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Large-scale Charging of Electric Vehicles:
A Multi-Armed Bandit Approach
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Abstract—The successful launch of electric vehicles (EVs) [6]. Large charging facilities with fast charging capats

depends critically on the availability of convenient and eonomic
charging facilities. The problem of scheduling of large-sale
charging of EVs by a service provider is considered. A Markov
decision process model is introduced in which EVs arrive ran
domly at a charging facility with random demand and completion
deadlines. The service provider faces random charging cast
convex non-completion penalties, and a peak power constirai
that limits the maximum number of simultaneous activation d
EV chargers.

Formulated as a restless multi-armed bandit problem, the
EV charging problem is shown to be indexable. A closed-form
expression of the Whittle’s index is obtained for the case wén the
charging costs are constant. The Whittle's index policy, haever,
is not optimal in general. An enhancement of the Whittle's irdex
policy based on spatial interchange according to the less iy
and longer processing time principle is presented. The propsed
policy outperforms existing charging algorithms, especily when
the charging costs are time varying.

Index Terms—Charging of electric vehicles; deadline schedul-
ing; Markov decision processes; multi-armed bandit problen;
Whittle's index.

[. INTRODUCTION
CCORDING to a recent study [1], a transition fro

in public spaces such as parking garages, parking lots at
commercial locations, and highway rest stops serve toiatkev
range anxiety of EV consumers and stimulate the market share
of EVs. These facilities that serve a large number of EVs gt an
given time bring the additional benefit of providing anaila
services and maintaining operation stability of the powrt g

[, [8l.

Large scale EV charging at the capacity of hundreds of
vehicles faces a different set of technical challenges fitorse
associated with individual home charging. First, conswsmer
expect charging to be completed within a relatively short
period of time. Thus, fast charging devices operated at high
peak power becomes essential. Currently, level 2 and DC fast
charging are most widely used in public charging stations.
Level 2 charging supplies up to 30 miles of travel for one
hour of charging with a 6.6kWh on-board charger. DC fast
charging supplies up to 40 miles of range of driving for
every 10 minutes of charging, which equals approximately 15
average size residential central air conditioning unitsese
types of charging, if un-managed, may have detrimentattffe
on power system reliability [9],110]. It is thus necessaoy t

gasoline based transportation to electric vehicles (Er\I)B','n't the number of simultaneously activated chargers.

coupled with integrating renewable resources for EV chaygi
will play a critical role in achieving the goal of halving the

Second, there is a high level of uncertainty in charging
demand at public facilities. EVs arrive at a charging fagili

CO, emissions by 2050. In 2015, the global electric driv@ndomly, each with stochastic demand and random deaglines

vehicle sales (including hybrid, plug-in vehicle and batte

electric vehicle) reaches over 498,000, whick.i&7% of the

annually all vehicle saled][2]. In the US, the annually E

which makes it difficult for the scheduler to meet consumer
demands.

y Third, the cost (or the profit) of the service provider may be

sales has grown 20 times since 2011. Similar trend existsStpchastic. For instance, the service provider may ppetei

the EV charging station market. Through the end of 201
there are more than 15,000 fast charging points and 94,656

in the wholesale electricity market and is subject to real-
HRe price fluctuations. In addition, the service provideaym
integrate local renewable energy such as solar with integnti

slow charging points over the world. The EV charging statio

stock more than doubled for slow charging points betwed§neratioin.
the end of 2012 and 2014, and increased eightfold for fasttinally, the energy management system that schedules EV

charging points[[3]. As of March 2016, there are more thaq_parging operates in real_time. Therefore, th_e schedul'grg-a_

12,700 electric stations and 31,800 charging outlets geplo rithm must be scalable with respect to the size of the chgrgin

in the United Stateg [4]. facility, which rules out the use of brute-force optimizati
EV charging services play an essential role in the succesdfgFhniaues.

launch of EVs. A sufficient amount of charging services

attracts more consumers to purchase EVs and high EV marketsymmary of Results

share brings more investment in the charging servicés [5],_, . L .
g i ! ging viges | ]ThIS work extends the results from11], which is the first
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maximizing expected (discounted) profit subject to a camstr scheduling problem (in wireless communications) as aesstl
on the maximum number of simultaneously activated chargelAB problem, and establish indexability for the formulated
The constructed MDP model captures the randomness in BAAB problem. Related problems of scheduling packets with
arrivals, EVs’ charging requests and deadlines, as welhas tleadlines in ad hoc networks are studied[in| [22]. We note
charging costs. The evolution of charging cost is randord, athat there are fundamental differences between the joaarri
is assumed to be independent of the actions taken by #ied processing cost models adopted in this paper and in the
operator. aforementioned literature, and that the results derivetiese

We note that computing exact optimal scheduling policiesxisting works do not apply to our model.
by brute-force dynamic programming is intractable, beeaus The scheduling of charging multiple EVs has received much
the number of system states grows exponentially with tmecent attention. In[[23], the authors proposed an inttiig
number of chargers. In order to derive effective online defte  energy management system for the large-scale public charin
ing algorithms, we reformulate the MDP as a restless mulgtations taking into account of EV admissions, scheduling
armed bandit (MAB) problem with simultaneous plays][12jand renewable energy. Applications of deterministic dead!
We first establish the indexability of the formulated resdle scheduling models are applied in[24], [25], [26], [27] to
MAB problem, which enables us to apply thhittle’s index study the scheduling of EV charging. With an objective of
policy to the EV charging problem. The special structure ahinimizing the load variance, a few recent papers propose
the EV charging problem, in particular the pre-determineskveral approaches for EV charging scheduling, based on
charging deadlines, simplifies the computation of the Whitt game theoretic analysis 28], [29] and decentralized itlyms
index. For the case with constant charging cost we derive §8)]. In addition, the authors of [31]/ [32][ [83] developed
Whittle's indexes in closed form. control algorithm to minimize the power losses and improve

We establish the optimality of the Whittle’s index policythe voltage profile. Distributed pricing strategy and aitjon
for random charging cost when the constraint on the numbae proposed i [34][[35] to incentivize EVs to participate
of simultaneously activated EV charging is loose. When tHeequency regulation. Iri [36] and [B7], two-settlementtcah
constraint of simultaneous activation is strict, Whitléndex ized control algorithms are proposed: charging trajeetodf
policy is not optimal in general. In this context, we providé&Vs are optimized day ahead and adjustment is carried out in
a procedure based on the LLLP (Less Laxity and Longeeal-time. The authors of [88] further investigate the +tiale
Processing) principle [11] as an improvement of the Whittleadjustment balancing of predetermined charging trajesor
index policy. Numerical results demonstrate that the LLLRccording to regulation signals.
principle could significantly improve the performance oéth Closely related to this work, the authors bf[39] construct a
Whittle’s index policy, especially when the charging cost idynamic framework on EV charging that explicitly takes into
stochastic and the EV arrival traffic is relatively heavy. account the stochasticity in both EV arrival and chargingt.co
Through a dynamic programming approach, they establish the
Less Laxity and Longer Processing time (LLLP) principle:
B. Related Work priority should be given to vehicles with less laxity andden

The centralized EV charging problem considered in thisrocessing time. The LLLP principle is shown to be able to
paper falls in the category of multi-processor deadlinedalt improve any charging policy on a sample-path b&sis [39], and
ing problems. In this context, EVs are jobs and chargers akéll be used in this paper to improve the Whittle’s index gyl
processors.

