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On Kelly Betting: Some Limitations

Chung-Han Hsieh1 and B. Ross Barmish2

Abstract— The focal point of this paper is the so-called
Kelly Criterion, a prescription for optimal resource allocation
among a set of gambles which are repeated over time. The
criterion calls for maximization of the expected value of the
logarithmic growth of wealth. Considerable literature exists
providing the rationale for such an optimization. This paper
begins by describing some of the limitations of the Kelly-based
theory in the existing literature. To this end, we fill a void in
published results by providing specific examples quantifying
what can go wrong when Taylor-style approximations are used
and when wealth drawdowns are considered. For the case of
drawdown, we describe some research directions which we feel
are promising for improvement of the theory.

I. INTRODUCTION

The focal point of this paper is the so-called Kelly Criterion

introduced in the seminal paper [1]. Given n gambles with

return governed by some random vector X ∈ R
n, Kelly’s

theory indicates what fraction Ki of one’s account value V
to invest in the i-th bet. Letting K be the column vector with

components Ki, the classical formulation of this problem

requires Ki ≥ 0 for i = 1, 2, ..., n and

K1 +K2 + · · ·Kn ≤ 1.

The problem formulation also includes the standing

assumption that this gamble is repeated over and over again

via independent and identically distributed (i.i.d.) trials

for X and that K is such that survival is assured. This

notion will be made precise in the sequel.

Noting that the account value begins at some initial

level V (0) > 0 and letting X(k) be the k-th outcome for X ,

evolution to terminal state V (N) is described sequentially

by the recursion

V (k + 1) = (1 +KTX(k))V (k).

Letting X ⊂ R
n denote the support of X which we assume

to be closed, in order to assure satisfaction of the survival

requirement, admissible K must satisfy the condition

min
X∈X

KTX ≥ −1.

Henceforth, to denote the totality of the constraints above,

we write K ∈ K and note that K is convex. To conclude this

overview, it is noted that there are many possible variations
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and extensions of this problem formulation in the literature.

For example, one can allow Ki > 1 to include leverage

considerations and Ki < 0 to model short sales. Finally, we

mention one of the most important application areas for the

ideas to follow: trading and portfolio balancing problems in

financial markets. Following the results in [1], we see a trail

in the literature over the subsequent decades dealing with

all sorts of applications, generalizations and improvements

of the theory; e.g., see [5], [6], [10], and [13].

A. Problem Formulation

The classical Kelly problem is to select K ∈ K so as

maximize the expected value of the logarithmic growth

g(K)
.
=

1

N
E

[

log

(

V (N)

V (0)

)]

.

Using the recursion for V (k) above, the additivity of the log

function, the fact that X(k) are i.i.d., it is easy to show that

the expected log-growth function reduces to

g(K) = E[ log(1 +KTX) ]

=

∫

X

log(1 +KTx)fX(x)dx

where fX(x) denotes the probability density function for X .

Subsequently, when the constraint K ∈ K is included, it is

easy to show that the optimal logarithmic growth

g∗
.
= max

K∈K
g(K)

is a concave program in K .

To provide one of the simplest possible illustrations

for all of the above, the literature in [1] considers

flipping a biased coin with gambling return X(k) = 1
with probability p > 1/2 and X(k) = −1 with

probability 1 − p. In this scenario, fX(x) is described

by a pair of Dirac Delta functions and it is readily

shown by straightforward differentiation of g(K) above

that the optimal fraction, K = K∗, is given by K∗ = 2p−1.

B. Why Use the Logarithmic Growth?

Use of the Kelly Criterion has a number of advantages over

the use of the more classical expected value of terminal

wealth E[V (N)]. To illustrate why this is so, for n = 1,

if E[X(k)] is just “slightly” positive, it is easy to see

that the optimum is obtained by making K as large as

permitted; e.g., for the case of an even-money bet on a

biased coin with winning probability p = 0.5+ ε, no matter
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how small the advantage ε > 0 is, maximizing E[V (N)]
dictates using K = 1. Such as strategy is arguably far too

aggressive to use for a game which is being played over

and over again. With N large, it is almost certain that V (k)
will be drawn down to zero; i.e., gambler’s ruin will occur.

