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Concentration to Zero Bit-Error Probability for Regular LD PC Codes
on the Binary Symmetric Channel: Proof by Loop Calculus

Marc Vuffray! and Theodor Misiakiewicz

Abstract—In this paper we consider regular low-density “magnetization” or bit-error probability of the bit-sanipd
parity-check codes over a binary-symmetric channel in the decodd} for the BEC and the binary-input additive white
decoding regime. We prove that up to a certain noise threshdl Gaussian-noise channel (BAWGNC) [8]. The magnetization
the bit-error probability of the bit-sampling decoder converges . . -
in mean to zero over the code ensemble and the channel 'S @ upper-bound on the bit-MAP error probgblllty. Hence
realizations. To arrive at this result we show that the bit-eror ~ for these two channels GEXIT curves and bit-MAP error
probability of the sampling decoder is equal to the derivatve  probabilities vanish in the same noise regime.
of a Bethe free entropy. The method that we developed is new  Syrprisingly the conditional entropy and its derivative ar

and is based on convexity of the free entropy and loop calcull —q|5104 1 the BP algorithm and its associated Bethe free
Convexity is needed to exchange limit and derivative and the

loop series enables us to express the difference between tie ~ €Nropy. It has been first proven in [9], [10] on the BEC
error probability and the Bethe free entropy. We control the ~ channel that the conditional entropy is equal to an averaged
loop series using combinatorial techniques and a first momen form of the Bethe free entropy over the code ensemble.
tmheih?d' Wg stress tk;_at gufr mféh;g is (\j/ersat_itlﬁ and W‘T gelieve Bounds between the averaged Bethe free entropy and the

at It can be generalized tor coaes wi eneral degree e : :
distributions agd for asymmetric channels. 9 9 conditional entropy are derived in [11], [12], [13] based on
the interpolation method of Guerra and Toninelli [14], [15]

. INTRODUCTION Equality has been proven on the binary-symmetric channel

§BSC) using cluster expansions in a low-noise regime [16]

based on low-density parity-check (LDPC) matrices. Sinc@nd in a high-noise regime [17] Mo_re _recently equality
then LDPC codes have been proven to be of great practi gtween the GEXIT curve and the derivative of the average
ethe free entropy has been generalized to all BMS chan-

and theoretical relevance. LDPC codes perform very we . : . .
under iterative decoding on a broad class of symmetri'&els [18] combining the interpolation method and spatially

memoryless channels (BMS) [2], [3] and provably achiev&OUpled codes [19]. N _

capacity on the binary erasure channel (BEC) [4]. Since 1996 Although the con(_jmonal entropy and |ts_ threshqld are

they have been integrated into many industrial standacas fr COMPIetely characterized for BMS channels, its exacticetat

wireless communications to computer chips. to th_e blt-MAP error probability remains unclear in general
An important performance measure of an LDPC cod_@nd in partlc_u_lar for the BSC_I channel. Due to Fano’s inequal-

and its associated decoder is the bit-error probability. [IY the conditional entropy is always a lower-bound on the

is the fraction of bits that are on average incorrectly rePit-érror probability. However inspired by previous resul

constructed. The bit-error probability of LDPC codes untlis inequality is conjectured to be tight for LDPC codes on

der belief-propagation (BP) decoding is well-understoad o Wide class of channels.
BMS channels using the method of density evolution [5]. !N this paper we prove that for re;gular.LDPC codes over
However it is a more challenging task to control the bit-erro® BSC channel the “magnetization” or bit-error probability
probability of the bit maximum a posteriori (MAP) decoder.0f the bit-sampling decoder vanishes up to a certain thresh-
Lower and upper bounds on the noise threshold for va@ld. This result also shows that the posterior measure of
ishing bit-MAP error probability have already been derived-DPC codes concentrates over the LDPC ensemble and the
in Gallager’s thesis [1] for a class of BMS channels. ThesBOIS€ realizations. To achieve this result we show that the
bounds have been improved and generalized for every BMB2gnetization is asymptotically equal to a perturbed versi
channels by Shamai and Sason [6]. of the Bethe free entropy. The technique that we present is
In an attempt to locate exactly the noise threshold, moS€W and is based on loop calculus or loop series derived by
of the attention has been focused on the conditional entrogf'ertkov and Chernyak [20]. The loop series expresses the
per bit. Its derivative with respect to the channel noisd!fference between a quantity and its Bethe counterpart as a
is the so-called generalized extrinsic information transf SUM Over subgraphs. Proving that the loop series vanishes is
(GEXIT) curve [7]. The GEXIT curve is proportional to the tantamount to controlling a purely combinatorial objedtth
depends solely on the LDPC graph ensemble. Suboptimal
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In 1968 Gallager [1] introduced error-correcting code
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The technique that we present has the advantage to be sigmis transmitted reads

ple and versatile. To emphasize this point we also show that
our results can be easily transposed to the BEC. Moreovey. (a|s)= _1 H 1 1+ H oy H q(si|o3),
we stress that our proofs do not rely explicitly on propertie Z(L,5) o0 2 ieon ) icv
of the channel. Hence, we believe that this technique can (3)
be use to analyze LDPC codes over channels that are ngiere the normalization facta (I, s) in Equation [B) is
symmetric. the partition function

