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Multi-Party Set Reconciliation Using Characteristic Polynomials

Anudhyan Boral1 Michael Mitzenmacher2

Abstract— In the standard set reconciliation problem, there
are two parties A1 and A2, each respectively holding a set of
elementsS1 and S2. The goal is for both parties to obtain the
union S1 ∪S2. In many distributed computing settings the sets
may be large but the set difference|S1−S2|+|S2−S1| is small.
In these cases one aims to achieve reconciliation efficiently in
terms of communication; ideally, the communication should
depend on the size of the set difference, and not on the size of
the sets.

Recent work has considered generalizations of the reconcili-
ation problem to multi-party settings, using a framework based
on a specific type of linear sketch called an Invertible Bloom
Lookup Table. Here, we consider multi-party set reconciliation
using the alternative framework of characteristic polynomials,
which have previously been used for efficient pairwise set
reconciliation protocols, and compare their performance with
Invertible Bloom Lookup Tables for these problems.

I. I NTRODUCTION

In the standard theoretical framework for theset reconcil-
iation problem, two partiesA1 andA2 each hold a set of
keys from a (large) universeU with |U | = m, with the sets
namedS1 andS2 respectively. The goal is for both parties
to obtainS1 ∪ S2. Typically, set reconciliation is interesting
algorithmically when the sets are large but the set difference
|S1 − S2| + |S2 − S1| is small; the goal is then to perform
the reconciliation efficiently with respect to the transmission
size. Ideally, the communication should depend on the size
of the set difference, and not on the size of the sets.

Recent work has examined the problem of extending
set reconciliation to multi-party settings [8], [14]. This
work examined the problem where three or more parties
A1, A2, . . . , AN hold sets of keysS1, S2, . . . , SN respec-
tively at various locations in a network, and the goal is
for all parties to obtain∪iSi. This could of course be done
by pairwise reconciliations, but more effective methods are
possible. The multi-party set reconciliation problem is a
natural distributed computing problem. For example, set rec-
onciliation models distributed loosely replicated databases,
which for simplicity we think of as simply holding a set of
keys. Such databases may be periodically synchronized. As
we expect the number of differences among the databases
to be small compared to the database size, we would like
reconciliation schemes that scale with these differences.We
also would like to make use of the network efficiently, ideally
more efficiently than pairwise reconciliations.
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Recent work has tackled this problem by extending In-
vertible Bloom Lookup Tables (IBLTs), a hash-based data
structure that, among other uses, provide a natural solution
to the two-party set reconciliation problem [8]. (See also [5],
[6].) The extension shows that by performing operations on
IBLTs in an appropriate field, one can design protocols for
multi-party set reconciliation [13]. Further, because IBLTs
are linear sketches, using IBLTs allows the use of network
coding techniques to improve the use of the network [13].

In this work, we return to the classic solution for the 2-
party setting, which is based on characteristic polynomials
and uses techniques similar to those used for Reed-Solomon
codes [12]. The goal is to see whether and how much of the
results for IBLTs in the multi-party setting can be translated
to similar results using these alternative techniques.

We expect there to be a trade-off. In the 2-party setting,
whered = |S1 − S2| + |S2 − S1| = |S1 ∪ S2| − |S1 ∩ S2|
is the set difference, both techniques only require sending
and receivingO(d logm) bits of communication (as long
as d, or an upper bound ond that isO(d), is known), but
using characteristic polynomials generally requires a constant
factor less communication than using IBLTs, and is almost
optimal in terms of communication. In return, using charac-
teristic polynomials is much more computationally intensive.
While IBLTs require only a linear number of operations to
recover all elements andO(|Si|) operations for each party to
compute the information to be transmitted (assuming suitable
field operations areO(1) and hashing can be treated as
a constant-time operation), using characteristic polynomials
requires almostO(d3) time to recover all elements using
standard Gaussian elimination andO(|Si|d) operations to
compute the information to be passed. (As discussed in
[14], and as we discuss further below, theoretically faster
algorithms are possible, but they are still super-linear, and it
appears that due to high constant factors they may be unlikely
to be useful in practice.) Finally, IBLTs are randomized
and succeed with high probability, while using characteristic
polynomials is deterministic.

