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Abstract

In this work, we study a noiseless broadcast link servingK users whose requests arise from a library ofN

files. Every user is equipped with a cache of sizeM files each. It has been shown that by splitting all the files into

packets and placing individual packets in a random independent manner across all the caches, it requires at most

N/M file transmissions for any set of demands from the library. The achievable delivery scheme involves linearly

combining packets of different files following a greedy clique cover solution to the underlying index coding problem.

This remarkable multiplicative gain of random placement and coded delivery has been established in the asymptotic

regime when the number of packets per fileF scales to infinity.

In this work, we initiate the finite-length analysis of random caching schemes when the number of packetsF

is a function of the system parametersM,N,K. Specifically, we show that existing random placement and clique

A shorter version of this manuscript appeared in the 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton),

2014 as an invited paper [1].
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cover delivery schemes that achieve optimality in the asymptotic regime can have at most a multiplicative gain of

2 if the number of packets is sub-exponential. Further, for any clique cover based coded delivery and a large class

of random caching schemes, that includes the existing ones,we show that the number of packets required to get a

multiplicative gain of4
3
g is at leastO((N/M)g). We exhibit a random placement and an efficient clique cover based

coded delivery scheme that approximately achieves this lower bound. We also provide tight concentration results that

show that the average (over the random caching involved) number of transmissions concentrates very well requiring

only polynomial number of packets in the rest of the parameters.

Index Terms

Coded multicasting; Caching; Index Coding; Clique-cover;Finite-length analysis.

I. I NTRODUCTION

Wireless data traffic is increasing at an alarming pace dominated by video on demand services [2], and the LTE

bandwidth available has not increased to cope with the increasing demand. Recently, to tackle this problem, caching

at the wireless edge has been proposed [3], [4]. Caching could take place at small cell/WiFi access points or at

end user devices [5], [6], by prefetching popular content atoff-peak periods to alleviate peak traffic later. It has

been shown that in the presence of some form of communicationbetween caches (e.g., device-to-device or D2D

communications), caching gains proportional to the aggregate cache size can be obtained [7], [8]. However, when

there is no direct communication between caches, conventional caching schemes are limited to local cache hit gains.

Consider that a set of demands for distinct files arriving at the base station (in a wireless macro cell setting)

where each demand corresponds to some user mobile device in the cell. For simplicity, consider the case when

user mobile stations are equipped with cache memory. Files stored in (say) user A’s cache may or may not be

relevant to that user’s demand. However, it is possible thatanother user’s demand is stored in the cache. This could

benefit the number of files (or its equivalent in terms of bits)that the base station needs to broadcast to satisfy all

demands if the cache content of every user is taken into account. The abstract problem calledindex codingtries to

model the aspect of wireless caching systems that do not havelocal cache hits but their cache (or what is called

side information) overlaps with other users’ demands. In an index coding problem, we haveK caching mobile

devices served by a noiseless broadcast channel. Each caching device requests a distinct file that is not there in

its cache. The broadcast transmissions can be a linear combination of files. Each user recovers its demand using

the broadcast transmissions using its cache content. The objective is to find the minimum broadcast transmissions

(termed as broadcast rate) given a set of demands and given cache content for each user. This problem is known to

be extremely hard to compute and approximate even when linear combinations are done over the binary alphabet

[9]. The problem can be represented as a side information graph where vertices are users and a directed edge means

that one user’s caching device has the some other users’ desired packet as cached information. This problem has

received a lot of attention in the information theory literature [10]–[12] because it1) encapsulates the difficulty of

all network coding problems and2) any linear coding scheme for index coding is equivalent to alinear interference

alignment scheme. We provide an example : User1 requests packet1 and User2 requests packet2 and each user
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has the other users’ packet. Although there is nolocal cache hit, the side information present at both users can be

used to reduce the number of transmission by1 by transmitting the XOR of both packets.

In another line of work, motivated by this ’index coding property’ that allows using users side information to create

coded multicast transmissions for users requesting different files, the problem of designing the side information is

also considered. This problem is referred to as either the coded caching or the caching-aided coded multicasting

problem. Hereafter, we refer to this simply as the caching problem. The setting is same as the index coding problem

where there is a library ofN files from which user requests arise and every device has a memory of sizeM . The

difference is that there is aplacement phase, which is free of cost, that involves populating all user caches with files

from the library. The problem has been studied where order optimal peak broadcast rate for worst-case demand, order

optimal average rate for uniform demand distribution and order optimal average rate for Zipf demand distribution

for the demand have been characterized. However, all the achievable schemes work in the asymptotic regime when

the number of packets per file scales to infinity. In this paper, we consider the case of peak rate over worst-case

demand pattern. We show that existing algorithms for placement and delivery give very little gain even when the

file sizes are exponentially large in the number of users, andderive lower bounds for a general class of random

uncoordinated placement schemes and clique cover based delivery schemes. We also modify existing algorithms to

approximately match these bounds. A detailed review of the caching problem is given below.

A. Related Work

In the caching problem, there is a common broadcasting agentservingK users through a noiseless broadcast

channel. Every user requests a file from a set ofN files. Each file consists ofF bits or packets. Every user has

a cache of sizeM files. Files or parts of it (’packets’) are placed in every cache prior to transmissions assuming

that the library of file requests is known in advance. The objective is to design a placement scheme and delivery

scheme that optimizes (or approximately optimizes) the maximum number of file transmissions required over all

possible demand patterns. This problem has been well studied in the asymptotic regime whenF →∞.

A deterministic caching and delivery scheme which requires
(

K
KM/N

)

packets per file to achieve a gain ofKM/N

was proposed in [13]. Following this, a random placement scheme that allows populating user caches independently

of each other was proposed in [14]. In this uncoordinated placement phase, every user cachesMF/N packets of

each filen ∈ [1 : N ] chosen uniformly at random and independently of other caches. The delivery scheme is a

greedy clique cover on the side information graph induced bythe underlying index coding problem (refer Section

II), where a set of packets of possibly different files are XORed if for all packets, at least one user desiring the

file corresponding to the packet can recover the desired packet only by using its cache contents. For example if

A+B+C was sent, a user wantingA could recoverA if the user hasB andC stored in its user cache. Thepeak

broadcast rate(number of file transmissions) of this scheme was shown to be (in the limit F →∞):

Rp(M) =
K (1−M/N)

(KM/N)

(

1− (1−M/N)
K
)

(1)

Here,Rp(M) denotes the peak broadcast rate. The peak rate means the worst case rate over all demand patterns of
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theK users from the library. More precisely, this is the average peak rate because it is averaged over the randomness

in caching. Note that, if coded multicasting is not used thenthe rate is given byK (1−M/N) from the gain due

to just local cache hits. It was shown through cut-set boundsthat the result in (1) was optimal up to a constant

factor. The placement and delivery algorithms that achievethis average peak rate are given in Algorithms 1 and 2

respectively.

Input : ParametersK,M,N andF .

for every userk ∈ [1 : K] do

for every filen ∈ [1 : N ] do
Choose a randomMF/N subset ofF packets of filen and place it in cachek.

end

end

Output : Cache configuration for every userk ∈ [1 : K].
Algorithm 1: OldPlacement (Placement Algorithm in [14])

Input : ParametersK,M,N andF , caches for all usersk ∈ [1 : K] and demand setd = [d1, d2 . . . dK ].

for every subsetS ⊆ [1 : K] do
Let Vk,S−k be the vector of packets from file requested by userk but stored exactly in the set of caches

S − k.

