1 : K] and demand sel = [d;,dz ... dk].

for every subsef C [1: K] do
Let Vi s_i be the vector of packets from file requested by uséut stored exactly in the set of cache

S —k.

2

Transmit®resVi,s—k-
end

Algorithm 2: OldDelivery (Delivery Algorithm in [14]). XORing ©’ing) vectors of different lengths means
that all shorter vectors are zero padded to match the loragesthen XORed.

This was followed by the works of [15] and [16] where they gaalthe case of average number of transmissions
when the user demand follows a popularity distribution aber library. Specifically, authors in_[lL6] consider the
case in which file requests follow a Zipf popularity distrilain. They provide caching and delivery schemes that
achieve order optimal average number of transmissionsdarafiymptotic regime. The caching distribution, unlike
in the worst-case, has to be designed with respect to thectolt demand distribution. Interestingly, they also
showed that for Zipf parameter betwe@r(uniform popularity) andl, even the peak rate scheme given above is

sufficient for order optimality in the asymptotic reginie— oo.

B. Our Contribution

We consider the caching problem witki users, N files in the library and a cache size of files. We are
interested in the peak broadcast rate (number of file tragssams) for the worst-case demand. Our contributions

are:



1) We first show that the existing random uncoordinated phare scheme (Algorithial 1) for this problem and its
delivery scheme (Algorithrl 2) has a rate ab&S_QM—/M when F' < LKM) exp (KM/N). When compared
to the asymptotic result, for a large asymptotic gain whéeN /M is Q((log K)?), the file size requirement
is super-polynomial.

2) We propose a slightly modified placement scheme (Algorif). We show that the old delivery algorithm
(Algorithm[2) coupled with the new placement scheme haslainfile size requirements suggesting a needed
change in the delivery scheme.

3) We show that, under any random placement scheme whicllépéndent and symmetric across users (every
file packet placement in a user cache is independent of iteplant in other caches, every file packet has
equal marginal probability of being placed in a cache), aliyue cover based scheme (using clique cover
on the side-information graph) requires a file size of appnately O((N/M)9~!) for achieving a peak
average rate oﬁ%’% (1 —M/N). Here, the average is over the random caching involved.

4) Since the studied placement schemes are random, it isriampdo consider the spread in performance due
to this randomness. We show that the file size requiremenmtarfp clique cover scheme over both random
placement schemes (old and the new) is polynomial for theageenumber of transmissions to concentrate
for any demand pattern. It is sufficient to have a file sizg @fK? log K)) for the random rate (over the
randomness in caching) to be within a constant multipkeatactor from the mean.

5) We finally exhibit a modified delivery scheme that improeesAlgorithm[2 through an extra pre-processing

~

step. This modified delivery scheme applied with a specifier iggouping along with the new placement
scheme provably achieves a rate of roughly,¢; with a file size of O(([N/M1)9+ (log(N/M))972(2¢)9)
approximately matching the lower bound. The new placememrme plays an important role in simplifying
the analysis of this algorithm.

In Sectior1l, we provide the definitions of two random plaeginschemes (‘old’ placement scheme used in the
literature and a ‘new’ placement scheme) and a deliveryraehpreviously used in literature. In Sectibnl 111, for
any clique cover scheme, we show that the file size requirtsreme only polynomial inK for the normalized
transmissions in both random placement schemes to coatentell. In Sectiof 1V, we show that the previous
delivery scheme, that works asymptotically very well, giamnly a constant gain (&) even for exponentially large
file sizes. We also show that any clique cover scheme with dorarmplacement scheme that is ‘symmetric’ requires
exponential file size in the ‘target gain’. For constant éirgains, the file size requirement is polynomial in the
ratio of library size to the cache memory size per user. Irti&e/] to bridge the gap, we design an efficient clique
cover scheme, which together with the new placement schaoméeves the file size lower bound approximately

orderwise.

II. DEFINITIONS AND ALGORITHMS

We consider the problem of designing placement and deliselngmes whelk users request files from a library

of N files (V> K) and each user has a cache of sizefiles. In the placement phase, a file is divided iito



packets/bits. Then each packet is placed in different useles (randomly or deterministically). We are interested
in an efficient placement scheme and an efficient delivergsehconsisting of coded XOR transmissions of various
packets that optimizes the peak rate over worst-case demamdefficient delivery scheme computes the coded
transmissions needed in time polynomial in paramef€rd(, F, M, while a placement scheme being efficient
ensurest’ is as small as possible. Let us denote a set of demands=byd;,ds ...dk], di € [1: N]. A packet

f belonging to filen € [1: N] is denoted by(n, f).

Definition 1. After a placement scheme, cache configuratiois given by the family of setS,, ; for all files n

and1l < f < F whereS,, ; C [1: K] is the set of user caches in which packet (fitdpf file n is stored.

Every demandl and a cache configuration induces a directed side informafiaphG = (V, E') where there
are K F' nodes wheréd,, f) is the label for each node representing jhxh packet of filed,. There is a directed

edge from(dy, f) to (d;, ) if the file packetf’ of file d; is stored in the user cactie

Definition 2. A clique cover delivery scheme corresponds to covering :10dlé' by cliques. A clique is a set of

vertices where there are edges in either direction betwdkenestices.