Earlier work on deadline scheduling are based on the Il. PROBLEM FORMULATION

deterministic worst case objectives. The problem of deadli We now formulate the EV charging problem as a stochastic
scheduling with one processor is well understood. In thbs

. . . : eadline scheduling problem subject to processing capac-
case, simple online algorithms such as the earliest deadl gp ) P g cap

! X o i lﬂ/ constraints. In Sectioh T[9A, we formulate a constraine
first (EDF) p(_)llcy [13] and the Ieast-la}xny first (LLF) pojic Markov decision process (MDP). In Section 1I-B, we provide
[14], are optimal, when the completion of all tasks befor

) ) ; . . . &n upper bound on the total discounted reward, which is usefu
deadlines is feasible. Under certain conditions, it is Shtvat fﬁr benchmark comparisons.

the EDF scheduling minimizes the amount of unfinished wor
in single-processor deadline schedulihg][15].1[16]. Thisre _ _ _ _
also a substantial literature on deadline scheduling ofipiel A- An MDP Formulation of Stochastic Deadline Scheduling
processors (for a survey, see[17]). It is shown[in [18] that a Fig.[d shows a schematic of an energy management system
optimal online scheduling policy does not exist in geneoal fat an EV charging facility. We assume that the facility has
the worst case performance measure. N parking spots, each with a charger that can be activated
The problem of stochastic multi-processor deadline schedar deactivated by the scheduler. Each charger can only be
ing, of which the EV charging problem is a special casepnnected to one vehicle.
is less understood, primarily because the stochastic dgnam EVs arrive at the facility independently. If at least one
programming for such problems are not tractable in practicgharger is available, a newly arrived EV will park at a spot
The work similar to ours are [19]/[20] where the authorand attach to its charger. The EV owner communicates the
studied the deadline scheduling problem in wireless commeharging demand3; (measured in charging time), and the
nications. The authors df[21] formulate the stochasticliea deadline for completioni; to the scheduler. The scheduler



Chargin

ag is the electricity price from the wholesale market biased by

the local renewable generation. Both of the wholesale price
and the renewable generation are random and we assume the
charging cost follows a Markov chain that is known to the
scheduler.

4_541’. We assume that the distribution of EV arrivals is time
varying but periodic, i.e., the arrival distribution at tekame

ﬁ period of each day is the same. Such a model allows us to
__J

gchhaégm% _{ﬁ incorporate a “typical day” travel pattern for arrival s$tts
algorithmg and convert a non-stationary arrival to a cyclostationarg o

by introducing a “period index”. Specially, each day is dbua
—._‘4;‘2 divided into V.- periods (for example, 24 hours) and the period
stater[t] = (¢t mod N,) is the period index which forms a
deterministic periodic Markov chain. The arrival rate ahd t
probability mass function (PMF) of the initial state of EVs
within the same period (for example, 9 AM-10 AM) across
different days are assumed the same. The arrival rate and the

Fig. 1. Architecture of a charging station

B;lt N . . .

Chargeri 4 I initial state PMF within periodr, which are known to the
| Tlt] —————— ‘l _ scheduler, are denoted ky and Q7 (7T, B). Note that the

time . . . . .

S % Markov chain of charging costs needs not to be periodic (with
length NV,,).
Fig. 2. Anillustration for the charger's state; is the arrival time of an EV. Thus the state space of the charging system is defined by

at charger:, d; the deadline for completion3; [¢t] the amount of charging to S[t] = (r[t], c[t], Si[t],- -, Sn[t]) € Sy x Se x S x -+- x Sy.

be completed byl;, T;[t] the lead time to deadline.
Here,S. is the period space. the state space of the cost, and
S; the state space of individual chargeffor i = 1,..., N.

receives the information and updates the state of chargers iywe note that the constructed MDP is stationary because the
the system. time dependency is incorporated by including in the system

~We now present elements of the discounted infinite-horizQfate a periodic Markov chain that describes time evolution
discrete-time MDP. At the beginning of each time slot, the

real time marginal charging cost is released and new EVs may2) Action: The action of the scheduler is defined &jy] =
arrive at the facility. The scheduler collects the stateshef (a1[t],---,an[t]) € {0,1} whereq;[t] = 1 means that the
EVs in the facility and the charging cost, and makes a detisi§harger is activated (active) whereagt| = 0 means that the
on which chargers to activate or deactivate in the currett sicharger is deactivated (passive).

The assumptions in the paper are summarized as foIIows;3) State evolution:We assume that the charging ce#
they are approximations of practical operating conditiand eyolves as an exogenous finite state Markov chain with
are made for tractable analytical developments. transition probability matrix? = [P, ;]. The evolution of the
Al. Each charger can be connected to only one EV, andcharging cost is independent of the actions taken by the

is removed from the EV at the deadlidg. Each EV is scheduler.

charged at a fixed rate normalized o The period state forms a deterministic periodic Markov

A2. The EV arrivals are independent. ; c
hain. Th lut tated dst+1 t]=71)= 1
A3. The price of charging is in proportion to the charginé:vhaé?e{T iel\?):u Einislsr:o?j ]\i(s;[ Il =7) = {r+1}

demand, normalized td dollar/hour. . o )

A4. The marginal charging cost] is an exogenous finite ~ Given the period index[t] = 7, the evolution of chargers’
state Markov chain [40] whose evolution is independeftates depends on the scheduling actifth= {a;[t]}}%,, i.e.,
of the state evolution and actions of charging.

A5. The charging of EVs is preemptive without cost.

A6. The penalty for incomplete charging is a convex function (T3t + 1], B[t + 1]) = (T;[t] — 1, Bi[t] — as[t]).
of the incomplete amount at the deadline.

1) State spaceThe state of the charging system consists

of the state of individual chargers, charging cost, anditiger  Evs |eave the chargers at their deadlines. New EVs arrive
index”. The state of chargere {1,---, N} is defined by gt the charging facility following a geometric distributiovith
Si[t]é(ﬂ-[t],Bi[t]); as illustrated in FiglI27;[t] £ d; —t is  probability p7. The probability mass function (PMR)7 (-, -)

the lead time andB;[t] is the remaining charging demandgoverns the initial states of newly arrived EVs. The proligbi
measured in charging time. If there is no EV attached tfistribution of EV arrivals follows the periodic cycle with
chargeri, we setS;[t] = (0, 0). length N, and depends only on period indeXt] (not t).