The main contribution of this work is to show that charac-
teristic polynomials can, in a suitable fashion, be extended to
the multi-party case. We follow the framework of the multi-
party problem definition that is considered in [13], where
the authors quantify the amount by which the sets differ by
the number of elements which belong to at least one set but
not all of them. We call this quantity thetotal set difference
d; hered = | ∪N

i=1 Si − ∩N
i=1Si|, which generalizes the set

difference for two parties.
We first show that there is a protocol in therelay setting,

where each party is connected to an intermediate relay that
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can compute and broadcast messages, in which each party
and the relay send a message ofO(d logm) bits using an
approach based on characteristic polynomials. The commu-
nication is asymptotically optimal information theoretically.

Building on this approach, we consider set reconcilia-
tion in an asynchronous network setting using characteristic
polynomials. Each party is located at a distinct node in
a graph G of size N , and in one round, only parties
which are on adjacent nodes can communicate with each
other. Using recent results from the network gossip literature
[7], we show that with each party sending (and receiving)
at mostO(d logm) message bits in each round, it takes
O(φ−1 logN) rounds for every node to obtain the unionS∪

with high probability. Hereφ is theconductance of the graph
G; see, e.g., [7], [15] for more information on conductance.

Additionally, we show that with slight modifications, in
both the central relay and the network setting, our protocols
can also support recovery of owners of elements. That is, an
agentAi, after obtaining the union of the sets∪iSi, should
also be able to recover an owner of the items she does not
own herself. Specifically, at the end of the protocol each party
Ai can not only obtain all the items in the set(∪jSj)− Si,
but Ai can also obtain an original owner of each of these
items.

Although these results appear generally promising, we
note they come with significant limitations. The interme-
diary nodes must do significant work, essentially decoding
sketches and recoding information based on the decoding.
Less effort appears to be required by intermediary nodes
when using IBLTs, as the corresponding data sketches are
linear and can be combined using simple operations. Hence,
while our work shows that characteristic polynomials can be
used as a basis for multi-party reconciliation, we believe that
further simplification would be desirable.

II. BACKGROUND AND NOTATION

We work with the characteristic function of a set. For a
setS ⊂ [m], and a primeq greater thanm, the characteristic
function fS : Fq 7→ Fq is a polynomial defined as:

fS(x) =
∏

α∈S

(x− α)

whereFq is the prime finite field withq elements.
A sketchσd(p) of a polynomialp : Fq 7→ Fq is defined

as a(d+1)-tuple of the evaluation ofp at d+1 fixed points
of Fq. It is not important for us whichd + 1 points we
choose, but for concreteness let us fix those points to be
{0, 1, . . . , d}. We note that by Lagrange interpolation, it is
possible to recover the coefficients of a degreed polynomial
p from its sketchσd(p). This is the key idea from Reed-
Solomon codes that we exploit in our protocol. By a sketch
σd(S) of a setS ⊂ [m], we mean a sketch of its characteristic
function. Where there is no risk of confusion, we drop the
subscriptd and refer to the sketch ofS asσ(S).

The standard approach for 2-party reconciliation using
sketches of this form is presented in [12]. Treating keys as
numbers in a suitable field,A1 considers the characteristic

polynomial fS1
over a fieldFq for q larger thanm; and

similarly A2 considersfS2
. Observe that in the rational

function fS1
/fS2

the common terms cancel out, leaving a
rational function inx where the sums of the degrees of the
numerator and denominator is the set difference, where the
set difference is defined as the quantity|(S1−S2)∪(S2−S1)|.
Assuming the set difference is at mostd, the rational function
can be determined through interpolation by evaluating the
function at d + 1 points, and then factored. Hence, ifA1

and A2 send each other their respective sketchesσd(S1)
and σd(S2), each party can computefS1

/fS2
at d + 1

points and thereby determine and reconcile the values in
(S1−S2)∪ (S2−S1). The total number of bits sent in each
direction would be(d+1)⌈log2 q⌉. Note that this takesO(d3)
operations using standard Gaussian elimination techniques.
These ideas can be extended to use other codes, such as BCH
codes, with various computational trade-offs [4]. Becauseof
the use of division to combine sketches, the sketches are not
“linear” and do not naturally combine when used for three
or more parties. However, as we show, with a bit more work
this limitation can be circumvented.