In Section[1 we give a precise definition of the bit- 1
sampling decoder and its associated bit-error probalaitiy 7 (T, s) := Z H 5 <1 + H 0i> H q(siloi).
we present our main theorems. In Secfion Il we derive the oe{—1,1}" aeC icda ieV
relation between the Bethe free entropy and the bit-error (4)

probability and we express the difference using loop cakul ) ) N

In SectiorfTll we reduce the loop series to a counting problerﬁ-_ Concentration of the Bit-Error Probability for the Sam-

that we control with a first moment method. Finally wePling Decoder

discuss about future works and possible improvements in\We are interested in the performance of regular LDPC

SectiorV. codes with respect to the average bit-error probability of
decoding. We consider the bit-sampling decoder

Il. MAIN RESULTS :
532 () .= sampler; according 0% (| s), (5)

A. Regular LDPC codes on BMS channels o\os

LDPC codes are defined by a regular bipartite griph ~ whereg \ o, denotes the sequence of variabtesvith the
(V,C, E) whereV is the set of variable node€; is the set i component removed.
of check nodes an@& = V x C' is the set of undirected The bit-error probability of the bit-sampling decoder
edges. There are = |V| variable nodes angh = |C| check P2*2™""3is directly related to the marginals of the posterior

nodes. probability [3)
We consider regular LDPC codes with variable-node de- . _ 1 1
greesl > 3 and check-node degrees> [. The design rate poitsampling . — (4 g | = (o) (6)
. el I 2 'S K3 |5 9
of the code is by definitiomRges= 1 — /- M=

An LDPC code is generated randomly. The grdphs  \here I, [] denotes the expectation with respect to the
drawn uniformly at random from the ensemble Gf7)  channel output distribution an@),, denotes the average with
regular bipartite graphs. Throughout the paper we Viit¢:]  regpect to the posterior probabilifyl (3). The expected quan
the expectation with respect to the ensemble of regija tity in Equation [§) is sometimes referred as the averaged
bipartite graphs with uniform probability. magnetization in the physics community.

Denote the neighbors of a variable node V' (resp. @ an important question is to know when the bit-error
check nodea € C) by i = {a € C|(i,a) € E} (reer:. probability is vanishing in the limit where the codeword
by da = il eV I3 a)ne E}). A codeword is a sequerite |ength goes to infinity. In this paper we consider two fansilie
a ={oi}i—, € {~1,1}" that satisfies the parity-check sum ot symmetric channels, the BEC and the BSC. The BEC has

H _ an output alphabet; € {—1,0,1} and is characterized by
o; =1, Q) " L
transition probabilities

i€da
for all check nodes: € C. PEC 1) =1—-¢¢°F(0|1) =€ ¢°F¢(-1]1) =0,
We transmit a codeword with uniform prior over a BMS (7)

channel with transition probability; (s; | o;), where the Wheree € [0,1] is the erasure probability. The BSC has
output of the channel could take any real valkjec R. binary outputss; € {—1,1} and is characterized by the
The symmetry property of the channel is expressed throudf@nsition probabilities

the simple relation
P (1 [1)=1-p ¢®C(-1]1) =p, (8)

q(siloi) =q(=si|~0i). @) wherep € [0,1/2] is the flipping probability.
We assume without loss of generality that the all-zero Bef_ore we state our theorems we need to introduce the
codeworf is transmitted. Hence the output of the channelomain

s ={s;},—, € R™is ii.d. with distributiong (s; | +1). The Lr/2]
posterior probability that the codewordis sent given that D (p) = { (2, 2e,y) € [0, 12420 Z ye < 1,
t=1
2As we use concepts from statistical physics it is more caoewnento lr/2]
employ the binary alphabgt—1, 1} instead of the traditiona{0, 1}. 2t
3In the binary alphabef—1, 1}, the all-zero codeword is the sequence Z 7yt =1 =p)zo+pzc o . 9)

{1,...,1}. t=1



We also need to introduce the auxiliary functipn D (p) x  values of noise are displayed in Tafle | for the BEC and in
0,1] = R defined as followd Table[l for the BSC.

f (xo,xc,g, p) = —lha((1 = p)xo + pxe)
+ (1 = p) ha (z0) + pha (zc)

Ryes €Bp €loop EMAP €sh
1/4 0.64743 0.7442(9) 0.74601 0.75
2/5 051757 0.5872(4) 059098 06

l T r
- <1—Zyt>ln<1—2yt>
= = 1/2 042944 0.4833(6) 048815 05
1/3 050613 05767(2) 0.66565 0.66667

l s
— > ylny
t=1 TABLE |

[ Lr/2] 1 r THRESHOLDS FOR SOME REGULAR.DPC CODE ENSEMBLES OVER THE
+- g n
r Y 2t
t=1

Bl W W W =~
oo M|

(10) BEC WITH ERASURE PROBABILITYe. THE BELIEF-PROPAGATION
THRESHOLD ISegp, THE MAXIMUM A POSTERIORI THRESHOLD ISepmap,
and the functiork : [()7 1]4 — R that reads THE SHANNON THRESHOLD ISesy AND OUR THRESHOLD IS€ oop-

. VALUES OF BP AND MAP THRESHOLDS ARE FROM23].
- P
(20,20, prp) = (pze — (1 — p) o) In <T) (1)

Our main contribution are the two theorems stated below
which give sufficient conditions on the channel parameters
for concentration of the bit-error probability of the saimgl|
decoder.

