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Linear Approximations to AC Power Flow in Rectangular Cooates

Sairaj V. Dhople, Swaroop S. Guggilam, and Yu Christine Chen

Abstract— This paper explores solutions to linearized power- Noteworthy exceptions where rectangular-coordinateerepr
flow equations with bus-voltage phasors represented in reah-  sentations are leveraged for analytical and computational
gular coordinates. The key idea is to solve for complex-vakd benefits include: algorithms for optimal power flow [3]-[5],

perturbations around a nominal voltage profile from a set of . - - . .
linear equations that are obtained by neglecting quadratiderms techniques to identify low-voltage solutions [6], solvitite

in the original nonlinear power-flow equations. We prove tha  Power-flow equations for ill-conditioned systems [7], istie
for lossless networks, the voltage profile where the real parof — gating load-flow feasibility [8], and state estimation [H]0].
the perturbation is suppressed satisfies active-power batee in  (This is by no means an exhaustive survey.) Formulating the
the original nonlinear system of equations. This result mavates power-flow equations with voltages expressed in rectamgula

the development of approximate solutions that improve over dinat fford ¢ tunity to off fresh
conventional DC power-flow approximations, since the model coordinates alroras us to opportunity to offer a fresh pecsp

includes ZIP loads. For distribution networks that only contain  tive on the ubiquitou®C power-flowequations [11]. (See
ZIP loads in addition to a slack bus, we recover a linear also [1], [12] for recent work in this domain.) Particulgrly

relationship between the approximate voltage profile and te e formally uncover the restrictive assumptions (flat vgdta
constant-current component of the loads and the nodal acte*  qfjle, small angle approximations, neglecting shunt $oad
and reactive-power injections. . . . - .
and current loads, etc.) with which the linearized solution

in rectangular coordinates boils down to the classical DC
power-flow approximations. Another theoretical contribat

The power-flowproblem is fundamental to all aspects ofof this work is that in lossless transmission systems iriolyd
modelling, analysis, operation, and control of transmissi PV and ZIP buses, we prove that a purely imaginary
and distribution systems. In a nutshell, it amounts to sgjvi complex perturbation around a flat-voltage linearization e
for the nodal voltages in the nonlinear active- and reactivesures active-power balance in the original nonlinear pewer
power balance equations that characterize the sinusoidiw equations. Similar insights have recently been reporte
steady-state behaviour of AC electrical networks. Itgeati in [13], where the author observes that a purely complex
numerical methods are ubiquitous in this regard, sinceimulfperturbation around a flat start ensures balance of theeactiv
plicative and trigonometric nonlinearties quash any fledgl power flows in the original nonlinear equations for lossless
hopes of obtaining analytical closed-form solutions. Havi networks. (This is also alluded to in [14].) Leveraging
said that, linear approximations that yield accurate estdm insights from lossless networks, we hypothesize on a veltag
of nodal voltages have long been recognized to be usefpiofile for transmission networks as an alternative to the DC
from computational and analysis perspectives [1], [2]. power-flow equations that incorporatésP loads, and does

In this paper, we investigate linearizations of the nordine not assume the slack bus has unit voltage magnitude.
power-flow equations with voltages expressed in rectamgula In addition to the transmission-network setting, we also
coordinates. The main premise is to solve for a (complexonsider distribution networks that are composedZdP
valued) perturbation vector in rectangular form around abuses in addition to a slack bus (that models the secondary
appropriately formulated nominal voltage profile. We powvi side of the step-down transformer at the feeder head). The
solutions tailored to the constitutional properties ohtimis- nominal voltage is chosen to be the one where the constant-
sion systems (where generators are modelle®¥sbuses power nodal constraints are ignored; this is referred to
and loads are modelled &3P buses) and distribution sys- subsequently as theo-load voltage The choice of the no-
tems (where, in addition to a slack bus, nodes in the netwohaad voltage is intuitively obvious from a circuit-thedret
are modelled agIP buses). Indeed, a key assumption thavantage point, and proves to be algebraically beneficial in
is made from the outset to obtain the linearized model ithat it yields an analytically tractable linear model. We
that the second-order terms in the power-balance expressi®utline graph- and network-theoretic conditions to esshbl
are negligible. To investigate the validity of this assuimpt the uniqueness of solutions to this linearized system. ffiier t
we provide a priori computable bounds on the active- angktting, the real and imaginary components of the voltage
reactive-power balance errors as appropriate. perturbation vector can be solved uniquely without any

