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Concentration to Zero Bit-Error Probability for Regular LD PC Codes
on the Binary Symmetric Channel: Proof by Loop Calculus

Marc Vuffray1 and Theodor Misiakiewicz2

Abstract— In this paper we consider regular low-density
parity-check codes over a binary-symmetric channel in the
decoding regime. We prove that up to a certain noise threshold
the bit-error probability of the bit-sampling decoder converges
in mean to zero over the code ensemble and the channel
realizations. To arrive at this result we show that the bit-error
probability of the sampling decoder is equal to the derivative
of a Bethe free entropy. The method that we developed is new
and is based on convexity of the free entropy and loop calculus.
Convexity is needed to exchange limit and derivative and the
loop series enables us to express the difference between thebit-
error probability and the Bethe free entropy. We control the
loop series using combinatorial techniques and a first moment
method. We stress that our method is versatile and we believe
that it can be generalized for LDPC codes with general degree
distributions and for asymmetric channels.

I. I NTRODUCTION

In 1968 Gallager [1] introduced error-correcting codes
based on low-density parity-check (LDPC) matrices. Since
then LDPC codes have been proven to be of great practical
and theoretical relevance. LDPC codes perform very well
under iterative decoding on a broad class of symmetric
memoryless channels (BMS) [2], [3] and provably achieve
capacity on the binary erasure channel (BEC) [4]. Since 1996
they have been integrated into many industrial standards from
wireless communications to computer chips.

An important performance measure of an LDPC code
and its associated decoder is the bit-error probability. It
is the fraction of bits that are on average incorrectly re-
constructed. The bit-error probability of LDPC codes un-
der belief-propagation (BP) decoding is well-understood on
BMS channels using the method of density evolution [5].
However it is a more challenging task to control the bit-error
probability of the bit maximum a posteriori (MAP) decoder.

Lower and upper bounds on the noise threshold for van-
ishing bit-MAP error probability have already been derived
in Gallager’s thesis [1] for a class of BMS channels. These
bounds have been improved and generalized for every BMS
channels by Shamai and Sason [6].

In an attempt to locate exactly the noise threshold, most
of the attention has been focused on the conditional entropy
per bit. Its derivative with respect to the channel noise
is the so-called generalized extrinsic information transfer
(GEXIT) curve [7]. The GEXIT curve is proportional to the
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“magnetization” or bit-error probability of the bit-sampling
decoder1 for the BEC and the binary-input additive white
Gaussian-noise channel (BAWGNC) [8]. The magnetization
is an upper-bound on the bit-MAP error probability. Hence
for these two channels GEXIT curves and bit-MAP error
probabilities vanish in the same noise regime.

Surprisingly the conditional entropy and its derivative are
related to the BP algorithm and its associated Bethe free
entropy. It has been first proven in [9], [10] on the BEC
channel that the conditional entropy is equal to an averaged
form of the Bethe free entropy over the code ensemble.
Bounds between the averaged Bethe free entropy and the
conditional entropy are derived in [11], [12], [13] based on
the interpolation method of Guerra and Toninelli [14], [15].
Equality has been proven on the binary-symmetric channel
(BSC) using cluster expansions in a low-noise regime [16]
and in a high-noise regime [17]. More recently equality
between the GEXIT curve and the derivative of the average
Bethe free entropy has been generalized to all BMS chan-
nels [18] combining the interpolation method and spatially-
coupled codes [19].

Although the conditional entropy and its threshold are
completely characterized for BMS channels, its exact relation
to the bit-MAP error probability remains unclear in general
and in particular for the BSC channel. Due to Fano’s inequal-
ity the conditional entropy is always a lower-bound on the
bit-error probability. However inspired by previous results
this inequality is conjectured to be tight for LDPC codes on
a wide class of channels.

In this paper we prove that for regular LDPC codes over
a BSC channel the “magnetization” or bit-error probability
of the bit-sampling decoder vanishes up to a certain thresh-
old. This result also shows that the posterior measure of
LDPC codes concentrates over the LDPC ensemble and the
noise realizations. To achieve this result we show that the
magnetization is asymptotically equal to a perturbed version
of the Bethe free entropy. The technique that we present is
new and is based on loop calculus or loop series derived by
Chertkov and Chernyak [20]. The loop series expresses the
difference between a quantity and its Bethe counterpart as a
sum over subgraphs. Proving that the loop series vanishes is
tantamount to controlling a purely combinatorial object that
depends solely on the LDPC graph ensemble. Suboptimal
bounds on this object are obtained using McKay’s estimates
[21] following an idea developed in [17], [22].

1The bit-sampling decoder assigns random values to decoded bits based
on their posterior marginal distribution.
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The technique that we present has the advantage to be sim-
ple and versatile. To emphasize this point we also show that
our results can be easily transposed to the BEC. Moreover
we stress that our proofs do not rely explicitly on properties
of the channel. Hence, we believe that this technique can
be use to analyze LDPC codes over channels that are not
symmetric.

In Section II we give a precise definition of the bit-
sampling decoder and its associated bit-error probabilityand
we present our main theorems. In Section III we derive the
relation between the Bethe free entropy and the bit-error
probability and we express the difference using loop calculus.
In Section III we reduce the loop series to a counting problem
that we control with a first moment method. Finally we
discuss about future works and possible improvements in
Section V.

II. M AIN RESULTS

A. Regular LDPC codes on BMS channels

LDPC codes are defined by a regular bipartite graphΓ =
(V,C,E) whereV is the set of variable nodes,C is the set
of check nodes andE = V × C is the set of undirected
edges. There aren = |V | variable nodes andm = |C| check
nodes.

We consider regular LDPC codes with variable-node de-
greesl ≥ 3 and check-node degreesr > l. The design rate
of the code is by definitionRdes= 1− l/r.