Rges DPBP Dloop DMAP Dsh
1/4 0.16692 0.2014(2) 0.21011 0.21450
2/5 0.11382 0.1146(8) 0.13841 0.14610
1/2 0.08402 0.0678(9) 0.10101 0.11003
1/3  0.11692 0.1705(2) 0.17261 0.17395

TABLE Il
THRESHOLDS FOR SOME REGULAR.DPC CODE ENSEMBLES OVER THE

BSCWITH ERASURE PROBABILITYp. THE BELIEF-PROPAGATION
then the bit-error probability of the sampling decoder cON-THRESHOLD ISpgp, THE MAXIMUM A POSTERIORI THRESHOLD ISpmap ,

Theorem 1 (Concentration of the Bit-Error Probability for
the BEC) Consider the ensemble ¢f,r) regular LDPC
codes on a BEC with erasure probability If the following
function achieves its maximum only at the point

argmax [ (O,xc,g, e) ={(0,0,0)},
(O,mc,g)eD(e)

Bl W W W =~
ool g |3

verges in mean to zero in the large codeword limit THE SHANNON THRESHOLD ISpsy AND OUR THRESHOLD ISpoop.
. i : VALUES OF BP AND MAP THRESHOLDS ARE FROM23].
lim Er g [PlEm Samp"ng} =0.
n—00 -
The same theorem holds for the BSC with a similar
condition.

We would expect that the probability of error vanishes
for € < emap @andp < puap. Although the thresholds that
we found are reasonably closedgap andpuap for graphs
with small degrees, they become worse in the limit of large
degrees. A quick inspection of {|10) andJ(11) shows that
argmax f (xo,xc,g,p) + k& (xo,ze, p,p) = {(0,0,0)}, the functionsf/l andk/l become independent of the noise

Theorem 2 (Concentration of the Bit-Error Probability for
the BSC) Consider the ensemble ¢f,r) regular LDPC
codes on a BSC with flipping probability If the following
function achieves its maximum only at the point

(wo,2c,y)€D(p) parameter in the limit wheré and r go to infinity with a
then the bit-error probability of the sampling decoder condixed ratio [/7. It implies thatpieop and eioop vanish. This
verges in mean to zero in the large codeword limit behawor is in the opposite direction to what we can expect
_ _ as in the limit of large degreesuap — psh. In Section ¥
lim Er [Pﬁ“’samp"”g} =0. we discuss about possible improvements in our analysis in
n—00 =

_ _ order to make our thresholds tight.
Remark3. Knowing that P2**™""9 yanishes implies that
with high probability the posterior measufé (3) conceefat

on configurations that are at a Hamming distance) from derivative of the so-called free entropy. Using the loopesgr

the all-zero codeword. . .
S . we express the free entropy as a combinatorial sum over
We perform the global optimization numerically and we

find for a few cases the maximum value of noisgp and subgraphs. In SectionJV we control the loop series with

: .. asymptotic estimates on subgraphs and Laplace’s method.
Poop for which Theoren{]l and Theoref 2 hold. Cr|t|caIWe prove Theorentd 1 afidl 2 in this section. In Sed@bn V we
“The binary entropyrz (p) := — (1 — p) In (1 — p)—pln p is computed discuss future directions and ways to improve and generaliz
in nat. our results.

The rest of the paper is organized as follows. In Se¢fidn 111
we show that the bit-error probability is related to the



I1l. FREE ENTROPY, BETHE APPROXIMATION AND LOOP  equations. For the free entrody [13) the BP equations take
SERIES the following form

A. The Free Entropy and its Relation to the Bit-Error Prob- _ 1
ablllty Va—i (Uz) X Z 5 (1 + H 0'1'> H Vj—sa (Uz)

. . . T5a \Ti i€da j€da\i
The bit-error probability[{(B) is related to a “perturbed” ’ !

version of the partition function14). Ley € R be the Vi—a(0i) & "7 q (s | 02) H Vyi (o), (16)
perturbation parameter entering in the perturbed pantitio bedila
function where the symboix denotes equality up to a normalization
1 factor ando,, := {0, | j € da}.
Z(Tsm) = > ][] 3 (1 + 11 C’z‘) The Bethe free entropy evaluated at a fixed point of the
o a€l i€da BP equations is a sum of local contributions from nodes and
< [[a(sioi)en==D.  (12) edges of the graph = (V,C, E)