\oltage phasors are typically expressed in polar coofurther structural assumptions since the active- and ireact

dinates in most renditions of the power-flow equationgoower injections at all buses are known. Our results for
distribution networks extend recent results in [15] to i
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to reactive-power injections. These assumptions underpitefined in[(1), and|A||" be the matrix norm of a complex-
a vast body of work on distribution-system operation angalued matrix,A € CV*V as defined in[{2). Then
control [16]-[18]. .

The remainder of this manuscript is organized as follows. [[diag(w) Ax|| < [JA]l"||]*, )
Section[l establishes notation and describes the power- || Az < ||A][T]|]]. (4)
system model. In Sectioris]lll aid]IV, we outline solutio
strategies suited to transmission and distribution neksjor
respectively. Concluding remarks are provided in Sedfibn \B. Power-system Model

Mhese bounds can be derived from Lemma A.1 in [15].

Consider a power system witli + 1 buses collected in the
Il. PRELIMINARIES AND POWER-SYSTEM MODEL set /. We model loads as the parallel interconnection of a
In this section, we establish notation, a few pertinerfonStant impedance, a constant current, and a constant powe

mathematical preliminaries, and describe the power- stecomponent; in the literature, this is commonly referredgo a
b b 8y ZIP model [19]. On the other hand, we model generators

model and the linearization used in the remainder of th® ; i
paper. asPV buses, i.e., at generator buses the voltage magnitudes

and active-power injections are fixed.

Without loss of generality, the slack bus is fixed to be
the N + 1 bus, and its voltage is denoted Byel?. Let

The matrix transpose will be denoted i)™, complex V = [Vi,...,Vy]T € C¥, whereV, = |V|,£0, € C
conjugate by(-)*, real and imaginary parts of a complexrepresents the voltage phasor at lbutn subsequent devel-
number byRe{-} andIm{-}, respectively, magnitude of a opments, we will find it useful to define the vectdis| =
complex scalar by - |, andj := /1. [VIi,...,[VIn]T € RYy and 0 = [0y,...,05]T € TV.

A diagonal matrix formed with entries of the vecteris ~ Given our focus on rectangular coordinates, we will also
denoted byliag(xz); diag(z/y) forms a diagonal matrix with routinely express/ = V. + jVim, Where Vi, Vi, € RY
the ¢th entry given byz, /1., wherez, andy, are the/th en- denote the real and imaginary components/of
tries of vectors: andy, respectively; andiag(1/z) forms a Let I = [I1,...,In]", wherel, € C denotes the current
diagonal matrix with théth entry given byr, . For a matrix  injected into bug’. Kirchhoff's current law for the buses in
X, z4m returns the entry in thé row andm column of X. the power system can be compactly represented in matrix-
The null space of a matriX is denoted byN(X). For a vec- vector form as follows:

A. Notation and Mathematical Preliminaries

tor x = [r1,...,2n]T, cos(x) := [cos(x1),...,cos(zn)]T I Yy v v
and sin(z) := [sin(z1),...,sin(zx)]T. We will routinely { I } =| =T [ V. elf ] ; %)
decompose the complex-valued vectore CV (complex- Nt Yo °

i NXNYinto i i - o
valued matrixX € C**%) into its real and imaginary parts \, hare Voel% is the slack-bus voltagely,, denotes the

as follows:z = e + jaim (X = Xie + ] Xim, respectively). ¢ rrent injected into the slack bus, and the entries of the
The spaces ofV x 1 real-valued and complex-valued ygmittance matrix have the following dimensioris: €
vectors are denoted " andC", respectivelyT" denotes ¢NxN ¥ ¢ CN, andy € C \ {ol.