In the case of multiple parties, we define the total set
difference of the collection of setsS1, S2, . . . SN to be the
quantity|(∪N

i=1Si)−(∩N
i=1Si)|. For convenience, we assume

in what follows that all parties know in advance that the total
set difference of the collection{S1, . . . SN} does not exceed
d. Generally, in reconciliation settings, there are multiple
phases. For example, in a first phase a bound ond is obtained,
which is then used for reconciliation. Alternatively, one takes
an upper bound ond that is suitable most of the time, and
then checks for successful reconciliation after the algorithm
completes using hashing methods. See [6], [12] for further
discussion on this point.

III. M ULTI -PARTY RECONCILIATION WITH A CENTRAL

RELAY

We first describe a protocol where each of theN parties
A1 . . . AN , possessing setsS1 . . . SN respectively, commu-
nicate with a central relay in order to collectively obtain the
union of all the sets. We use the shorthandsS∪ andS∩ to
denote∪i∈[N ]Si and∩i∈[N ]Si. As mentioned we assume that
|S∪−S∩| ≤ d, whered is small compared to the number of
elements in the setsSi.

The protocol is carried out as follows. Initially, each
party Ai computes their own sketchσd(Si) and sends the
O(d logm) bits describing this sketch to the relay. From
these sketches, the relay computes the sketch of the union
S∪. The relay broadcasts the sketch ofS∪ and from this
sketch each partyAi can retrieve the elements ofS∪ − Si.

Combining SketchesWe show how to combine the sketches
of two sets to obtain the sketch of their union. In the
following, we use the◦ operator to denote coordinate-wise
multiplication (in Fq) of two sketches. We also use◦−1 to
denote coordinate-wise division of two sketches. For two
setsS, T ⊂ [m] with a set difference of at mostd, given
σd(S), andσd(T ), we computeσd(S∪T ) using the following



identity.
σd(S ∪ T ) = σd(S) ◦ σd(T − S)

The central relay can findσd(T − S) from factoring the
rational functionfT /fS and extracting the numerator, since,
in its reduced form the rational functionfT /fS can be
written as

fT (x)

fS(x)
=

∏

α∈T−S(x− α)
∏

α∈S−T (x− α)
.

Similarly the relay can findσd(S−T ). Observe that the relay
can recover the individual elements ofT −S andS−T even
though it does not have access to either of the setsS andT
in its entirety.

By combining two sketches at a time, the central relay can
obtain the sketch ofS∪ = ∪i∈[N ]Si afterN−1 combinations.
The relay then broadcasts the sketchσd(S∪) to each of the
N parties.

Note on Relay Output The careful reader might notice that
the relay can in fact just broadcast each of the elements of
S∪ − S∩ to all the parties. However, to maintain generality
we work with sketches throughout. This approach allows us
to generalize our method to broader settings.

Distributed Computation at the Relay If the relay has
access to multiple processors, she can perform theN − 1
combinations in a parallel manner. It is easy to see that by
combining two sketches at a time, usingN/2 processors the
relay needs to performO(logN) rounds of combinations.

Retrieving Missing ElementsEachAi, having the sketch
σd(S∪) and having computed already the sketch for her own
set Si, can retrieve the individual elements she is missing
from S∪. The first step is to compute the sketch ofS∪ − Si

using component-wise division:

σd(S∪ − Si) = σd(S∪) ◦
−1 σd(Si).

From the sketch ofS∪ − Si, agentAi can interpolate the
characteristic function ofS∪ −Si, which is a polynomial of
degree at mostd. The actual elements ofS∪ − Si are then
determined by factoring its characteristic function.

Tightness of CommunicationThe amount of communica-
tion in our protocol is information-theoretically as succinct
as possible in this setting, as the number of elements in
the universe grows, assuming that the parties have no prior
knowledge of the constituents of each others’ sets other
than the fact that the total set difference is at mostd. This
is because, after fixing a particular agentAi’s set asSi,
with |Si| = n, there are at least

(

m−n
d

)

different subsets of
elements thatAi might be missing from the union. But ifm
is much larger compared ton and d, then

(

m−n

d

)

≈ md.
Thus, to specify the missing elements we need at least
log

(

m−n

d

)

≈ d logm bits.

Time Complexity We would like the computations per-
formed by the parties and the relay to be efficient. We aim
for the time required to encode to be linear in the number
of set items, and the time to decode to be polynomial in the
total set differenced. We assume that the basic arithmetic
operations inFq take constant time. (This may or may not

be a reasonable assumption depending on the setting and
the size ofq; however, one can factor in a corresponding
poly-logarithmic factor inm as needed to handle the cost of
operations inFq.)