Transmit⊕k∈SVk,S−k.

end

Algorithm 2: OldDelivery (Delivery Algorithm in [14]). XORing (⊕’ing) vectors of different lengths means

that all shorter vectors are zero padded to match the longestand then XORed.

This was followed by the works of [15] and [16] where they analyze the case of average number of transmissions

when the user demand follows a popularity distribution overthe library. Specifically, authors in [16] consider the

case in which file requests follow a Zipf popularity distribution. They provide caching and delivery schemes that

achieve order optimal average number of transmissions in the asymptotic regime. The caching distribution, unlike

in the worst-case, has to be designed with respect to the collective demand distribution. Interestingly, they also

showed that for Zipf parameter between0 (uniform popularity) and1, even the peak rate scheme given above is

sufficient for order optimality in the asymptotic regimeF →∞.

B. Our Contribution

We consider the caching problem withK users,N files in the library and a cache size ofM files. We are

interested in the peak broadcast rate (number of file transmissions) for the worst-case demand. Our contributions

are:
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1) We first show that the existing random uncoordinated placement scheme (Algorithm 1) for this problem and its

delivery scheme (Algorithm 2) has a rate aboveK(1−M/N)
2 whenF ≤ (N/M)

K exp (KM/N). When compared

to the asymptotic result, for a large asymptotic gain whenKN/M is Ω((logK)2), the file size requirement

is super-polynomial.

2) We propose a slightly modified placement scheme (Algorithm 3). We show that the old delivery algorithm

(Algorithm 2) coupled with the new placement scheme has similar file size requirements suggesting a needed

change in the delivery scheme.

3) We show that, under any random placement scheme which is independent and symmetric across users (every

file packet placement in a user cache is independent of its placement in other caches, every file packet has

equal marginal probability of being placed in a cache), any clique cover based scheme (using clique cover

on the side-information graph) requires a file size of approximately O( g
K (N/M)g−1) for achieving a peak

average rate ofK4
3
g
(1−M/N). Here, the average is over the random caching involved.

4) Since the studied placement schemes are random, it is important to consider the spread in performance due

to this randomness. We show that the file size requirements for any clique cover scheme over both random

placement schemes (old and the new) is polynomial for the average number of transmissions to concentrate

for any demand pattern. It is sufficient to have a file size of(O(K3 logK)) for the random rate (over the

randomness in caching) to be within a constant multiplicative factor from the mean.

5) We finally exhibit a modified delivery scheme that improveson Algorithm 2 through an extra pre-processing

step. This modified delivery scheme applied with a specific user grouping along with the new placement

scheme provably achieves a rate of roughly4K3(g+1) with a file size ofO((⌈N/M⌉)g+1(log(N/M))g+2(2e)g)

approximately matching the lower bound. The new placement scheme plays an important role in simplifying

the analysis of this algorithm.

In Section II, we provide the definitions of two random placement schemes (‘old’ placement scheme used in the

literature and a ‘new’ placement scheme) and a delivery scheme previously used in literature. In Section III, for

any clique cover scheme, we show that the file size requirements are only polynomial inK for the normalized

transmissions in both random placement schemes to concentrate well. In Section IV, we show that the previous

delivery scheme, that works asymptotically very well, gives only a constant gain (of2) even for exponentially large

file sizes. We also show that any clique cover scheme with a random placement scheme that is ‘symmetric’ requires

exponential file size in the ‘target gain’. For constant target gains, the file size requirement is polynomial in the

ratio of library size to the cache memory size per user. In Section V, to bridge the gap, we design an efficient clique

cover scheme, which together with the new placement scheme,achieves the file size lower bound approximately

orderwise.

II. D EFINITIONS AND ALGORITHMS

We consider the problem of designing placement and deliveryschemes whenK users request files from a library

of N files (N > K) and each user has a cache of sizeM files. In the placement phase, a file is divided intoF
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packets/bits. Then each packet is placed in different user caches (randomly or deterministically). We are interested

in an efficient placement scheme and an efficient delivery scheme consisting of coded XOR transmissions of various

packets that optimizes the peak rate over worst-case demands. An efficient delivery scheme computes the coded

transmissions needed in time polynomial in parametersN,K,F,M , while a placement scheme being efficient

ensuresF is as small as possible. Let us denote a set of demands byd = [d1, d2 . . . dK ] , dk ∈ [1 : N ]. A packet

f belonging to filen ∈ [1 : N ] is denoted by(n, f).

Definition 1. After a placement scheme, cache configurationC is given by the family of setsSn,f for all files n

and 1 ≤ f ≤ F whereSn,f ⊆ [1 : K] is the set of user caches in which packet (bit)f of file n is stored.

Every demandd and a cache configuration induces a directed side information graphG = (V,E) where there

areKF nodes where(dk, f) is the label for each node representing thef -th packet of filedk. There is a directed

edge from(dk, f) to (dj , f
′) if the file packetf ′ of file dj is stored in the user cachek.

Definition 2. A clique cover delivery scheme corresponds to covering nodes ofG by cliques. A clique is a set of

vertices where there are edges in either direction between all vertices.

It is easy to see that, XORing all the packets in the clique formed by(dk1
, f1), (dk2

, f2) . . . (dkm , fm) implies

that userkj , 1 ≤ j ≤ m will be able to decode the packet(dkj , fj) by using all other packets in the XOR from its

cache. Note that, here we do not require the demands to be distinct.

Let RA(C,d) be the number of normalized transmissions (total number of bits broadcast divided by file sizeF )

achieved by agiven generic clique cover schemeA on the side information graph induced by the placementC and

demandd. In the literature, sometimesR(C,d) is also calledbroadcast rateor simply rate. We replaceA by a

short italicized string to denote various algorithms.

A. New Placement and Delivery Schemes

We first provide our new placement and delivery schemes in Algorithms 3 and 4 that forms the basis of all our

results. The new placement scheme simplifies analysis and helps us to get concentration results. The new delivery

scheme is just an efficient polynomial time (in all the parameters) implementation of the old delivery scheme.

Remark: xdk,f in Algorithm 4 refers to the content of packetf of the file dk. Also, it is easy to see that

Algorithm 4 runs in time polynomial inK andF .

Let Rnd (C,d) denote the normalized transmissions achieved by Algorithm4. Here, the stringnd denotes the

delivery scheme in Algorithm 4. Here,A in RA(C,d) is replaced by a stringnd to denote Algorithm 4. Letdu

denote a set of distinct demand requests by users, i.e. everyuser requests a distinct file. LetRopt (C,d) denote the

number of normalized transmissions under the optimal clique cover scheme on the side information graph due to

the cache configurationC and the demand patternd.

When C is chosen randomly,Rnd(C,d) is a random variable. LetEc denote expectation taken over the cache

configuration according to a specified random placement described by the stringc. Further, letEd denote expectation
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Input : ParametersK,M,N andF .

Let F = ⌈N/M⌉F ′ packets andF ′ is an integer. Let every file be divided intoF ′ groups each of size

⌈N/M⌉ each.

for every userk ∈ [1 : K] do

for every filen ∈ [1 : N ] do

for f ′ ∈ [1 : F ′] do
f ′-th packet of filen in userk’s cache is randomly uniformly chosen from the set of⌈NM ⌉ packets

of groupf ′ of file n.

end

end

end

Output : Cache configuration for every userk ∈ [1 : K].
Algorithm 3: NewPlacement

Input : ParametersK,M,N andF , caches for all usersk ∈ [1 : K] and demand setd = [d1, d2 . . . dK ].

