
1

A convex approach to consensus on SO(n)

Nikolai Matni and Matanya B Horowitz

Abstract

This paper introduces several new algorithms for consensus over the special orthogonal group.

By relying on a convex relaxation of the space of rotation matrices, consensus over rotation elements

is reduced to solving a convex problem with a unique global solution. The consensus protocol is

then implemented as a distributed optimization using (i) dual decomposition, and (ii) both semi and

fully distributed variants of the alternating direction method of multipliers technique – all with strong

convergence guarantees. The convex relaxation is shown to be exact at all iterations of the dual

decomposition based method, and exact once consensus is reached in the case of the alternating direction

method of multipliers. Further, analytic and/or efficient solutions are provided for each iteration of these

distributed computation schemes, allowing consensus to be reached without any online optimization.

Examples in satellite attitude alignment with up to 100 agents, an estimation problem from computer

vision, and a rotation averaging problem on SO(6) validate the approach.

I. INTRODUCTION

Optimization, coordination, and consensus over the group of rotation matrices (i.e. over

elements of SO(n)) is a problem of fundamental importance in a wide range of applications, from

satellite attitude and spin estimation [1], [2], vehicle coordination [3], frequency synchronization

[4], (distributed) visual pose estimation [5], [6], [7] and protein folding [8].

Traditional consensus in Euclidean space has a rich history [9], with results offering strong

convergence guarantees under mild and realistic assumptions using purely local protocols. Fur-

ther, with the resurfacing of distributed optimization methods such as dual decomposition [10]

and the alternating direction method of multipliers [11], these methods have been successfully
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applied to achieve so-called “fast consensus” in a distributed [12] and semi-distributed (i.e. sensor

fusion) [11] setting. Unfortunately, generalizing these approaches to manifolds, even those with

as much structure as the group of rotation matrices, has proven non-trivial.

Fortunately, although the space of rotation matrices is highly non-linear, it is a Lie Group.

This structure has allowed for sophisticated consensus methods to be created with so-called

“almost-global” convergence – that is to say the only stable stationary points of the protocol

are global minimizers of the underlying optimization. These consensus schemes fall under two

broad categories, namely intrinsic and extrinsic approaches.

In the former, the consensus and/or optimization is performed directly on the manifold with

respect to its geodesic distance: although many such methods exist in the literature1, those

found in [13] appear to be the most general and offer the strongest convergence guarantees.

This technique is able to achieve almost-global convergence, despite the inherent non-convexity

of the underlying optimization, through an appropriate re-weighting of the consensus problem’s

objective function.

The category of extrinsic protocols2 rely on embedding the underlying manifold into a Eu-

clidean space, applying standard consensus protocols in this space, and then projecting the

resulting states back onto the manifold [14]. These methods can also be constructed to provide

almost-global convergence, but are highly dependent on the choice of embedding and projection

methods, and do not easily generalize.

A common theme in all of the above methods is the use of sophisticated tools from differential

geometry and Lie Group theory – although elegant and appropriate for an applied mathematics

community, such mathematical overhead may prove to be a barrier for the adoption of such

methods by engineering practitioners.

Contributions: This paper addresses all of these issues by exploiting a recent characterization

of the convex hull of SO(n) [1]. In particular, we reduce the consensus optimization to a convex

one with a unique global minimizer (under a mild technical assumption), and leverage distributed

optimization techniques such as dual decomposition [10] and the alternating direction method of

multipliers [11] to implement a consensus protocol. We further show that this global optimizer

1The interested reader should refer to the references of [13] for a more detailed overview of prior work.
2Once again, a more exhaustive overview of the state of the art of extrinsic methods can be found in [14], and the references

therein.
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lies in SO(n), rather than conv {SO(n)}, and thus the convex relaxation is indeed exact once

consensus is achieved.

We then prove that for a dual decomposition based method, the consensus path (i.e. all of

the iterates of the protocol) are in fact in SO(n), whereas for the ADMM protocol, we provide

empirical evidence that an appropriate choice of algorithm parameters lead to iterates that are

in or near SO(n). Finally, we show that our algorithms can be efficiently implemented, with

individual agents only needing to perform an eigen-decomposition of a symmetric matrix, and/or

a projection of a vector onto the probability simplex.