Initially, each partyAi must evaluate the polynomial
corresponding to their set’s characteristic function at a pre-
specified set ofd + 1 points. This can most straightfor-
wardly be done by the standard computation withO(d|Si|)
operations, though for large total set differences it may
be more efficient (at least theoretically) to compute the
coefficients of the characteristic function and then evaluate
the polynomial simultaneously at the pre-specified set of
d + 1 points. (See, e.g., [1] for possible algorithms.) The
computations performed by the relay include interpolation
of a rational function where the numerator and denominator
have total degreed, evaluation of ad-degree polynomial
at d points, and point-wise multiplication of two sketches.
Each of these computations can be done inÕ(d) operations
[1]. (Here Õ hides polylog factors ind.) The remaining
computation performed by the relay is factorization of ad-
degree polynomial overFq; the best theoretical algorithm of
which we are aware is given by Kedlaya and Umans [11], and
requires approximatelyO(d1.5) operations; other algorithms
may be more suitable in practice. (See also [10].)

We can state our results in the form of the following
theorem:

Theorem 1: Given an upper boundd on the size of the
total set difference,N parties using a relay can reconcile
their sets, from an universe ofm elements, using sketches of
d+1 values inFq (with q > m) and with each party sending
one sketch and the relay broadcasting a sketch. Each sketch
can be encoded in a message ofO(d logm) bits. The time
for computation required by theith party with setSi is the
time to evaluate their characteristic polynomial atd+1 pre-
chosen points, and the computation time required by the relay
is dominated by the time to factor a degreed polynomial over
Fq at mostO(N) times.

Recovering an Owner of a Missing ElementWe describe
modifications to our protocol that would further enable each
party to also retrieve an owner of each element she is
missing from the union. In some settings, this additional
information be useful; for example, there may be additional
information associated with a set element that may require
contact between the parties to obtain or resolve.

The relay can maintain running sketches of the current
union and intersection of the sets following the framework
that we have described. When a new sketch for setSi

arrives, new running valuesS∗

∪
and S∗

∩
can be computed

from previous valuesS′

∪
andS′

∩
as follows:

σd(S
∗

∪
) = σd(S

′

∪
) ◦ σd(Si − S′

∪
);

σd(S
∗

∩
) = σd(S

′

∩
) ◦−1 σd(S

′

∩
− Si).

Note that, as part of this process, by usingσd(Si − S′

∪
)

to determine the characteristic polynomial ofSi − S′

∪
, the

relay can determine which new elements are being brought
into the union by each set as each sketch arrives. (For



the combination of the first two sketchesSi and Sj , both
σd(Si − Sj) andσd(Sj − Si) will need to be computed, as
described above.) As before, while the relay could broadcast
this information, we prefer to keep everything in the setting
of sketches.

To produce a final sketch, the relay can then re-encode
each elementα in the finalS′

∪
−S′

∩
by encoding the element

as(α+miα), whereiα is the0-based index of the smallest
indexed owner of the elementα. As we are working over
prime finite fields, the item value and owner ID are the
remainder and the quotient respectively from division of the
encoded field element bym. We now work over a larger
field Fq′ with q′ > mN and we denote the sketch of any set
T asσω

d (T ) after re-encoding each element with an owner
index.

The sketchσω
d (S∪) is created by taking the point-wise

multiplications of the corresponding sketches ofS′

∩
andS′

∪
−

S′

∩
.

σω
d (S∪) = σω

d (S
′

∩
) ◦ σω

d (S
′

∪
− S′

∩
),

The final S∪ just equals the final computedS′

∪
; note this

corresponds to owner labels being set to0.
If the relay now sendsσω

d (S∪) to a party, with elements
marked by an owner, the party cannot use the previous
cancellation procedure as she does not know which owner
her own elements were assigned to. Therefore, the relay also
sends a sketch of the intersection,σω

d (S∩). Each party thus
receives the sketches of bothS∪ andS∩ and can hence obtain
the sketch ofS∪ − S∩. We can decipher all the elements
S∪ − S∩ along with one of their owners.