An LDPC code is generated randomly. The graphΓ is
drawn uniformly at random from the ensemble of(l, r)
regular bipartite graphs. Throughout the paper we writeEΓ [·]
the expectation with respect to the ensemble of regular(l, r)
bipartite graphs with uniform probability.

Denote the neighbors of a variable nodei ∈ V (resp. a
check nodea ∈ C) by ∂i = {a ∈ C | (i, a) ∈ E} (resp.
by ∂a = {i ∈ V | (i, a) ∈ E}). A codeword is a sequence2

σ = {σi}ni=1 ∈ {−1, 1}n that satisfies the parity-check sum
∏

i∈∂a

σi = 1, (1)

for all check nodesa ∈ C.
We transmit a codeword with uniform prior over a BMS

channel with transition probabilityq (si | σi), where the
output of the channel could take any real valuesi ∈ R.
The symmetry property of the channel is expressed through
the simple relation

q (si | σi) = q (−si | −σi) . (2)

We assume without loss of generality that the all-zero
codeword3 is transmitted. Hence the output of the channel
s = {si}ni=1 ∈ R

n is i.i.d. with distributionq (si | +1). The
posterior probability that the codewordσ is sent given that

2As we use concepts from statistical physics it is more convenient to
employ the binary alphabet{−1, 1} instead of the traditional{0, 1}.

3In the binary alphabet{−1, 1}, the all-zero codeword is the sequence
{1, . . . , 1}.

s is transmitted reads

µΓ (σ | s) = 1

Z (Γ, s)

∏

a∈C

1

2

(
1 +

∏

i∈∂a

σi

)
∏

i∈V

q (si | σi) ,

(3)
where the normalization factorZ (Γ, s) in Equation (3) is
the partition function

Z (Γ, s) :=
∑

σ∈{−1,1}n

∏

a∈C

1

2

(
1 +

∏

i∈∂a

σi

)
∏

i∈V

q (si | σi) .

(4)

B. Concentration of the Bit-Error Probability for the Sam-
pling Decoder

We are interested in the performance of regular LDPC
codes with respect to the average bit-error probability of
decoding. We consider the bit-sampling decoder

σ̂sampling
i (s) := sampleσi according to

∑

σ\σi

µ (σ | s) , (5)

whereσ \ σi denotes the sequence of variablesσ with the
ith component removed.

The bit-error probability of the bit-sampling decoder
P bit-sampling
Γ is directly related to the marginals of the posterior

probability (3)

P
bit-sampling
Γ :=

1

2

(
1− Es

[
1

n

n∑

i=1

〈σi〉|s

])
, (6)

where Es [·] denotes the expectation with respect to the
channel output distribution and〈·〉|s denotes the average with
respect to the posterior probability (3). The expected quan-
tity in Equation (6) is sometimes referred as the averaged
magnetization in the physics community.

An important question is to know when the bit-error
probability is vanishing in the limit where the codeword
length goes to infinity. In this paper we consider two families
of symmetric channels, the BEC and the BSC. The BEC has
an output alphabetsi ∈ {−1, 0, 1} and is characterized by
transition probabilities

qBEC (1 | 1) = 1− ǫ, qBEC (0 | 1) = ǫ, qBEC (−1 | 1) = 0,
(7)

where ǫ ∈ [0, 1] is the erasure probability. The BSC has
binary outputssi ∈ {−1, 1} and is characterized by the
transition probabilities

qBSC(1 | 1) = 1− p, qBSC(−1 | 1) = p, (8)

wherep ∈ [0, 1/2] is the flipping probability.
Before we state our theorems we need to introduce the

domain

D (ρ) =




(
x0, xc, y

)
∈ [0, 1]

2+⌊r/2⌋ |
⌊r/2⌋∑

t=1

yt ≤ 1,

⌊r/2⌋∑

t=1

2t

r
yt = (1− ρ)x0 + ρxc



 . (9)



We also need to introduce the auxiliary functionf : D (ρ)×
[0, 1] → R defined as follows4

f
(
x0, xc, y, ρ

)
= −lh2 ((1− ρ)x0 + ρxc)

+ (1− ρ)h2 (x0) + ρh2 (xc)

− l

r

(
1−

r∑

t=1

yt

)
ln

(
1−

r∑

t=1

yt

)

− l

r

r∑

t=1

yt ln yt

+
l

r

⌊r/2⌋∑

t=1

yt ln

(
r
2t

)
, (10)

and the functionk : [0, 1]4 → R that reads

k (x0, xc, ρ, p) = (ρxc − (1− ρ)x0) ln

(
1− p

p

)
. (11)

Our main contribution are the two theorems stated below
which give sufficient conditions on the channel parameters
for concentration of the bit-error probability of the sampling
decoder.

Theorem 1 (Concentration of the Bit-Error Probability for
the BEC). Consider the ensemble of(l, r) regular LDPC
codes on a BEC with erasure probabilityǫ. If the following
function achieves its maximum only at the point

argmax
(0,xc,y)∈D(ǫ)

f
(
0, xc, y, ǫ

)
= {(0, 0, 0)} ,

then the bit-error probability of the sampling decoder con-
verges in mean to zero in the large codeword limit

lim
n→∞

EΓ,s

[
P bit-sampling
Γ

]
= 0.

The same theorem holds for the BSC with a similar
condition.

Theorem 2 (Concentration of the Bit-Error Probability for
the BSC). Consider the ensemble of(l, r) regular LDPC
codes on a BSC with flipping probabilityp. If the following
function achieves its maximum only at the point

argmax
(x0,xc,y)∈D(p)

f
(
x0, xc, y, p

)
+ k (x0, xc, p, p) = {(0, 0, 0)} ,

then the bit-error probability of the sampling decoder con-
verges in mean to zero in the large codeword limit

lim
n→∞

EΓ,s

[
P bit-sampling
Γ

]
= 0.