In contrast to the use of E[V (N)] above, the Kelly

Criterion, in its use of E[log(V (N)], automatically factors

some degree of risk into the analysis. For the case of the

coin above with small ε > 0, the optimum turns out to

be K = 2ε, thereby much more likely to avoid gambler’s

ruin. By taking into account the exponential growth rate

of wealth and carrying out the myopic period-by-period

optimization leading to optimal logarithmic growth, a

number of desirable properties result thereby making the

Kelly Criterion a powerful tool in finance; see [11] where

a nice summary of both the desirable and undesirable

properties are given. In this regard, of foremost importance

is the following: When the optimal Kelly fractions Ki

increase, various risk measures become unacceptably large.

Hence, the literature also includes a number of papers

dealing with “fractional strategies.” Essentially, this amounts

to reduction of the Ki, often in ad hoc manner; e.g.,

see [9]. Finally, to provide further context for the sections

to follow, we mention other related papers in the literature,

see [2]-[8], [10], [12]-[14], and single out [15] which has

the same control-theoretic point of view described below.

C. Feedback Control System Point of View

The problem formulation above is readily interpreted

in terms classical feedback control theory. That is, we

view V (k) as the state of a system with linear feedback

and n inputs corresponding to the investment levels Ii(k)
for each of the gambles. That is, the i-th input of the control

signal is given by

Ii(k) = KiV (k)

with Ki ≥ 0 viewed as a feedback gain. Subsequently, the

state for this stochastic system is updated via the equation

V (k + 1) = V (k) +
n
∑

i=1

Ii(k)Xi(k)V (k)

= (1 +KTX(k))V (k).

This type of feedback-control configuration is depicted in

Figure 1; see [17] where this paradigm is pursued in much

greater detail.

D. Plan for Sections to Follow

Although limitations of the Kelly-based theory are

mentioned in the existing literature, there is a paucity of

specific examples illustrating the degree to which things

can “go wrong.” To this end, Section 2 concentrates on

approximation methods in the literature which are used

to optimize the allocation vector K . As shown in the

Fig. 1: Feedback Control Equivalent of Kelly Betting

sequel, the Taylor series are used to approximate the

log-growth function, we see that the solution which is

obtained may be either infeasible or lead to performance

which is significantly lower than that of the true optimum.

In addition, we show that approximate solutions may have

a certain “inefficiency property” which is undesirable.

Although our examples to follow provide specific realizations

of the “badness” which can occur, it should also be noted

that a “remedy” is readily available. That is, some papers,

for example, see [3] and [10], recognize that the log-growth

problem is a concave program. Hence, it is arguable that

approximation methods are not needed because there

are readily available commercial codes which efficiently

solve the problem at hand; see [18] and [19]. At the time

that some of the earlier papers were written, such codes

were not readily available and authors either resorted to

approximation or developed algorithms of their own; see [4].

In Section 3, a concern which is much more serious

than approximation is addressed — the issue of wealth

drawdown. Suffice it to say, the literature already recognizes

that the Kelly gains Ki which result, although being log-

growth optimal, may be too aggressive in the short term; i.e.,

the wealth level V (k) may fall to unacceptably low levels

along sample pathes. For this reason, as mentioned earlier,

some authors resort to a so-called “fractional” betting

scheme by scaling back the Ki; e.g., see [9] and [11]. Other

authors resort to incorporation of constraints to reduce the

drawdown effect; e.g., see [10]. After quantifying some of

the negatives regarding drawdown, in Section 4, we describe

some research directions which we feel are promising for

mitigation of the drawdown problem. Finally, in Section 5,

some conclusions are given and other directions of research

are mentioned.