Alternatively, with the re-encoded values from the relay,
the set difference between the finalS∪ and Si consists of
at most2d elements, asd elements inSi might have been
re-encoded to different values (that is, the same element but
encoded to a different owner). Hence the relay could send
a sketch for up to2d differences, orσ2d(S∩). If each party
computesσ2d(Si), then after the relay broadcasts each party
can compute

fS∩
(x)

fSi
(x)

by interpolation and thereby recover any missing elements
or elements that have been re-encoded.

Asynchronous Message ArrivalsWe note that our protocols
are robust enough to be able to handle situations where
the initial messages from the agents to the relay arrive
asynchronously. In this case, the relay can keep performing
computations without having to wait for all theN messages
to arrive. The encoding that maps from agent indices to
owner IDs remains fixed, but the relay has leeway in de-
termining which owner ID is attached to a particular item,
when the item has multiple owners. In fact, the relay can
define an arbitrary ordering on the set of agents{1, 2 . . .N}
and use this ordering to choose the ’smallest’ owners of
items. In particular, the relay can choose the order in which
the messages from the agents arrive. This will enable the
relay to simplify computation by enabling her to perform the

sketch combinations without having to wait for subsequent
messages to arrive.

We state our modifications to the protocol to enable
recovery of the owners in the corollary below.

Corollary 1: Given an upper boundd on the size of
the total set difference, each ofN parties using a relay
can reconcile their sets and also obtain one owner of each
missing element, using sketches ofd + 1 values in Fq

(with q > mN ), with each party sending one sketch and
the relay broadcasting a sketch - each a message of size
O(d log(mN)). The time for computation required by theith
party with setSi is the time to evaluate their characteristic
polynomial atd+1 pre-chosen points, and the computation
time required by the relay is dominated by the time to factor
a degreed polynomial overFq at mostO(N) times.

IV. RECONCILIATION IN THE NETWORK SETTING

In this section, we describe a protocol for multi-party
set reconciliation over a network. Using previous results on
gossip spreading techniques (also referred to generally as
rumor spreading), we can show that our protocol terminates
in O(φ−1 logN) rounds of communication, whereφ is the
conductance of the network. Here again we are following
the framework of [13], but replacing their use of IBLTs with
sketches based on characteristic polynomials.

In this setting, we assume that each of theN nodes start
with the knowledge of only their own set, and aim to follow
a gossip protocol so that each of them obtains the union of all
theN sets within a small number of rounds. TheN parties
are situated atN different nodes of a graphG and only
adjacent nodes can communicate with each other directly.
To be clear the graphG may have more thanN nodes, as
there will generally be nodes that pass messages that are not
parties with information.

In the case where one party has a piece of informa-
tion to distribute to all other parties, it is known that the
standard PUSH-PULL protocol for “rumor spreading” will
distribute that information to all the nodes of the graph within
O(φ−1 logN) rounds high probability [7]. (The PUSH-
PULL protocol works as follows: in each round, every
informed node that knows the rumor to be spread chooses
a random neighbor and sends it to the neighbor; every
uninformed node that does not know the rumor contacts a
neighbor in an attempt to get the rumor.) For more on rumor
spreading, see also for example [2], [3], [9], [15]).

Here, we explain how the approach used by the relay
described previously allows us to use the standard PUSH-
PULL protocol for reconciliation. (The general approach
will also apply to allow us to use other rumor spreading
protocols for reconciliation.)

We show that the previous protocol described for relays
without the owner information carries over to the network
setting using the PUSH-PULL protocol. In a particular
round, a nodev would possess the sketch of the union of the
sets belonging to a sub-collection of the agents, sayC ⊂ [N ].
Let us denote this set asSC (:= ∪i∈CSi) whereC can be an
arbitrary sub-collection of[N ]. We divide each round into



two sub-rounds. In the first sub-round, each vertex pushes
whatever information it has to a random neighbor. In the
second sub-round, each vertex pulls whatever information
it can obtain from a random neighbor. (Here, the sets are
the rumors, and each passed sketch encodes the information
about the union of the sets obtained from all previous rounds.
At the end, we use a union bound over all possible rumors.)

If the nodev receives a sketch ofSD from an adjacent
neighbor, for someD ⊂ [N ], then she can update her known
sub-collection to beC ∪D and obtain the sketch ofSC∪D.
This procedure of combining the two sketches is the same as
the one performed by the relay in the central relay setting.
Note that, thus far, the protocol we are considering does not
carry information which would enablev to knowwhich sub-
collectionC corresponds to the set that she is holding.