The system charging cosft] is the cost of electricity. It Formally, the state evolution of chargewith statesS;[t] under



actiona;[t] = 1 is given by In particular, a relaxed problem can be stated as

(Silt+ 1] ailt] = 1,70 = 7) supr  Er {020 S B R (Sl ) | S[01}

(Ti[t] — 1, Bi[t] = 1) w.p.1, if Bit]>0,T;[t] >1, subjectto (1—B)ES SN, flai[t] < M.
(LI - LB wp.1, if Bi]=0,L[f] > 1, . _ . ®)
(0,0) wp. (1= p7), if T[] <1 Problem [(b) is not a practical formulation for the large scal

= ’ P N Tpi ’ S = EV charging since the power usage could be far more fifan
(L 1) W.p. p; Qz (L 1)7 if Tz[t] < 17 at certain time.
e o Since the charging cost is the same for all chargers, the
(T,B) wW.p. pI QI (T, B), if T;[t] <1, relaxed problem[{5) is equivalent to the following problem

B B (1)  (on the scheduling of a single charggr
where T' and B is the maximum deadline and charging

demand. Sup, NE- {Zfio BtRai t] (Silt], c[t]) | Si[0], C[t]}
4) Reward: At time ¢, the reward received from charger ~ subjec to (1 —B8)E Y2, Bta;[t] < M/N.
under actior; [t] is given by (6)
Problem [[6) seeks to maximize the discounted reward from
R, 1(Silt], clt]) a single chargei with no more thanV//N active action (per
(1= c[t])a;]t], if B;[t] >0, T;[t] > 1, time period) on average. The optimal solution and the optima
) (1= c[t)ai[t] = F(B;t] — ailt]), objective of [6) are the same as those [df (5). The optimal
- if B;[t] >0, T;[t] =1, objective of [6) can be used as a performance upper bound
0, otherwise for the original scheduling problem ifil(4).

(2) The constrained MDP problem il (6) has a much smaller di-
whereF(B) is an increasing and convex penalty function witiinensionality and can be easily solved by linear programming
F(0) = 0. Note that the scheduler obtains one unit of rewar@f. Chap. 3 of [42] for a survey).
if the EV is charged for one period. At the EV’'s deadline,

i.e., whenT;[t] = 1, the scheduler pays the compensation for  ||I. WHITTLE’S INDEX AND CONSERVATION LAW

unfqlfllled char_g_mg request?(B;t] - a). ) Since the MDP formulation does not result in a scalable
Given the initial system stat§[0] = s gnd a policyr that optimal scheduling policy, we seek to obtain imdex policy

maps each system statéft] to an action vector[t], the 3] that can provide a scalable solution. An index policy

expected discounted system reward is defined by schedules the charging of EVs based on the ranked order

o N of indices associated with the states of chargers. Spdbijfica
Gr(s) éE,T ZZBtRai[t](Si[t]ac[t]) |S[0]=s], (3) the inflex of chargei is a ma_pping from its ext_ended state
=0 i=1 Silt] = (S;[t], c[t], 7[t]) to an index value. The index value

of each state is independent from the states of other clerger

wherelE,; is the conditional expectation over the randomneaﬁd can be computed off-line which makes the index policy
in costs and EVs arrival under a given scheduling policy scalable

and0 < g8 < 1 is the discount factor. The analysis can be
extended to the average cakel[41].

5) Constrained MDP and optimal policyWe impose a A- A Restless MAB Problem
constraint on the number of simultaneously activated dratg  We now formulate problen({4) as a restless multi-armed
ie, Zf.v a;[t] < M for all t. In practice, such a constraintbandit (MAB) problem. The restlessness is due to the fact
limits the peak power consumption of the charging facilithat the state of a charger, in particular, the lead timevesl
due to feeder and transmission line capacity constraints. even if the charger is not activated.

The EV charging scheduling problem can be formulated asA complication of casting[{4) as a restless MAB prob-
a constrained MDP. The maximum expected reward is givégm comes from the inequality constraint on the maximum

by number of simultaneous activated chargers. This comdicat
G(s) = sup Gr(s) (4) can be circumvented by introducing/ dummy chargers
{2V aT [t]<M, vt} ’ and requiring that exactlyM/ chargers must be activated

in each period. Specifically, each dummy charger always
wherea[t] is the action generated by poliey. A policy 7™  accrues zero reward, and the state of dummy chargers stays at
is optimal if G- (s) = G(s). Without loss of optimality, we g, — (0, 0). We let{1,---, N} be the set of regular chargers
will restrict our attention to stationary policies [42]. and{N +1,---,N + M} be the set of dummy chargers.

1) Arms: The formulated restless multi-armed bandit
(MAB) problem hasN + M arms: each arm represents a
(regular or dummy) charger. We define the extended state

In @), the power limit must be satisfied for allBy relaxing of each charger as;[t] £ (S;[t], c[t], 7[t]), and denote the
this constraint and requiring that the average power usage dextended state space &2 S; x S. x S,. The actions and
not exceedV/, we obtain a performance upper bound far (4the reward functions remain unchanged.

B. A Performance Upper Bound



2) MAB formulation: By including dummy chargers, the Definition 2 (Whittle’s index [12]) If charger (arm)i is
MDP in (@) is equivalent to a restless MAB problem wherendexable, its Whittle’s index;(5) of the extended staté
exactly M out of N + M chargers (arms) are active in eaclis the infimum subsidy under which the passive action is
period. The restless MAB problem is formulated as followsoptimal at states, i.e.,

sup, Ex {z;’; o S M B Ry (Silt]) | §i[o]} vi(8) £ inf, {v : Ro(3) + v + B(LVY)(3)
(7) > Ry(5 L1VE)(5
st SN =M, vt > Ri(8) + B(L1VY)(3)}-
In (@), the arms are coupled by the charging cost and periqdf the charger is indexable, any < v;(5) will make the. .
index, and are not independent. first term strictly smaller than the second term[ih (9) and it i

optimal to activate the charger. Any> v,(5) will make the
) first term greater or equal to the second term and the optimal
B. The Whittle’s Index action is to deactivate the charger.
We now examine the Whittle’s index policy for the restless Given the definition of Whittle’s index, the Whittle’s index
MAB problem defined in[{7). To this end, we first introducepolicy is stated as follows.
the Whittle's index and establish the indexability of thethess

MAB problem in TheorenfL. Z(arm) problem defined if17), the Whittle’s index policy sort

. we con5|der_ the following _5|r.19I_e charger_ r_e_ward Maximiz chargers by the Whittle’s index value in a descend order
ing problem without constraint: given the initial statg[0], and activates the first/ chargers
n .

policy 7 activates and deactivates a single charger to maximiz
the reward without any power limit;

Definition 3 (Whittle’s index policy) For a multi-charger

C. Indexability and Close-form Expression of Whittle’'sdrd

V;(3) £ supE, {ZﬁtRai[t](Si[t]) | S[0] = 5}, (8)  In this subsection, we show that the MAB problem is
T t=0 indexable and the Whittle’s index policy is optimal when the
whereV; is the value function of chargér Note that the value power limit is loose {/ = N). We also give the closed-form
function defined above is different from the value functiogxpression for the Whittle’s index when the charging cost is
defined in [#) (for the constrained MDP). constant.
Let £, be the Markov transition operator on the extend

~ ‘ > - : ®fheorem 1(Indexability, optimality and closed-form indexes)
state,S; and an arbitrary functiorf(S;) defined as

(Lof)(3) 2 E{f(ﬁi[t+ 1)) | S'i[t] =5, a;[t] = al}. ilrzdgf:t?le(:harger is indexable and the MAB problelh (7) is
The maximum discounted reward of probldr (8) is determin@d WhenM = N, the Whittle’s index policy is optimal for the
by the Bellman equation multi-armed bandit problem defined inl (7).