the N-dimensional torus. TheéV x N identity matrix is Corresponding to the matriX = G + jB, whereG, B €
denoted bylyxy. The M x N matrices with all zeros gNxN e will denote the vector of shunt admittances (that
and ones are denoted Wy, and 1,,«n, respectively; appear on its diagonal) B, € CV, and writeYa, = Gan +

similarly, the N x 1 vectors with all zeros and ones are;p ., whereGy,, Ban € RY. Exploiting the construction of

denoted byoy and1y, respectively. _ the admittance matrix, we can extract these shunt elements
In subsequent developments, we will routinely employ thénrough:
following norms. The standarzknorm of the vector: € CV Y1y +Y = Yah = Gsn + jBen. (6)

is denoted byj|z||, and defined as
Note that Yy, includes both the shunt terms from the

N transmission-line lumped-element model as well as those
||| :== <Z |£Cg|2> . (1) originating from the constant-impedance component of the
=1 ZIP load model.
Remark. The matrixY doesnot correspond to the admit-
tance matrix of a realizable AC electrical circuit. Nonethe
less, we prove in Lemma 1 that it is nonsingular by virtue of
N irreducible diagonal dominance [20] if removal of the slack
I|A||" := max Z laal? | . @) bus does not affect connectivity of the remaining network.
t\= Denote the vector of complex-power bus injectionsSby
[S1,...,Sn]T, where S, = P, + jQ,. By convention,P,
We conclude this section, with two bounds that we willand @), are positive for generators and negative for loads
utilize to bound error terms in the remainder of the papetr. Lgthese represent the constant power component ofiire
||z|| be the 2-norm of a complex-valued vectore CV, as load model). Furthermore, Ik, = [I11, ..., ILn]|*, where

=

We will also find the following norm for the matrid €
CN*N useful [15]:

=



I, € C denotes the current injected into baglue to the V*. Decomposing all quantities i (L1) into their real and
constant current component of tAEP load at that bus. Then, imaginary parts, we can write it equivalently as follows:

usin , complex-power bus injections can be compactl
9[5) . : : P )[ 1wro"'Erc _Fim+Eim:||:A‘/rc:|_|:P+Hrcl

written as 1—‘im + Eim Fre - Ere A‘/;m Q + Him
S = diag (V) I* — diag (V) I 1
) o ot i . In general, it is not possible to establish the invertibitif
= diag (V) (Y VitY Voe e — IL) : (7)  the 2N x 2N matrix in (I5). Some special cases do allow
us to establish this, and we dwell on these soon. We next
outline some possible choices for the nominal voltdge,
Suppose the solution to the power-balance expressioni) Flat Voltage: In a non-stressed system, we can assume
in (@) is given byV* € CV: all bus-voltage magnitudes are close 1tp.u. and phase-
angle differences are small. In this simplest case, we set
V = 1n. We will utilize this approximation in our study of
transmission networks in SectignllIl.

C. Linearized Power-flow Equations

S = diag(V*) (Y*(V*)* LY Ve ite — I;j) T

The abounding nonlinearities il (8) preclude the possybili )

of seeking a closed-form solution 1o (or even establish ex- 2) No-load Voltage: The structur_e of the expressions

istence of solutions). Therefore, we will seek to linea@e N @3) and [1R)}{T4) suggest that with the following choice

instead. Central to the_ Iinearizatio_n gpproach is to expres V=v-! (IL _ ?Voej«%) 7 (16)

V* = V+AV, whereV is some a priori determined nominal

voltage vectoll and entries of AV capture perturbations we getI’ = Oy« n, II = Oy, and subsequently recover the

aroundV. With V' appropriately determined (we commentfollowing linearized power-flow expressions

on the choice ofV" shortly), we need to solve foAV that .

satisfies[(B). Substituting™ =V + AV in (8), we see that diag (V) YAV = 5% 17

V + AV satisfies: Notice thatV in (I8) is the non-zero voltage solution

S = diag (V + AV) (Y*(V—i-AV)* T e IE)- recovered when the current inje_ctions _in the buses (i.e.,

©) YV + YV,el% — I1) are zero. Since this corresponds to

the non-zero solution td{7) whefi = 0y, we refer to it

E ding t inC(9), t . :
xpanding terms in{9), we ge as theno-load voltage It turns out that with the choice of