Using the known bound on the PUSH-PULL protocol
have the following theorem.

Theorem 2: Given an upper boundd on the size of the
total set difference,N parties each possessing sets from
a universe of sizem communicating over a graphG can
reconcile their sets using sketches ofd+1 values inFq (such
that q > m), with each party sending one sketch per sub-
round (anO(d logm) bit message) using the PUSH-PULL
randomized gossip protocol, inO(φ−1 logN) rounds with
high probability.

Proof: We choose a suitable number of roundsL =
O(φ−1 logn) based on the desired high probability bound
that allowsN parallel versions of the single-message gossip
protocol to successfully complete with high probability, as
guaranteed by Theorem 1.1 of [7].

Note that, for any single set, the sketch corresponding to
that set behaves just as though it was acting as part of the
single-message protocol; the fact that other sketches may
have been combined into a shared sketch does not make
any difference from the point of view of the single set
under consideration. Hence, we can treat this as multiple
single-message problems running in parallel, and apply a
union bound on the failure probability. (See [13] for a more
extensive discussion.)

Hence, afterL rounds, with high probability allN parties
obtain sketches for all of theN sets, and hence all parties
have the necessary information for reconciliation.

Gossip Protocol with Owner Information We now turn to
extending the above protocol to allow owner information to
be be determined as well. The primary difficulty in adapting
our protocol with owner information from the relay setting
is that we might have the same item identified with different
owners, and they might be mistaken for different items.
However, if we carry along the sketch of the intersection
as well, during the combination of two sets each party can
extract and re-encode the items belonging to at least someone
but not everyone in the sub-collection.

Instead of 0-indexed identifiers of the nodes, we use
labels {1, . . .N} for the agents for the purpose of owner
identification. We work over of a prime fieldFq with q a
prime which is at leastm(N+1). For a given sub-collection
C ⊂ [N ], we maintain the sketch of the union and the

intersection of the original sets corresponding to the sub-
collectionC. We denote these sets by the shorthandsS∪C

andS∩C respectively. We call the minimum indexed member
of C the leader of C, and denote her index bylC .

When we consider the setS∪C , for each element of
S∪C−S∩C , we also attach the index of the minimum-indexed
owner from among agents inC, following the approach
used to associate an agent with an item in the relay case.
For elements inS∩C , we store the elements with a dummy
owner value of0. (Otherwise, the elements ofS∩C would
have hadlC as the minimum-indexed owner.) To distinguish
this encoding from the previous protocols, we denote the this
sketch of a setS asσ̂(S). In our protocol, at each nodev we
maintain the running tupleτ(C) := (σ̂(S∪C), σ̂(S∩C), lC),
whereC is the collection of agents whom the nodev has
made contact with, either directly or indirectly. (That is,it is
the collection of agents whose original sketches have reached
v, albeit perhaps combined with other sketches along the
way.) Again, note that in both the sketchesσ̂(S∪C) and
σ̂(S∩C), the elements which also appear inS∩C are encoded
with the owner-id of0 instead oflC .

Combining Sub-Collection Sketches When a nodev
receives information about another sub-collectionD ⊂
[N ] from a random neighbor, it combines this with its
own tuple for C ⊂ [N ] to obtain the tupleτ(E) =
(σ̂(S∪E), σ̂(S∩E), lE), whereE := C ∪ D. Note that it is
not necessary thatC andD be disjoint sub-collections.

We now describe how to combineτ(C) and τ(D) to
computeτ(C ∪ D) = τ(E). We are given the sketches of
S∪C , S∩C , S∪D, andS∩D, as well as the minimum indices
lC and lD. We assume without loss of generality thatlC ≤
lD, so lE = lC . To compute the sketcheŝσ(S∪E) and
σ̂(S∩E), the key idea is to extract the sketch ofS∩E and then
explicitly recover and re-encode all the elements in bothSC

andSD which do not belong to agentAlE . We describe the
procedure in three parts: (a) Computing the sketch ofS∩E.
(b) Extracting the elements inS∪E − S∩E and re-encoding
their owner information. (c) Computing the sketch ofS∪E.