Remark3. Knowing thatP bit-sampling
Γ vanishes implies that

with high probability the posterior measure (3) concentrates
on configurations that are at a Hamming distanceo (n) from
the all-zero codeword.

We perform the global optimization numerically and we
find for a few cases the maximum value of noiseǫloop and
ploop for which Theorem 1 and Theorem 2 hold. Critical

4The binary entropyh2 (p) := − (1− p) ln (1− p)−p ln p is computed
in nat.

values of noise are displayed in Table I for the BEC and in
Table II for the BSC.

l r Rdes ǫBP ǫloop ǫMAP ǫSh

3 4 1/4 0.64743 0.7442(9) 0.74601 0.75
3 5 2/5 0.51757 0.5872(4) 0.59098 0.6
3 6 1/2 0.42944 0.4833(6) 0.48815 0.5
4 6 1/3 0.50613 0.5767(2) 0.66565 0.66667

TABLE I

THRESHOLDS FOR SOME REGULARLDPC CODE ENSEMBLES OVER THE

BEC WITH ERASURE PROBABILITYǫ. THE BELIEF-PROPAGATION

THRESHOLD ISǫBP, THE MAXIMUM A POSTERIORI THRESHOLD ISǫMAP ,

THE SHANNON THRESHOLD ISǫSH AND OUR THRESHOLD ISǫLOOP.

VALUES OF BP AND MAP THRESHOLDS ARE FROM[23].

l r Rdes pBP ploop pMAP pSh

3 4 1/4 0.16692 0.2014(2) 0.21011 0.21450
3 5 2/5 0.11382 0.1146(8) 0.13841 0.14610
3 6 1/2 0.08402 0.0678(9) 0.10101 0.11003
4 6 1/3 0.11692 0.1705(2) 0.17261 0.17395

TABLE II

THRESHOLDS FOR SOME REGULARLDPC CODE ENSEMBLES OVER THE

BSC WITH ERASURE PROBABILITYp. THE BELIEF-PROPAGATION

THRESHOLD ISpBP, THE MAXIMUM A POSTERIORI THRESHOLD ISpMAP ,

THE SHANNON THRESHOLD ISpSH AND OUR THRESHOLD ISpLOOP.

VALUES OF BP AND MAP THRESHOLDS ARE FROM[23].

We would expect that the probability of error vanishes
for ǫ < ǫMAP and p < pMAP. Although the thresholds that
we found are reasonably close toǫMAP andpMAP for graphs
with small degrees, they become worse in the limit of large
degrees. A quick inspection of (10) and (11) shows that
the functionsf/l andk/l become independent of the noise
parameter in the limit wherel and r go to infinity with a
fixed ratio l/r. It implies thatploop and ǫloop vanish. This
behavior is in the opposite direction to what we can expect
as in the limit of large degreespMAP → pSh. In Section V
we discuss about possible improvements in our analysis in
order to make our thresholds tight.

The rest of the paper is organized as follows. In Section III
we show that the bit-error probability is related to the
derivative of the so-called free entropy. Using the loop series,
we express the free entropy as a combinatorial sum over
subgraphs. In Section IV we control the loop series with
asymptotic estimates on subgraphs and Laplace’s method.
We prove Theorems 1 and 2 in this section. In Section V we
discuss future directions and ways to improve and generalize
our results.



III. F REE ENTROPY, BETHE APPROXIMATION AND LOOP

SERIES

A. The Free Entropy and its Relation to the Bit-Error Prob-
ability

The bit-error probability (6) is related to a “perturbed”
version of the partition function (4). Letη ∈ R be the
perturbation parameter entering in the perturbed partition
function

Z (Γ, s, η) :=
∑

σ

∏

a∈C

1

2

(
1 +

∏

i∈∂a

σi

)

×
∏

i∈V

q (si | σi) e
η(σi−1). (12)

Note thatZ (Γ, s, η) is a non-increasing function ofη and
Z (Γ, s, 0) is the original partition function (4).

The free entropy is the (normalized) logarithm of the
partition function (12)

φ (Γ, s, η) :=
1

n
lnZ (Γ, s, η) . (13)

A direct computation shows that the derivative of the free
entropy with respect to its perturbation parameter reads

∂

∂η
φ (Γ, s, η)

∣∣∣∣
η=0

=
1

n

n∑

i=1

〈σi〉s − 1. (14)

Therefore the bit-error probability is related to the average
entropy through the following relation

∂

∂η
Es [φ (Γ, s, η)]

∣∣∣∣
η=0

= −2P bit-sampling
Γ . (15)

SinceZ (Γ, s, η) is a non-increasing function ofη, the free
entropy is non-increasing as well. Moreover the free entropy
is a convex function ofη as it can easily be verified by
taking twice the derivative with respect toη. It implies that
in order to show concentration of the bit-error probabilityit
is sufficient to prove that there exists̃η < 0 independent ofn
such thatEΓ,s [φ (Γ, s, η̃)] → 0. If this condition is true then,
thanks to monotonicity, the limit is also equal to zero for all
η ∈ [η̃,∞[. Finally convexity of the free entropy enables us
to exchange limit and derivative (see [24, p. 203]).

In order to prove that the free entropy vanishes we
decompose it into two contributions: the Bethe free entropy
that can be computed explicitly and the so-called loop series
that is a sum over subgraphs ofΓ. Using a first moment
method and combinatorial tools from graph theory, we show
that with high probability the loop series vanishes in the
large codeword limit. The last statement implies that the free
entropy is equal to the Bethe free entropy.