S = diag (V) Y*V* + diag (V) Y*AV* the no-load voltage, we can establish the following resmlt o
+ diag (AV) Y*V* + diag (AV) Y*AV* existence and uniqueness of solutions[id (17).
i YV V. e—ifo : VY a—if
+ d?ag(V)Y* V"e. * dlag*(AV) Y Ve Lemma 1 A unique solution toI7) exists with the choice
— diag (V) I], — diag (AV) I} (10)  of the no-load voltagey = Y~ (I, — YV,e/?), in (I8) if
Neglecting the second-order termtiag (AV) Y*AV*, and () Removql _of the slack bus does not affect network
recognizing that connectivity.
(i) The constant-current components of #I& buses are
diag (AV)Y*V* = diag (Y*V*) AV, such thatly, # Y'V,el%.
diag (AV) Y Ve 3% = V,e 1% diag (?*) AV, Condition (i) establishes invertibility of" and (i) ensures

that V = Y~! (I, — YV.e%) # Oy. Taken together, they
guarantee that the matridiag (V*)Y is non-singular, and
consequently this ensurggd) admits a unique solution.

diag (AV) I} = diag (I])) AV,
we can reorganize terms ih_(10) to get

TAV + ZEAV* = S +11, (11) Proof. We first dwell on (i). Since removal of the slack

bus does not affect network connectivity, it follows that

wherel’ € CV*N, = ¢ CV*N, andIl € CV are given by  the undirected graph induced By is connected. This is
equivalent to stating that” is irreducible [20, Theorem

T * Y 7k Ve —jfo * . .
I' = diag (Y VitY Veer % — IL) ; (12)  6.2.24]. Furthermore, by construction of the network admit
= = diag (V) Y™, (13) tance matrix, it follows that the entries &f are such that
I = —diag (V) (Y*V* LY Vet — Ifj) . (14) el > > Jyeml, VEEN\{N+1}.
L#m

With (@) in place, we turn our attention to solving_ = = . , iy
for the bus-voltage perturbation vectdxV, using which This implies thatY” is diagonally dominant. In addition, for

we could recover an approximation to the actual solutiof{'® Puses that are connected to the slack bus, a set that we
denote byAMy 1, it follows that

1We slightly abuse notation with this formulation, sing& (and not
V) satisfies [(b). Nonetheless, for ease of exposition, weigtensth this Iyeel > Z |y2m|, Vi€ NN+1-
notation subsequently. £m



Under these conditions, it follows thdt is irreducibly demonstrate that the solution tb {15) whekd;. = Oy
diagonally dominant [20, Definition 6.2.25], from which weensures zero error in the active-power balance. We formally
conclude that” is nonsingular [20, Corollary 6.2.27]. state and prove this next. Before so doing, we establish some
Next, consider the statement in (ii). Since (i) ensuremotation to ease exposition. From{12)4(14), for the palaic
invertibility of Y, it follows thatN(Y) = N(Y~!) = {Ox}. caseG =0yxn, Gsn = On, V = 1y, andV,el% = 1, with
Therefore, ensurind;, # Y Ve’ is sufficient to guarantee the aid of [6), we get
thatV =Y ! (I, — YVeel®) #£ Oy.
Considered together, conditions (i) and (i) ensure that
the matrixdiag (V*)Y is nonsingular, hence guaranteeing

T = diag (Y*V* +Y Ve — I;j)

= diag (Y*lN LY - J;j) = diag(Y: — I7)

a unique solution to[ (7). [
We will utilize the no-load voltage profile in analyzing = diag(—jBsn — I7),
distribution networks in Sectidn 1V. Z=diag(V)Y* = IyxnY* = —jB,

D. Errors in Complex-, Active-, and Reactive-power Balance  TI = —diag (V) (y*v* 1Y Ve i — Ifi)

To gauge the accuracy of linearized solutions out- B . o* o) . .
lined subsequently, we will revert to the quadratic term = ~Inxn (Y Iy +Y _IL) = - (Y — I1)
diag(AV)Y*AV* that we neglected in the derivation =jBsn + IT. (21)
of (I1). To this end, we denote thearor in complex-power
balanceby Sy, ,.+. and express it as

Sh.ot. = diag(AV)Y*AV* (18)