We illustrate the usefulness of our approach on a rotation averaging problem (motivated by

satellite formation control) for N = 8, N = 50 and N = 100 agents arranged in a ring

topology, as well as on pose estimation problems based on observations given by several cameras,

and on a consensus problem in SO(6). Finally, it is worth noting that if the results on the

spectrahedral representation of the convex hull of SO(n) from [1] and the well established

distributed computation techniques we rely upon are taken as fact, the derivations require only

elementary linear algebra and basic convex analysis.

Paper outline: In Section II, we begin by fixing notation and terminology, and then formulate

the consensus problem over SO(n) as a convex optimization over the convex hull of the group

of rotations. In particular, we show that the problem reduces to optimizing a linear functional

defined by the average of the agents’ data over this space. In Section III, we provide an overview

of the required results on the spectrahedral representation of the convex hull of SO(n) [1], and on

distributed optimization techniques [10], [11]. In Section IV we derive our consensus algorithms,

and in Section V we illustrate their effectiveness on several challenging consensus problems.

We end in Section VI with conclusions and directions for future work.

II. PROBLEM FORMULATION

A. Notation and Terminology

We denote the Euclidean norm of a vector x ∈ Rn by ‖ · ‖. The space of n × n symmetric

matrices is denoted by Sn, and is equipped with the natural inner product 〈A,B〉 = trace(A>B) =

trace(AB) which induces the Frobenius norm of an element M ∈ Sn as ‖M‖2F = trace (M2).

The set of n dimensional rotation matrices, SO(n), is defined as

SO(n) := {R ∈ Rn×n | R>R = I, detR = 1}. (1)
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The convex hull operator is denoted by conv {·}, and we use M � 0 to indicate that M ∈ Sn

is positive semi-definite. As is standard, we refer to the set of unit trace positive semi definite

matrices, that is to say those M ∈ Sn satisfying M � 0, traceM = 1, as the free spectrahedron

– this is the generalization of the probability simplex to Sn.

B. The Generalized Average

Consider N agents, each with state Ri
t ∈ SO(n), interacting according to a graph G = (V , E),

where (i, j) ∈ E ⊂ 2V if and only if agent j can communicate its state to agent i (note we

assume (i, i) ∈ E for all i ∈ V). Further define the set of incoming neighbors at node i as

Ni := {j | (i, j) ∈ E} to be those nodes that can communicate their state directly to node i

according to the graph topology.

In this paper, we consider the problem of implementing a (semi) distributed algorithm such

that each state Ri
t converges to a consensus value R̄, which we define as the generalized average

rotation of the system given by

R̄ := arg min
R∈SO(n)

N∑
i=1

‖Ci −RBi‖2F , (2)

where each Ci and Bi are appropriately sized local data matrices.

Before justifying the use of this cost function and the generalized average terminology, we

begin by providing a convex reformulation of optimization (2).

Lemma 1: For R̄ defined as in (2), we have that

R̄ = arg max
R∈conv{SO(n)}

〈
1

N

N∑
i=1

Ci(Bi)>, R

〉
. (3)

Proof: Expanding the objective of optimization (2), we may rewrite it as

‖Ci‖2F − 2
〈
Ci, RBi

〉
+ ‖RBi‖2F . (4)

Noting that elements of SO(n) leave the Frobenius norm invariant, the only non-constant term

is the middle inner-product. Multiplying by appropriate constants and taking the negative sign

into account, we then obtain the following non-convex optimization

R̄ = arg max
R∈SO(n)

〈
1

N

N∑
i=1

Ci(Bi)>, R

〉
. (5)

However, noting that we are optimizing a linear functional over a basic semi-algebraic set, we

may replace the feasible set with its convex hull, yielding the desired result.
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Thus from the objective of (3), we see that the optimal solution is the element of SO(n) that

maximizes a linear functional defined by the average of a suitable function of the data – hence

the generalized average moniker. We now present two examples to make these ideas concrete.