II. NEGATIVES ASSOCIATED WITH APPROXIMATION

In order to obtain the optimal logarithmic growth rate g∗

above, as previously mentioned, one approach in the

literature involves approximation — either a multivariate

Taylor expansion to the log-growth function is used or X(k)
is treated as a Geometric Brownian Motion and low

order expansion terms are used; e.g., see [6], [12], [13],

and [14]. The main objective in this section is to point

out some “pitfalls” associated with approximate solution.

While approximation-based closed-form solutions for the

optimal K provide a degree of insight into the risk-return

tradeoffs, concrete examples do not appear in the literature

which demonstrate scenarios where approximation methods

lead to erroneous results. Suffice it to say, when the range of

variation of X(k) can be large, the true optimum K = K∗

and associated logarithmic growth g(K∗) can differ

considerably from its approximation.

A. Example Involving Approximation

We consider the somewhat attractive gamble for

which n = 1, X = 0.15 with probability p = 0.95
and X = −0.95 with probability p = 0.05. We call

this bet “attractive” in a central-limiting sense; i.e.,

since E[X ] = 0.095, repeated i.i.d. trials, will almost

certainly lead to success. Now, according to [13], using the

approximation

E[log(1 +KX)] ≈ KE[X ]− 1

2
K2

E[X2],

it is straightforward to see that the associated optimum

investment fraction K , call it κTaylor, is given by

κTaylor =
E[X ]

E[X2]
= 1.4286.

Note that this solution is not feasible because K ∈ [0, 1]
is assumed. Hence, to guarantee feasibility, a saturation

function is introduced for the approximate solution above.

Thus, the optimal approximate solution with saturation, call

it KTaylor, and the associated expected log-growth are as

follows

KTaylor = SAT [κTaylor] = 1;

g(KTaylor) ≈ −0.017

where SAT [x] is a saturation function; i.e., for x < 0,

SAT [x] = 0; for 0 ≤ x ≤ 1, SAT [x] = x and for x > 1,

we have SAT [x] = 1.

An alternative approach, for example, see [6] and [12],

with X(k) being treated as a Geometric Brownian Motion

with drift µ = E[X ] and variance σ2 = V AR(X). A

subsequent Taylor approximation leads to approximate

solution, call it κGBM, as

κGBM =
E[X ]

V AR[X ]
= 1.6529.

Similarly, it is infeasible with restriction K ∈ [0, 1] so

the saturation is required. Here, the associated optimal ap-

proximate solution, call it as KGBM, and the corresponding

expected log-growth are given by

KGBM = SAT [κGBM] = 1;

g(KGBM) ≈ −0.017.

In contrast to the two approximate solutions above, the

true optimum, as described in Section 1, is obtained by

maximizing the expected logarithmic growth

g(K) = 0.95 log(1 + 0.15K) + 0.05 log(1− 0.95K)

which, by straightforward differentiation, leads to a feasible

solution in [0, 1] and optimal growth given by

K∗ ≈ 0.6667; g(K∗) ≈ 0.0404.

A summary of all three solutions is given in Figure 2. Iron-

ically, the approximation-based results yields the minimum

growth of g(K) rather than the desired maximum. Suffice it

to say, the combination of approximation and saturation due

to constraint violation can lead to significant error.
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Fig. 2: Expected Logarithmic Growth Rate

To quantify further, we convert the expected log-growth into

an annualized rate of return using

r(K)
.
=

1

∆t
(eg(K) − 1).

Assuming daily betting, where ∆t is the time between bets

in years, we take ∆t = 1/252 and then, the corresponding

expected annualized rates of return are computed to be

r(K∗) ≈ 10.384;

r(KTaylor) = r(KGBM) ≈ −3.443.

In other words, the approximate betting schemes perform

poorly compared to what is possible.



B. More Realistic Example with Real Stock Data

In this example, we further consider the problems associated

with approximation by using an example involving real data

for two stocks: Tesla Motors and IBM during the ninety-

day period January 2, 2013 until May 13, 2013. We used

the adjusted daily closing prices, see Figure 3, to estimate

the joint probability mass function and carried out an in-

sample constrained maximization of g(K) subject to the

constraint K1 +K2 ≤ 1, we obtain

K∗
1 = 1; K∗

2 = 0.