eV 1 1 1
Bethe R - R ;
Note thatZ (I, s,n) is a non-increasing function of and o) (Trsm) = n X;Fa T X‘;Fl n Z Fia,
Z(I,5,0) is the original partition functior({4). < ' (ho)eB (17)
The free entropy is the (normalized) logarithm of theyhere
partition function [(IR)
1
1 _
(T, 5,m) =~ Z(T,sn). )  Foo= (>3 <1+ 1I 01‘) I vs-sa (o0)
n Toa i€da j€da
A direct computation shows that the derivative of the free
entropy with respect to its perturbation parameter reads F, = In (Z e"((’f‘_l)q (si | 04) H Vb—si (az-)>
n o beot
0 1
_¢ Faﬁan) = - Oi)g — 1. (14) ~
877 ( n=0 n ; < >_ Fia = hl Z Vi—sa (0'1) Vg—yq (Uz) . (18)
Therefore the bit-error probability is related to the agera . . _ _
entropy through the following relation Note that once a fixed-point of the BP equa_moEI (16) is
found, computing the Bethe free entropyl(17) is a computa-
gES [0 (T, s,n)] — —gppisamping (15) tionally easy task.
no- =0

SinceZ (T, s,n) is a non-increasing function af, the free
entropy is non-increasing as well. Moreover the free entrop~-
is a convex function ofy as it can easily be verified by
taking twice the derivative with respect ip It implies that
in order to show concentration of the bit-error probabiltty
is sufficient to prove that there exisjs< 0 independent ofy

Corrections to the Bethe Free Entropy: the Loop Series

The difference between the free entropy and the Bethe
free entropy can be expressed with the so-called loop series
derived by Chertkov and Chernyak [20]. It takes the form
such thatEr ¢ [¢ (T, s,77)] — 0. If this condition is true then, of the logarithm of a Welghfed su"m over subgraphslof .

- = S These subgraphs are called “loops” for they have no dangling
thanks to monotonicity, the limit is also equal to zero fdr aIeOl es. Note that if' is a tree no such subaraoh exists and
1 € [17, 00[. Finally convexity of the free entropy enables us ges. h -k it that th g hIO f
to exchange limit and derivative (see [24, p. 203]). we recover the well-known result that the Bethe free entropy

: is exact on trees.
In order to prove that the free entropy vanishes we
We recall that a subgraph = (V,,Cy, E,) of T' =

decompose it into two contributions: the Bethe free entrop ‘ h with ¢
that can be computed explicitly and the so-called loop seri V,C,E) is any graph with vertex sev, c V, factor
node setC, C C and edge set;, C (V, x Cy) N E. For

that is a sum over subgraphs bf Using a first moment ' licity we d he relation s barash of with
method and combinatorial tools from graph theory, we shog/™P!ICIty we denote the relationy’is a subgraph of™ wit
e inclusion symboly ¢ T". We also denote the induced

that with high probability the loop series vanishes in thd

large codeword limit. The last statement implies that tlee fr neighborhood ing ‘?f a yariable node € V, (resp. check
entropy is equal to the Bethe free entropy. nodea € Cy) by dyi = 0iNVy (resp. bydya = da N Cy).

The set of “loops” consists of any non-empty subgraphs,
B. The Bethe Approximation not necessarily connected, with no degree one variable-nod

The Bethe free entropy is an approximation of the free‘?lnd no degree one check-node

entropy [IB). It is defined as a functional over “messagesr := {g C I' | Vi € V, |0,4i| > 2 andVa € C,, |04a| > 2}.

that are probability distributions;_,, (¢;), Va—: (0;) @asso- (29)
ciated with the directed edgés— a, a — i of the graph. The difference between the free entropy and the Bethe free
The messages satisfy the so-called belief-propagation (Béntropy is related to the loop series through the following



equation with the decoding regime.

The Bethe free entropf (IL7) evaluated at the ferromagnetic
Bethe loop
¢ (U s,m) = bz (Lss,m) = ln (Z(u 9)) (20) fixed-point simply reads

where the argument of the Iogarlthm is a weighted sum over

loops ¢R"e(T, 5,m) Zln (si [ +1)) (26)
Zl(;os) =14 Z K(u U) (21) o ze-V -
9elr The factors entering in the weight functi¢n{22) are comgute

The weight function over loops depends on the BP fierSlng Equations[{24) for check nodes

point at which the Bethe free entropy is evaluated and can 1 |94al iseven 27)
be expressed as a product over the nodes inside a loop “7 10 |0,a|isodd
w (9) =[] wi [] #a- (22)  and Equation[{23) for variable nodes
icVy acCy
o (—1) e 2D+ 196 = 1
The factorsk; and k, entering in [[2R) depend only on Ki = - , (28)
messages that are associated with edges neighboring the 0 |9gil <1
nodesi € V, anda € C, where in the last expression we have used the half log-
-1 likelihood variables
Zq 51|U 67701 1>H”a%z Uz) = Q(SZ|+1)
( a€di )\(S ) 21 (51 | _1) (29)
n(oi—1) . Based on the expression of the factdrs (27) (28), the only
X Z q(si|o;)e” H Va—i (07) subgraphs with a non-zero weight are those with an induced
' a€0i\dy1 variable-node degree equalitand even induced check-node
degree. This motivates the definition of the ferromagnetic
< [ oivisa(=0i) ], (23)  loops ensemble
a€dgyi
- Ll ={g€Lr|Viacg,|0, =1and|9,a| isever.
and (30)