Example 1 (Rotation Averaging): Consider the case where Bi = I and Ci = Ri
0, that is to

say we wish to find the average value (with respect to the Frobenius norm) of the initial states

of each node. Then optimization (3) reduces to

R̄ = arg maxR∈conv{SO(n)}

〈
1
N

∑N
i=1R

i
0, R

〉
(6)

Example 2 (Multi-view pose estimation/localization): Let n = 3, and suppose that Bi = X i ∈

R3×m are m appropriately re-centered points obtained via either LIDAR or stereo camera

observations, and that Ci = Y i ∈ R3×m are the corresponding points of the internal model

of the object being observed. If all of the Y i are identical, this corresponds to using multiple

cameras to estimate the pose of a single object, whereas different Y i could arise in, for example,

a simultaneous localization and mapping (SLAM) scheme. The optimization then becomes

R̄ = arg maxR∈conv{SO(n)}

〈
1
N

(∑N
i=1 Y

i(X i)>
)
, R
〉

(7)

Based on the previous discussion, we let Di := Ci(Bi)> be a general data matrix available at

node i, and consider solving the following optimization problem in a distributed manner such

that each local iterate Ri
t converges to the desired generalized average

R̄ := arg max
R∈conv{SO(n)}

n∑
i=1

〈
Di, R

〉
. (8)

Our approach will be to exploit recent results on the spectrahedral representation of the convex

hull of SO(n) [1], and to leverage first order distributed optimization methods such as dual

decomposition and alternating direction method of multipliers (ADMM) [11] to implement a

consensus protocol that is guaranteed to converge to R̄.

In particular, we will consider two types of consensus settings: a completely distributed setting

in which information can only be exchanged between neighbors (i.e. node i has access to Rj

if and only if (i, j) ∈ E), and a semi-distributed setting, in which information can not only be

exchanged between neighbors, but can also be routed along so that each agent has access to

every other agent’s information.



6

III. PRELIMINARIES

A. The convex hull of SO(n)

In the previous section, we showed that our consensus problem amounts to optimizing a linear

functional over the convex hull of SO(n). However, unless this latter object has a tractable

representation, we have not made much progress. Fortunately, it has recently been shown that

conv {SO(n)} admits a spectrahedral representation of dimension 2n−1 × 2n−1. Although this

scaling is poor in n, most applications have low n, e.g., rigid body transformations have n = 2, 3.

To that end, we recall the characterization (12) of conv {SO(n)} from Corollary 1.6 of [1].

In particular, for 1 ≤ i, j ≤ n, we have that

Aij = −P>evenλiρjPeven, (9)

where λi and ρj are given by

λi =

i−1︷ ︸︸ ︷1 0

0 −1

⊗ · · · ⊗
1 0

0 −1

⊗
0 −1

1 0

⊗
n−i︷ ︸︸ ︷1 0

0 1

⊗ · · · ⊗
1 0

0 1



ρi =

1 0

0 1

⊗ · · · ⊗
1 0

0 1


︸ ︷︷ ︸

i−1

⊗

0 −1

1 0

⊗
1 0

0 −1

⊗ · · · ⊗
1 0

0 −1


︸ ︷︷ ︸

n−i

, (10)

and

Peven =
1

2


I + [ 1 0

0 −1 ]⊗ · · · ⊗ [ 1 0
0 −1 ]

I − [ 1 0
0 −1 ]⊗ · · · ⊗ [ 1 0

0 −1 ]

 . (11)

The convex hull can then be written as

conv {SO(n)} =




〈A11, Z〉 〈A12, Z〉 . . . 〈A1n, Z〉

〈A21, Z〉 〈A22, Z〉 . . . 〈A2n, Z〉
...

... . . . ...

〈An1, Z〉 〈An2, Z〉 . . . 〈Ann, Z〉

 |Z � 0, traceZ = 1


. (12)

For our purposes, however, it will suffice to note that conv {SO(n)} can be written as

conv {SO(n)} = {A(Z) | Z � 0, trace(Z) = 1} , (13)
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for the affine map A : S2n−1 → Rn×n defined in terms of the matrices Aij as given in (12). Further

let A† : Rn×n → S2n−1 denote its adjoint operator with respect to 〈·, ·〉. Patient computation

reveals that

A†(Y ) =
∑
i,j

AijYij. (14)

1) An eigenvalue problem: We now exploit this characterization of conv {SO(n)} to provide

an analytic solution to the following optimization problem, which will be an essential element

of our consensus algorithms.