B. The Bethe Approximation

The Bethe free entropy is an approximation of the free
entropy (13). It is defined as a functional over “messages”
that are probability distributionsνi→a (σi), ν̂a→i (σi) asso-
ciated with the directed edgesi → a, a → i of the graph.
The messages satisfy the so-called belief-propagation (BP)

equations. For the free entropy (13) the BP equations take
the following form

ν̂a→i (σi) ∝
∑

σ∂a\σi

1

2

(
1 +

∏

i∈∂a

σi

)
∏

j∈∂a\i

νj→a (σi)

νi→a (σi) ∝ eη(σi−1)q (si | σi)
∏

b∈∂i\a

ν̂b→i (σi) , (16)

where the symbol∝ denotes equality up to a normalization
factor andσ∂a := {σj | j ∈ ∂a}.

The Bethe free entropy evaluated at a fixed point of the
BP equations is a sum of local contributions from nodes and
edges of the graphΓ = (V,C,E)

φBethe
(ν,ν̂) (Γ, s, η) :=

1

n

∑

a∈C

Fa +
1

n

∑

i∈V

Fi −
1

n

∑

(i,a)∈E

Fia,

(17)
where

Fa = ln


∑

σ∂a

1

2

(
1 +

∏

i∈∂a

σi

)
∏

j∈∂a

νj→a (σi)




Fi = ln

(
∑

σi

eη(σi−1)q (si | σi)
∏

b∈∂i

ν̂b→i (σi)

)

Fia = ln

(
∑

σi

νi→a (σi) ν̂a→i (σi)

)
. (18)

Note that once a fixed-point of the BP equations (16) is
found, computing the Bethe free entropy (17) is a computa-
tionally easy task.

C. Corrections to the Bethe Free Entropy: the Loop Series

The difference between the free entropy and the Bethe
free entropy can be expressed with the so-called loop series
derived by Chertkov and Chernyak [20]. It takes the form
of the logarithm of a weighted sum over subgraphs ofΓ.
These subgraphs are called “loops” for they have no dangling
edges. Note that ifΓ is a tree no such subgraph exists and
we recover the well-known result that the Bethe free entropy
is exact on trees.

We recall that a subgraphg = (Vg, Cg, Eg) of Γ =
(V,C,E) is any graph with vertex setVg ⊂ V , factor
node setCg ⊂ C and edge setEg ⊂ (Vg × Cg) ∩ E. For
simplicity we denote the relation “g is a subgraph ofΓ” with
the inclusion symbolg ⊂ Γ. We also denote the induced
neighborhood ing of a variable nodei ∈ Vg (resp. check
nodea ∈ Cg) by ∂gi = ∂i ∩ Vg (resp. by∂ga = ∂a ∩ Cg).

The set of “loops” consists of any non-empty subgraphs,
not necessarily connected, with no degree one variable-node
and no degree one check-node

LΓ := {g ⊂ Γ | ∀i ∈ Vg, |∂gi| ≥ 2 and∀a ∈ Cg, |∂ga| ≥ 2} .
(19)

The difference between the free entropy and the Bethe free
entropy is related to the loop series through the following



equation

φ (Γ, s, η)− φBethe
(ν,ν̂) (Γ, s, η) =

1

n
ln
(
Z loop
(ν,ν̂)

)
, (20)

where the argument of the logarithm is a weighted sum over
loops

Z loop
(ν,ν̂) := 1 +

∑

g∈LΓ

K(ν,ν̂) (g) . (21)

The weight function over loops depends on the BP fixed
point at which the Bethe free entropy is evaluated and can
be expressed as a product over the nodes inside a loop

K(ν,ν̂) (g) :=
∏

i∈Vg

κi

∏

a∈Cg

κa. (22)

The factorsκi and κa entering in (22) depend only on
messages that are associated with edges neighboring the
nodesi ∈ Vg anda ∈ Cg

κi :=

(
∑

σi

q (si | σi) e
η(σi−1)

∏

a∈∂i

ν̂a→i (σi)

)−1

×


∑

σi

q (si | σi) e
η(σi−1)

∏

a∈∂i\∂gi

ν̂a→i (σi)

×
∏

a∈∂gi

σiνi→a (−σi)


 , (23)

and

κa :=



∑

σ∂a

(
1 +

∏

i∈∂a

σi

)
∏

i∈∂a

νi→a (σi)




−1

×



∑

σ∂a

(
1 +

∏

i∈∂a

σi

)
∏

i∈∂a\∂ga

νi→a (σi)

×
∏

i∈∂ga

σiν̂a→i (−σi)


 . (24)

For a complete derivation of the loop series for graphical
models associated with linear codes, we refer the reader to
[25].

D. The Decoding Regime and its BP Fixed-Point

Note that the loop series, as well as the Bethe free
entropy, are functions of fixed-points of the BP equations
(16). The fixed-point associated with the decoding regime is
the ferromagnetic fixed-point

ν̂+a→i (σi) = ν+i→a (σi) =
1 + σi

2
. (25)

One can easily see that ferromagnetic messages (25) satisfy
the BP equations (16) regardless of the channel considered
and of the value of the perturbation parameterη ∈ R. The
ferromagnetic fixed-point (25) describes a state for which
the most likely configuration is the all-zero codeword i.e.
σi = +1. This is the reason why this fixed-point is associated

with the decoding regime.

The Bethe free entropy (17) evaluated at the ferromagnetic
fixed-point simply reads

φBethe
+ (Γ, s, η) =

1

n

∑

i∈V

ln (q (si | +1)) . (26)

The factors entering in the weight function (22) are computed
using Equations (24) for check nodes

κa =

{
1 |∂ga| is even

0 |∂ga| is odd
, (27)

and Equation (23) for variable nodes

κi =

{
(−1)l e−2(λ(si)+η) |∂gi| = l

0 |∂gi| < l
, (28)

where in the last expression we have used the half log-
likelihood variables

λ (si) :=
1

2
ln

q (si | +1)

q (si | −1)
. (29)

Based on the expression of the factors (27) and (28), the only
subgraphs with a non-zero weight are those with an induced
variable-node degree equal tol and even induced check-node
degree. This motivates the definition of the ferromagnetic
loops ensemble

L+
Γ = {g ∈ LΓ | ∀i, a ∈ g, |∂gi| = l and |∂ga| is even} .