-1 A loop that is not an element of the ferromagnetic ensemble
Ky = Z 1+ H o H Viesa (05) has a zero weight. Moreover the weight of a ferromagnetic
oo icoa icoa loop is always non-negative
<[> (1 + 11 01-) II vieaton Ki(g) = exp|—2n|Vgl—2) A(si)| >0.(31)
T5a i€da i€da\dga i€Vy
In order to see thaf{, (g) is non-negative, notice that a
x [ oiPasi (=03 (24)  sign is only associated with the factots and is equal to
i€0ga (—1)l. Therefore a loop can only have a negative weight

For a complete derivation of the loop series for graphicdf the productl|V;| is odd. Note that this product is the

models associated with linear codes, we refer the reader igmber of edges in a loop counted from the variable-node
[25]. perspective. Therefore it should be equal to the number of

edges counted from the check-node perspective
D. The Decoding Regime and its BP Fixed-Point

Note that the loop series, as well as the Bethe free LVy| = Z |0gal . (32)
entropy, are functions of fixed-points of the BP equations a€Cy
(I8). The f|xed—90|qt assoqated with the decoding regime i§ice for a ferromagnetic logd,al is always even} |V, is
the ferromagnetic fixed-point also even and the weight of a loop is always non-negative.
4o, Using Equationd(20) anf (26) we can express the average
vt (o)= vl (o) = 5 - (25) free entropy[(IB) in the simple form

One can easily see that ferromagnetic messdgés (25) satisfy

the BP equationd (16) regardless of the channel considered 1

and of the value of the perturbation paramejez R. The  Ers[¢(I',s,m)] = In
ferromagnetic fixed-poin(25) describes a state for which

the most likely configuration is the all-zero codeword i.e.

o; = +1. This is the reason why this fixed-point is associated +/dsq (s Din(q(s|1)). (33)

I+ Z K+(g)>}

gect



Note that Equation[(33) is valid for all BMS channels The weight [31) of a loopy € € (z¢,z.,y) is only a
regardless of the noise parameter. However we can onfiynction of its typeK | (g) = K (o, ). Using the specific
expect that the ferromagnetic loop-series vanishes in tlexpression of the half log-likelihood (R9) for each chamsnel

decoding regime. we find the explicit form of the weight function for the BEC
-2 c =0
IV. FIRSTMOMENT METHOD ON THELOOP SERIES KEEC (20, z0) = {EXP( nnep) o . (36)
We use a first moment method to prove that the ferromag- To >

netic loop-series in Equatioh (33) vanishes. In our casg it and for the BSC

based on Jensen’s inequality and consists of permuting the sc

expectation over the graph ensemble and the logarithm in £+ (z0,zc) = exp (=2mm (2o (1 = p) + @cp)

Equation [3B). +nk (2o, Zc, p, p)) , (37)
Note that we Caf‘”o.t permute the exp_ectanor! over ”\ﬁherek(wo,xc,@p) is the auxiliary function introduced in

channel output realizations and the logarithm. It is easy t§ectiorﬂ] Eq.[(I1)

see that over the channel output realizations a loop has an T

expected weight[(31) that increases exponentially fast for k(20 2 — (o — (1 — o) za) In (1 —P) 38

<0 (20, e, p,p) = (p2e — (1 = p) T0) — ) (38)

—n|V, .
B [Ky(g)]l =e Vel (34)  Therefore the expected value of the loop series over théngrap

This is because the loop series is dominated by events fgpSemble can be expressed only through loop types
which most of the bits are corrupted and have negative half

log-likelihood [29). These events are rare but give riserto a . Z K. (9)| = Z Ky (w0, 2)
exponentially large weight. Pyt (20.009)€D(0)

Therefore we estimate the expectation of the loop series . e
over the ensemble of regulél; ) bipartite graphs for a fixed xErp HQ (%0, ze,) H - (39)
output realization of the channel. The expected number of loops with prescribed type

(xo,:cc,y) is upper bounded using McKay’s combinatorial

A. Probability Estimates on Graphs estimatg [21] for subgraphs with specified degrees

For a given channel realizatienof the BEC (resp. BSC)
call V. the set of variable nodes with = 0 (resp.s; = —1)

—1

and calll; the set of variable nodéss V with s, =1 (resp. Er HQ (I07x67y) H < plur < nl )
s; = 1). The setV, contains bits that have been correctly - nl (2o (1= p) + zcp)
transmitted and’. contains bits that have been corrupted. We % ( n(l—p) > < np )
denote the fraction of correctly transmitted bits@y— p) = nzo (1 —p) NTcp
[Vo| /n and we denote the fraction of corrupted bits by m
[Ve] /n. We recall that the total number of variable nodes is ( My, ..., MY|y/2) )
n = |V| and the total number of check nodesnis= |C|. lr/2) e