Let C = ∅. Let Sdk,f ⊆ [1 : K], ∀k ∈ [1 : K], f ∈ [1 : F ] be the exact subset of users in which thef -th

packet of file requested by userk is stored.

Let D ⊂ [1 : K]× [1 : F ] be the file packets that are stored in the user requesting the corresponding file, i.e.

D = {(dk, f) : k ∈ Sdk,f}.

for (dk, f) ∈ [1 : K]× [1 : F ]−D do

if (dk, f) /∈ C then
Let A = ∅.

for j ∈ [1 : K]−m do

if ∃(j, f ′) /∈ C for some f ′ : Sdj,f ′ = Sdk,f

⋃

k − j then
A← A

⋃

(j, f ′)

end

end

Transmitxdk,f ⊕(j,f ′)∈A xdj ,f ′ .

C ← C
⋃

(dk, f)
⋃

A.

else
Proceed with the next iteration.

end

end

Algorithm 4: NewDelivery
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over a demand distribution described byd. Let Ec,d denote the expectation with respect to both. Letcop denote the

‘old’ random placement according to Algorithm 1. Letcnp denote ‘new’ random placement according to Algorithm

3.

We first note that our new delivery scheme performs identically to Algorithm 2. It is an efficient implementation

of the old one.

Theorem 1. The number of transmissions of Algorithm 4 is identical to the number of transmissions of Algorithm

2 for a given placement and a set of demands.

Proof: It is easy to see from the description that Algorithm 4 is an efficient way to implement Algorithm 2.

Even the new placement scheme is very similar to the old placement scheme except that it reduces lots of

unwanted correlations between different packets belonging to the same file. This helps us simplify analysis.

III. C ONCENTRATION RESULTS

A. New Placement Scheme

Now, we state Theorem 2 about concentration ofR(C,d) around its mean for the two placement algorithms.

Please note that, the concentration results hold for any delivery algorithm that provides a clique cover on the side

information graph induced byC. Therefore, we do not specify the algorithm used and hence wedropA in RA(C,d).

Before that, we provide a standard technical lemma regarding concentration of martingales.

Lemma 1. (Azuma-Hoeffding, McDiarmid) Consider a random variableZ = f(X1, X2 . . . Xn) where f(·) is

a real-valued function andX1, X2 . . .Xn are n random variables. Then{E[Z|X0, X1, X2 . . . Xi]}ni=0 forms a

martingale. Here,X0 is taken to be a constant. Suppose, these random variables satisfy either one of the following:

1)

|E[Z|X1, X2 . . . Xi]− E[Z|X1, X2 . . . Xi−1]| ≤ ci (2)

2) (Average Lipschitz Condition)

|E[Z|X1, X2 . . .Xi = a]− E[Z|X1, X2 . . . Xi = a′]| ≤ ci (3)

3) (McDiarmid’s Inequality) Suppose the set of random variables{Xi} are independent.

|f (X1, X2, . . .Xi, . . .Xn)− f (X1, X2, . . .X
′
i, . . .Xn )| ≤ ci (4)

Then, the following concentration result holds:

Pr (|Z − E[Z]| > t) ≤ 2 exp

(

−
2t2
∑

i c
2
i

)

(5)
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Theorem 2. For the random placement (denoted by stringcnp) given in Algorithm 3, any demand distribution

denoted by stringd (including a singleton distribution on a specific demand) and for any clique cover delivery

scheme, we have:

Prcnp,d

(

|R(C,d)− Ecnp,d [R(C,d)]| ≥ ǫEcnp,d[R(C,d)]
)

≤ 2 exp

(

−
2ǫ2
(

Ecnp,d[R(C,d)]
)2

F

K N2

M2

)

(6)

Proof: We use martingale analysis on a generic clique cover algorithm. We denote any generic clique cover

algorithm by algorithm A. Clearly, the number of transmissions:

R (C,d) = h (Sd1,1, Sd1,2 . . . Sd1,F . . . Sdk,j . . . SdK ,F ) (7)

for some functionh(·) whereSdk,f ⊆ [1 : K] is the subset of users caches in which the file packetf of file dk is

cached. In other words, the number of transmissions givenC andd is determined fully by specifyingSdk,f , ∀dk ∈

[1 : K], f ∈ [1 : F ]. Further,Sdk,f is dependent on both the cache configurationC and the demandd.

Now, we apply Lemma 1 with random variablesXdk,f set toSdk,f , ∀k ∈ [1 : K], f ∈ [1 : F ] andZ is set to

R (C,d). Consider the expression for a specific(dk, f):

cdk,f = |Ecnp,d [R (C,d)|S1,1, S1,2 . . . Sdk,f ]− Ecnp,d [R (C,d)|S1,1, S1,2 . . . Sdk,f−1]| (8)

In the first term in (8), let us assume that the choice ofSdk,f is consistent with the previous choices ofS1,1, S1,2

. . . Sdk,f−1. In Algorithm 3, every file is grouped intoF ′ groups each of size⌈NM ⌉. Let us assume that packetf

of the file dk belongs to groupg. The placement of file packets is independent across the groupsg. The choice of

Sdk,f affects the placement of at most⌈NM ⌉ packets belonging to groupg of file dk. Other file packet placements

are unaffected. LetV = {(dk, f) : f belongs to group g} be the set of bits in the same groupg of file dk.

Consider a new Algorithm B: 1) Run clique cover algorithm A excluding the file packets inV . 2) Then, transmit

the file packets inV separately. The file packets inV is not used in Step1 of algorithm B. LetRB(C,d) be the

number of transmissions in Step1 of Algorithm B. Clearly, the following holds:

RB(C,d) ≤ R(C,d) ≤ RB(C,d) +
⌈ NM ⌉

F
(9)

This is because, the first step of Algorithm B employs the sameclique cover scheme as Algorithm A and operates

on a sub-graph induced by the file packets in the system other thanV . Therefore, the number of transmissions has

to be reduced. Further, adding the packets ofV in step2 is a sub-optimal way of improving algorithmA.

Therefore, bothEcnp [R (C,d)|S1,1, S1,2 . . . Sdk,f = A] and Ecnp [R (C,d)|S1,1, S1,2 . . . Sdk,f−1] are at most
⌈ N
M ⌉
F away from the performance of Step1 of algorithm B averaged over their respective cache realizations.

Further, the performance of Step1 of algorithmB (RB(C,d)) is independent of the choice ofSdk,f because the

possibly affected file packets (in setV ) have been removed in Step1 of algorithmB. Therefore,cdk,f ≤
N

MF , ∀k

in Lemma 1.

Hence, applying Lemma 1, we have:

Prcnp,d

(

|R(C,d)− Ecnp,d [R(C,d)]| ≥ ǫEcnp,d[R(C,d)]
)

≤ 2 exp

(

−
2ǫ2
(

Ecnp,d[R(C,d)]
)2

KF
(

N
MF

)2

)
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≤ exp

(

−
2ǫ2
(

Ecnp,d[R(C,d)]
)2

F

K
(

N
M

)2

)

(10)

Remark: The above result shows that whenF ≥ 8
ǫ2

KN2

M2(Ecnp,d[R(C,d)])2
logK, then with probability at least

1− 1/K8, R(C,d) ∈ [(1− ǫ)E (R(C,d)) , (1 + ǫ)E (R(C,d))]. But, for these algorithms to have a non-trivial gain

even whenF → ∞, KM/N ≥ 1 (see (1)). This means thatN/M ≤ K. Hence,F = O(K3 logK) is sufficient

for R(C,d) to be below(1 + ǫ)Ecnp,d (R(C,d)) with very high probability.