It is easy to see that, XORing all the packets in the cliquentdt by (dy,, f1), (dk,, f2) - .- (dk,,, fm) implies
that userk;,1 < j < m will be able to decode the packgfy,, f;) by using all other packets in the XOR from its
cache. Note that, here we do not require the demands to bectlist

Let R4(C,d) be the number of normalized transmissions (total numbeitsftivoadcast divided by file sizE)
achieved by aiven generic clique cover schemé on the side information graph induced by the placendeand
demandd. In the literature, sometimeR(C,d) is also calledbroadcast rateor simply rate. We replaceA by a

short italicized string to denote various algorithms.

A. New Placement and Delivery Schemes

We first provide our new placement and delivery schemes irortlyns[3 and ¥ that forms the basis of all our
results. The new placement scheme simplifies analysis apd be to get concentration results. The new delivery
scheme is just an efficient polynomial time (in all the parter®) implementation of the old delivery scheme.

Remark: x4, r in Algorithm[4 refers to the content of packgtof the file d;. Also, it is easy to see that
Algorithm[4 runs in time polynomial ink and F.

Let R™(C,d) denote the normalized transmissions achieved by Algoriihrhlere, the stringud denotes the
delivery scheme in Algorithrhl4. Hered in R4(C,d) is replaced by a stringd to denote Algorithni}4. Letl,
denote a set of distinct demand requests by users, i.e. egeryrequests a distinct file. L&°P* (C,d) denote the
number of normalized transmissions under the optimal eligover scheme on the side information graph due to
the cache configuratiod and the demand patterh

WhenC is chosen randomlyR™?(C,d) is a random variable. LeE. denote expectation taken over the cache

configuration according to a specified random placementitestby the string. Further, lefE,; denote expectation



Input: Parameters<, M, N and F'.
Let F = [N/M]F’ packets andF” is an integer. Let every file be divided infd’ groups each of size
[N/M] each.
for every userk € [1: K] do
for every filen € [1: N] do
for f/e€[1:F'] do
f/-th packet of filen in userk’s cache is randomly uniformly chosen from the set(%} packets

of group f’ of file n.
end

end

end

Output: Cache configuration for every uskre [1: K.

Algorithm 3. NewPlacement

Input: Parameterds, M, N and F, caches for all userk € [1 : K| and demand sel = [d1,d> ... dk].
LetC'=0. Let Sy, s C[l: K], Vke[l: K|, fe]l:F]be the exact subset of users in which ffh
packet of file requested by uskris stored.

Let D C [1: K] x [1: F] be the file packets that are stored in the user requestingotinesponding file, i.e.
D = {(di, f) : k € Sa, s}

for (di, f)e[1: K] x[l: F]—D do

if (di,f) ¢ C then
Let A = 0.

for je[l: K] —m do
if 3(j, f') ¢ C for some f’: Sy, s = Sa,,y Uk —j then
| A« AUG, 1)
end

end

Transmitzq, ¢ O, pyea Td;,p-

C « CUdg, fHUA.

else
| Proceed with the next iteration.

end

end

Algorithm 4: NewDelivery




over a demand distribution described dyLet E. ; denote the expectation with respect to both. tgtdenote the
‘old’ random placement according to AlgoritHm 1. Let, denote ‘new’ random placement according to Algorithm
B

We first note that our new delivery scheme performs ideri¢al Algorithm[2. It is an efficient implementation

of the old one.

Theorem 1. The number of transmissions of Algorithun 4 is identical te tumber of transmissions of Algorithm

for a given placement and a set of demands.

Proof: It is easy to see from the description that Algorithin 4 is ditieint way to implement Algorithri2.
[ |
Even the new placement scheme is very similar to the old placé scheme except that it reduces lots of

unwanted correlations between different packets belantprthe same file. This helps us simplify analysis.

IIl. CONCENTRATION RESULTS
A. New Placement Scheme

Now, we state Theoreml 2 about concentration§€, d) around its mean for the two placement algorithms.
Please note that, the concentration results hold for ariyetglalgorithm that provides a clique cover on the side
information graph induced h§. Therefore, we do not specify the algorithm used and hencero@A in R4(C,d).

Before that, we provide a standard technical lemma reggrcimcentration of martingales.

Lemma 1. (Azuma-Hoeffding, McDiarmid) Consider a random variatile= f(X;, X>...X,,) where f(-) is
a real-valued function andX;, X, ...X,, are n random variables. ThedE[Z| X, X1, X>... X;]}]-, forms a

martingale. Here X, is taken to be a constant. Suppose, these random variahtie§/seither one of the following:
1)
|E[Z|X1,X2...Xi]—E[Z|X1,X2...Xi_1]|SCZ' (2)

2) (Average Lipschitz Condition)
E[Z|X1,X5...X;=a] —E[Z|X1,X5...X; =d]| < ¢ (3)
3) (McDiarmid’s Inequality) Suppose the set of random vialeés { X;} are independent.
If (X1, X, Xiy o X)) — (X1, Xoy . X)X )| < e (4)

Then, the following concentration result holds:

2
Pr(|Z —E[Z]] > ) < 2exp (‘z#&) (5)



Theorem 2. For the random placement (denoted by striag,) given in AlgorithmB, any demand distribution
denoted by stringl (including a singleton distribution on a specific demandy dor any clique cover delivery

scheme, we have:

Prc, a4 (|R(C,d) — E.,, 4 [R(C,d)]| > €E., 4[R(C,d)]) < 2exp <— 26 (Eey o R(C, d)) F) (6)

N2
Ko
Proof: We use martingale analysis on a generic clique cover algoritWe denote any generic clique cover

algorithm by algorithm A. Clearly, the number of transnmiss:
R (C, d) - h (Sd1,17 Sd172 “ee Sdl_’F “ee Sdk-,j “ e SdeF) (7)

for some functiom(-) whereSy, ; C [1: K] is the subset of users caches in which the file pagket file d; is
cached. In other words, the number of transmissions givandd is determined fully by specifyingq, ¢, Vd €
[1: K], fe][l:F]. Further,Sq, ; is dependent on both the cache configuratioand the demand.