That is, the optimum log-growth solution involves all funds

invested in Tesla and no investment in IBM. Now, suppose

instead that one computes the Taylor-based solutions; i.e.,

κTaylor = Σ−1(X)E[X ] = [5.321 2.725]T ;

κGBM = Σ̄−1(X)E[X ] = [5.599 2.681]T

where Σ(X) is the second moment matrix for X and Σ̄(X)
is the covariance matrix for X . Note that the approximate

solutions κTaylor and κGBM are infeasible since the

constraint is violated. The true optimum solution and

approximate solutions along with κTaylor and κGBM are

seen in Figure 4.

Given the constraint violation K1 + K2 > 1 for the

Taylor and GBM solutions, one standard approach is to

project these solutions onto the constraint satisfaction set.

That is, we take

KTaylor = Proj(κTaylor) ≈ [0.661 0.339]T ;

KGBM = Proj(κGBM) ≈ [0.661 0.339]T

where Proj(·) is a projection function given by

Proj(K1,K2)
.
=

[

K1

K1 +K2

K2

K1 +K2

]T

for all nonnegative K1,K2 with not both K1,K2 = 0.

However, one should note that although the projection

procedure provides a way for yielding a feasible solution,

the projected solution may not be the optimal.

C. Inefficiency of Approximate Solution

In this subsection, we point out another danger associated

with the use of approximate solutions. The takeoff point

is the following principle widely used in finance: If two

investments have the same risk, the one with the smaller

reward will be discarded and deemed to be “inefficient.”

We claim that the use of either the approximation KTaylor

or KGBM might be inefficient. We now provide such an

example using KTaylor and note that the same example can

be used for KGBM too. Indeed, we consider a random vari-

able X described as follows: Given γ > 0, we have X = γ
with probability p > 0 and X = −1 with probability 1− p.

Time in Days
0 20 40 60 80

T
S

LA
 S

to
ck

 P
ric

e

20

40

60

80

100

Time in Days
0 20 40 60 80

IB
M

 S
to

ck
 P

ric
e

170

180

190

200

210

Fig. 3: Two Stock Prices: TSLA and IBM

Using the Taylor approximation, as a function of reward

level γ, a straightforward calculation yields

KTaylor(γ) = SAT

[

pγ + p− 1

pγ2 − p+ 1

]

.

In order for KTaylor(γ) to be efficient from an economic risk-

taking point of view, it should have the following property:

When γ2 ≥ γ1 ≥ 0, we require K(γ2) ≥ K(γ1). That is,

if the bet associated with γ2 offers more reward with the

same probabilities of success and failure as those for γ1, a

rational gambler should invest at least as much in the γ2 bet

as the γ1 bet. We claim that the Taylor-based approximation

scheme fails to satisfy this condition. To establish this claim,

it suffices to show that dKTaylor/dγ can be negative with the

KTaylor(γ) in (0, 1). Indeed, we calculate

dKTaylor

dγ
= −p

pγ2 + 2(p− 1)γ + p− 1

(p γ2 − p+ 1)
2

and note that the denominator cannot vanish. Hence, we

see dKTaylor/dγ < 0 for

γ > γ∗(p)
.
=

1− p+
√
1− p

p

which corresponds to the zero-crossing of the numerator. In

the Figure 5, the plot of KTaylor is given for p = 0.8. It

is readily apparent that the claimed inefficiency occurs for

parameter range γ > γ∗(0.8) ≈ 0.809.
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III. NEGATIVES ASSOCIATED WITH DRAWDOWN

As described in [10] and [16], control of drawdown, that is,

control of the drops in wealth from peaks to subsequent lows,

is one of great concern from a risk management perspective.

In this section, we first demonstrate that Kelly betting often

results in very poor drawdown performance. Then, we dis-

cuss some approaches for mitigating the drawdown problem

within this framework. Along any sample path V (k), the

maximum percentage drawdown is defined as

D(K)
.
= max

0≤l≤k≤N

V (l)− V (k)

V (l)
.