B. Old Placement

Theorem 3. Under the old placement schemecop and any demand distribution ond (including a singleton

distribution on a specific demand), the number of transmissions for any clique cover scheme satisfies the following

concentration result:

Prcop,d
(

|R(C,d)− Ecop,d [R(C,d)]| ≥ ǫEcop,d [R(C,d)]
)

≤ 2 exp

(

−
2ǫ2
(

Ecop,d [R(C,d)]
)2

F

K(K + 1)2

)

(11)

Proof: We use a martingale argument as before. Consider a generic clique cover scheme implemented by

Algorithm A. As before,R(C, d) is a function of{Sdk,f}k∈[1:K],f∈[1:F ] whereSdk,f ⊆ [1 : K] is the subset of

caches in whichf -th file packet of filedk is stored. In this proof,Sdk,f is with respect to the old placement scheme

cop. Consider the following:

cdk,f = |Ecop,d [R (C,d)|S1,1, S1,2 . . . Sdk,f = S]− Ecop [R (C,d)|S1,1, S1,2 . . . Sdk,f = S′]| (12)

When placement of file packetsS1,1 . . . Sdk,f−1 are fixed, letnj packets be left amongMF/N packets allocated

for the file requested by userk in user cachej. WhenSdk,f = S ⊆ [1 : K], let the number of packets left for file

dk at userj’s cache benj − 1S(j). 1S(j) = 1 if j ∈ S and 0 otherwise. In any realization, satisfying the first

conditioning whereSdk,f = S in (12), for user cachej, nj−1S(j) packets are randomly chosen from the remaining

F − f packets belonging to file requested by userk. Similarly, nj − 1
′
S(j) packets are randomly chosen from the

remainingF − f packets belonging to file requested by userk for the second conditioning whenSdk,f = S′ in

(12).

Now, consider the following scheme (delivery+placement scheme) with genie aided transmission as follows: 1)

Genie provides the packet(dk, f) to all users during decoding but is not placed in any user’s cache. 2) We perform

the old placement. 3) Since genie provides(dk, f) to all users for ’free’, ifSdk,f = S immediately after step2, we

delete the file packet(dk, f) from caches of users in setS and for all users inS replace it with a new random file

packet from the remaining file packets of the filedk, different from the ones placed according to the old placement

including the file packet(dk, f) in step2. We usecgp to denote ’genie-aided placement’ as described above.

Let us contrast this with the old placement: In the old placement whenSdk,f = S, for everyj ∈ S, (dk, f) is

placed in cachej. In the genie aided case, this space at userj has been taken over by a randomly chosen packet

from file dk that has not been used by the old placement at userj. Everything else remains the identical to old
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placement. Genie helps every user get the file packet(dk, f) saving one packet transmission. In addition to the old

placement,|S| additional random file bits are stored. This could at most save |S| ≤ K packet transmissions from

that of the old placement under any clique covering scheme. It is because every user gets at most one extra packet

in its cache from filedk that it originally had. Therefore,

0 ≤ Ecop,d [R (C,d) |S1,1, . . . Sdk,f−1, Sdk,f = S]− Ecgp,d [R (Cg,d) |S1,1, . . . Sdk,f−1, Sdk,f = S] ≤
K + 1

F
.

(13)

Note that, in the above equation, conditioning ofcgp till Sdk,f is with respect to step2 ( just immediately after the

old placement) in the genie aided-placement.

Now, we view the genie aided-placement using a second view: It is exactly identical to performing the old

placement except that, only for filedk, for each user a random set ofMF/N packets are drawn fromF −1 packets

that excludes the packet(dk, f). The genie aided placement ignores conditioningSdk,f of the old placement. This

means that:

Ecgp,d [R (C,d) |S1,1, . . . Sdk,f−1, Sdk,f = S] = Ecgp,d [R (C,d) |S1,1, . . . Sdk,f−1, Sdk,f = ∅] (14)

Clearly, from (14),Ecgp,d [R (C,d) |S1,1, . . . Sdk,f−1, Sdk,f = S] is independent ofS. Therefore,

cdk,f = |Ecop,d [R (C,d)|S1,1, S1,2 . . . Sdk,f = S]− Ecop,d [R (C,d)|S1,1, S1,2 . . . Sdk,f = S′]|

= |
(

Ecop,d [R (C,d)|S1,1, S1,2 . . . Sdk,f = S]− Ecgp,d [R (C,d) |S1,1, . . . Sdk,f−1, Sdk,f = ∅]
)

−

(

Ecop,d [R (C,d)|S1,1, S1,2 . . . Si,f = S′]− Ecgp,d [R (C,d) |S1,1, . . . Si,f−1, Si,f = ∅]
)

|

a
≤

K + 1

F
(15)

Justification: (a): This is because of (13) and (14). Applying the Average Lipschitz condition in Lemma 1 with

cdk,f , we have the result claimed.

Remark: As before, whenF = Ω
(

1
ǫ2K

3 logK
)

, the rateR(C, d) under old placement is within(1 + ǫ) about

the expected value multiplicatively.

IV. F ILE SIZE REQUIREMENTS UNDER NEW ANDOLD PLACEMENTS

A. Requirements for Algorithm 4 under New Placement

Given any cache configurationC and demandd, according to Theorem 1, the number of transmissions of Algo-

rithm 2 and Algorithm 4 have identical number of transmissions. Therefore, the expected number of transmissions

for Algorithm 2 under the new placement algorithm isEcnp

[

Rnd (C,d)
]

.

Consider any demand distribution ford. Let 1S
dk,f,g

be the indicator that the packetf (1 ≤ f ≤ ⌈NM ⌉) of group

g in file dk is placed exactly in the setS ⊆ [1 : K] of caches. Now, we have :

E
[

1
S
dk,f,g

]

=

(

1

⌈ NM ⌉

)|S|
(

1−
1

⌈N/M⌉

)K−|S|
(16)



12

Also, for S that containk, we have:

|Vk,S−k| =
F ′
∑

g=1

⌈N/M⌉
∑

f=1

1
S−k
dk,f,g

(17)

The variables in different groups are independent.
⌈N/M⌉
∑

f=1

1
S−k
dk,f,g

is a bernoulli variable since from every group at

most one file bit is stored in a given cache.

E





⌈N/M⌉
∑

f=1

1
S−k
dk,f,g



 = ⌈N/M⌉

(

1

⌈NM ⌉

)|S|−1
(

1−
1

⌈N/M⌉

)K−|S|+1

= µ(|S|). (18)

Therefore,|Vk,S−k| is a binomial random variable withF ′ trials and probability of successµ.

The expected number of transmissions for all stagesS in Algorithm 2 with respect to the new placement is given

by:

Ecnp

[

Rnd(C,d)
]

=
∑

S6=∅

E[max
k∈S
|Vk,S−k|]

F ′⌈NM ⌉
(19)

In the limit whenF ′ →∞, the binomial random variables are concentrated at their mean and therefore,

lim
F→∞

E
[

Rnd(C,d)
]

≈
∑

S6=∅

µ(|S|)

F ′⌈NM ⌉
=

K
(

1− 1
⌈ N
M ⌉

)

(

K 1
⌈ N
M ⌉

)



1−

(

1−
1

⌈NM ⌉

)K


 ≈ Rp(M) (20)

Now, let us consider the case of distinct demands by all users, denoted bydu. We assume thatN > K here.