. N . ~ _ 3) If c[t] = ¢y for all ¢, the Whittle’s index of a regular charger
Vi(8) = max{Ro(3) + BLaVi)(8). Fa(8) + BLIVDE). T 1. N is given by

The Whittle’s index is defined by introducing @subsidy vi(T, B, co, 7)

problem which is a modified version of the single charger (" " it B—0

problem defined in[{8). In the-subsidy problem, whenever _ ’

the passive action is taken, the scheduler receives an ext — ¢ if 1<B<T-1,
rewardrv [12]. The Bellman equation for the single charger | 1 — co+

v-subsidy problem is given by BI-YF(B-T+1)-F(B-T) if T<B. 10
V¥ (8) = max{Ro(5)+v+B(LoV;")(5), Ri(5)+B(L£1V;")(5)}, The Whittle's index of a dummy charger is zero.

©) _
whereV is the value function for the-subsidy problem. vi(0,0,¢0,7) =0, i€ {N+1,---,N+ M}

Let S;(v) denote the set of charger states under which it is
optimal to take the passive action on chargierthe v-subsidy
problem. Thus any statec S; () makes the first term if9)
larger or equal to the second term. We are now ready to def
the indexability of an MAB problem.

Proof: An elementary proof of indexability can be found
in Appendix[A. The proof of optimality of Whittle’s index
Policy with M = N can be found in Appendix]B. The proof
Ofclosed-form of Whittle's index with constant chargingsto
can be found in Appendix]IC.
Definition 1 (Indexability [12]) Charger (arm): is indexable ]
if the setS;(v) increases monotonically frofi to S; as v In (I0d), when it is feasible to fulfill EVi’s charging request
increases from-oco to +00. The MAB problem is indexable if (i.e. its lead time is no less than its remaining processing
all the chargers (arms) are indexable. time), EVi's Whittle’s index is simply the (per-unit) charging
Given the definition of indexability, the Whittle’s index isP"Ofit 1 — co- When non-completion penalty is inevitable, the
defined as follows. index takes into account both the charging .pI’OfIt f’;\nd the_non-
completion penalty. We note that the Whittle's index gives



higher priority to EVs with less laxity. Here, the laxity ofAlgorithm 1 Whittle index with LLLP interchange

chargeri is defined asl;[t] £ T;[t] — B;[t] (cf. Fig.[2). 1. Calculate the Whittle’s indexes of all chargers and sort
When the power limit is loosel{ = N), the MAB problem  them in a descend order.
breaks intaV independent single arm problems and Whittle’s 2. Suppose the order of chargersiisis, - -, ip4+n-.

index policy is optimal. It balances the charging cost and for j =iy : iy
the penalty of non-finished demand by deactivating (reqular  for k = inry1 @ iy

chargers when the charging cost is high. Simple index peslici if k& = j in the sense of Definitionl 4
such as the earliest deadline first (EDF) and least laxity firs exchange the orders gfandk
(LLF) policies do not take charging cost into account and may end

lead to significant performance loss. However, wién< N, end

we note that the Whittle’s index policy does not distinguish end

EVs with positive laxity, and is therefore suboptimal. Ireth 3. Activate theM chargers with highest priority.
next section we will introduce an enhanced heuristic policy
based on the Whittle’s index.

with other simple heuristic (index) policiese., EDF (ear-

IV. WHITTLE’SINDEX PoLICY WITH LLLP liest deadline first)[[13], LLF (least laxity first] [14], \ay
INTERCHANGE filling [BQ], and the original Whittle’s index (without LLLP

For the objective of time average3 & 1) profit maxi- interchange)[12].
mization, the Whittle’s index policy is shown (under some If feasible, EDF charged/ EVs with the earliest deadlines,
conditions on the evolution of arm states) to be asymptiyicaand LLF charges\/ EVs with the least laxity. Both policies
optimal, as the number of arms increases to infiriity [44]. Fo¥ill fully utilize the capacity and chargel/ EVs as long
the discounted profit maximization setting considered is thas there are at least/ unfinished EVs in the system. The
paper, the asymptotic optimality of Whittle’s index policy Whittle’s index policy, on the other hand, ranks all chasger
not clear. For small systems with finitely many arms, thege aPy the Whittle's index and activates the fir8f arms, and
counter-examples where an optimal index policy does natexindy put some (regular) chargers idle (deactivated) when the
(and therefore the Whittle’s index policy cannot be optimal charging cost is high.

In this section, we will apply the Less Laxity and Longer The centralized valley filling algorithm is proposed in[30]
remaining Processing time (LLLP) principle (originallyger as an optimal offline scheduling policy for a setting with

posed in[[39]) to improve the Whittle’s index policy. continuou_s charging rate, det_ermin_istic charging cqsni, [ 0)
The LLLP principle is a priority rule for the scheduling ofnewly arrival EVs. In our setting with newly incoming EVs,
charging multiple EVs, which is defined as follows. the algorithm is repeatedly executed based on the mostegbdat

information on the arrived EVs. At the beginning of each
. , . , ) N period, the algorithm schedules EV charging based on the
! a_ndj at imet. \We sayj dommateg (7, = Z)_’ if j has 1ess jtormation of all EVs that have arrived, assuming there is
laxity and longer remaining processing time, i.8,[t] < Li[t] pq new incoming EVs in the future. The charging schedule
and B;t] > B;[t], with at least one of the inequalities strictlyis ¢arried out only for current time slot; at the beginning of
holds. the next period, the scheduling plan is recomputed. Thé-(rea

LLLP defines a partial order over the EVs’ states sudiime adjusted version of) valley filling algorithm is used in
that the EV with less laxity and longer remaining chargingur simulation as a benchmatk.
demand should be given priority. In[39], the authors agplie
an interchange argument to show that LLLP could improve the Numerical Results

performance of any given policy along every sample path, and ' . . .
further, there exists an optimal stationary policy thatdek We first cons_|dered a speual case of probl&n ) W't.h a
the LLLP principle under mild conditions. constant charging cost. Since the charging cost was time-

To apply the LLLP principle, note that the Whittle's indexnvariant, it was optimal to fully utilize the charging cagity
to chargeM unfinished EVs.

policy for the multi-armed bandit problem is a stationar)f) : ) i
policy: at each time it orders (the states of) the+ N arms In Fig.[d, we fixed the traffic of EVs and the total number
’ yof regular chargers and varied the power lidhit All policies

and activates the first/ arms. The proposed heuristic polic X .
re-order every pair of arms that violates the LLLP princige besides the EDF scheduling performed well and close to the
ygpper bound of the performance. Whéf/N = 1, all EVs

Algorithm ). As such, the proposed heuristic policy alwa - . T
gives priority to EVs with less laxity and longer remainind@" be fully charged. Thus all policies achieved optimality
processing time.