(30)
A loop that is not an element of the ferromagnetic ensemble
has a zero weight. Moreover the weight of a ferromagnetic
loop is always non-negative

K+ (g) = exp


−2η |Vg| − 2

∑

i∈Vg

λ (si)


 ≥ 0. (31)

In order to see thatK+ (g) is non-negative, notice that a
sign is only associated with the factorsκi and is equal to
(−1)

l. Therefore a loop can only have a negative weight
if the product l |Vg| is odd. Note that this product is the
number of edges in a loop counted from the variable-node
perspective. Therefore it should be equal to the number of
edges counted from the check-node perspective

l |Vg| =
∑

a∈Cg

|∂ga| . (32)

Since for a ferromagnetic loop|∂ga| is always even,l |Vg| is
also even and the weight of a loop is always non-negative.

Using Equations (20) and (26) we can express the average
free entropy (13) in the simple form

EΓ,s [φ (Γ, s, η)] = EΓ,s


 1

n
ln


1 +

∑

g∈L+

Γ

K+ (g)






+

∫
dsq (s | 1) ln (q (s | 1)) . (33)



Note that Equation (33) is valid for all BMS channels
regardless of the noise parameter. However we can only
expect that the ferromagnetic loop-series vanishes in the
decoding regime.

IV. F IRST MOMENT METHOD ON THELOOPSERIES

We use a first moment method to prove that the ferromag-
netic loop-series in Equation (33) vanishes. In our case it is
based on Jensen’s inequality and consists of permuting the
expectation over the graph ensemble and the logarithm in
Equation (33).

Note that we cannot permute the expectation over the
channel output realizations and the logarithm. It is easy to
see that over the channel output realizations a loop has an
expected weight (31) that increases exponentially fast for
η < 0

Es [K+ (g)] = e−η|Vg |. (34)

This is because the loop series is dominated by events for
which most of the bits are corrupted and have negative half
log-likelihood (29). These events are rare but give rise to an
exponentially large weight.

Therefore we estimate the expectation of the loop series
over the ensemble of regular(l, r) bipartite graphs for a fixed
output realization of the channel.

A. Probability Estimates on Graphs

For a given channel realizations of the BEC (resp. BSC)
call Vc the set of variable nodes withsi = 0 (resp.si = −1)
and callV0 the set of variable nodesi ∈ V with si = 1 (resp.
si = 1). The setV0 contains bits that have been correctly
transmitted andVc contains bits that have been corrupted. We
denote the fraction of correctly transmitted bits by(1− ρ) =
|V0| /n and we denote the fraction of corrupted bits byρ =
|Vc| /n. We recall that the total number of variable nodes is
n = |V | and the total number of check nodes ism = |C|.

We decompose the set of ferromagnetic loops (30) into
subsets of loops having the same “type”. The type of a
loop g ∈ L+

Γ is the triplet
(
x0, xc, y

)
∈ [0, 1]2×⌊r/2⌋ where

x0 = |V0 ∩ Vg| /n is the fraction of correctly transmitted
variable nodes in the loop,xc = |Vc ∩ Vg| /n is the fraction
of corrupted variable nodes in the loop andy = {yt}⌊r/2⌋t=1 is
the fraction of check nodes with degree2t. The set of loops
of type

(
x0, xc, y

)
is denoted byΩ

(
x0, xc, y

)
.

Not all value of
(
x0, xc, y

)
are admissible loop types. The

fraction of check nodes inside a loop is upper bounded by1.
Moreover counting edges from the variable-node perspective
or from the check-node perspective obviously gives the same
number. Therefore types that are admissible belong to the
following set already introduced in Section II, Eq. (9)

D (ρ) =




(
x0, xc, y

)
∈ [0, 1]

2+⌊r/2⌋ |
⌊r/2⌋∑

t=1

yt ≤ 1,

⌊r/2⌋∑

t=1

2t

r
yt = (1− ρ)x0 + ρxc



 . (35)

The weight (31) of a loopg ∈ Ω
(
x0, xc, y

)
is only a

function of its typeK+ (g) ≡ K+ (x0, xc). Using the specific
expression of the half log-likelihood (29) for each channels
we find the explicit form of the weight function for the BEC

KBEC
+ (x0, xc) =

{
exp (−2nηxcρ) x0 = 0

0 x0 > 0
, (36)

and for the BSC

KBSC
+ (x0, xc) = exp (−2nη (x0 (1− ρ) + xcρ)

+nk (x0, xc, ρ, p)) , (37)

wherek (x0, xc, ρ, p) is the auxiliary function introduced in
Section II, Eq. (11)

k (x0, xc, ρ, p) = (ρxc − (1− ρ)x0) ln

(
1− p

p

)
. (38)

Therefore the expected value of the loop series over the graph
ensemble can be expressed only through loop types

EΓ



∑

g∈L+

Γ

K+ (g)


 =

∑

(x0,xc,y)∈D(ρ)

K+ (x0, xc)

×EΓ

[∣∣Ω
(
x0, xc, y

)∣∣] . (39)

The expected number of loops with prescribed type(
x0, xc, y

)
is upper bounded using McKay’s combinatorial

estimate5 [21] for subgraphs with specified degrees

EΓ

[∣∣Ω
(
x0, xc, y

)∣∣] ≤ nδl,r

(
nl

nl (x0 (1− ρ) + xcρ)

)−1

×
(

n (1− ρ)
nx0 (1− ρ)

)(
nρ
nxcρ

)

×
(

m
my1, . . . ,my⌊r/2⌋

)

×
⌊r/2⌋∏

t=1

(
r
2t

)myt

, (40)

where δl,r is a constant that depends only onl and r.
McKay’s estimate has the advantage to have an asymptot-
ically tight growth rate whenn goes to infinity.