Now, we apply Lemm&l]1 with random variablég;,  settoSy, ¢, Vk € [1: K], f € [1: F] andZ is set to
R (C,d). Consider the expression for a specifily., f):

Cdy.f = |Ee,,.a[R(C,d)|[S11,S12...5a,,1] — Ec,,.a[R(C,d)| S1,1,S1,2- .. Sy s -1l (8)

In the first term in[(B), let us assume that the choiceSgf s is consistent with the previous choices $f 1, S1 2
...S4,,7—1. In Algorithm[3, every file is grouped int¢” groups each of sizé%]. Let us assume that packét
of the file d, belongs to groug. The placement of file packets is independent across theggourhe choice of
Saq,.r affects the placement of at mobﬁ%} packets belonging to group of file di. Other file packet placements
are unaffected. LeV = {(di, f) : f belongs to group g} be the set of bits in the same groypf file dy.
Consider a new Algorithm B: 1) Run clique cover algorithm Aclexling the file packets ifv. 2) Then, transmit
the file packets i/ separately. The file packets In is not used in Step of algorithm B. LetRgz(C,d) be the

number of transmissions in Stdpof Algorithm B. Clearly, the following holds:

Rp(C,d) < R(C,d) SRB(C,d)ﬂL@ )

This is because, the first step of Algorithm B employs the selinee cover scheme as Algorithm A and operates
on a sub-graph induced by the file packets in the system dtherf. Therefore, the number of transmissions has
to be reduced. Further, adding the packetd/oih step2 is a sub-optimal way of improving algorithm.

Therefore, bothE,., [R(C.,d)|S11,512...54,.r = Al andE., [R(C,d)|S1,1,51,2...S54,,5-1] are at most

N . . . o
(%W away from the performance of Step of algorithm B averaged over their respective cache realizations.

Cnp Cnp

Further, the performance of Stdpof algorithm B (Rg(C,d)) is independent of the choice &f;, ; because the
possibly affected file packets (in s&) have been removed in Stepof algorithm B. Thereforec,, r < %, vk
in Lemmall.

Hence, applying Lemmig 1, we have:

Pre,,.a (|R(C, d) —E.,,q[R(C,d)]| > €E,, 4[R(C,d)]) < 2exp (—2
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2
< e (_262 (E.,,.a[R(C,d)]) F) o)

Remark: The above result shows that whén > £ KN* > log K, then with probability at least
¢ M2(E,,,.q[R(C,d)])
1-1/K8 R(C,d) € [(1 — e)E(R(C,d)), (1 + ¢)E(R(C,d))]. But, for these algorithms to have a non-trivial gain
even whenF — oo, KM /N > 1 (see[(l)). This means thaf/M < K. Hence,F = O(K?log K) is sufficient

for R(C,d) to be below(1 + ¢)E,, 4 (R(C,d)) with very high probability.

Cnp,

B. Old Placement

Theorem 3. Under the old placement schemeg, and any demand distribution od (including a singleton
distribution on a specific demand), the number of transmissior any clique cover scheme satisfies the following

concentration result:

Pr., 4 (IR(C,d) — Ec,, 4[R(C,d)]| > €K, 4[R(C,d)]) < 2exp (—26 (E?&ﬁffisfm F) (11)

Proof: We use a martingale argument as before. Consider a genéajiee atover scheme implemented by
Algorithm A. As before,R(C,d) is a function of{Su, r}refi:x],re(1:7) Where Sy, C [1: K] is the subset of
caches in whicly-th file packet of filedy, is stored. In this proof$,, ; is with respect to the old placement scheme

cop- Consider the following:

Cdk,f = |E d[R (C7d)|51,1751,2---5dk,f = S] _Ecop [R (C7d)|51,1751,2---5dk,f = S/” (12)

Cop)

When placement of file packets ; ... Sq, -1 are fixed, letn; packets be left among/ F'//N packets allocated
for the file requested by usérin user cachg. When Sy, ; =S C [1: K], let the number of packets left for file
di, at userj’s cache ben; —15(j). 1s(j) = 1 if j € S and0 otherwise. In any realization, satisfying the first
conditioning wheres;;, s = S in (I2), for user cachg, n; —1s(j) packets are randomly chosen from the remaining
F — f packets belonging to file requested by useSimilarly, n; — 1%5(j) packets are randomly chosen from the
remaining ' — f packets belonging to file requested by uéefor the second conditioning whefi;, ; = S’ in
a2).