We decompose the set of ferromagnetic lodpd (30) into % H ( r ) ‘ 7 (40)
subsets of loops having the same “type”. The type of a 1 2t

loop g € L is the triplet(zq, z.,y) € [0, 112172 where
zo = |[VonVy| /n is the fraction of correctly transmitted
variable nodes in the loop;. = |V, N V4| /n is the fraction
of corrupted variable nodes in the loop ane- {yt}t[/fj is
the fraction of check nodes with degrge The set of loops
of type (zo, z., y) is denoted by (zq, z,y).
Not all value of(zo,z.,y) are admissible loop types. The
fraction of check nodes inside a loop is upper bounded.by

Moreover counting edges from the varia_ble-nod_e perspectiv. The loop series[{39) is dominated by loop types that
or from the check-node perspective obviously gives the sang@ntribute to the sum with the biggest exponential growth.

number. Therefore typeS that are admissible belong to tme app|y Lap'ace’s method in order to characterize the
following set already introduced in Sectibn 11, Ef] (9) biggest exponent.

where ¢;, is a constant that depends only énand r.
McKay’s estimate has the advantage to have an asymptot-
ically tight growth rate whem goes to infinity.

It remains to prove that the average loop seifies (39) with
the bound[(4D) vanishes in the largdimit.

B. Laplace’s Method and Proof of Theorems

[7/2] Using Stirling inequalities
2+ |r/2
D(p) = {(wo,aey) € 0,172 3y <1, 1 n! 1
P ettt < ————— < elon, (42)
V2mne="nn"
[r/2] 9
Z 7yt =(1—p)wo+pre ¢ - (35) 5McKay’s bound in its original form is only applicable for syfaphs of

t=1 size less tham — 4r2. We refer to [17] for a careful analysis.



we find an asymptotically tight upper bound on the estimatBroof of TheorenillLet ¢ be the probability of error of the
(40) BEC. First notice that the perturbed partition function))(ik2

, trivially lower bounded byl and upper bounded k3 e2"1!.
5,
Er (|2 (20, 7e,y)|] < Cron’or exp (nf (20, e, y.p)) . This implies that the free entropi{13) remains finite

(42)
where C;, and ¢;, are just numerical constants and 0<o¢(T,s,n) <In2+2|n|. (46)
f (20, xc,y, p) is the auxiliary function introduced in Section Therefore using Equatiofi{B3) and the fact that (g) > 0
M Eq. (1) . Co
we see that the loop series remains finite as well
sy ey Yo = —lh 1- + c
f (xO Tes Y p) 2 (( p) xo + px.) 2(In2+|n)) > ’Eé (6 (T, 5,1)]

+ (1 = p) ha (z0) + pha ()

r r — dS S 1 ln S 1
_% <1—Zyt>m<1—zyt> / g(s| 1) (q(s | 1))
t=1 t=1

— B |im 1+ Y K. (9) || @7

. s
—;Zytlnyt n geLt
Lr/2J
+ Z Y In ( ) . (43) Let A be the following probabilistic event on the channel
output realizations
Combining Equationﬂ}6)ﬂ]37) and{42), we show that the nn
leading exponent in Equatioh (39) is for the BEC A= {§ € {-1,0,1}" | ‘ ZSZ (1—c¢) -
aP5(p,n) = max [ (0,2c,y,p) — 2naep, (44) 48)
(0.e.y)eD(p) Output realizations ind are close to the average output
and is for the BSC realization.
BSC _ _ _
o pm) = (zo_’ff))émp)( 21 (zo (1 = p) + ep) Using Hoeffding’s inequality, we see that the probability

of the complementary event® vanishes
+ f (w0, ¢, y, p) + k (20, e, p, 1)) (45) P y 5
Notice that for all p and  the exponentaBEC/BSC(p 1) Ps [A7] < —5. (49)

n
is non-negative. This is easily verified by evaluating th% bining J . lity and the trivial bound (47
objective function at(a:o,:cc,y) = (0,0,0). Therefore the ombining Jensen's inequality and the trivial bouid (47) on

. - 2 _ the loop series we have the following estimate
bit-error probability vanishes it®E¢/BSC(p ) is equal to P g

zero for alln in a neighborhood of zero. The next Lemma 1 4
shows that in fact only the maximization at = 0 is ~ Er |—In {1+ > Ki(g) < = (In2+ 7))

important. e
Lemma 4. If the maximum of(44) (resp. (458)) is uniquely 1

achieved in(zo, z.,y) = (0,0,0) for n = 0, then there exists +Es Eln I+Erp Z Ki(g)| | A} . (50)

77 < 0 such thata®EC(p,n) = 0 (resp.a®SC(p,n) = 0) for geLt

all n € |1, ool. Since we have conditioned over channel output realizations
Proof. See Appendifl| ;o that are inA, the fraction of corrupted bit igp — ¢ <

v/Inn/n. Therefore combining Equatiol_(42), Lemrha 4
In order to prove Theorendd 1 afidl 2, we need to sho@d Lemmdl we have that if°C (e,0) = 0 is uniquely
that small variations arounddo not chang@®EC (p,0) and ~ achieved in(wo, z.,y) = (0,0,0) then for all & ]ij, oo
aBSC(p,0). This is guaranteed by the following Lemma. andn sufficiently large,