It remains to prove that the average loop series (39) with
the bound (40) vanishes in the largen limit.

B. Laplace’s Method and Proof of Theorems

The loop series (39) is dominated by loop types that
contribute to the sum with the biggest exponential growth.
We apply Laplace’s method in order to characterize the
biggest exponent.

Using Stirling inequalities

e
1

12n+1 ≤ n!√
2πne−nnn

≤ e
1

12n , (41)

5McKay’s bound in its original form is only applicable for subgraphs of
size less thann− 4r2. We refer to [17] for a careful analysis.



we find an asymptotically tight upper bound on the estimate
(40)

EΓ

[∣∣Ω
(
x0, xc, y

)∣∣] ≤ Cl,rn
δ′l,r exp

(
nf
(
x0, xc, y, ρ

))
,

(42)
where Cl,r and δ′l,r are just numerical constants and
f
(
x0, xc, y, ρ

)
is the auxiliary function introduced in Section

II, Eq. (1)

f
(
x0, xc, y, ρ

)
= −lh2 ((1− ρ)x0 + ρxc)

+ (1− ρ)h2 (x0) + ρh2 (xc)

− l

r

(
1−

r∑

t=1

yt

)
ln

(
1−

r∑

t=1

yt

)

− l

r

r∑

t=1

yt ln yt

+
l

r

⌊r/2⌋∑

t=1

yt ln

(
r
2t

)
. (43)

Combining Equations (36), (37) and (42), we show that the
leading exponent in Equation (39) is for the BEC

αBEC (ρ, η) = max
(0,xc,y)∈D(ρ)

f
(
0, xc, y, ρ

)
− 2ηxcρ, (44)

and is for the BSC

αBSC(ρ, η) = max
(x0,xc,y)∈D(ρ)

(−2η (x0 (1− ρ) + xcρ)

+ f
(
x0, xc, y, ρ

)
+ k (x0, xc, ρ, p)

)
.(45)

Notice that for all ρ and η the exponentαBEC/BSC(ρ, η)
is non-negative. This is easily verified by evaluating the
objective function at

(
x0, xc, y

)
= (0, 0, 0). Therefore the

bit-error probability vanishes ifαBEC/BSC(ρ, η) is equal to
zero for all η in a neighborhood of zero. The next Lemma
shows that in fact only the maximization atη = 0 is
important.

Lemma 4. If the maximum of(44) (resp. (45)) is uniquely
achieved in

(
x0, xc, y

)
= (0, 0, 0) for η = 0, then there exists

η̃ < 0 such thatαBEC(ρ, η) = 0 (resp.αBSC(ρ, η) = 0) for
all η ∈ ]η̃,∞[.

Proof. See Appendix I

In order to prove Theorems 1 and 2, we need to show
that small variations aroundρ do not changeαBEC (ρ, 0) and
αBSC(ρ, 0). This is guaranteed by the following Lemma.

Lemma 5. For all ρ ∈ [0, 1], if αBEC(ρ, 0) = 0 (resp.
αBSC(ρ, 0) = 0) and the maximum of(44) (resp. (45)) is
uniquely achieved at

(
x0, xc, y

)
= (0, 0, 0), there existsN

sufficiently large such that

∀n ≥ N, ∀δ ∈
[
−
√

lnn

n
,

√
lnn

n

]
, αBEC/BSC(ρ+ δ, 0) = 0

Proof. See Appendix II

We are now in position to prove our main theorems.

Proof of Theorem 1.Let ǫ be the probability of error of the
BEC. First notice that the perturbed partition function (12) is
trivially lower bounded by1 and upper bounded by2ne2n|η|.
This implies that the free entropy (13) remains finite

0 ≤ φ (Γ, s, η) ≤ ln 2 + 2 |η| . (46)

Therefore using Equation (33) and the fact thatK+ (g) ≥ 0
we see that the loop series remains finite as well

2 (ln 2 + |η|) ≥
∣∣Es [φ (Γ, s, η)]

−
∫

dsq (s | 1) ln (q (s | 1))
∣∣∣∣

= Es


 1

n
ln


1 +

∑

g∈L+

Γ

K+ (g)




 .(47)

Let A be the following probabilistic event on the channel
output realizations

A :=

{
s ∈ {−1, 0, 1}n |

∣∣∣∣∣
1

n

n∑

i=1

si − (1− ǫ)

∣∣∣∣∣ ≤
√

lnn

n

}
.

(48)
Output realizations inA are close to the average output
realization.

Using Hoeffding’s inequality, we see that the probability
of the complementary eventAc vanishes

Ps [A
c] ≤ 2

n−2
. (49)

Combining Jensen’s inequality and the trivial bound (47) on
the loop series we have the following estimate

EΓ,s


 1

n
ln


1 +

∑

g∈L+

Γ

K+ (g)




 ≤ 4

n−2
(ln 2 + |η|)

+Es


 1

n
ln


1 + EΓ



∑

g∈L+

Γ

K+ (g)




 | A


 . (50)

Since we have conditioned over channel output realizations
that are inA, the fraction of corrupted bit is|ρ− ǫ| ≤√
lnn/n. Therefore combining Equation (42), Lemma 4

and Lemma 5 we have that ifαBEC (ǫ, 0) = 0 is uniquely
achieved in

(
x0, xc, y

)
= (0, 0, 0) then for all η ∈ ]η̃,∞[

andn sufficiently large,

Es


 1

n
ln


1 + EΓ


∑

g∈L+

Γ

K+ (g)




 | A


 ≤

1

n
ln (1 + c3n

c4) , (51)

wherec3 andc4 are numerical constants independent ofn.