In the sequel, we often drop the word “percentage” for

expression simplicity.

As mentioned in Section 1, use of Kelly fraction may

lead to a significant drawdown since it is too aggressive.

To quantify see how bad the drawdown can be, consider

betting N times of single coin flipping gamble for

which X = 1 with probability p and X = −1 with

probability 1− p, then it is easy to show that the probability

of maximum drawdown greater than or equal to any

fraction K ∈ (0, 1) is given by

P (D(K) ≥ K) = 1− pN .

Now if we take N = 252 and p = 0.99, using the optimal

Kelly investment fraction K∗ = 2p − 1 = 0.98, It follows

that there is a 92% chance that maximum drawdown is

over 98%. That is, there is a large drawdown occurs with

very high probability. A similar analysis using the Markov

inequality also leads to the same conclusion.

A. Control of Drawdown

To control the drawdown, one possible choice is to add prob-

abilistic constraint to the optimization of log-growth; i.e.,

given 0 < ε < 1 and 0 < δ < 1, consider the constraint

P (D(K) ≤ ε) ≥ 1− δ.

Alternatively, instead of using the probabilistic constraint

above, we can use the expected maximum drawdown; i.e.,

given 0 < ε < 1, consider the drawdown constraint as

E[D(K)] ≤ ε.

We now revisit the example used in Section 2 with n = 1,

X = 0.15 with probability p = 0.95 and X = −0.95 with

probability p = 0.05.
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Fig. 6: Expected Maximum Percentage Drawdown Versus K

Using the optimum fraction K∗ = 0.6667 already found, it

is clear to see from Figure 6 that the corresponding expected

maximum drawdown are

E[D(K∗)] = E[D(0.6667)] ≈ 0.903 ;

E[D(KTaylor)] = E[D(KGBM)] = E[D(1)] ≈ 1.0 .

This shows that the approximation solution leads to

an almost sure ruin. Now, suppose the gambler adds

constraint E[D(K)] ≤ 0.2. Then, based on Figure 6, it is



clear to see that the optimal investment fraction K reduces

to K = K∗ ≈ 0.1.

IV. RESEARCH DIRECTIONS INVOLVING DRAWDOWN

Further to the discussion of drawdown above, if the

allocation vector K is multi-dimensional, it would be

desirable to have a convex drawdown constraint so that the

log-growth optimization problem can be treated as concave

program and can be solved in a very efficient way. To this

end, in this section we provide two conjectures involving

convexity of the maximum drawdown.

For motivation, consider the single coin flipping example,

it is clear from the monotonicity in Figure 6 that expected

drawdown is increasing function in K . Thus, for 0 < ε < 1,

the E[D(K)] ≤ ε leads to an interval constraint for K which

is convex. For two identical coins for which Xi = 1 with

probability p = 0.9 and Xi = −1 with probability 1 − p
for i = 1, 2, a Monte Carlo simulation indicates that the

constraint set of expected maximum drawdown defines a

convex set; e.g., see Figure 7. This leads to the following

conjecture.
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Fig. 7: Example of Expected Maximum Drawdown Constraint

Conjecture 1: Given 0 < ε < 1, the set for the expected

maximum drawdown

{K ∈ K : E[D(K)] ≤ ε}

is convex.

Instead of constraining expected maximum drawdown,

we might consider the set for the probability that the

maximum drawdown stays below some level ε > 0. For the

same two identical coins flipping example, Figure 8 shows

that the drawdown constraint set is still convex. This leads

to the following conjecture.
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Fig. 8: Example of Probability of Maximum Drawdown Constraint

Conjecture 2: Given 0 < ε < 1 and 0 < δ < 1, the set for

the probability of maximum drawdown

{K ∈ K : P (D(K) ≤ ε) ≥ 1− δ}

is convex.