We are interested in the question: How far areEcnp

[

Rnd(C,du)
]

and the limiting peak rateRp (M) for finite F?

Let Bi (n, p) be the binomial distribution forn trials and probability of successp. When the demands of all users

are different,|Vk,S−k| is distributed according toBi(F ′, µ(|S|)) and for differentk, the binomial random variables

are independent. Now, we show that coding gain is roughly at most 2, even whenF ′ is exponential in the targeted

gain t = K
⌈ N
M ⌉

Theorem 4. LetN > K. Then,Ecnp

[

Rnd (C,du)
]

≥ 1
2

(

1− M
N

)

K whenF ≤ ⌈N/M⌉
2K

(

1− 1
⌈N/M⌉

)

exp
(

2t
(

1− t
K

) (

1− 1
K

))

.

Proof:

Ecnp

[

Rnd (C,du)
]

=
∑

S6=∅

E

[

max
k∈S
|Vk,S−k|

]

F ′⌈N/M⌉

a
=
∑

S6=∅
E

[

max
k∈S

Yk

F ′⌈N/M⌉

]

Yk ∼ Bi(F ′, µ(|S|)), Yk =

F ′
∑

f=1

Yk,f

≥
∑

S6=∅

Pr

(

⋃

k∈S,f∈[1:F ′]

Yk,f > 0

)

F ′⌈N/M⌉

b
≥
∑

S6=∅

[

∑

k∈S,f∈[1:F ′]

Pr (Yk,f > 0)−
∑

i,j∈S,f1,f2∈[1:F ′],(i,f1) 6=(i,f2)

Pr (Yi,f1 > 0
⋂

Yj,f2 > 0)

]

F ′⌈N/M⌉
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c
≥

K
∑

s=1

(

K
s

)

(

sF ′µ(s)− 1
2s

2(F ′)2 (µ(s))2
)

F ′⌈N/M⌉

≥

(

1− 1
⌈ N
M ⌉

)

1
⌈ N
M ⌉

K
∑

s=1

(

K

s

)

s

(

1

⌈ NM ⌉

)s(

1−
1

⌈ NM ⌉

)K−s

−

K
∑

s=1

(

K
s

)

s2F ′ (µ(s))2

2⌈NM ⌉

≥ K

(

1−
1

⌈N/M⌉

)

−
1

2
F ′⌈

N

M
⌉

K
∑

s=1

(

K

s

)

s2

(

1

⌈NM ⌉

)2(s−1)(

1−
1

⌈NM ⌉

)2(K−s+1)

≥ K

(

1−
1

⌈NM ⌉

)

−
1

2

(

1−
1

⌈ NM ⌉

)2K

F ′⌈
N

M
⌉

K
∑

s=1

(

K

s

)

s2

( 1
⌈ N
M ⌉

1− 1
⌈ N
M ⌉

)2(s−1)

d
≥ K

(

1−
1

⌈NM ⌉

)

−
1

2
F ′⌈

N

M
⌉



K

(

1−
1

⌈ NM ⌉

)2

+K(K − 1)

(

1

⌈NM ⌉

)2








(

1−
1

⌈NM ⌉

)2

+

(

1

⌈ NM ⌉

)2




(K−1)

≥ K

(

1−
1

⌈NM ⌉

)

−
1

2
F ′K

(

K

t
+ t

)

exp

(

−2t

(

1−
t

K

)(

1−
1

K

))

e
≥ K

(

1−
1

⌈NM ⌉

)

− F ′K2 exp

(

−2t

(

1−
t

K

)(

1−
1

K

))

(21)

(a) This is because every|Vk,S−k| is a sum ofF ′ independent Bernoullli random variables and the set of Bernoulli

variables across different values ofk are independent because the demands are distinct. (b) We usethe following

Bonferroni inequality:Pr

(

n
⋃

i=1

Ai

)

≥
n
∑

i=1

Pr (Ai)−
∑

i6=j

Pr (Ai

⋂

Aj). (c) µ(s) is defined in (18) andYi,f1 andYi,f2

are independent if(i, f1) 6= (i, f2). (d) We use:
∑

s≥1

(

K
s

)

s2ps−1 = d
dp

[

p d
dp (1 + p)

k
]

and(1+p)K−2 ≤ (1+p)K−1

for p > 0 and further simplification. (e) We use:1− x ≤ exp(−x), ∀x > 0.

This implies that whenF ′ ≤ 1
2K

(

1− 1
⌈N/M⌉

)

exp
(

2t
(

1− t
K

) (

1− 1
K

))

, the expected number of normalized

transmissions for Algorithm 2 for distinct requests under the new placement scheme given by Algorithm 3 is at

least 12
(

1− M
N

)

K.

Therefore, there is very little coding gain if we do not have exponential number of file packets (exponential in

t).

B. Requirements for Algorithm 4 under Old Placement

Let Rnd (C,d) denote the normalized number of transmissions for the new delivery scheme. Let1S
dk,f

be the

indicator random variable that bitf of file dk is stored exactly in user caches in the setS ⊂ [1 : K]. Whenk ∈ S,

let us define:

|Vk,S−k| =
F
∑

f=1

1
S−k
dk,f

(22)
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Here,Ecop

[

1
S−k
dk,f

]

=
(

1
N
M

)|S|−1 (

1− 1
N/M

)K−|S|+1

= µ′(|S|). Consider the case when user demands are distinct

(implicitly N > K). The following theorem shows that the coding gain is at most2 even when the file size is

exponential in the targeted gaint = K
N/M .

Theorem 5. LetN > K. Then,Ecop

[

Rnd (C,du)
]

≥ 1
2

(

1− M
N

)

K whenF ≤ N/M
2K

(

1− 1
N/M

)

exp
(

2t
(

1− t
K

) (

1− 1
K

))

.

Proof: We have the following chain:

Ecop

[

Rnd (C,du)
]

=
∑

S6=∅

E

[

max
k∈S
|Vk,S−k|

]

F

=
∑

S6=∅
E











max
k∈S

F
∑

f=1

1
S−k
dk,f

F











≥
∑

S6=∅

Pr

(

⋃

k∈S,f∈[1:F ]

1
S−k
dk,f

> 0

)

F

≥
∑

S6=∅

[

∑

k∈S,f∈[1:F ]

Pr
(

1
S−k
dk,f

> 0
)

−
∑

i,j∈S,f1,f2∈[1:F ],(i,f1) 6=(j,f2)

Pr
(

1
S−i
di,f1

> 0
⋂

1
S−j
dj,f2

> 0
)

]

F

a
≥

K
∑

s=1

(

K
s

)

(

sFµ′(s)− 1
2s

2(F )2 (µ′(s))2
)

F
b
≥ K

(

1−
M

N

)

−
1

2
F

(

K

(

1−
M

N

)2

+K(K − 1)

(

M

N

)2
)(

(

1−
M

N

)2

+

(

M

N

)2
)(K−1)

≥ K

(

1−
1
N
M

)

−
1

2
F
(

K + t2
)

exp

(

−2t

(

1−
t

K

)(

1−
1

K

))

c
≥ K

(

1−
1
N
M

)

− FKt exp

(

−2t

(

1−
t

K

)(

1−
1

K

))

(23)

Justifications are :

(a)- Since the demands are distinct, wheni 6= j, di 6= dj . Therefore the corresponding indicators are independent.