Now, consider the following scheme (delivery+placemeihiesae) with genie aided transmission as follows: 1)
Genie provides the packéty, f) to all users during decoding but is not placed in any usechea?) We perform
the old placement. 3) Since genie providdsg, f) to all users for ‘free’, ifSy, r = S immediately after stef, we
delete the file packdtdy, f) from caches of users in sétand for all users it replace it with a new random file
packet from the remaining file packets of the filg different from the ones placed according to the old plaggme
including the file packetdy, f) in step2. We usec,, to denote 'genie-aided placement’ as described above.

Let us contrast this with the old placement: In the old plaeethwhenS,, ; = S, for everyj € S, (di, f) is
placed in cachg. In the genie aided case, this space at yshas been taken over by a randomly chosen packet

from file d; that has not been used by the old placement at jiséwverything else remains the identical to old
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placement. Genie helps every user get the file pagket/) saving one packet transmission. In addition to the old
placement).S| additional random file bits are stored. This could at mose$ay < K packet transmissions from
that of the old placement under any clique covering schetris.decause every user gets at most one extra packet
in its cache from filed;, that it originally had. Therefore,

K+1
0< Ecop,d [R (C, d) |Sl71, .. 'Sdk,f—la Sdk,f = S] — Ecgp,d [R (Cq, d) |Sl71, c Sdk,f—la Sdk,f = S] < .

F
(13)

Note that, in the above equation, conditioningegf till Sy, is with respect to step ( just immediately after the

old placement) in the genie aided-placement.

Now, we view the genie aided-placement using a second vieug éxactly identical to performing the old
placement except that, only for fil&,, for each user a random set bf F//N packets are drawn frori — 1 packets
that excludes the packéty, f). The genie aided placement ignores conditiontyg ; of the old placement. This

means that:
Ec,,.a[R(C,d)|S1,1,... 8, r-1, 54, = S] = E¢,, a [R(C,d)[S11,...Sa,,7-1,Sa,,; = 0] (14)
Clearly, from (I#).E.,, .« [R(C,d)|S11,-.. 54,71, 54,5 = S] is independent ob. Therefore,
Cap,f = |Ee,,.a[R(C,d)|S1,1,512...5a,,5 =5] —Ee,,.a[R(C,d)[S1,1,S12...54,,5 = 5]
= |(Eec,,,a[R(C,d)| S1,1,51,2... 84,5 =5] —Ec,, a[R(C,d) |S11,...Sa,,7~1, a5 =0]) —

(Ec,,a[R(C,d)|S1,1,S12...8ip =8 —Ee,, a[R(C,d)|S11,...Si-1,S; = 0])]

K+1
F

Justification: (a): This is because &f{13) andl(14). Apmythe Average Lipschitz condition in Lemnid 1 with

A%

(15)

cd,,f» we have the result claimed. [ |
Remark: As before, whenF’ = Q (5 K3 log K), the rateR(C,d) under old placement is withiil + €) about

the expected value multiplicatively.

IV. FILE SIZE REQUIREMENTS UNDER NEW ANDOLD PLACEMENTS
A. Requirements for Algorithid 4 under New Placement

Given any cache configuratighand demandl, according to Theorei 1, the number of transmissions of Algo
rithm[2 and Algorithn{# have identical number of transmissioTherefore, the expected number of transmissions
for Algorithm[2 under the new placement algorithmis,  [R"? (C,d)].

Consider any demand distribution fdr Let 15}6,]59 be the indicator that the packét(l < f < [%1) of group
g in file dj, is placed exactly in the s& C [1 : K] of caches. Now, we have :

151 K-|8|
E 15, 4] = (é) (1 - W) (16)
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Also, for S that containk, we have:

F' [N/M]

Vis-kl=)_ > 155, (17)

g=1 f=1

[N/M]
The variables in different groups are mdependenz ldk fq is a bernoulli variable since from every group at
=1

most one file bit is stored in a given cache.

[N/M]

1 IS1-1 1 K—|S|+1
E Z 1d tol = [N/M] <( 1) (1_W> = u(|S])- (18)
i

Therefore,|Vi, s_«| is a binomial random variable with” trials and probability of succegs

The expected number of transmissions for all stag@s Algorithm[2 with respect to the new placement is given

by:
E[ma§<|Vk73_k|]

nd o ke
Ee,, [R*(C,d)] =) TR (19)
S#0 M
In the limit whenEF” — oo, the binomial random variables are concentrated at theannamd therefore,
K(1— =57 K

Jim E[RM(C.d) =Y 2 o |5| ( W) 1o (1oL ~ R, (M) (20)

M (g [ ]

sa " Bl v

Now, let us consider the case of distinct demands by all uskensoted byd,,. We assume thalv > K here.
We are interested in the question: How far &g [R"(C,d,)] and the limiting peak raté, (M) for finite F?