We have proved that for allη ∈ ]η̃,∞[ with η̃ < 0
the average free entropy converges in expectation over the
regular(l, r) LDPC ensemble



lim
n→∞

EΓ

[∣∣∣∣Es [φ (Γ, s, η)]−
∫

dsq (s | 1) ln (q (s | 1))
∣∣∣∣
]
= 0.

(52)
In particular it implies that the average free entropy over the
LDPC ensemble converges

lim
n→∞

EΓ,s [φ (Γ, s, η)] =

∫
dsq (s | 1) ln (q (s | 1)) . (53)

SinceEΓ,s [φ (Γ, s, η)] is a convex function ofη and con-
verges pointwise in a neighborhood of zero, we can exchange
the limit and the derivative

0 =
∂

∂η
lim
n→∞

EΓ,s [φ (Γ, s, η)]

∣∣∣∣
η=0

= lim
n→∞

∂

∂η
EΓ,s [φ (Γ, s, η)]

∣∣∣∣
η=0

= lim
n→∞

EΓ

[
∂

∂η
Es [φ (Γ, s, η)]

]∣∣∣∣
η=0

= −2 lim
n→∞

EΓ

[
P bit-sampling
Γ

]
, (54)

where in the last line we use Equation (15) that relates the
free entropy to the bit-error probability.

Theorem 2 has a proof almost identical to that of Theo-
rem 1.

V. PATH FORWARD

We would like to stress that the techniques developed in
this paper are quite general. In particular they do not rely on a
special form of channels or on the regular-degree distribution
of the LDPC ensemble. Therefore we plan to improve our
results in the following ways.

A. Generalization to Arbitrary Degree Distributions

The entire analysis can easily be extended to general
degree distributions with bounded degrees. It will simply
transform the function (43) that counts subgraphs into a more
convoluted object. However extending our results to distri-
butions with unbounded degrees, like for instance Poisson
distributions, may be more complicated. One would have to
derive an estimate for counting subgraphs in this particular
case.

B. Asymmetric Channels

The loop series and the Bethe free entropy for general
channels are almost exactly similar than for symmetric
channels. For general channels we can no longer assume
that the all-zero codeword is transmitted. Instead we have
to average the bit-error probability over all possible input
codewordsτ . In this case the weight of a loop remains similar
than for symmetric channels. The weight is also non-negative
and depends on the generalized half log-likelihood ratio

λ (si | τi) =
1

2
log

q (si | τi)
q (si | −τi)

, (55)

wheres denotes as usual the channel observations. In order to
control the loop series, we will need to perform a conditioned

expectation in (50) over joint typical sequences of input
codewords and noise realizations.

C. Tight Thresholds

As described in Section II, the thresholds that we obtain
are not tight. In fact at fixed rate they become worse and
converge to zero as the degrees of the graph become large.
The reason why we obtain such loose bounds for large
degrees comes from the functionf

(
x0, xc, y, ρ

)
defined in

(43). This function counts the growing rate of the average
number of subgraphs with a prescribed type

(
x0, xc, y

)

f = lim
n→∞

1

n
ln
(
EΓ

[∣∣Ω
(
x0, xc, y

)∣∣]) . (56)

One can verify that if instead off we use the function

f̃ = lim
n→∞

1

n
EΓ

[
ln
(∣∣Ω

(
x0, xc, y

)∣∣)] , (57)

we obtain tight lower and upper bound on the threshold for
vanishing bit-error probability.

The functionf̃ only depends on the random graph ensem-
bles that we consider and does not depend on a particular
channel. Computing this function would provide a proof of
the exact location of the MAP threshold for an extensive
class of channels. However this computation could prove to
be a very difficult task.

A way around the problem of computing (57) is to
condition the expectation (56) on some rare events with
respect to the random graph measure. Note that by Jensen’s
inequality f̃ is always upper-bounded byf . This is because
the expectation (56) is dominated by rare events that are
associated with a large weight

∣∣Ω
(
x0, xc, y

)∣∣. Conditioning
on these rare events will lead to better estimates of (57)
and will provide tighter bounds at least in the limit of large
degrees.

APPENDIX I
PROOF OFLEMMA 4

Proof. We prove Lemma 4 only for the BSC (the proof for
the BEC is almost identical). For a givenρ and p, let us
define the following function

gBSC
(
x0, xc, y, η

)
= f

(
x0, xc, y, ρ

)
+ k (x0, xc, ρ, p)

−2η (x0 (1− ρ) + xcρ) . (58)

The function gBSC
(
x0, xc, y, η

)
corresponds to the expo-

nent of the loop series (39) associated with the loop type
(x0, xc, y). In order to prove Lemma 4, we have to findη̃ < 0
such thatgBSC is non-positive onD(ρ)× [η̃,+∞[.

We first show that for anyη̃1 < 0, there exists a
neighborhoodU of (xo, xc, y) = (0, 0, 0) such thatgBSC

is non-positive onU ∩D(ρ)× [η̃1,+∞[. For a fixedη̃1 < 0
we construct a functiongBSC that is an upper bound ofgBSC.
We restrict ourselves to the domainV ∩ D(ρ) × [η̃1,+∞[,
whereV = B(0, 1/3r) is the ball of radius1/3r centered at
(0, 0, 0).