Lemma 5. For all p € [0,1], if aBE(p,0) = 0 (resp. 1
aBSC(p,0) = 0) and the maximum of#4) (resp. @3)) is By |~In|1+Er Y Ki(g| | 14] <
uniquely achieved afzo, z.,y) = (0,0,0), there existsV geLf

sufficiently large such that 1 In (1 4+ e3n), (51)
n

Vn > N, V6 € [—\/ ln—n, q/m—n] , aPECBSC(, 1 5.0)=0 wherec; andc, are numerical constants independentof
n

Proof. See Appendik]! O We have proved that for alh € i, 00[ with 7 < 0
the average free entropy converges in expectation over the
We are now in position to prove our main theorems.  regular(l,r) LDPC ensemble



expectation in [(50) over joint typical sequences of input
codewords and noise realizations.

i e |[E o (s )]~ [ dsa(s] Dinta s )| =0,
(52) C. Tight Thresholds
In particular it implies that the average free entropy overt  As described in Sectionlll, the thresholds that we obtain
LDPC ensemble converges are not tight. In fact at fixed rate they become worse and
converge to zero as the degrees of the graph become large.
lim Er,, [0, s,m)] = /dsq (s]1)In(g(s]1)). (53) The reason why we obtain such loose bounds for large
.n > _ . degrees comes from the functig(h(xo,xc,g, p) defined in

SinceEr ;s [¢ (I, s,1)] is a convex function ofy and con- @3). This function counts the growing rate of the average

verges pointwise in a neighborhood of zero, we can exchang@mber of subgraphs with a prescribed va e, y)
the limit and the derivative -

1
= lim —In(Ep [|Q s . 56
0 = 2t BT 5) F= Jim B oGyl 69
n—oo -
g 5 n=0 One can verify that if instead of we use the function
- hm _EF,S [(b (F7 S, 77)] ra 3 1
n—oo O =0 f= nl;rxgo EEF [ln (‘Q (xo,xc,g)m , (57)
= lim Er {gﬂ% (6 (T, s, 77)]} we obtain tight lower and upper bound on the threshold for
oo an n=0 vanishing bit-error probability.
— 92 lim Ep {Pltgit-sampling} : (54) The functionf only depends on the random graph ensem-
n—oo

bles that we consider and does not depend on a particular
where in the last line we use Equatidn](15) that relates ttehannel. Computing this function would provide a proof of
free entropy to the bit-error probability. [0 the exact location of the MAP threshold for an extensive
Theoreni® has a proof almost identical to that of Theoglass of chan_nels. However this computation could prove to
reml. e a very difficult task. _ _

A way around the problem of computing {57) is to

V. PATH FORWARD condition the expectatiof (b6) on some rare events with
We would like to stress that the techniques developed figspect to the random graph measure. Note that by Jensen's
this paper are quite general. In particular they do not ralpo inequality f is always upper-bounded bfj. This is because
special form of channels or on the regular-degree distdhut the expectation[(56) is dominated by rare events that are
of the LDPC ensemble. Therefore we plan to improve oudssociated with a large weight (o, z.,y)|. Conditioning

results in the following ways. on these rare events will lead to better estimates[af (57)
L . S and will provide tighter bounds at least in the limit of large
A. Generalization to Arbitrary Degree Distributions degrees.
The entire analysis can easily be extended to general
degree distributions with bounded degrees. It will simply APPENDIX |
transform the functiori(43) that counts subgraphs into aemor PROOF OFLEMMA [4]

convoluted object. However extending our results to distriproof. We prove Lemmal4 only for the BSC (the proof for

butions with unbounded degrees, like for instance PoissqRe BEC is almost identical). For a givenand p, let us
distributions, may be more complicated. One would have tgefine the following function

derive an estimate for counting subgraphs in this particula

case. g5¢ (

anxwgan) = f(xf)axmgap)+k(x01x01pap)

B. Asymmetric Channels =21 (zo (1 = p) + 2ep) - (58)

The loop series and the Bethe free entropy for generdhe function g®C (zo,z.,y,7) corresponds to the expo-
channels are almost exactly similar than for symmetrigent of the loop serieg (B9) associated with the loop type
channels. For general channels we can no longer assufffe; Zc; ¥)- In order to prove Lemnid 4, we have to fific< 0
that the all-zero codeword is transmitted. Instead we hawich thaty®S¢ is non-positive onD(p) x [77, +ocl.
to average the bit-error probability over all possible inpu We first show that for anyj; < 0, there exists a
codewordg. In this case the weight of a loop remains similameighborhood of (z,,z.,y) = (0,0,0) such thatg®s¢
than for symmetric channels. The weight is also non-negatiys non-positive ort/ N D(p) x [n1, +oo|. For a fixedr; <0

and depends on the generalized half log-likelihood ratio We construct a functiop®“ that is an upper bound gfC.
1 o (s | 75) We restrict ourselves to the domainn D(p) x [, +o0],
A(si | 1) = =log =1 (55) whereV =(0,1/3r) is the ball of radiusl /3r centered at
2 Tq(si|—m) (0,0,0).
wheres denotes as usual the channel observations. In order toLet us explicitly write down the function ($8) term by
control the loop series, we will need to perform a conditabneterm



increasing onf0, 1], we have

BSC
g (l’o,l’c,g, 77) = _277 (l’o (1 _p) +:Ecp) Lr/2] l
1—p —hz Z y| < -he (CX) . (64)
+(pre — (1= p)xo) In (—p ) roN2
Pl The upper bound on the functidn{59) is simply the sum of
—|— Z Y In ( ) Inequalities[(6D),[{61)[({62) and depends only on the fomcti

of variable nodes in a loop i.8%¢ (¢, z., y,n) = §°°%(X)