We will find it useful to define
Pre :=Tre + Ere = —diag(/1, re), (22)
@iy = —Timy + Zim = —(B — diag(Bgsn)) — diag(JL, im)-
With the definitions in [(2R), it follows that following lin-

ear equations need be solved to determine the voltage-
perturbation vectorAV:

From above, isolating the real part 8f ..., we obtain the
error in active-power balangewvhich we denote by?, ,.+.:

Ph.o.t. - Re{Sh'O't'} cI)lreAV;"e + cI)imAV;m =P+ IL,re- (23)

= diag (AVie) (GAVie — BAVin) Note that [2B) i derdet ined ificall i
. ote tha is underdetermined, specifically, w

+ diag (AVim) (GAVim + BAVie). (19) equations an@N unknowns. We next examine the solution
Similarly, we isolate the imaginary part 6f, ., to recover Where the real component is suppressed, dd/. = Oy,
the error in reactive-power balancewhich we denote by and demonstrate that it satisfies the active-power balance i
Qnos.: the original nonlinear power-flow expressions. We formally

prove this statement next.
Qh.o.t. = Im{Sh.o.t.}

= diag (AVim) (GAV;e — BAViy) Theorem 1 Consider an inductive networlG; = Onxn.
— diag (AVie) (GAVin + BAV,e). (20) Suppose that the constant-current component of Zfie
loads satisfies the following requirements:
Note thatSh.o.t., Phot., and Q.o+ are all functions of 1) For nodel € N\ {N + 1}, we have
AV = AV, +jAVim. However, we will drop this functional
dependence to simplify notation. ‘ = bpm — IL,im,é‘ > beml. (29)
{#m L#m

I1l. APPROXIMATIONS TAILORED TO TRANSMISSION .
2) For at least one node in the séfy1 we have

NETWORKS
In this section, we exploit the well-known structural prop- ‘ > bom — ILmeg’ > |bm|- (25)
erty that transmission networks are mostly inductive [1l] t t#£m t#£m

postulate on a solution td ([L5). We consider the special cageg|iows that the voltage profile
whereG = Oy« in SectionIl-A, and then examine the o
classical DC power-flow approximations in Section 11I-B. I +AV =15 +jP (P + ILre), (26)

A. Purely Inductive Network & Flat-voltage Linearization Where i is specified by22) minimizes the active-power-

. . . : balance error,|| P, , to zero, i.e.,
Consider an inductive network for whicf ~ O . [1Phos.[

This model is appropriate for transmission networks where arg minN [|Phot.|| = jcbfml(P + It re)
the line inductive elements dominate over the resistivesone AVE.C
In making this assumption, recognize that we have also AI‘}%%NHP}WLH =0. (27)

neglected all shunt conductance terms (&, = 0y). For - . )
such a network, it turns out that with a linearization aroun(lj:urthermore, the voltage profile if28) yields the following

the flat-voltagel” = 1, and under a (technical) constraint PPe" bound on the reactive-power balance error
on the constant-current component of Zi& loads, we can Qo] < ||B|[H| @1 (P + I )| [ (28)



Proof. With the conditions in[(24)E(25), it follows thak;,, T is the vector of bus phases, afic R” is the vector
is invertible. Consequently, froni_(23), we can write of active-power bus injectiorﬂs.

We remark that[(26) extends the classical DC power flow
approximation to the case where the network contif3
loads and assumptions of small bus-voltage angle diffe@®nc
are not made. Next, we demonstrate hbw (37) can be recov-
ered from[(111), and in so doing, illustrate all the restvieti
P, o4, = —diag (AV,e) BAViy, + diag (AViy) BAV4. assumptions imposed in derividg (37).

AVvim = (I):ml (P + IL,re) - q);nllq)reAV;e- (29)

Also, in the setting wheré&: = Onxn, We see thatP}, ;.
from (I9) simplifies to the following

(30)
Substituting forAV;, from (29) in [30), we get after a few Lemma 2 The DC power flow approximation i87) can
elementary algebraic manipulations be derived from(11) under the following assumptions and
P —  dise(BO-N(P 4 I AV, approximations:
hot. = —diag(BP (P + It re)) AVie 1) a flat-voltage initialization,V = 1 ;
+ diag(AV;e) @7, reAVie + diag(®7,) (P + It xe)) BAV;e 2) disregarding the constant-current loadg, = O y;
— diag((l){ml D, AV,e) BAV,e. (31) 3) neglecting shunt conductancés,;, = Oy;