Lemma 2: The optimal solution R∗ ∈ SO(n) to the optimization

max
R∈conv{SO(n)}

〈D,R〉 (15)

is given by

R∗ = A(µµ>), (16)

where µ is the orthonormal eigenvector corresponding to the largest eigenvalue ν of A†(D).

Proof: Using the characterization of conv {SO(n)} (13), optimization (15) is equivalent to

max
Z�0, traceZ=1

〈
A†(D), Z

〉
. (17)

It is then straightforward to verify that (i) Slater’s condition is satisfied, and thus strong duality

holds, and that (ii) (µµ>, νmax) form a Karush-Kuhn-Tucker pair for the optimization. Finally,

as Z∗ := µµ> is of rank 1, A(Z∗) is an extreme point of conv {SO(n)}, and thus an element

of SO(n).

Corollary 1: Suppose that the maximal eigenvalue ν of A†(D) has multiplicity 1. Then the

unique optimal solution Z∗ to the optimization

max
Z�0, traceZ=1

〈
A†(D), Z

〉
(18)

is given by Z = µµ>.

Proof: As we are optimizing a linear functional over the free spectrahedron, the optimal solution

must be an extreme point satisfying Z∗ = zz>, ‖z‖ = 1. Thus, to show uniqueness it suffices

to note that
〈
zz>,A†(D)

〉
= z>A†(D)z < ν for all z 6= µ satisfying ‖z‖ = 1.

Remark 1: The hypothesis that the maximal eigenvalue ν of A†(D) has multiplicity 1 will

be satisfied with probability one for randomly distributed data matrices.
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B. Dual Decomposition

Dual decomposition is a general technique to solve optimization problems with separable

objectives, and has the advantage of yielding a distributed algorithm. Specifically, given the

problem

min
xi∈Rni

f(x) =
N∑
i=1

f i(xi) (19)

s.t. Ax = b

where the optimization variable x is partitioned according to the objective as x =
[
xT1 , . . . , x

T
N

]T ,

and the constraint matrix A can be also be partitioned according to this structure, with A =

[A1, . . . , AN ]. The Lagrangian for (19) is then

L(x, λ) =
N∑
i=1

f i(xi) + λTAix
i − 1

N
λT b

=
N∑
i=1

Li(xi, λ)

with Lagrange multipliers introduced as λ. This gives rise to the dual function

g(λ) = inf
x
L(x, λ).

This dual function may be optimized via gradient ascent. Due to the separability of the

Lagrangian, this yields the following procedure

xit+1 = argminxiL
i(xi, λt)

λt+1 = λt + αt (Axt+1 − b)

where it is seen that the optimization may be performed in parallel over the primal variables xi

at each iteration k. At each iteration, these updated primal variables are gathered for the update

of the dual variable, which may then be distributed to the computation units. These dual variable

updates may also be performed in parallel according to the separability of A. The result is a

distributed algorithm for solving (19), which can be shown to converge under certain conditions

(which our problem will be shown to satisfy).
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C. Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) [11], [15] provides a principled

method for parallelization of convex problems. It is adopted here due to its particularly strong

and general convergence guarantees, allowing us to inherit these guarantees in our consensus

algorithm.

ADMM is a “meta”-optimization scheme, where each step is carried out by solving a convex

optimization problem. Consider the optimization

minimize f(x) + g(z)

subject to Ax+Bz = c
(20)

over the variables x and z and convex functions f and g. Define an augmented Lagrangian

Lα = f(x) + g(z) + yT (Ax+Bz − c) +
α

2
‖Ax+Bz − c‖22 ,

where α > 0 is an algorithm parameter, and y is the dual variable associated with the equality

constraint. The constrained optimization is solved through alternately minimizing the augmented

Lagrangian over the primal variables x, z, and updating the dual variable y,

xt+1 := argminxLα(x, zt, yt)

zt+1 := argminzLα(xt+1, z, yt)

yt+1 := yt + α (Axt+1 +Bzt+1 − c) .

We will be concerned with the following two assumptions:

Assumption 1: The (extended real valued) functions f : Rn → R ∪ {+∞} and g : Rm →

R ∪ {+∞} are closed, proper, and convex.