(a) First, we show how to compute the sketch ofS∩E. Note
that the items ofS∩C have lC as their minimum-indexed
owner, hence they will be encoded with an owner-ID of
0 in both the sketcheŝσ(S∩C) and σ̂(S∪C). An analogous
statement holds for the sub-collectionD. As both σ̂(S∩C)
andσ̂(S∩D) have all their owner-IDs equal to0, we can treat
these as sets of items without owner information. Using the
identity

fT (x)

fS(x)
=

∏

α∈T−S(x− α)
∏

α∈S−T (x− α)
.

we can computêσ(S∩C−S∩D). Now, we can perform point-
wise division of the sketches to computêσ(S∩C ∩ S∩D)
using,

σ̂(S∩C ∩ S∩D) = σ̂(S∩C) ◦
−1 σ̂(S∩C − S∩D)

This gives us the sketch ofS∩E = S∩C ∩ S∩D.
(b) Next, we extract the individual items ofS∪C − S∩E

along with their owners. Observe that all items inS∩E also



belong to the leader ofC, namelyAlC . In both σ̂(S∪C) and
σ̂(S∩E) these items have the same owner ID of0. Hence,
we can take advantage of the identity

fS∪C
(x)

fS∩E
(x)

=
∏

α∈S∪C−S∩E

(x − α−miα)

where iα is the smallest-indexed owner of itemα among
agents in the sub-collectionC. Thus, we have explicitly
obtained the items inS∪C −S∩E along with their minimum
indexed owner. Note that these are the items which belong
to some agent in the collectionC, but not to all agents in
the collectionE = C ∪D.

Using a similar procedure on sub-collectionD instead of
C, we obtain analogously the items inS∪D −S∩E ; encoded
with their minimum-indexed owners among agents inD. At
this point, if lD 6= lC , we modify the items inS∪D − S∩E

with owner ID 0 to instead have owner IDlD. For items
which appear both inS∪C − S∩E andS∪D − S∩E , we can
now compute their minimum-indexed owner ID from among
agents inE by choosing the minimum of the two owners
that was obtained from the two sketches ofS∪C − S∩E and
S∪D − S∩E .

(c) In our final sketcĥσ(S∪E), the items which also appear
in σ̂(S∩E) would have agentAlE as their minimum-indexed
owner; hence by definition of̂σ these items appear in both
the sketches with an owner ID of0. This suggests that we
can build the sketcĥσ(S∪E) by using the already-computed
sketch σ̂(S∩E) as a starting point. In fact,S∪E = S∩E ⊔
((S∪C − S∩E) ∪ (S∪D − S∩E)), where⊔ denotes disjoint
union. Recall that we have the itemsα of (S∪C − S∩E) ∪
(S∪D − S∩E) explicitly, along with their minimum-indexed
owner ID (sayi′α) from among agents inE. Thus we have

fS∪E
(x) = fS∩E

(x).
∏

α∈(S∪C∪S∪D)−S∩E

(x− α−mi′α).

We can therefore computêσ(S∪E) by constructing the
sketch of the characteristic function of(S∪C ∪ S∪D)− S∩E

and point-wise multiplying it with the sketch ofS∩E .
We summarize our result in the following corollary.
Corollary 2: Given an upper boundd on the size of the

total set difference,N parties each possessing sets from
a universe of sizem communicating over a graphG can
reconcile their sets while recovering an owner for each
missing element, using sketches ofd+1 values inFq (such
that q > m(N + 1)), with each party sending at most
two sketches per sub-round (O(d log(mN)) bit messages)
using the PUSH-PULL randomized gossip protocol, in
O(φ−1 logN) rounds with high probability.

V. CONCLUSION

We had found that while the characteristic polynomial
approach to set reconciliation has been known for some
time, the issue of considering generalizations to multi-
party settings had never apparently been suggested. Linear
sketches based on Invertible Bloom Lookup Tables allow
fairly straightforward multi-party reconciliation protocols. In
this work, we show that using characteristic polynomials can

as well, albeit perhaps somewhat less naturally and with more
computation requirements.

A possible future direction is to improve the computation
time requirements. Currently, the primitives that we use for
finite field arithmetic are not especially attuned to our needs.
Is it possible to take advantage of properties of finite fields
to to enable more efficient manipulation of sketches?

It would also be interesting to investigate if this approach
could be simplified further, as characteristic polynomials
provide one of the simplest and most natural frameworks
for reconciliation problems.
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