) ) ) ) 4) setting the slack bus voltage to unify,el’ = 1.£0;
Taking the2-norm on both sides above, applying the triangle and

inequality, and utilizing[(B)}£(4), we see that 5) the small-angle approximation for voltagéss AViy,.
| Pooc |l < [|diag(BO, (P + Iee))||T[| AVee| Proof. Let us begin with [(AR)}E(14). We sdi, = Oy, and
+ @ D ||T||AVre |2 + ||diag(®;,! (P + I o)) B||T||AVie|]| Operate under the flat-voltage assumptiéns= 1y, V, =
i ||(I)ifmlq)mel||T”BAVm||2' (32) 1p.u., andé, = 0°. Then, with the aid of[{6), we get
Taking the minimum on both sides above with respect to I' = diag (Y*V* +Y Ve % — Iﬁ)

AV;., and noting thalN(B) = Oy (see Lemma 1), we see

= diag (Y*lN n ?*) = diag(Y2),
E=diag(V)Y" = InxnY"™,

that

min _||Ph.ot.||

AVie€RN IT = —diag (V) (Y*V>k +Y Ve i — IE)
< mi diag(BO® Y (P + I, 10)|| T [| AVie s

< yin (Ilding(B2LL (P + T 1AV e (Y1 V) = i,

+ {1 Pi @rel T AVie|[* + [|diag (D5, (P + Trxe)) BT AVi|

Substitutingl’, =, andII from above in[(Ill), we get
+ |05 0BT BAV:e|2) = 0. (33)
diag (Y) AV + Y AV* =S5 - Y. (38)
Note that [2F) then follows straightforwardly fro {33).
Furthermore, from[(20), for the cagé = On« v, We can
see that the error in the reactive-power balance is given b

AssumingAV,, = Oy, we see thatAV = jAV;,. Conse-
uently, it follows thatAV* = —AV, and [38) simplifies

0
Qh.o.t. = _dlag(AV;m)BAV;m _dlag(AV;e)BAV;e (34) - (Y* - dlag( Sﬂg)) AV = S - sT]' (39)

With the choice Isolating the real part of (39), we obtain
AVie =0y, AVim =& (P+1Iy),  (35) — (B — diag(Ban)) AVim = P = G (40)

We see that[(37) follows fromi (#0) by neglecting the shunt
conductance terms (i.e., settitig,, = Oy), and under the
Qhot. = —diag(<1>i’m1 (P+ ILJQ))B<I>(m1 (P+ Ir,). (36) small-angle approximation

we can simplify above to get

Applying @) (with the choicez = ®_'(P + I1.,.) and 0=2V +AV)=Z(1An +jAVim) = AVin,  (41)
glazrjl}z)é \(/avrerorf::ncalgg)the upper bound on the reactlve-p.owe\r,\—lhiCh completes the proof. -

' Remark. It is straightforward to see that the error in the
B. Connection to the classical DC Power Flow solution to AV, incurred in neglecting the shunt conduc-

tance terms is given by (B — diag(B.)) ' Gal|. Since
Ggn includes shunt conductance terms from the constant-
impedance portion dfIP loads (in addition to that emerging

The voltage profile in[{(26) brings to mind theassical
DC power flowrelations [11]:

- (B - dlag(BSh)) =P, (37) 2Typically, in the literature, solutions to the DC power flowpeessions
NxN . . NxN are written as- B~ 1 P. However, with regard to the notation we use in this
where B € R is the imaginary part of” € C ' work, the matrixB includes shunt terms that are excluded in the classical

By, € RY is the vector with shunt susceptance terths  DC power flow expressions.



from the transmission-line lumped-element model), neglecinjections [16]-[18]. Here, with the aid of (#5) arld {46), we

ing G, can potentially result in large errors in the estimaténvestigate the validity of these assumptions, and thetexac

of the bus-voltage angles with the conventional DC powebopological and constitutional requirements to justifertin

flow approximations. First, we have to assumB = 0y« y, following which, we

IV. APPROXIMATIONS TAILORED TO DISTRIBUTION hang =G andX = Oyxn n (@5)-46). (Note that
setting B = Onxn neglects the line reactances as well as