Assumption 2: The unaugmented Lagrangian has a saddle point.

If it can be demonstrated that the optimization problem obeys these assumptions, then the

following general theorem is available:

Theorem 1: (See [11]) Given Assumptions 1, 2 then the ADMM iterates satisfy the following:

• Residual convergence: rt → 0 as t→∞, i.e. the iterates approach feasibility

• Objective convergence: f(xt) + g(zt) → p∗ as t → ∞, i.e. the objective function of the

iterates approaches the optimal value

• Dual variable convergence: yt → y∗ as t→∞, where y∗ is a dual optimal point
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IV. CONSENSUS ALGORITHMS

A. General Approach

As is standard in the use of distributed optimization algorithms for consensus, we will rewrite

optimization (8) in a manner more amenable to our purposes by introducing local variables at

each node, and enforcing consistency according to the connectivity of the graph. In particular,

we now look to solve the following optimization in a distributed manner:

maximize
Ri, i∈V

∑N
i=1 〈Di, Ri〉

s.t. Ri ∈ conv {SO(n)} ∀i ∈ V

Ri = Rj ∀(i, j) ∈ E ,

(21)

or in its parameterized form,

maximize
Zi, i∈V

∑N
i=1

〈
A†(Di), Zi

〉
s.t. Zi � 0, traceZi = 1 ∀i ∈ V

Zi = Zj ∀(i, j) ∈ E .

(22)

It is evident that so long as the graph is strongly connected, that the solution to this optimization

is identical to that of (8), and thus we work with this distributed optimization for the remainder

of the paper.

B. Completely Distributed Consensus via Dual Decomposition

We write the Lagrangian of optimization (22) as

L(Zi, Y ij) =
N∑
i=1

〈
A†(Di), Zi

〉
−
∑

(i,j)∈E

〈
Y ij, Zi − Zj

〉
(23)

where each Zi is constrained to be positive semi-definite and of unit trace, and the Y ij are

symmetric. The gradient of the dual objective function with respect to Y ij is then easily verified

to be Zj − Zi, allowing us to write the following dual-ascent algorithm for the distributed

optimization3:
Zi
t+1 = argmax

Zi�0,traceZi=1

〈
A† (Di)−

∑
j:(i,j)∈E Y

ij
t , Z

i
〉

Y ij
t+1 = Y ij

t − αt
(
Zj
t+1 − Zi

t+1

) (24)

3Note that our presentation is slightly non-standard as our primal problem is a maximization, and our dual a minimization.
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Leveraging Lemma 2, we can solve for the Zi update analytically through an eigvenvalue

decomposition of a 2n−1×2n−1 symmetric matrix, making this method computationally appealing

for small to moderate n.

1) Convergence Guarantees: Assuming that the hypothesis of Corollary 1 holds at each

iteration (which will be true for generic data), then the iterates are guaranteed to converge

to the global optimizer Z∗ of (22) (c.f. Prop. 3.9 of [16]) for appropriately chosen step size αt.

2) Iterate properties: As the objective of the Zi
t+1 optimization step in (24) is linear in Zi,

by Lemma 2, each iterate is an element of SO(n). Thus, this approach is well suited for use in

“true consensus” protocols in which each iterate is required to be a valid rotation element.

C. Completely Distributed Consensus via ADMM

Following the approach of [12], we introduce additional auxiliary variables Xj in optimization

(22) and rewrite it as

maximize
Zi,Xj , i,j∈V

∑N
i=1

〈
A†(Di), Zi

〉
s.t. Zi � 0, traceZi = 1 ∀i ∈ V

Xj � 0, traceXj = 1 ∀j ∈ V

Zi = Xj ∀(i, j) ∈ E .

(25)

We then write the augmented Lagrangian of optimization (25) as

L(Zi, Xj, Y ij) =
N∑
i=1

〈
A†(Di), Zi

〉
− . . .