Definition 4 (The LLLP Principle) Consider chargers (arms)

1The original valley filling algorithm proposed in [30] has arti constraint
that all EVs’ charging request must be fulfilled. We note tihahay not be

V. NUMERICAL RESULTS feasible to fulfill all EVs’ charging requests under the diag capacityM .
o When implementing the valley filling algorithm in our setinwe modify
A. Benchmark Policies the objective function of the valley filling algorithm so as maximize the

In thi . | f ical . total reward subject to the maximum power limit; in its oljee function,
n this section, results ot numerica eXpe”men.tS are prﬁﬂé charging reward is calculated based on expected fuhaing cost and
sented to compare the performance of proposed index polisy non-completion penalty functiofi(-) (introduced in[(2)).



In Fig. [4, we zoomed in the case wheéd/N = 0.5 and
varied the total number of regular charghr We observed
that the Whittle’s index policy with LLLP interchange and
LLF achieved similar performance, since both policies tdug
followed the least laxity first principle. The performance o
these two policies was close to the performance upper bound
The EDF policy performed poorly because it did not take the
remaining charging demand into account. The gap betweer

the price changed from one state to another.

the Whittle’s index policy and the Whittle’s index policy thi

LLLP interchange came from the reordering of EVs with

positive laxity (cf. the discussion following Theordh 1).
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In Fig. 8, we fixed the EV traffic and the total number
of regular chargersV = 10 and varied the power limit con-
straints. When the power limit was low and /N is small,
there was no enough power to charge EVs and the penalty
dominated the charging profit. In this case the performance
of different policies were close since the limited resource
allowed not much to do. When the power limit was adequate
and M = N, all EVs could be fully charged on time. In this
case, the Whittle’s index policy solved the problem optigmal
as stated in Theoref 1 and achieved the upper bound. The
interchange did not happen because the LLLP principle was
always satisfied in this case. The valley filling algorithnd di
not consider the future arrivals and EDF and LLF did not
consider the dynamic charging cost, thus they performed sub
optimal. When the power constraint was neither too tight
(M/N = 0) nor too loose {//N =~ 1), LLLP could reduce
the number of unfinished EVs with large remaining charging
demand and therefore reduced the non-completion penalties

In Fig.[d, we compared the performance of different policies
by fixing the power limit ratioM/N = 0.5 and varied
the number of regular chargers. Both EDF and LLF sought
to activate as many regular chargers as possible, up to the
capacity constraint/. The Whittle’s index policy, on the
other hand, took the advantage of the pricing fluctuation and
charged more EVs at price valley and kept some chargers
idle when charging cost was high. Based on the Whittle’s
index policy, the LLLP interchange reduced the penalty of
unfinished EVs and improved the performance of Whittle's
index policy. The total reward achieved by the Whittle’sémd

For the dynamic charging cost case, we used the real-tif{h LLLP interchange policy was more than 1.7 times of
pricing signal from the California Independent System Opeilat obtained by EDF; the performance gap between the the
ator (CAISO) and trained a Markovian model that describd¥hittle’s index with LLLP interchange policy and the LLF
the marginal charging costs (cf. Sections Il and V@[40])90I|cy was ov_er25%. We also noted that the LLLP principle
Each period of the constructed Markov chain (on chargirgProved Whittle’s index by around0%.
cost) lasted for 1 hour, and each periodic cycle lasted for

one day with N, = 24. For each period, the real-time price

VI. CONCLUSION

was quantized into discrete price states, and the transitio We considered the problem of scheduling of large scale EV
probability (of the Markov chain) was simply the frequencgharging in public facilities—a problem of particular potel



x10' ‘ ‘ ‘ ‘ ‘ ‘ 2) WhenT = 1: There are two possible conditions.
o If B =0, the Bellman equation is stated as

25

+ Upper Bound
m—f— EDF
| =——=—LLF
+ Whittle’s index
=8— Whittle’s index w. LLLP
=4t—= Valley filling

N

‘/'L'U(la 07 Cjs T) = ma’X{V =+ ﬂWJI'j,TvﬁW;jT}'

ThUSI/i(l, 0, Cj, T) =0.
o If B > 1, the Bellman equation is stated as
V(1,B,¢;,m) = max{v — F(B) + BWY,,
l—cj—F(B—-1)+pW/_ }.
If and only if v > 1 —¢; + F(B) — F(B — 1), the pas-
sive action is optimal.

Thus the arm is indexable and the Whittle’s indexfoe= 1
is stated as follows.

Total reward ($)

25 30 35 20 45 50
# of regular chargers vi(1,B,¢j,7)
(o0 if B=0
Fig. 6. Performance comparison: dynamic charging ggfst= 0.7, T = 12, - 1—cj+ F(B) — F(B — 1) if B>1

B =9, 8=0.995 F(B) =0.2B2, M/N = 0.5.
We summarize some properties of the Whittle's index prove

them for the casd” = 1.
significance as EV penetration deepens. In such settings, i

is essential to develop highly efficient and online chargir{p:;)po.smon E(Mono.tom.cnt);] of r\]Nh'FtleSd md;%\/\rllvmtgle;
algorithms. To this end, index policies considered in thpgr Ndex1s non-decreasing in the charging dem enb =2

are attractive for its implementation simplicity and veilgg T.
in incorporating various operation uncertainties. vi(T, B, ¢j,7) < vi(T, B+ 1,¢5,7),VB > T.
Proof: Since the penalty functiod’(-) is convex, Whit-
APPENDIX tle’s index is nondecreasing whéh > T andT = 1. [ |

A. Proof of Indexability Proposition 2 (Difference of value functions)Denote the
In this subsection, we provide an elementary proof ¢fitierence of the value function as

indexability. That is, for any charger staiethere is a critical

v(3) such that if and only ifv > v(3) the first term in the  95(T, B,c;,7) = V(1. B + h,c;,7) = V(T, B, ¢;,7),

Bellmgn equation(9) is Iz_zlrger or equal to the the second te%ereh € {1,---,B— B} and B is the maximum charging
in a single charger-subsidy problem.