—lh2 (( p) o + pc) and
+ l(l -p) hz (w0) + pha (:cc)r 7T5CX) = %hQ (gx) — (I —1)hy (X) + M X (65)
T (1 - Zw) In <1 - Z%) where M is a constant independent gfand p
t=1 =1
r 1- r ~
l - —
“Zytlnyt. (59) 21n< 5 >+lln< 2 r/2] >+z1n(p~/2j) 271

(66)
We bound each term 0E(]59) separately. Denote the fractidiotice thatg®>%(0) = 0 and that the derivativg%-5°°“(X)

of variable nodes in the l0op by =z (1 — p) + z.p. The Dehaves like(g — 1) In X in the nelghborhé)socd of. Hence,

inequalities below trivially hold for I > 3, there existsi > 0 such thatg=>" is negative
on ]0,6]. Therefore for all typegz,,z.,y) € D(p) in the
(pze — (1 — p)zo) In <ﬂ) < 2 <ﬂ) X domainU = B(0,5) NB(0,1/3r) and for ally € [71, +oo]
p p we have
Lr/2J .
- Yt In ( ) < Iln ( > X .
P> 21r/2 P aegn) < TN
—2n (550 (1 —p)tacp) < —2mX. (60) < 0. (67)
As the entropy is a concave function, we have the following By hypothesis the maximum df (45) is uniguely achieved
inequality in (0,0,0) for n = 0. It implies that there existd < 0 such
that
(1—p) ha (x0) + pha (zc) < ha(X).  (61)
Concativty of —z Inz gives us (mwcgaag;(p)wf (w0, @, y, p) +k (20,2, p,p) = \. (68)
Lr/2] lr/2] 1 2 Therefore forp > 7 = \/2
_ Z yelny, < Z Yt /2] Z Yt BSC _
= r = max 9% (z0, xe,y,m) < A —272 = 0. (69)
(wo,c,y)€D(P)\U
Lr/2] [r/2]
< - Z v | In Z m We see thalj = max(71,72) < 0 satisfies by construction
the condition of Lemma&l4. O
+rin([r/2]) X. (62) APPENDIX I
Note that since the domain is restricted to types in a ball PROOF OFLEMMA[S]
of radius1/3r, the fraction of variable nodes in a loop isProof. We prove Lemma&l5 only for the BSC (the proof for
upper-bounded < 1/3r. In particular it implies that the BEC is almost identical). For a givenandp, we recall
the functiongBS® = ¢B5C and goS° = §°°¢ as defined in
Lr/2] Lr/2] o p:p
Z v < T Z = Appendix[]. We prove that fon suff|C|entIy large and for
p T2\ Z= alls € |[—vVn-1lnn,vVn- 11nn} the functiong53S ; is still
_ Ty non-positive onD(p).
- 3 First notice that the upper boungb>® does not de-
< 1 pend onp. Using the same argument as in Appenix I,
- 6 there exists a neighborhood of (0,0,0) such that for
< }7 (63) all type (zo,zc,y) € U N D(p + 6) and for all § €
€

—vn=1lnn, \/n—llnn}
where e is the Euler constant. Finally as the entropy is

T (X)
0. (70)

gsf)(—:ﬁ-(i (1’0, Tey Y, O)

IAIA

It remains to show that the variation of%SC on



D(p+46) \ U is bounded. Let us make the change ofi0] S. Korada, S. Kudekar, and N. Macris, “Exact solutiorr fire

variables (zg, z.) — (X,z.) and gBS¢

D,p+6 (‘TO’ Zes Y, 0) -

9555 5 (X, e, 3,0). The following inequality holds
[11]

/1 1—

ggspgré (X7 xcayao) S 2 ﬂ <ln2+ln (—p))
B . p [12]
+95 (X 7e,9,0). (71)
Hence we can bound the maximumg¥C on D(p+)\U 13l
by
[14]
max 953735 (X, Te, Y, O) <

The maximum of ¢BSC

(X,zc,y) €D (p+3)\U

gpe” (X, e, 9,0)

max tey/ 22 72) s
(vaCag)eD(p)\U n

(X,2¢,9,0) on D(p + &) \ U [16]

p.p

is by hypothesis negative (see Equatidn](68)). There-
fore for n sufficiently large we have that for ab €

[—\/nfllnn, \/nfllnn} [17]

a BSC 20.5.0) < 0, (73 [18]
(@0wey)ED(p+oNU PP (€0, %e,y,0) < (73)

which concludes the proof. O[99
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