∑
(i,j)∈E

[〈
Y ij, Zi −Xj

〉
+
α

2
‖Zi −Xj‖2F

]
(26)

where each Zi and Xj are constrained to be positive semi-definite and of unit trace, and the

Y ij are symmetric. Exploiting the identity
∑

(i,j)∈E =
∑N

i=1

∑
j:(i,j)∈E =

∑
j=1

∑
i:(j,i)∈E , the

ADMM algorithm then becomes

Zi
t+1 = argmax

Zi�0,traceZi=1

〈M i
t , Z

i〉 − |Ni|α
2
‖Zi‖2F

Xj
t+1 = argmax

Xj�0,traceXj=1

〈
N j
t , X

j
〉
− |Nj |α

2
‖Xj‖2F

Y ij
t+1 = Y ij

t − α
(
Zj
t+1 − Zi

t+1

) (27)
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where
M i

t = A† (Di)−
∑

j:(i,j)∈E
[
Y ij
t − αX

j
t

]
N j
t =

∑
i:(j,i)∈E

[
Y ij
t + αZi

t+1

]
.

(28)

D. Semi-Distributed Consensus via ADMM

We first modify optimization (22) by introducing a fusion variable Z0:

maximize
Z0,Zi, i∈V

∑N
i=1

〈
A†(Di), Zi

〉
s.t. Zi � 0, traceZi = 1 ∀i ∈ V ∪ {0}

Zi = Z0 ∀i ∈ V .

(29)

We write the augmented Lagrangian of optimization (22) as

Lα(Zi, Z, Y i) =
N∑
i=1

〈
A†(Di), Zi

〉
− . . .

N∑
i=1

(〈
Y i, Zi − Z0

〉
+
α

2
‖Zi − Z0‖2F

)
, (30)

where once again each Zi is constrained to be positive semi-definite and of unit trace, and the

Y i are symmetric. The ADMM algorithm then becomes

Zi
t+1 = argmax

Zi�0,traceZi=1

〈
A† (Di)− Y i

t + αZ0
t , Z

i
〉
. . .

− α
2
‖Zi‖2F

Z0
t+1 = argmax

Z0�0,traceZ0=1

〈∑N
i=1

(
Y i
t + αZi

t+1

)
, Z0
〉
. . .

− α
2
‖Z0‖2F

Y i
t+1 = Y i

t − α
(
Z0
t+1 − Zi

t+1

)
.

(31)

E. Convergence Guarantees and Efficient Updates

Assumption 1 is satisfied as the objectives are linear, and Assumption 2 is satisfied as strong

duality is easily verified to hold: thus this algorithm is guaranteed to converge for appropriately

chosen regularization parameter α – further as the global optimizer is unique and the objective

functions continuous, convergence to an optimal cost implies convergence of the iterates to the

optimal solution.

We note that as written, the Zi and Xj updates do not admit an obvious efficient solution. The

next subsection will show how this problem can be reduced to a projection onto the probability



13

simplex, which admits efficient algorithms that are of linear complexity in the dimension of the

vector being projected [17].

1) Zi and Xj updates: We note that the Zi and Xj updates in equations (27) and (31) are

all of the form

argmax
W�0,traceW=1

〈καT,W 〉 − κα

2
‖W‖2F (32)

for appropriate constant matrix T and scalar κ. We begin by observing that the optimal solution

W ∗ to the above program is the projection of T onto the free spectrahedron.

Lemma 3: The optimal solution W ∗ to optimization (32) is given by the projection of T onto

the free spectrahedron.

Proof: Multiplying the objective by − 2
κα

and accordingly replacing the maximization with a

minimization, we obtain

W ∗ = argmin
W�0,traceW=1

− 2 〈T,W 〉+ ‖W‖2F . (33)

It suffices to note that adding ‖T‖2F to the objective does not change the optimal update’s value,

thus reducing the optimization to

W ∗ = argmin
W�0,traceW=1

‖T −W‖2F , (34)

which is none other than the projection of T onto the free spectrahedron.

From this Lemma, the following two corollaries are immediate.

Corollary 2: The Zi
t+1 update as given in equation (31) is given by the projection of Qi

t onto

the free spectrahedron, where

Qi
t :=


∑N

i=1
1
α
Y i
t + Zi

t+1 for i = 0

1
α

(
A†(Di)− Y i

t

)
+ Z0

t for i = 1, . . . , N
(35)

Corollary 3: The Zi
t+1 and Xj

t+1 update as given in equation (27) are given by the projection

of 1
|Ni|αM

i
t and 1

|Nj |αN
j
t , respectively, onto the free spectrahedron.