. i . . demand.
The indexability of dummy chargers is straightforward. For Thusg? is piecewise linear in and has following proper-

i1€{N+1,---,N + M}, there is no EV arrival, and only the ..
charging cost and period index evolve. The Bellman equation™

of the v-subsidy problem is given by * 9;(T, B,¢j,7) is continuous inv.
« There exist,, (T, B, c;j,7) and v, (T, B, ¢;, T) such that,
Vi#(0,0,¢5,7) = max{B 3, P;xV;"(0,0,cp, {7+ 1}) + v, gv(T, B,c;,7) is piecewise linear anddg? /dv > —h
B2k BV (0,0 e, {7 +1})}. when v € [v,(T, B, ¢j, 7),on(T, B, c;,7)]. Otherwise,

If and only if v >0, the first term is larger than the ¢, (1, B,c;,7) is constant .
second term and it is optimal to deactivate the dummy charger

Proof:
Otherwise, the active action is optimal. So a dummy charger When B — 0
is indexable and its Whittle’s index (0,0, ¢;, 7) = 0. * ens =4,
For the regular chargers, we prove the indexability by gv(1,B,¢;,7) = V¥ (1,h,c;,7) — V¥(1,0,¢4, 7).
induction.
1) WhenT = 0: There is no EV attached to the charger.  If vi(1,h,¢j,7) > v4(1,0,¢5,7) =0,
The Bellman equation is stated as V(1. B. s
h( ) ) Cja T) .
V¥(0,0,¢;,7) = max{v + WY, WY }. l—¢;—F(h-1), if v <0;
' =¢ 1l—¢i—F(h—-1)—v, if0<v<vy(l hoc,T);
where —F(h), if vi(1,h,cj,7) < v
wv
7T . . . . —
= (1= ) 354 PV (0.0, {7 + 1))+ rithoem) =il 060 =0
PiT ZT ZB Zk Q:(Tv B)Pjyk‘/iy(Tv Bv Ck, {T + 1}) g}lzl(lv Bv Cj T, )
is the expected reward of possible arrivals. If and only ¥ 0, 1—¢;— F(h—1), !f v <vi(L h,c;7);
the first term is larger and the passive action is optimal.sThu = § Y~ F(h), if vi(1,h,¢j,7) < v <0;

I/i(0,0,Cj,T) — 0 —F(h), |f Vi(l,h,Cj,T) S V.



e WhenB > 1,
gn(1,B,cj,7) =V(1,B+ h,c;,7) = V¥(1,B,cj, 7).
Sinceui(l,h—i—B,cj,T) > I/i(l,B,Cj,T),

g1 (1,B,¢j,T)
F(B-1)—F(B+h—-1),
if v<v(1,B,c¢j,7);
l-¢j—v+F(B)-FB+h-1),
if v;(1,B,¢j,7) <v<vi(1,B+h,c;,7);
F(B) - F(B+h),
if v;(1, B+ h,cj,7) <.

Thus, gy (1, B, c;,7) is piecewise linear and continuousiin
The derivative satisfies Propefty 2. |

Since Propositiori]2 holds fof”— 1, f*(T,B,c;,7) is
continuous and piece-wise linear in Denote

v(T,B,c;,T) £ ming vi(T—1,B—1,¢k,7),
v(T,B,c;,7) = max, v (T — 1,B — 1,¢x,7).

We have

of*(T, B,cj,7)/ov
_ { 17 if V¢ [Z(T,B,Cj,T),ﬂ(T,B,Cj,T)];
1 >0,

otherwise.

So f¥(T,B,c¢;,T) is continuous and non-decreasing in
v. Whenv = —oc0, fY(T,B,c¢j,7) = —co. Whenv = +oq,
fY(T, B, cj, T) = +o0. Thus there is a cross point ¢fand the
x-axis. Definev(T, B, cj, 7) £ min, { f*(T, B, c;,7) = 0}. If

Proposition 3 (Concavity of value functions)The difference and only ifv > (T, B, ¢;, 1), the first term in[(I1) is larger

of value functiong? (7', B, c;, 7) is non-increasing i3 when  or equal to the second term and the passive action is optimal.

B >T. ThusV}*(T, B, c;,7) is concave inB whenB > T.

Proof: Since whenB > 1, v;(1, B, ¢;, 7) is hondecreas-

ing in B,
glll(lvB + lvcjvT) - gi’(l,B,Cj,T)
=VY(1,B+2,¢5,7)+V¥(1,B,cj, 7)—
2V¥(1,B+1,¢5,7)
2F(B) — F(B+1) — F(B - 1),
if v <wv;(1,B,¢;,7);
v—(1—¢;)+F(B)—-F(B+1),
if v;(1,B,¢j,7) <v<v(1,B+1,¢,7);
l-c¢j—v—F(B)+ F(B+1),
if v;(1,B+1,¢j,7) <v<wv(1,B+2,¢,7);
2F(B+1)— F(B) — F(B +2),
if v;(1,B+2,¢j,7) <;

<0.

By definition, v(T, B, ¢;, 7) is the Whittle’s index.
The indexability ofT" is shown. Next we will prove Propo-
sition[,[2,[3 forT assuming that they are true fér— 1.
Proof of PropositiodIl: WhenB > T,

fV(T,B,Cj,T) — fV(T,B + 1,047',7')
= BZI@ Pj,]qu(T - 1vB - 170767 {T + 1})_
BZk Pj7kgi,(T - 17370167 {T + 1})
>0

The inequality is because th&}’ (T — 1, B, ¢;, 7) is concave
in BwhenB >T — 1.
Since (T, B, cj,7) > f*(T,B +1,¢;,7) we have

v(T,B,cj,7) <v(T,B+1,c¢4,7),VB >T.

The first and last cases are non-positive since the penalty Proof of PropositioriP:
function F(B) is convex. The second and third cases are If B =0,

non-positive because of the expressions of the indeXhus

Vi¥(1, B, ¢;,7) is concave inB whenB > 1. [ ]

g, (T,B,c;j, 1) =V'(T,h,cj,7) = V(T 0,¢c5, 7).

3) T > 2: Assuming indexability and Propositiéd @, [2, 3 , if (T, h,c;,7) > vi(T,0,¢;,7) =0,

hold for 7" — 1, we show that they hold fdr.
If B =0, the Bellman equation is stated as follows.

Viu (Tv 0, Cjs T)
=max{3> , PjxV/(T —1,0,cp, {7 +1}) + v,
Bk PV (T — 1,0, ¢, {1 + 1})}.

If and only if v >0, the first term is larger than the
second term and the passive action is optimal. Thus

I/i(T, 0, Cj, T) =0.
If B > 1, the Bellman equation is stated as follows.
ViU(Tv 37 ijT)
=max{f> , PjxV"(T —1,B,cp, {7 +1}) + v,

B PixV(T —1,B — 1cp, {1+ 1}) +1—¢;}.
(11)

Denote the difference between the two actions as
(T, B,cj,7) L2y—(1- cj)+
B Pirgi(T —1,B —1,cp, {7+ 1}),
where
gi(T—1,B—1,¢c,,T)
=VX(T-1,B,c,7) - V(T —-1,B—1,¢p,7).

g7(T,0,¢5,7)
1= € + B Zk PJ)ng—l(T - 1,0, cg, {T + 1}),
if v<0;
L—cj=v+ B3 Pirgn(T—1,0,c, {7+ 1}),
if0<v< Vi(T, h,Cj,T);
B3k Piaegh(T = 1,0, ¢, {7 +1}),
if Vi(T; h7cj,7-) S V.