Let Bi (n, p) be the binomial distribution for trials and probability of succegs When the demands of all users
are different|Vj, s_x| is distributed according tB8i(£”, u(|S|)) and for differentk, the binomial random variables

are independent. Now, we show that coding gain is roughly@dty even whenF”’ is exponential in the targeted
K

gaint =

[47 ]

SE

Theorem4.LetN > K. ThenE,, [R"(C,d,)] > § (1 — &) K whenF < H\g/lgﬂ (1 — rN/ll\ﬂ) exp (2t (1—£) (1-
Proof:

Vie,s—
eyl

?|
E,, [R"(C.du)] =

!
& FIN/M]
rl?a;( Y.
2N'E 6 Vi ~ Bi(F', u(|S]), Y= Y.
S£0
Pr ( U Yk_’f > 0)
keS,fe1:F"]
>y :
S0 FIN/M]
[ >, Pr(Ye,y>0) - > Pr(Yip >0NYjp >0)
b keS, fe[l:F’] 4,§€S, f1,f2€[1:F'], (i, f1)#(i, f2)
>y

= FIN/M]
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Vo

(Y
—
—
|
-
~—
(]~
=
S~
)
N
‘H
~—
V)
N
—
|
‘H
~_—
=
.
|
V)
i1
—~
w X
SN—
w
[\v]
=
T
O
e

—_

(1) (g e[+ () ()
> K <1— W;) — F'K?exp (—2t (1_ %) (1_ %)) e

(a) This is because evefy}, s_i| is a sum ofF” independent Bernoullli random variables and the set of @&l

variables across different values bfare independent because the demands are distinct. (b) Wiheai$ellowing

Bonferroni inequality Pr (U Ai) > S Pr(A;)—> Pr(4;NA4,). (c) u(s) is defined in[(IB) and’; r, andY; y,
i=1 i=1 i)

are independent ifi, f1) # (i, f2). (d) We use:g:1 (%) s?pe=t = & [pd% (1 +p)k} and(1+p)5=2 < (1+p)K-1
for p > 0 and further simplification. (e) We usé:— = < exp(—z), Vz > 0.

This implies that wherF” < - (1 — W) exp (2t (1 — £) (1= +)), the expected number of normalized
transmissions for Algorithri]2 for distinct requests undez hew placement scheme given by Algorithin 3 is at
least: (1 — ) K. [ ]

Therefore, there is very little coding gain if we do not haw@@nential number of file packets (exponential in

).

B. Requirements for Algorithid 4 under Old Placement

Let R"¢(C,d) denote the normalized number of transmissions for the ndivedg scheme. Leﬂﬁk,f be the
indicator random variable that bjt of file dj, is stored exactly in user caches in the Set [1 : K|. Whenk € S,

let us define:
F

|Vk,8—k| = Z 15;;? (22)
f=1
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|S|—1 -S|+
Here,E.,, {1‘3;]’5} = (%) (1 — W) = 1/ (|S|). Consider the case when user demands are distinct

™M

(implicitty N > K). The following theorem shows that the coding gain is at n®siven when the file size is

exponential in the targeted gain= %

Theorem 5. LetN > K. ThenE,,, [R" (C,d.)] > & (1 — &) K whenF < % (1 - W) exp (2t (1—£) (1—-4)).

Proof: We have the following chain:

E Vi,s—
gV |

Ee,, [R"™(C,dy)] = —

S#0

=Y E %

S#0
S—k
Pr <ke$ %[1-1?] 157> O)
§ Feln
= F
S#0
l > pr(13f>0)- Pr(157, > 0N15 7, > o)]
keS, fe[1:F] 4,J€S, f1,f2€[1:F, (4, f1)#(4, f2)
=>>
F
S#0
Kk / 1.2 2 (0 2
L 2 (5) (sFu() — 32(F)? (4(5))°)
> s=1
= F
b M
>K(1-5
£x(1-)

(s e ) (09 ()
(1 g) e (- 5) ()
(o) (2 (-5 (- 8)

Justifications are :
(a)- Since the demands are distinct, whie# j, d; # d;. Therefore the corresponding indicators are independent.

Therefore Pr (15;}1 >0N15 7, > O) =Pr (1‘3;}1 > O) Pr (13;;2 > O) , i # j. This probability is easily seen
to be (1/(s))*. Wheni = j and f; # f2, we have:

, . M- 1L Mo\
S—i S— o F
Pr (ldmfl = Omldusz = O) = H'(s) <N ) (1 N >

A=
—
=

<
—

V2]

N
=

no

(24)
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(d) is becauseﬂ% < %, M < N. Step (a) (and its justification) in the above chain of indigjea is the main
difference between old placemenmt,f) and new placement,).

(b)- This follows the exact same derivation as in the prooTbé&orenT# except for the factdiv/M 1.

(c)- This follows from: K + > < 2Kt.

This implies that when?” < o (1 — W) exp (2t (1— £) (1 — %)), the expected number of normalized
transmissions for Algorithral 2 for distinct requests under ¢ld placement scheme given by Algorithin 1 is at least
% (1 — %) K. This implies that there is very little coding gaih=£ K%) even when we have file size exponential

in t. [ |

C. Requirements for any Clique Cover Delivery Scheme

Let ¢,, denote a random independent and symmetric placement thligotiat has the following properties:

1) For any packetn, f), the probability of placing this in a user cachés independent of placing it in all other
caches.

2) Placing of packets belonging to different files in the saraehe is independent.

3) The probability of placing a packet equdl$/N for a given cache.

Now, we have the following result on any clique cover scheméhe side information graph induced by random

caching algorithnt,,,, and a unique set of demands.

Theorem 6. When user demands are distinct, for any clique cover algoribn the side information graph induced
by the random cache configuration duedg,, if E.,, (R(C,d.)) < %@ for any g > 2, then we need the
3

number of file packets' > ;% (%)g_2 wheret = K M/N. Clearly, these bounds apply to both, and ¢,,,,.