Finally, since in all cases, T is symmetric, the aforementioned projection can be further reduced

to a projection of the eigenvalues of T onto the probability simplex.

Lemma 4: Let T = U i
tΛ

i
t(U

i
t )
> be a diagonalization of T . Then the projection of T onto the

free spectrahedron is given by U i
t [Λ

i
t]
+(U i

t )
>, where [·]+ denotes a projection of the diagonal

elements of a matrix onto the probability simplex.
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Proof: Follows immediately from diagonalizing T and the invariance of the Frobenius norm

under orthogonal transformations.

2) Iterate properties: Although we are able to guarantee convergence to an element of SO(n),

the iterates may lie in the interior of conv {SO(n)} – the iterate optimizations for Zi
t+1 and Xj

t+1

have a quadratic objective, and thus extreme point solutions are not guaranteed. However, these

ADMM schemes are still well suited for distributed computation on the group of rotations, in

which only the consensus point is actually used.

In practice however, we have noticed that through an appropriate choice of α, all iterates are

in, or very near to, SO(n). In particular, by choosing a sufficiently low value of α (but still

large enough to maintain good convergence), the objectives are dominated by their linear term,

thus leading to (near) boundary solutions – current work is aimed at formalizing this intuition.

Indeed this heuristic was used in the following examples to generate valid consensus paths within

SO(n).

V. EXPERIMENTAL RESULTS

We tested our methods on a number of estimation and consensus problems. The dual decom-

position and ADMM methods of §IV-B and §IV-D were employed to synchronize the attitude for

a formation of spacecraft. This is then followed by a pose estimation problem from computer

vision, where the semi-distributed algorithm of §IV-D allows for a consistent estimate of an

object’s orientation to be achieved from a collection of disparate measurements. We finally end

with an application of the dual decomposition method to a rotation averaging problem on SO(6)

to illustrate that our methods generalize seamlessly to higher dimensions.

A. Satellite Attitude Synchronization via Dual Decomposition

Similar to [13] we propose to synchronize the attitude of a N = 8 satellite formation. Each

satellite is initialized with a random orientation, with the task being to find the average rotation,

i.e. Example 1 of §II. The communication topology of the satellites is limited to a ring, and

the problem solved via dual decomposition. The results are demonstrated in Figure 1, where

convergent behavior is indeed observed. Computational time for each iteration for all satellites

is typically under 1ms for unoptimized, interpreted (Matlab) code.
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Fig. 1: Error between average rotation estimates for a satellite formation of N = 8 satellites

with a ring communication topology. The gradient descent weight is set as α = 5.

Fig. 2: Error between average rotation estimates for a satellite formation of N = 50 with nearest

neighbor and second nearest neighbor communication. The gradient weight is set as α = 5.

A larger example is then tested, where n = 50 and the communication topology is augmented

to allow communication between both neighbors and second-neighbors. The resulting error trace

is shown in Figure 2, where convergence is again observed. In practice, convergence is obtained

for all examples for a wide range values α ∈ (.01− 20).
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Fig. 3: Error between average rotation estimates for a satellite formation of N = 50 satellites

with nearest- and second- neighbor communication using the distributed ADMM algorithm. The

gradient weight is set as α = 0.2.

Fig. 4: Error between average rotation estimates for a satellite formation of N = 100 satellites

arranged in a ring topology with nearest neighbor (left) and second nearest neighbor (right)

communication using the decentralized ADMM algorithm. The gradient descent weight is set as

α = 0.2.
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Fig. 5: Visualization of the estimated Stanford Bunny model for N = 8 different sensors.

The inconsistency of the local estimates cause the local models (groups of vertices) to appear

un-aligned. As consensus is achieved, the model becomes consistent.

B. Attitude Synchronization via Distributed ADMM

The problem of synchronizing the attitude of N = 50 satellites was then repeated using

the distributed ADMM approach of §IV-C. Again, a ring topology was enforced, with Figure

3 showing the convergence of the algorithm when only allowing nearest neighbor and also

second nearest neighbor communication. It is seen that the distributed ADMM solution is quicker

and appears more regular than the dual ascent method in practice, although it is slightly more

computationally demanding requiring both an eigen-decomposition and a projection onto the

probability simplex.