° |f Vi(T, h,Cj,T) S Vi(T,O,Cj,T) = 0,

g7 (T,0,¢5,7)
L—cj+ B3, Piwgh_1(T = 1,0,c, {7 +1}),
if v < Vi(T,h/,Cj,T);
v+ B3 Pikgh (T — 1,0, ¢, {7+ 1}),
if I/i(Ta h7cj77—) <v <0
ﬁZk P.j7ng(T - 11070161 {T+ 1}),
if 0<w.
If B>1,

g (T,B,cj, ) =VX(T,B+ h,cj,7)— VT, B,cj, ).



o If v;(T,B+ h,cj,7) >v;(T,B,c;,T),

QZ(T,B,CJ‘,T)

B3k Pikgh(T =1, B = Le, {7 +1}),

if v <v(T,B,cj, T);

1—cj—v+

B3k Pingh (T =1, B, cp, {7 +1}),

if yi(T7BvcjvT) <v< Vi(T,B+h,Cj,T);
B3k Pikgh (T =1, B ey, {7 +1}),

if vi(T,B+ h,c;j,7) <w.

o If Vi(T,B-i-h,Cj,T) < I/i(T,B,Cj,T),

gZ(T,B,Cj,T)

B Pikgh(T —1,B = 1,cp, {1+ 1}),

if v< Vi(T,B+h7cj7T);

v—(1—c¢j)+

ﬂZk Pj,kg;l:Jrl(T —1,B—1,c¢, {T + 1}),
if I/i(T,B + h,cj,T) <v< Vi(T,B,Cj,T);
B Pirgr(T =1, By, {1 +1}),

if Vi(TvacjvT) <.

Denote

Zh(TvaijT)é {Zh(T—l,(B—l)Jr,ck,T)},

min
{k: P,k >0}

and

Dh(T,B,Cj,T)é max {vp(T —1,B, ¢k, 7)},

{k:Pjyk>0}

wherea™ = max{0,a}.

Since Proposition[]2 holds forl' —1 by assumption,
we have g}/ (T,B,c;,7) is continuous in v. When
ve (T, B,cj,7),on(T,B,c;,7)], g7 (T,B,c;,7) is
piece-wise linear andyg;, (T, B, ¢;,7)/0v > —h. Otherwise,
gy (T, B, c;,T) is constant. [ ]

Proof of Propositior B:
Sincev;(T, B, ¢;, T) is nondecreasing itB whenB > T,

9y (T, B+1,¢,7) = g{ (T, B, c;, 7)
=VY(T,B+2,¢c;,7)+ VY (T,B,cj,7)—
2‘/1'V(T,B+1,Cj,7')
ﬁzk PJakglll(T_ 1aBack7{T+1})_
B Pikgl (T —1,B = 1,cp, {7+ 1}),
if v <v(T,B,cj,T);
v— (=) + B3 Pirgf(T =1, Breg, {r+1}),
if v;(T,B,c;,7) <v<v,(T,B+1,c¢j,7);
L—cj—v—=B Pikg{(T —1,B,cp, {17+ 1}),
if v;(T,B+ 1,cj,7') <v<y(T,B+2,¢,7);
Bk Pirg? (T =1, B+ 1, ¢, {7+ 1})—
Bk Pikgl (T — 1, B, e, {1 + 1}),
if v;(T,B+2,¢;,7) <v;

<0.

The first
V(T —1,B,c;,7) is concave wheB > T' — 1 according to

10

B. Proof of Optimality of Whittle's Index with/ = N

In this appendix, we prove that the Whittle’s index policy
optimally solves the MAB problem defined ial(7), which is
equivalent to the MDP problem formulated [d (4).

First, we claim that the Whittle’s index policy optimally
solves the single charger problem with dynamic price and
no constraint, as defined ii](8). The extended state-
(T, B, ¢, 7) includes the charging cost and period index. The
Bellman equation of the single charger problem is given by:

Vi(3) = max{Ro(3) + B(LoVi)(3), R (3) + BIL1VI)(3)},

(12)
where actiono = 1 means to activate the charger amd- 0
means to leave it passive.

The Whittle’s index is defined by introducing:asubsidy
problem which is a modified version of the single arm
problem defined in[{12). In the-subsidy problem, whenever
the passive action is taken, the scheduler receives an extra
rewardrv [12). The single charger problem defined inl(12) is
simply the case when the subsidy= 0.

The Bellman equation for the-subsidy problem is given

by

Vi7(8) = max{Ro(8)+v+B(LoVi")(5), R (5)+B(L1V")(5)},
(13)
whereV}” is the value function for the-subsidy problem.
Now define a Whittle’s index policyt; for a single charger
(either regular or dummy charger}subsidy problem as to
activates the charger if and onlyi£(5) > v. Thus we have
the following lemma.

Lemma 1. The Whittle’'s index policyr; is optimal for the
single chargew-subsidy problem defined in_(13). In particular,
whenv =0, 7; is optimal for the single charger problem
defined in[(IR).

Proof: We have shown in Append[x]A that the Whittle’s
index defined in Definitiop]2 exists, and therefore the it
index policy; is well defined. By Definitiol 2, for any state
5 such thaty;(3) > v, the first term in[(IB) is strictly smaller
than the second term. The Whittle’s index policy activates
the charger and obtains the second term as an expected reward
which satisfies the Bellman equation in this case.

Forv = v,;(5), the first term is greater or equal to the second
term in the Bellman equation by Definiti6h 2. The indexalilit
result proved in AppendikJA guarantees that the passive set
grows monotonously which implies that this inequality isetr
for any v > v(8). Thus, for any staté such thatv(s) < v,
the Whittle’'s index policyr; leaves the charger passive and
obtains the first term as the expected reward, satisfying the
Bellman equation.

Thus,n; satisfies the Bellman equatidn {13) and is therefore
optimal for the single chargersubsidy problem. In particular,
whenv = 0, 7; is optimal for the single charger problem and

and forth cases are non-positive becausatisfies the Bellman equatidn{12). [

Now we consider the probleni](7) with/ = N = 1: we

the assumption. The second and third cases are non-positisge a regular charger and a dummy charger, and at each

because of the expressions of(T,B + 1,c¢;,7). Thus
V¥ (T, B,cj,7) is concave inB whenB > T. |

time, we are required to activate exact one charger. For
this constrained two-arm problem, the state is defined as
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(5,0) = (T, B,c¢,7,0,0), wheres is the extended state of theWhen v < 0, it is optimal to activate the dummy charger.

regular charger and = (0, 0) the state of the dummy chargerOtherwise, passive action is optimal. So a dummy charger is

The actiona’ = 1 means to activate the regular charger, anddexable and its Whittle’s index ig;(0, 0, 7) = 0.

a’ = 0 represents activating the dummy charger. For regular chargers, we showed in Appendix B2 that
The state of the dummy charger will always W 1;(1,0,7)=0andv;(1,B,7)=1—¢o+ F(B)— F(B-1)

The dummy charger yields no reward regardless of thehenB > 1. We will show the index closed-form for the case

taken action. Thus the state transition of two-arm probleof 7" > 2 using induction.

is equivalent to the state transition in problem](12), i.e., 1) WhenT = 2: The discussion is divided into following

P((5,0), (§,0)|a’) = P(3,§'|a). The rewards of the two-arm two conditions.

problem can be presented by the rewards of the single chargdf B = 1,

problem in [I2): V(2. 1,7) = max{v + VY (1,1, {r + 1}),
R/l(g,O) :Rl(g), 1_00+ﬂ‘/iy(1307 {T+1})}
BT
Ry (3,0) = Ro(3). The difference between active and passive actions
The Whittle’s index policy for the two-arm prob- 2,1,7)
lem (denoted bym) activates the regular charger when _° /|7 V(1.0 1
(v(3) > 1(0) = 0), and activates the dummy charger (leaving V(_ (100_);)@91_(0;) ’ {T; V}E 0-
(1-PB)rv—-—>10=cp)], FO<v<1l—co+ F(1);
v—(1—co)—BF(1), ifl—co+ F(1) <y

the regular charger passive) otherwise.