Therefore,Pr
(

1
S−i
di,f1

> 0
⋂

1
S−j
dj ,f2

> 0
)

= Pr
(

1
S−i
di,f1

> 0
)

Pr
(

1
S−j
dj,f2

> 0
)

, i 6= j. This probability is easily seen

to be(µ′(s))2. Wheni = j andf1 6= f2, we have:

Pr
(

1
S−i
di,f1

> 0
⋂

1
S−j
di,f2

> 0
)

= µ′(s)

(

M − 1
F

N − 1
F

)s−1(

1−
M

N − 1
F

)K−s+1

d
≤ (µ′(s))

2 (24)
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(d) is becauseM− 1
F

N− 1
F

≤ M
N , M ≤ N . Step (a) (and its justification) in the above chain of inequalities is the main

difference between old placement (cop) and new placement (cnp).

(b)- This follows the exact same derivation as in the proof ofTheorem 4 except for the factor⌈N/M⌉.

(c)- This follows from:K + t2 ≤ 2Kt.

This implies that whenF ≤ 1
2t

(

1− 1
⌈N/M⌉

)

exp
(

2t
(

1− t
K

) (

1− 1
K

))

, the expected number of normalized

transmissions for Algorithm 2 for distinct requests under the old placement scheme given by Algorithm 1 is at least

1
2

(

1− M
N

)

K. This implies that there is very little coding gain (t = KM
N ) even when we have file size exponential

in t.

C. Requirements for any Clique Cover Delivery Scheme

Let cup denote a random independent and symmetric placement algorithm that has the following properties:

1) For any packet(n, f), the probability of placing this in a user cachek is independent of placing it in all other

caches.

2) Placing of packets belonging to different files in the samecache is independent.

3) The probability of placing a packet equalsM/N for a given cache.

Now, we have the following result on any clique cover scheme on the side information graph induced by random

caching algorithmcup and a unique set of demandsdu.

Theorem 6. When user demands are distinct, for any clique cover algorithm on the side information graph induced

by the random cache configuration due tocup, if Ecup (R (C,du)) ≤
K(1−M/N)

4
3
g

for any g > 2, then we need the

number of file packetsF ≥ g
2et

(

N
M

)g−2
wheret = KM/N . Clearly, these bounds apply to bothcop and cnp.

Proof: We show this by contradiction. Let us assume thatEcup (R (C,du)) ≤
K(1−M/N)

4
3
g

. This implies:

Prcup

(

R (C,du) ≤
K(1−M/N)

g

)

≥ 1
4 (by Markov’s Inequality). The number of transmissionsR (C,du) ≤

K(1−M/N)
g

implies that there is at least there is one clique of sizeg in the side information graphG induced byC anddu.

Given cache configurationC and distinct demandsdu, let ng denote the number of distinct cliques of sizeg. So

we have the following chain of inequalities:

Prcup

(

R (C,du) ≤
K(1−M/N)

g

)

≤ Prcup (there is one clique of size g)

a
≤ Ecup (ng)

b
≤

(

K

g

)

F g

(

M

N

)g(g−1)

c
≤

(

Ke

g

)g

F g

(

M

N

)g(g−1)

≤

(

Ket

gt

)g

F g

(

t

K

)g(g−1)

≤

(

etF

g

)g (
t

K

)g(g−2)

(25)
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When F < g
2et

(

N
M

)g−2
and g > 2, then probability given by (25) is strictly less than1/4 contradicting the

assumption. Therefore, the desired implication follows. Justifications are: (a)Pr (X ≥ 1) ≤ E[X ]. (b) There are
(

K
g

)

ways of choosingg users caches. Since all demands are distinct, there areF g ways of choosingg file packets

belonging to the files requested by the chosen users.(M/N)
g−1 is the probability that a file packet wanted by one

of the users is present ing−1 other user caches. Since the demands are distinct and placement of packets belonging

to different files are different, the probability of forminga g-clique is given by(M/N)
g(g−1). (c)

(

K
g

)

≤
(

Ke
g

)g

.

Note: We would like to note thatcup represents a broad set of schemes where every file packet is placed in a

cache independently of its placement elsewhere and no file packet is given undue importance over other packets

belonging to the same file.

V. EFFICIENT ACHIEVABLE SCHEMES

A. Deterministic Caching Scheme with User Grouping:

Now, briefly we would like to explore what can be said about thefile size requirements of deterministic placement

schemes. In this section, we describe a variation of the deterministic caching scheme in [13] that requires a similar

file size requirement as the previous section for a target gain of g. However, it is not clear if, for a clique cover

scheme at the delivery stage, this is the best one can do with deterministic caching schemes. In other words, a

lower bound for deterministic caching scheme similar to theone above is not known.

Now, we give a description of a deterministic caching and delivery scheme that requiresF =
(

K
g

)

packets

to get a gain ofg + 1. This follows directly from the deterministic scheme of [13]. For ease of exposition we

describe it here: For every file, split the file into
(

K
g

)

packets. For every subsetG ⊂ [1 : K] such that|G| = g,

we place the corresponding packet in the user caches in the subsetG. The total number of files per user cache

is N
(K−1

g−1 )
(Kg )

= gN
K ≤ M . This satisfies the memory constraint because the gaing ≤ KM/N . Following the same

arguments in [13], it is easy to show that the peak transmission rate is at most :K−g
g+1 .

Now, we show a slight modification of the deterministic caching scheme mentioned above which (approximately

order wise) matches the lower bound in the previous section.Let us divide the users into groups of sizeK ′ =

g⌈N/M⌉ and then apply the caching and delivery scheme for each groupseparately. The number of file packets

required isF =
(

K′

g

)

. The memory constraint would be satisfied wheng ≤ K ′M/N = g⌈N/M⌉ (M/N) which is

true. Now, coded multicasting is done within every user group. The total number of transmissions is:K
K′

K′−g
g+1 =

K
g+1

(

1− 1
⌈N/M⌉

)

. This requires
(

K′

g

)

= O ((⌈N/M⌉e)g) packets.

B. New Randomized Delivery scheme

For the deterministic scheme described previously, similar to the one in [13], it is necessary to refresh (possibly) all

the caches in a specific way when users leave or join the systemthat requires coordination among the caches. Now,

we show that under an uncoordinated random caching scheme given by the new placement scheme in Algorithm 3

and a new randomized clique cover algorithm, it is possible to have an average peak rate (with respect to all the
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randomness) of aboutKg+1 whenF = O
(

g
(

K
g

)

logK
)

. First, we introduce the new randomized delivery algorithm

that we use to prove the above assertion. The new randomized delivery algorithm has a preprocessing step, that we

call the ‘pull-down phase’, in addition to Algorithm 4.

Input : ParametersK,M,N, g andF , caches for all usersk ∈ [1 : K] and demand setd = [d1, d2 . . . dK ].