Although we have carried out several Monte Carlo

simulations supporting these conjectures, in view of the fact

that involving two coins, the question on the convexity is

still the conjectures which may not be true for general case,

we now introduce a surrogate for expected drawdown.

A. Surrogate for Expected Drawdown

First noting that

D(K) = max
0≤l≤k≤N

V (l)− V (k)

V (l)
= 1− D̄(K)

where

D̄(K)
.
= min

0≤l≤k≤N

V (k)

V (l)
,

define complementary maximum drawdown. We consider this

complementary drawdown as a surrogate and work with the

surrogate constraint

log D̄(K) ≥ log(1 − ε)

Thus, the following lemma indicates that this complementary

drawdown constraint defines a convex set.

Lemma 4.1: Given 0 < ǫ < 1, the set

{

K ∈ K : E[log D̄(K)] ≥ log(1− ε)
}

is convex.



Proof: Given 0 < ε < 1, we have

E[log D̄(K)] = E

[

log

(

min
0≤l≤k≤N

V (k)

V (l)

)]

= E

[

min
0≤l≤k≤N

log
V (k)

V (l)

]

= E

[

min
0≤l≤k≤N

k−1
∑

i=l

log
(

1 +KTX (i)
)

]

=

∫

X

min
0≤l≤k≤N

k−1
∑

i=l

log
(

1 +KTx
)

fX(x)dx.

Note that the function
k−1
∑

i=l

log
(

1 +KTx
)

is concave in K ,

using the fact that the minimum over an index collection of

the concave functions is concave, it follows that E[log D̄(K)]
is a concave function. Hence, the set

{K ∈ K : E[log D̄(K))] ≥ log(1− ε)}
is convex. �

Remark: Since log function is concave, using Jensen’s

inequality, we obtain

E[log D̄(K)] ≤ logE[D̄(K)].

Now exponentiating on both sides, we obtain

E[D̄(K)] ≥ exp(E[log D̄(K)]).

To consider the tightness of this bound, we revisit the single

coin flipping gamble again with probability p = 0.9
and N = 252. Figure 9 provides a comparison

between E[D̄(K)] and exp(E[log D̄(K)]) obatined by

using Monte Carlo simulation. For this simple case, It is

clear that E[D̄(K)] is very close to exp(E[log D̄(K)]). In

other words, the surrogate complementary drawdown can

be a drawdown candidate.

V. CONCLUSION

In this paper, the focal point was some of the

limitations associated with application the Kelly

Criterion. By way of further research, in addition to

the drawdown issues described in Section 3, another

possibility involves modification of the feedback control

scheme Ii(k) = KiV (k) defining the investment. Perhaps

use of other variables in the “controller” such as the

drawdown itself would result in improved performance.

More generally, it would be of interest to pursue the

Kelly-based theory with other risk metrics such as the

Sharpe Ratio, see [20], in play.

An important line of future research involves extension

of existing results to problems involving with fX(x) not

assumed to be known. For example, when the theory is

applied in a stock-trading context instead of assuming fX(x)
is known, it would make sense to consider the use of an
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Fig. 9: Expected Complementary Drawdown and Its Surrogate

adaptive scheme to obtain a K-vector which is time-varying;

i.e., as nature of the market dynamics change, the investment

function is correspondingly adjusted.

To provide a simple illustration how such an adaptive

scheme might work, we consider the coin-flipping game

described in Section 1 with initial account value V (0) = 1
and unknown underlying probability p = 0.6. Now,

the bettor, not knowing p observes outcomes X(k) and

constructs a relative frequency estimate p̂(k) of p using a

sliding window of size M < N . The first M steps constitute

the training period within which no betting is done, and

then, for k ≥ M , the estimator is given by

p̂(k)
.
=

1

M

k−1
∑

i=k−M

max{sign(X(k)), 0}.

Note that the estimator above is used for expressing that the

number of winning bet. Now, using the estimator, we can

obtain investment fraction

K̂(k) = 2p̂(k)− 1

The results, summarized in Figure 10.
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