_ . NETWORKS _ inductive shunt loads.) We also need to suppas® = 1y
In this section, we consider a network that only containgndsin 9 = 0. Under these assumptions, we get

ZIP buses in addition to the slack bus. This model is
appropriate for distribution networks, where the slack buz[ — G ldia (L
models the secondary side of the step-down transformer at ™ — & V|
the feeder head. We begin with the solution for the most

general case, and present some special cases next. With these restrictive set of assumptions, we see [tHat-
AV,., the first-order approximation to the voltage magni-

A. Solution for the General Case tudes, is only a function of the active-power injections.
Since we know the active- and reactive-power injections @imilarly,  + AVi,, the first-order approximation to the
all buses, and assuming the conditions of Lemma 1 are mebltage phases across the distribution network, is only a
the solution to [(II7) can be expressed in analytical closddnction of the reactive-power injections.

form as follows:

AV =Y diag (1/V*) S*, (42) C. Recovering Results in [15] as a Special Case

with V chosen as in[{16) from before. The linear approxi- Consider the special case in which constant-current com-
mation to the voltage profile in this setting is thereforeegiy PONents in th&IP loads are neglected, i.5, = O in (18).
by V + Y ~diag (1/V*) $*. Finally, note that the error in ' this case, from[(16), the choice &f simplifies to

complex-power balance induced by this linear approxinmatio
can be obtained froni_(18), and is given by

Sh.os. = diag (Y~ 'diag (1/V*) S*) diag (1/V) S, (43) wherew = —Y 'Y (adopting the notation in [15]). Using
Applying @) (with the choicer — ¥~ diag (1/V*) §* and the choice ofl” in (44), the solution to[(17) becomes

A = Y*), we recover the following upper bound on the . 1 . e 1 i
complex-power-balance error: AV =Y diag (V*> ST = Vo Y™ diag <E> S

[[Shoc |l < [[YHI[Y " diag (1/V*) S*|I2. (44)

1
P, AVi, = —G diag (—) Q.
) 14

V = V,el%uw, (47)

This suggests the following linearized voltage profile
B. Revisiting Coupling Arguments

. . 1 1
Let us denotgG + jB)~! = R+ jX. Then, expanding V,eife (w + WY_ldiag (—*) S*) (48)
the terms in[(4R), it is straightforward to separately waitet ° w
the real and imaginary componentsA” as follows: to be a good first-order approximation for voltages in the
. cos 6 ] sin @ distribution network. We mention that this result matches
AVe = | Rdiag v )~ Xdiag V] P that in [15], which was derived with fixed-point arguments.

cosf sinf Finally, we note that with this voltage profile, it followsah
+ (Xdiag (—) + Rdiag (—)) Q, (45)

V] V] Ly o g
[[Shoe |l < 5 VHIITIIY ™" diag (1/w") 5% (49)

. cos . sin 0 °
AVim = (Xdlag (W) + Rdiag ( V] )) P V. CONCLUDING REMARKS

— (Rdiag (ﬂ) — Xdiag (ﬂ)) Q. (46) This paper examined the classical power-flow expressions
Vi Vi written in a compact matrix-vector form and with the nodal
If we suppose that entries df,. and Vi, dominate those voltages expressed in rectangular coordinates. We sought
in AV, and AVi,, respectively, thenV| + AV, serves as solutions to the nodal voltages in the form of a pertur-
a first-order approximation to the voltage magnitudes acrodation around a nominal voltage. For lossless transmission
the distribution network. Similarlyd + AV, serves as a networks, with the usual flat-voltage linearization, weva
first-order approximation to the phases across the digiibu that the perturbation where the real component is supptesse
network. yields a voltage profile that satisfies active-power baldnce
In literature pertaining to distribution system operataond  the original nonlinear power-flow expressions. For distrib
control, a common assumption made to simplify analysis #on networks, we demonstrated the analytical convenience
that voltage magnitudes are strongly coupled to activegsowof a no-load voltage linearization, and extended recenttes
injections and phases are strongly coupled to reactiveepowon linear voltage approximations to includéP loads.
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