Let Sdk,f ⊆ [1 : K], ∀k ∈ [1 : K], f ∈ [1 : F ] be the exact subset of users in which thef -th packet of file

requested by userk is stored.

for (dk, f) ∈ [1 : K]× [1 : F ] do

if |Sdk,f | ≥ g + 1 then
Sdk,f ← a randomg-subset ofSdk,f

end

end

Run Algorithm 4 with this new cache configuration.
Algorithm 5: ModifiedDelivery

Remark: Algorithm 5 emulates a virtual alteration of the cache configuration. The change inSdk,f happens in

such a way that the algorithm pretends that a file packet is being stored in a subset of a set of caches where it

has been actually stored. We use the same notationSdk,f to represent such a ‘virtual cache configuration’ that will

be used for the delivery. For example, if a particular packetwas stored in caches{1, 2, 3, 4, 5, 6} and if g = 3, a

random subset from this is chosen. So the resultant virtual cache configuration could be{1, 2, 3} after this virtual

re-assignment. The re-assignment phase is what we call the ‘pull down’ phase. This will allow us to ‘target’ the

gaing (which is typically a lot lesser compared tot = KM/N ) more effectively if we use Algorithm 5 for delivery.

LetRmd(C,d) be the random number of transmissions under Algorithm 5 given a fixed cache configurationC and

demand patternd. In this case, there is further randomness that is a part of the delivery phase. LetEmd
(

Rmd(C,d)
)

denote the expected number of transmissions with respect tothe randomness in Algorithm 5.

We need the following lemma from [17] (see proof of Theorem 1).

Lemma 2. [17] Considerm balls being thrown randomly uniformly and independently into n bins. Whenm =

r(n)n log n wherer(n) is O((log(n))p) for some positive integerp, then maximum number of balls in any bin is

at mostr(n) log n(1 + 2
√
2

r(n) ) with probability at least1− 1
n2 .

Theorem 7. Using the randomized Algorithm 3 for the placement scheme and the randomized Algorithm 5 for

delivery, for any set of demandsd, the average peak rate, with respect to all the randomness (randomness in both

delivery and placement ) is given byEmd
cnp(R

md(C,d)) ≤ 4
3

K
g+1 (1+ o(1)) and the number of file packets needed is

F = O
(

(

K
g

)

(log(
(

K
g

)

))2⌈N/M⌉
)

when2 ≤ g ≤ K
3⌈N/M⌉ , ⌈N/M⌉ ≤ K

27
4

logK
, N > K.

Proof: According to the placement scheme given by Algorithm 3, every file is made up ofF ′ groups of file

packets. Each group has size⌈N/M⌉. Let us consider thej-th packet of every group. There areF ′ such file packets.
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We will first analyze assuming that algorithm 5 uses only theF ′ file packets formed by considering only thej-th

packet from every group. We will finally add up the number of transmissions for every set ofF ′ packets formed

using the differently numbered packet (for allj ∈ [1 : ⌈N/M⌉]) from every group. Clearly, this is suboptimal.

Therefore, this upper bounds the performance of Algorithm 5.

Consider a filen. Let Gn
j be the set ofF ′ packets, each of which is thej-th packet from every group of

file n according to the groups formed during placement algorithm 3. Let Sn,f,j ⊆ [1 : K] be the subset of

user caches where thef -th packet inGn
j is stored. Here,1 ≤ f ≤ F ′ indicates the position amongF ′ packets

formed by taking thejth packet from very group. Given a user cachek, the placement of packets from the

set Gn
j are mutually independent of each other. The marginal probability of placing it is given by 1

⌈N/M⌉ . The

placement is also independent across caches. Therefore, the number of user caches in which a particular packet

in Gn
j is placed is a binomial random variableBi

(

K, 1
⌈N/M⌉

)

whereBi (m, p) is a binomial distribution withm

independent trails each with probabilityp. Therefore, by chernoff bounds (see Pg.276 [18]), Pr (|Sn,f,j | < g) ≤

exp

(

− K
⌈N/M⌉

(

1− g⌈N/M⌉
K

)2
)

≤ exp
(

− 4K
9⌈N/M⌉

)

. Here, we have used the fact thatg ≤ K
3⌈N/M⌉ . Therefore, for

any j (by Markov’s Inequality),

Pr





F ′
∑

f=1

1|Sn,f,j|<g > 3F ′(g + 1)K⌈N/M⌉ exp

(

−
4K

9⌈N/M⌉

)



 ≤
1

3(g + 1)K⌈N/M⌉
(26)

⌈N/M⌉ ≤ K
27
4

logK
andg ≤ K

3⌈N/M⌉ implies the following condition (which can be verified by algebra):

(g + 1)K2⌈N/M⌉ < exp

(

4K

9⌈N/M⌉

)

. (27)

If a file bit is stored inp caches, then the file packet is said to be on levelp. This implies, that with high probability,
(

1− 3(g + 1)K⌈N/M⌉ exp
(

− 4K
9⌈N/M⌉

))

F ′ file packets belonging to filen from Gn
j is stored at a level above or

equal tog. We will first compute the number of transmissions due to applying Algorithm 5 only on the file packets

in {dk, f, j}1≤k≤K,f∈[1:F ′] for a particularj.

We start by considering a fixed demand patternd = {d1, d2 . . . dK}. Applying union bound with (26) over at

mostK files in the demandd, we have:

Pr



∃k ∈ [1 : K] :
F ′
∑

f=1

1|Sdk,f,j |<g > 3(g + 1)F ′K⌈N/M⌉ exp

(

−
4K

9⌈N/M⌉

)



 ≤
1

3(g + 1)⌈N/M⌉
(28)

Now, consider Algorithm 5. The first few steps of the algorithm, denoted henceforth as ‘pull down’ phase, brings

every file packet stored above levelg to levelg. Consider a file packet(dk, f, j) before the beginning of Algorithm 5.

Given that the packet(dk, f, j) is at a level aboveg, after the ‘pull down’ phase, the probability that it occupies any of

the
(

K
g

)

subsets is equal. This is because prior to the pull down phase, the probability that the file packet being stored

in a particular cache is independent and equal to1⌈N/M⌉ . Consider theF ′ file packets{(dk, f, j)}, 1 ≤ f ≤ F ′.

Clearly, the probability of any one of them (say(dk, f, j)) occupying a given set ofg caches, after the pull down

phase, is independent of the occupancy of all other file packets {(dk, f ′, j)}f ′ 6=f . Let Sa
dk,f,g

denote the occupancy
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after the pull down phase. Therefore after the pull down phase, which is applied only to the files in the demand

vectord,

Pr
(

Sa
dk,f,j

= B| |Sa
dk,f,j

| > g, {Sa
dk,f ′,g}f 6=f ′

)

=
1
(

K
g

) , ∀B ⊆

(

[1 : K]

g

)

, k ∈ [1 : K], 1 ≤ j ≤ ⌈N/M⌉ (29)

After the pull down phase in Algorithm 5, we compute the number of transmissions of Algorithm 4 using the

modifiedSa
dk,f,j

after the pull down phase. It has been observed that Algorithm 4 is equivalent to Algorithm 2. After

the pull down phase, all the files packets are present at file level g or below. Let us setF ′ = c
(

K
g

)

(

log(
(

K
g

)

)
)2

for some constantc > 0. After the pull down phase, letV j
k,S−k be the set of file packets inGdk

j requested by user

k but stored exactly in the cache of users specified byS − k. With respect to only the file packets
⋃

k∈[1:K]

Gdk
j , the

number of transmissions of Algorithm 4 is given by:

No. of trans(j) =
∑

S6=∅

max
k∈S
|V j

k,S−k|

F ′

a
=

∑

S6=∅,|S|≤g+1

max
k∈S
|V j

k,S−k|

F ′

=
∑

|S|=g+1

max
k∈S
|V j

k,S−k|

F ′ +
∑

|S|≤g

max
k∈S
|V j

k,S−k|

F ′ (30)