Proof: We show this by contradiction. Let us assume tfiat, (R (C,d.)) < %. This implies:
Pr.,, (R C,dy,) < M) > % (by Markov’s Inequality). The number of transmissidR$éC, d.,) < M
implies that there is at least there is one clique of gize the side information graplt induced byC andd,,.
Given cache configuratiofi and distinct demandd,,, let n, denote the number of distinct cliques of sizeSo
we have the following chain of inequalities:
K(1—M/N)

Pr.,, (R (€, dy,) <
g

) < Pr,, (there is one clique of size g)

a
<

o

Ao
TN N~ ——~ &

|z
~——
g @ ¢

eS|

Q

7~

=S

~_

Q

g

e g 9(9—2)
) (%) @
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When F' < ;& (%)972 and g > 2, then probability given by[(25) is strictly less thdn4 contradicting the
assumption. Therefore, the desired implication followsstifications are: (aPr (X > 1) < E[X]. (b) There are
(Iq() ways of choosingy users caches. Since all demands are distinct, ther&argays of choosingy file packets
belonging to the files requested by the chosen u$M§(N)g’1 is the probability that a file packet wanted by one
of the users is present in— 1 other user caches. Since the demands are distinct and atefrpackets belonging
g
[ |

to different files are different, the probability of formiragyg-clique is given by(M/N)g(g_l). (c) (Iq() < (ﬁ)g.

Note: We would like to note that,, represents a broad set of schemes where every file packeidedpin a
cache independently of its placement elsewhere and no fdkepas given undue importance over other packets

belonging to the same file.

V. EFFICIENT ACHIEVABLE SCHEMES
A. Deterministic Caching Scheme with User Grouping:

Now, briefly we would like to explore what can be said aboutftleesize requirements of deterministic placement
schemes. In this section, we describe a variation of therm@téstic caching scheme in [1L3] that requires a similar
file size requirement as the previous section for a target gaiy. However, it is not clear if, for a clique cover
scheme at the delivery stage, this is the best one can do wittrrdinistic caching schemes. In other words, a
lower bound for deterministic caching scheme similar to dhe above is not known.

Now, we give a description of a deterministic caching andvdey scheme that requireB = (1;) packets
to get a gain ofg + 1. This follows directly from the deterministic scheme bf [18or ease of exposition we
describe it here: For every file, split the file in(6g<) packets. For every subsét C [1 : K] such that|/G| = ¢,

we place the corresponding packet in the user caches in theetsd. The total number of files per user cache

K—1
is N(E;S) = % < M. This satisfies the memory constraint because the gainK M /N. Following the same

arguments in[[13], it is easy to show that the peak transorissite is at most £=2

il
Now, we show a slight modification of the deterministic cagchscheme mentioned above which (approximately

order wise) matches the lower bound in the previous sectieh.us divide the users into groups of siZ& =
g[N/M and then apply the caching and delivery scheme for each gseparately. The number of file packets

required isF = (I;) The memory constraint would be satisfied whed K'M/N = g[N/M| (M /N) which is

K'—g
g+1

true. Now, coded multicasting is done within every user grothe total number of transmissions %

e (1 - W) This requires(f;/) = O(([N/M]e)?) packets.

B. New Randomized Delivery scheme

For the deterministic scheme described previously, sirtiléhe one in[[13], it is necessary to refresh (possibly) all
the caches in a specific way when users leave or join the sybi@nnequires coordination among the caches. Now,
we show that under an uncoordinated random caching scheme gy the new placement scheme in Algorithim 3

and a new randomized clique cover algorithm, it is possiblédve an average peak rate (with respect to all the
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randomness) of aboyfs when ¥ = O (g(Ig{) log K) First, we introduce the new randomized delivery algorithm
that we use to prove the above assertion. The new randoméizeny algorithm has a preprocessing step, that we

call the ‘pull-down phase’, in addition to Algorithid 4.

Input: Parameterds, M, N, g and F', caches for all users € [1 : K] and demand sel = [dy,ds . .. dk].
Let Sq..; C[1: K], Vke [1: K], f € [l: F] be the exact subset of users in which tfw#h packet of file
requested by user is stored.

for (di, f) € [1: K] x[1: F]do

if [S4,.r| > g+1 then
| Sa,.r < arandomg-subset ofSy, ¢

end
end

Run Algorithm[4 with this new cache configuration.
Algorithm 5: ModifiedDelivery

Remark: Algorithm[3 emulates a virtual alteration of the cache canfigion. The change ¥, ; happens in
such a way that the algorithm pretends that a file packet isgbsiored in a subset of a set of caches where it
has been actually stored. We use the same not#&tipn to represent such a ‘virtual cache configuration’ that will
be used for the delivery. For example, if a particular paekas$ stored in cachefl,2,3,4,5,6} and ifg = 3, a
random subset from this is chosen. So the resultant viraethe configuration could bgl, 2,3} after this virtual
re-assignment. The re-assignment phase is what we calptiedown’ phase. This will allow us to ‘target’ the
gaing (which is typically a lot lesser comparedte= K M/N) more effectively if we use Algorithia]5 for delivery.

Let R™4(C, d) be the random number of transmissions under Algorithm Sgavéixed cache configuratiaghand
demand patterd. In this case, there is further randomness that is a pareodéfivery phase. Let"¢ (Rmd(c, d))
denote the expected number of transmissions with respahetcandomness in Algorithid 5.