Finally, to demonstrate the scalability properties of the algorithm, a N = 100 satellite example

with nearest- and second nearest-neighbor connectivity was simulated, with results shown in

Figures 4.

C. Parallel Pose Estimation

The semi-distributed ADMM scheme is applied to the problem of pose estimation from

computer vision. This problem is to identify a transformation that, when applied to a known
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Fig. 6: Convergence of Algorithm (31) for n = 8 disparate sensors for the Stanford Bunny

model.

object model, yields the object as perceived through the system’s sensors. The convex relaxation

has been applied previously in this context [7]. However, the approach presented in §IV-D

provides computationally appealing benefits, and arises in a number of ways. The first is to

obtain a consistent estimate from a number of disparate sensors, for instance from a collection

of cameras viewing a common object. This may be further extended for use in sensor fusion

[18], wherein the disparate sensors may provide different estimation modalities, and weights

of the data matrices Bi, Ci in (2) may correspond to priors on data strength. Alternatively,

this consensus problem may arise when the pose estimation problem is split in order to take

advantage of parallel processing capabilities, as follows.

Pose estimation, i.e. Example 2 of §II, is solved for a 3D model of the Stanford Bunny, which

has s = 1889 vertices, and which is normalized to have unit dimensions. A random orientation

is applied to the model, and the data is corrupted by Gaussian noise with standard deviation

σ = 0.05. The data is split between N = 10 processing nodes and solved using Algorithm (31)

where the dual variable weighting is set to α = 2.

A visualization of the consensus progress is shown in Figure 5, where it is seen that the

differing estimates of the rotation cause the estimated model points to appear inconsistent. As a

common estimate is obtained, it is seen that the points indeed do consistently match the model.

Figure 6 demonstrates the convergence of the error measure.
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Fig. 7: Timing results when varying the number of active cameras for the pose estimation

problem. On each box, the central mark is the median, the edges of the box are the 25th and

75th percentiles, the whiskers extend to the most extreme data points not considered outliers,

and outliers are plotted individually.

The problem was then examined by varying the number of virtual cameras available to collect

observation data. The model was down sampled to s = 728 vertices, and the standard deviation

of the corrupting noise increased to σ = 0.10. The observed data was then divided among

N = 7 sensors, and the estimation process repeated for t = 100 trials for varying numbers of

these sensors being active. The error and timing results are shown in Figures 7 & 8. We again

emphasize that the timing results are for unoptimized, interpreted (Matlab) code running in serial

– significant speed up is expected with compiled code and parallelized implementations.

Remark 2: Note that for the single camera case, the problem is no longer distributed. The

computation of Lemma 2 is instead used, explaining the significant difference in computational

time.

D. SO(6) Consensus

Although applications of the Special Orthogonal group are most common for SO(2) and

SO(3), efficient characterizations of SO(n) for n > 3 are necessary for computation on high

dimensional datasets [19]. In this application, rigid body transformations are used to change

the perspective of a projection onto a lower dimensional structure. With this in mind, we apply

Algorithm (24) to the rotation averaging problem where n = 6, and number of nodes N = 12,
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Fig. 8: Estimation error results when varying the number of active cameras for the pose

estimation problem. On each box, the central mark is the median, the edges of the box are the

25th and 75th percentiles, the whiskers extend to the most extreme data points not considered

outliers, and outliers are plotted individually.

with the results shown in Figure 9.

VI. CONCLUSION

In this paper we have presented a convex approach to consensus on SO(n) by leveraging recent

results on the spectrahedral representation of conv {SO(n)} and techniques from distributed

optimization. In particular, we show how meaningful consensus problems can be formulated

as optimizations of linear functionals over the convex hull of the group of rotation matrices,

and that these optimizations can be solved in a distributed manner using dual decomposition

and ADMM techniques – these distributed computation methods are then used to implement a

consensus protocol among the agents. The benefits of our approach include rapid and guaranteed

convergence to globally optimal consensus points, scalability and mathematical transparency.

Future work will focus on understanding how the choice of α in the ADMM algorithm affects

boundary solution guarantees.
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