(a)- This is because after the pull down phase, all the relevant file packets are at a level at mostg. Consider the

eventE that b =
(

1− 3(g + 1)K⌈N/M⌉ exp
(

− 4K
9⌈N/M⌉

))

F ′ bits of Gdi

j for all i are stored at a level above

g before the beginning of Algorithm 5. Conditioned on this event being true, by (29), the pull down phase is

equivalent to throwingb balls independently and uniformly randomly into
(

K
g

)

bins. Using (27) and the fact that

F ′ = c
(

K
g

)

(log(
(

K
g

)

))2, the pull down phase is akin to throwingm = (1−3(g+1)K⌈N/M⌉ exp
(

− 4K
9⌈N/M⌉

)

)F ′ ≥

c
(

1− 3(g+1)
K

)

logn(n logn) balls inton =
(

K
g

)

bins. In fact, them balls of filedk are being thrown independently

and uniformly randomly into bins satisfyingS − k : |S| = g + 1, k ∈ S. We apply, Lemma 2 for a particular user

k to obtain:

Pr



 max
S:|S|=g+1, k∈S

|V j
k,S−k|

F ′ ≥

m
n

(

1 +O
(

1
logK

))

F ′ |E



 ≤
1
(

K
g

)2 (31)

Please note thatr(n) as in Lemma 2 isO(logK). Now, applying a union bound over all usersk to (31), we have:

Pr



∃k ∈ [1 : K] : max
S:|S|=g+1, k∈S

|V j
k,S−k|

F ′ ≥

m
n

(

1 +O
(

1
logK

))

F ′ |E



 ≤
K
(

K
g

)2 (32)

This implies that allVk,S−k are bounded in size. Therefore, we have the following:

1−
K
(

K
g

)2 ≤ Pr





∑

|S|=g+1

max
k∈S
|V j

k,S−k|

F ′ ≤

(

K

g + 1

) m
n

(

1 +O
(

1
logK

))

F ′ |E
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a
= Pr





∑

|S|=g+1

max
k∈S
|V j

k,S−k|

F ′ ≤
K − g

g + 1

(

1 +O

(

1

logK

))

|E



 . (33)

(a) is because:1 ≥ m
F ′ ≥ 1− 3(g+1)

K implying m
F ′ (1 +

1
O(logK)) = (1 + 1

O(logK) ). Putting together (33), (30) and

(28), we have:

Pr

(

No. of trans(j) ≤
K − g

g + 1

(

1 +O

(

1

logK

))

+ 2K2⌈
N

M
⌉e−

4K
9⌈N/M⌉

)

≥

(

1−
1

2(g + 1)⌈N/M⌉

)



1−
1

(

K
g

)2





(34)

Union bounding over all1 ≤ j ≤ ⌈N/M⌉, we have:

Pr

(

∃j : No. of trans(j) >
K − g

g + 1

(

1 +O

(

1

logK

))

+ 3(g + 1)K2⌈
N

M
⌉e−

4K
9⌈N/M⌉

)

≤
1

3(g + 1)
+
⌈N/M⌉
(

K
g

)2

(35)

From (27), we have3(g + 1)K2⌈NM ⌉e
− 4K

9⌈N/M⌉ < 3. Now combining transmissions for differentj and normalizing

by ⌈N/M⌉, we have:

Prmd
cnp

(

Rmd (C,d) >
K − g

g + 1
(1 + o(1))

)

≤
1

3(g + 1)
+
⌈N/M⌉
(

K
g

)2 =
1

3(g + 1)
+O(1/K) (36)

In the above bad event, the number of transmissions (normalized) needed is at mostK. Therefore, we have:

E
md
cnp

[

Rmd (C,d)
]

≤
K − g

g + 1
(1+o(1))(1−

1

3(g + 1)
−O(1/K))+

(

1

3(g + 1)
+O(1/K)

)

K ≤
4

3

K

g + 1
(1+o(1))

(37)

C. Grouping into smaller user groups: approximately achieving the lower bound

We now propose a user grouping scheme similar to the one for the deterministic caching scheme which can

achieve the same average number of transmissions as the scheme mentioned in the previous section but with

improved file size requirement almost matching the lower bound.

We group users in groups of sizeK ′ = ⌈N/M⌉3g(log(N/M)) and apply the new placement scheme (Algorithm

3) and delivery scheme of Algorithm 5 to each of the user groups. It can be seen thatK ′ satisfies the conditions:

e ≤ ⌈N/M⌉ ≤ K′

27
4

logK′ and 7 ≤ g ≤ min{ K′

3⌈N/M⌉ ,
( N

M )
2

3 log(N/M)}. Therefore, Theorem 7 is applicable. For every

group, the average number of transmissions for a particulardemand configuration is at most43
K′

g+1 (1 + o(1)).

Adding over all groups, we have the following theorem:

Theorem 8. Let the placement scheme be that of Algorithm 3. For any target gain 7 ≤ g ≤
( N

M )
2

3 log(N/M) and

⌈N/M⌉ ≥ e, let the number of users in the system be such thatK is a large multiple of⌈NM ⌉3g log(N/M). Consider

the case when users are divided into groups of sizeK ′ = ⌈N/M⌉3g log(N/M) and delivery scheme of Algorithm

5 is applied to each user group separately. For any demand pattern, the expected total number of transmission

required for all users is at most43
K
g+1 (1 + o(1)). The file size needed isF = O(

(

K′

g

)

(log(
(

K′

g

)

))2⌈N/M⌉) ≈

O(
(

N
M

)g+1
(3e)

g
(log(N/M))g+2g2).
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Note: The constante in the above requirement for file size comes due to bounding
(

n
k

)

by
(

ne
k

)k
. Other constants

in the derivation can be relaxed if (26) can be strengthened which we do not do here. IfN/M = Θ(Kδ) for some

0 < δ < 1 andK large, then for a constant gaing, the above result requiresO
(

Kδ(g+1)
)

packets whereas the

previous best known uncoordinated random caching schemes require a file size ofΩ(exp(K1−δ)) for obtaining a

gain of 2.

VI. CONCLUSION

We have analyzed random uncoordinated placement schemes along with clique cover based coded delivery

schemes in the finite length regime for the caching-aided coded multicasting problem (or coded caching problem).

This problem involves designing caches at user devices offline and optimizing broadcast transmissions when requests

arise from a known library of popular files for worst case demand. The previous order optimal results on the number

of broadcast transmissions for any demand pattern assumed that the number of packets per file is very large (tending

to infinity). We showed that existing random placement and coded delivery schemes for achieving order optimal

peak broadcast rate do not give any gain even when you have exponential number of packets. Further, we showed

that to get a multiplicative gain ofg over the naive scheme of transmitting all packets, one needsO((N/M)g)

packets per file for any clique cover based scheme whereN andM are the library size and cache memory size

respectively. We also provide an improved random placementand delivery scheme, that achieve this lower bound

approximately.

Future interesting research directions, to go beyond the bounds derived in this paper, may include designing

improved deterministic caching schemes. This leads to several interesting research questions on designing very effi-

cient coordinated deterministic placement schemes that gobeyond the current ones and possible use of interference

alignment inspired delivery schemes (instead of simple clique cover based delivery) that optimize the file size.
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