We need the following lemma from [1L7] (see proof of Theorem 1)

Lemma 2. [L7] Considerm balls being thrown randomly uniformly and independentipin bins. Whenm =

r(n)nlogn wherer(n) is O((log(n))?P) for some positive integes, then maximum number of balls in any bin is

at mostr(n)logn(1 + 2;{%) with probability at leastl — .

Theorem 7. Using the randomized Algorithfd 3 for the placement schenmktha randomized Algorithi] 5 for
delivery, for any set of demandks the average peak rate, with respect to all the randomnessd@mness in both
delivery and placement ) is given m&i(Rmd(C, d)) < %g%(l +0(1)) and the number of file packets needed is
F=0 ((f)(log((f;)))Z‘[N/M]) when2 < g < gear, [N/M] < o N > K.

2T log K

Proof: According to the placement scheme given by Algorifim 3, y\¥iée is made up ofF” groups of file
packets. Each group has siz& /M. Let us consider thg-th packet of every group. There aFé such file packets.
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We will first analyze assuming that algoritith 5 uses only #idile packets formed by considering only theh
packet from every group. We will finally add up the number afnsmissions for every set df’ packets formed
using the differently numbered packet (for glle [1 : [N/M]]) from every group. Clearly, this is suboptimal.
Therefore, this upper bounds the performance of Algorithm 5

Consider a filen. Let G7 be the set ofF” packets, each of which is thgth packet from every group of
file n according to the groups formed during placement algorithnted S,, ;; C [1 : K| be the subset of
user caches where theth packet inG?7 is stored. Herel < f < F” indicates the position among’ packets
formed by taking thejth packet from very group. Given a user cadhethe placement of packets from the
set G} are mutually independent of each other. The marginal priityabf placing it is given by W The
placement is also independent across caches. Therefereuthber of user caches in which a particular packet
in G is placed is a binomial random variatie (K, W) whereBi (m, p) is a binomial distribution withmn
independent trails each with probability Therefore, by chernoff bounds (see Rg6 [18]), Pr (|S,, 7| < g) <
exp (— e (1 — glN/M] )2) < exp (—%). Here, we have used the fact thatt —Z%—. Therefore, for

3[N/MT"
any j (by Markov’s Inequality),

F/
4K 1
P E 1 ) 3F’ )WK|N/M - < 26
[N/M] < & ng andg < —ng%ﬂ implies the following condition (which can be verified by aliya):
4K
2 —_—
(9+1)K*[N/M] <exp<9[N/M1). (27)

If a file bit is stored inp caches, then the file packet is said to be on levdlhis implies, that with high probability,
(1 —3(g+ 1)K [N/M] exp (—%)) F' file packets belonging to file from G is stored at a level above or
equal tog. We will first compute the number of transmissions due to wpglAlgorithm[3 only on the file packets
in {dx, f,j}1<r<k,rep:r) for a particular;.

We start by considering a fixed demand pattdra- {d;,ds ...dx}. Applying union bound with[{26) over at

most K files in the demandl, we have:

o
Pr (3k el K]: f; Vsa, s 1<o > 3(g + 1)F' K[N/M] exp (—%)) < m (28)
Now, consider Algorithni 5. The first few steps of the algarthdenoted henceforth as ‘pull down’ phase, brings
every file packet stored above leveio levelg. Consider a file packétly., f, j) before the beginning of Algorithid 5.
Given that the packetly, f, 7) is at a level above, after the ‘pull down’ phase, the probability that it occepany of
the (I;) subsets is equal. This is because prior to the pull down phizes@robability that the file packet being stored
in a particular cache is independent and equ - Consider theF” file packets{(dy, f,j7)}, 1 < f < F'.
Clearly, the probability of any one of them (s&j, f, 7)) occupying a given set of caches, after the pull down

phase, is independent of the occupancy of all other file gadkeéy, f', j)} 2. LetS§ ;  denote the occupancy
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after the pull down phase. Therefore after the pull down phasich is applied only to the files in the demand

vectord,

1 1: K )
Pr (Sllilk,f,j = B| |S:ilk,f,j| >gq, {Sllilk,f/,g}f?ff/) = 0 VB C <[ g ]>, ke [1 : K], 1<5< |—N/M-| (29)

(5)

After the pull down phase in Algorithiinl 5, we cogmpute the numdbfetransmissions of Algorithri]4 using the
modifiedSg, , ; after the pull down phase. It has been observed that Alguffitis equivalent to Algorithral2. After
the pull down phase, all the files packets are present at fild leor below. Let us sef” = c(lg() (log((lr;)))2
for some constant > 0. After the pull down phase, Ielt’g;&,c be the set of file packets i@?’“ requested by user
k but stored exactly in the cache of users specifiedsbyk. With respect to only the file packets| fo’“, the

ke[1:K]
number of transmissions of Algorithid 4 is given by:

max|V{ s |
No. of trans(j) = Z hes
S#0

/

maX|VkJ.,ka|

Z keS =

[I=

S#0,|S|<g+1
Vj Vj
B %1§§| skl I]?ggq Sk 20
=) St (30)
|S|=g+1 ISI<g

(a)- This is because after the pull down phase, all the ralefile packets are at a level at magst Consider the
eventF thatb = (1 —3(9+1)K[N/M] exp (—%)) F' bits of GJ* for all i are stored at a level above
g before the beginning of Algorithrhl 5. Conditioned on this mveeing true, by[(29), the pull down phase is
equivalent to throwing balls independently and uniformly randomly in((';f) bins. Using [[2F7) and the fact that
F' = c(fg() (log((;()))z, the pull down phase is akin to throwimg = (1—3(g+1)K [N/M] exp (—%))F’ >

c (1 — %) logn(nlogn) balls inton = (lg() bins. In fact, then balls of file d;, are being thrown independently
and uniformly randomly into bins satisfyin§ — & : |S| = g+ 1, k € S. We apply, Lemmal2 for a particular user

k to obtain:

1 m 1
Vi sl F(1+O(logK)) 1
J > EF| < 31
g (s;sl—rlei)f, kes F' T F | - (K)2 (31)
g
Please note that(n) as in LemmaZR i) (log K). Now, applying a union bound over all usér¢o (31), we have:
i m 1
Vis sl F(1+O(logK)) K
Pr | Jk 1:K]: : > Fl < — 32
r( €l ] S:\SIZIS?-)I(, kes  F' - F’ | - (K)2 (32)
g

This implies that allV}, s_; are bounded in size. Therefore, we have the following:

1—%31%( > r,glggIV,gys,kl g( K )%(1+O(10§K))|E)

(5) sz g+ "
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maX|Vk8 il

a keS K -9 1

= < o — .

Pr( ) S or (1+O(10g >) E 33)

|S|=g+1
(a) is becauset > = >1— (9“ implying 7 (1 + 5oz K)) (1+ m). Putting together(33)[(30) and
(28), we have:

Pr (No. of trans(j) < [;;19 (1+0 (@)) +2K2(%16%) = (1 - m) (1 - #)

g

(34)
Union bounding over all < j < [N/M1, we have:
. . K—g 1 o N __ax 1 |—N/M~|
: . - _ OTN/M] <
Pr (3] No. of trans(j) > o (1 + 0 (logK)) +3(g+ 1)K [M]e 7 ) <3511 + (K)2
" (35)

From [2T), we have(g + 1)K2[%]e‘49r§}fm < 3. Now combining transmissions for differeptand normalizing
by [N/M], we have:

(e > St o) ) < g+ DA - o

Cnp

In the above bad event, the number of transmissions (naetlineeded is at mos#t. Therefore, we have:

md [ pm K—g 1 1 4 K
Eqe [R™(C.d)] < g1 (I+o (1))(1—m—0(1/K))+(m+0(1/1{))KSgm(lJro(l))
(37)
n

C. Grouping into smaller user groups: approximately aciigvthe lower bound

We now propose a user grouping scheme similar to the one &déterministic caching scheme which can
achieve the same average number of transmissions as thmesahentioned in the previous section but with
improved file size requirement almost matching the lowernabu

We group users in groups of siZz€’ = [N/M|3g(log(N/M)) and apply the new placement scheme (Algorithm
[B) and delivery scheme of Algorithid 5 to each of the user gsolipcan be seen thdt” satisfies the conditions:

e < [N/M] < 271

/ N
= and7 < g < min{3ﬂ\lf(/M1 , 310(g(1\2/M)} Therefore, Theorem 7 is applicable. For every
group, the average number of transmissions for a partiaganand configuration is at mo%tm (1+0(1)).

Adding over all groups, we have the following theorem:

Theorem 8. Let the placement scheme be that of Algorifim 3. For any taggin 7 < g < % and
[N/M] > e, let the number of users in the system be suchkhat a large multiple of 2%13glog(N/M ). Consider
the case when users are divided into groups of $ize= [N/M]3glog(N/M) and delivery scheme of Algorithm
is applied to each user group separately. For any demantepatthe expected total number of transmission

required for all users is at most L5 (14 o(1)). The file size needed & = O((il)(log((i,)))Q[N/MD ~
o((4)"" 3y’ g N/,



Note: The constant in the above requirement for file size comes due to boun@@ug)y (%)k Other constants
in the derivation can be relaxed [f(26) can be strengthengidhwwe do not do here. IN/M = O(K?°) for some
0 < 0 <1 andK large, then for a constant gain the above result require3 (K5(9+1)) packets whereas the
previous best known uncoordinated random caching scheeugsre a file size of)(exp(K'~?)) for obtaining a

gain of 2.

VI. CONCLUSION

We have analyzed random uncoordinated placement schermeg walith clique cover based coded delivery
schemes in the finite length regime for the caching-aidee@daodulticasting problem (or coded caching problem).
This problem involves designing caches at user devicesieffind optimizing broadcast transmissions when requests
arise from a known library of popular files for worst case datha he previous order optimal results on the number
of broadcast transmissions for any demand pattern assuratethe number of packets per file is very large (tending
to infinity). We showed that existing random placement andedodelivery schemes for achieving order optimal
peak broadcast rate do not give any gain even when you hawnerpal number of packets. Further, we showed
that to get a multiplicative gain of over the naive scheme of transmitting all packets, one néx¥da//11)Y)
packets per file for any clique cover based scheme whér@nd M are the library size and cache memory size
respectively. We also provide an improved random placeraedtdelivery scheme, that achieve this lower bound
approximately.

Future interesting research directions, to go beyond thent® derived in this paper, may include designing
improved deterministic caching schemes. This leads torakwgeresting research questions on designing very effi-
cient coordinated deterministic placement schemes thakegond the current ones and possible use of interference

alignment inspired delivery schemes (instead of simplgueicover based delivery) that optimize the file size.
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