Let us explicitly write down the function (58) term by
term



gBSC
(
x0, xc, y, η

)
= −2η (x0 (1− ρ) + xcρ)

+ (ρxc − (1− ρ)x0) ln

(
1− p

p

)

+
l

r

⌊r/2⌋∑

t=1

yt ln

(
r
2t

)

−lh2 ((1− ρ)x0 + ρxc)

+ (1− ρ)h2 (x0) + ρh2 (xc)

− l

r

(
1−

r∑

t=1

yt

)
ln

(
1−

r∑

t=1

yt

)

− l

r

r∑

t=1

yt ln yt. (59)

We bound each term of (59) separately. Denote the fraction
of variable nodes in the loop byX = x0 (1− ρ) +xcρ. The
inequalities below trivially hold

(ρxc − (1− ρ)x0) ln

(
1− p

p

)
≤ 2 ln

(
1− p

p

)
X

l

r

⌊r/2⌋∑

t=1

yt ln

(
r
2t

)
≤ l ln

(
r

2 ⌊r/2⌋

)
X

−2η (x0 (1− ρ) + xcρ) ≤ −2η̃1X. (60)

As the entropy is a concave function, we have the following
inequality

(1− ρ)h2 (x0) + ρh2 (xc) ≤ h2(X). (61)

Concativty of−x lnx gives us

−
⌊r/2⌋∑

t=1

yt ln yt ≤ −




⌊r/2⌋∑

t=1

yt


 ln


 1

⌊r/2⌋

⌊r/2⌋∑

t=1

yt




≤ −




⌊r/2⌋∑

t=1

yt


 ln




⌊r/2⌋∑

t=1

yt




+r ln (⌊r/2⌋)X. (62)

Note that since the domain is restricted to types in a ball
of radius1/3r, the fraction of variable nodes in a loop is
upper-boundedX ≤ 1/3r. In particular it implies that

⌊r/2⌋∑

t=1

yt ≤ r

2




⌊r/2⌋∑

t=1

2t

r
yt




=
r

2
X

≤ 1

6

≤ 1

e
, (63)

where e is the Euler constant. Finally as the entropy is

increasing on
[
0, 1e
]
, we have

l

r
h2




⌊r/2⌋∑

t=1

yt


 ≤ l

r
h2

( r
2
X
)
. (64)

The upper bound on the function (59) is simply the sum of
Inequalities (60), (61), (62) and depends only on the fraction
of variable nodes in a loop i.e.gBSC

(
x0, xc, y, η

)
≡ gBSC(X)

and

gBSC(X) =
l

r
h2

( r
2
X
)
− (l − 1)h2 (X) +MX,(65)

whereM is a constant independent ofη andρ

M = 2 ln

(
1− p

p

)
+ l ln

(
r

2 ⌊r/2⌋

)
+ l ln (⌊r/2⌋)− 2η̃1.

(66)
Notice thatgBSC(0) = 0 and that the derivatived

dX gBSC(X)
behaves like

(
l
2 − 1

)
lnX in the neighborhood of0. Hence,

for l ≥ 3, there existsδ > 0 such thatgBSC is negative
on ]0, δ]. Therefore for all types(xo, xc, y) ∈ D(ρ) in the
domainU = B(0, δ) ∩ B(0, 1/3r) and for allη ∈ [η̃1,+∞[
we have

gBSC
(
x0, xc, y, η

)
≤ gBSC(X)

≤ 0. (67)

By hypothesis the maximum of (45) is uniquely achieved
in (0, 0, 0) for η = 0. It implies that there existsλ < 0 such
that

max
(x0,xc,y)∈D(ρ)\U

f
(
x0, xc, y, ρ

)
+k (x0, xc, ρ, p) = λ. (68)

Therefore forη > η̃2 = λ/2

max
(x0,xc,y)∈D(ρ)\U

gBSC
(
x0, xc, y, η

)
≤ λ− 2η̃2 = 0. (69)

We see that̃η = max(η̃1, η̃2) < 0 satisfies by construction
the condition of Lemma 4.

APPENDIX II
PROOF OFLEMMA 5

Proof. We prove Lemma 5 only for the BSC (the proof for
the BEC is almost identical). For a givenρ andp, we recall
the functiongBSC

p,ρ ≡ gBSC and gBSC
p,ρ ≡ gBSC as defined in

Appendix I. We prove that forn sufficiently large and for
all δ ∈

[
−
√
n−1 lnn,

√
n−1 lnn

]
, the functiongBSC

p,ρ+δ is still

non-positive onD(ρ).
First notice that the upper boundgBSC

p,ρ does not de-
pend onρ. Using the same argument as in Appendix I,
there exists a neighborhoodU of (0, 0, 0) such that for
all type (x0, xc, y) ∈ U ∩ D(ρ + δ) and for all δ ∈[
−
√
n−1 lnn,

√
n−1 lnn

]

gBSC
p,ρ+δ

(
x0, xc, y, 0

)
≤ gBSC

p,ρ (X)

≤ 0. (70)

It remains to show that the variation ofgBSC on



D (ρ+ δ) \ U is bounded. Let us make the change of
variables(x0, xc) → (X, xc) and gBSC

p,ρ+δ

(
x0, xc, y, 0

)
→

gBSC
p,ρ+δ

(
X, xc, y, 0

)
. The following inequality holds

gBSC
p,ρ+δ

(
X, xc, y, 0

)
≤ 2

√
lnn

n

(
ln 2 + ln

(
1− p

p

))

+gBSC
p,ρ

(
X, xc, y, 0

)
. (71)

Hence we can bound the maximum ofgBSC onD(ρ+ δ)\U
by

max
(X,xc,y)∈D(ρ+δ)\U

gBSC
p,ρ+δ

(
X, xc, y, 0

)
≤

max
(X,xc,y)∈D(ρ)\U

gBSC
p,ρ

(
X, xc, y, 0

)
+c

√
lnn

n
.(72)

The maximum of gBSC
p,ρ

(
X, xc, y, 0

)
on D(ρ + δ) \ U

is by hypothesis negative (see Equation (68)). There-
fore for n sufficiently large we have that for allδ ∈[
−
√
n−1 lnn,

√
n−1 lnn

]

max
(x0,xc,y)∈D(ρ+δ)\U

gBSC
p,ρ+δ

(
x0, xc, y, 0

)
≤ 0, (73)

which concludes the proof.
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