Whenm, faces staté andn, faces statés, 0) for the same
realizations, the actions of two policies are the sameg.will
activate the regular charger in the two-arm problem if argfuals to0 whenv =1 — ¢o. Thusy;(2,1,7) =1 — co.
only if m; activates the charger in the single charger problem,!f B > 2, the Bellman equation is stated as follows.
and vice versa. Since the reward, transition an_d the gctﬁon (2, B,7) = max{v + BV¥(1, B, {r + 1}),
these two policies are the same, the value functions wilhkee t 1—co+BVY(1,B—1,{r+1})}.
same. Denoting the value functionof andr, by V;, (5) and v ’

H,,(3,0), we haveH,, (3,0) = Vy, (3). SinceV,, (5) satisfies DenoteAF'(B) = F(B) — F(B — 1). The difference between

the Bellman equatiori{12), we have active and passive actions
H,.,(5,0) fY(2,B,1)
= max{Ro(3) + B(LoH,)(5,0), Ri(3) + B(L1Hy,) (5,0}  =v—(1—co)+Bg7(1,B—1,{r+1})
= max{R)(3,0) + B(LoHx,)(3.0), v—(1-co) = BAF(B - 1),
R} (3,0) + B(L1Hx,)(5,0)}, |f1u< 1—c01+AF(B—1);

which is in fact the Be_llman _equation_for thg c_onstrained—two = i(f ;—BZ(EV;A(FZBCO—)]’U <v<1—co+AF(B);
arm problem. The Whittle’s index policy satisfies the Belima v — (1 - co) + BAF(B)
equation for the two-arm problem and is therefore optimal. i1 co +OAF(B) - V;a

Finally, we argue that the Whittle’s index policy is optimal
for the multi-arm problem defined if](7). We hadéregular equals to0 when v =1— ¢y + 8[F(B — 1) — F(B — 2)].
chargers andV dummy chargers. At each time, we activatdhusv;(2, B, 7) = 1 — ¢o + B[F(B — 1) — F(B — 2)].
exact N chargers. We can pair each regular charger witha2) WhenT' > 2: Assume Equation(10) holds far — 1,
dummy charger and implement the Whittle’s index policy foeonsider the case fdf.
each pair. The action of each regular charger is decoupted, a If B =1,
the total reward is simply. the sum of re_vvard from aI_I te V¥(T,B,7) = max{v + BV¥(T — 1,1, {r + 1}),
regular chargers. The Whittle’s index policy optimally iopl _ v _

' ; ! 1—co+ V(T —-1,0,{r+1})}.

solves the problem of each pair, and is therefore optimal for i )
the original problem in[{7). We note, however, that the abovg'e difference between actions is

argument no longer holds whed < N, because the problem P, 1, T)
defined in [[¥) cannot be decoupled ind single (regular) =v—(1—-c¢o)+Bg¥ (T —1,0,{T+1})
charger problems in this case. v—(1-08)(1-cp), if v<0;
_ ) =B -(01-c)l, if 0<v<1-—cop;
C. Proof of Closed-form of Whittle’s Index v—(1-co)t

2 v H
Proof: Since the cost is constant, we will omit the cost Fgr(T=2,04r+2}) ifl-co<w
in the state of chargers for simplicity. The last case can be rewritten as
For dummy chargers, there is no EV arrival, and only the(1 — 8)[v — (1 — ¢p)] + B(v — (1 — co))+
charging cost evolves. The Bellman equation of theubsidy  52(V»(T — 2,1, {7 + 2},v) — V(T — 2,0, {7 +2})),

roblem is given b
p IS given Dy which equals to 0 when wv=1-¢ since

V2(0,0,7) = max{v + 83, P;rV;"(0,0,{r + 1}), vi(T—1,1,7)=1—¢ by assumption. Thus
BZ,CPJ-_,;CV;’(O,O,{T+1})}. I/i(T,l,T): 1—cp.



If 2 < B <T -2, the difference between actions is statedz]

as follows.
fr(T, B, 1)
=v—(1—co)+Bg{(T—1,B-1{r+1})
v—(1—-co)+
B2gY(T —2,B—2,{r+1}) if v<1—cp;
v—(1—co)+
BgY(T —2,B—1,{r+1}) ifl—-c)<w
The latter case equals td when v=1-¢, since

vi(T—1,B,7)=1—¢y when2 < B <T —2 by assump-

tion. Thusy, (T, B,7) =1 — ¢y when2 < B <T — 2.
If B=T -1,

(T, B,7)
—v— (1= o)+ BH(T—1,B—1,{r +1})
v— (1= co) + BgY (T —2,B — 2, {r +2}),
if v<1-—cp;
(1= B)lv — (1 - o)),
if 1—co<v<l—co+pBT2F(1);
V—= (1 - CO) —l—ﬂQQi/(T —2,B— 17{T+ 2})1
if 1—co+pBT2F(1) <y

equals to0 whenv =1 — ¢y. Sov; (T, B,7) = 1 — ¢y when
B=T-1.
If B>T,

f(T,B,7)
=v—(1-co) +Bg{(T—-1,B-1,{r+1})
v—(1—co)+ B%gY(T —2,B —2,{r+1})
if v<l—co+pT2AF(B—-T+1);
(1=B)r—(1=co)l,
=S if1l—co+ BT 2AF(B—-T+1)
<v<l—co+ BT 2AF(B-T +2);
V_(1_CO)"'ﬂQgi/(T_sz_17{T+1})a
if 1—co+ BT 2AF(B-T+2)<v.

(14)
Whenv <1 —c¢y+ BT 2[F(B-T+1) - F(B-T)],

v<y(T-1-T'B—-1-T'7)
<y(T-1-T',B-T' 1)
forall 0 < T’ <T — 1. Thus in the first case of (14),
ﬂng(T_2vB_23{T+1})
=B3g¥(T —3,B—3,{r+2})

;.ﬁlT.’lg‘f(l,B—T—i—l,{T—i-T—Q})
=BT ~F(B~-T+1)+ F(B-T)]

Sowhenw =1—c¢o+ BT F(B~T+1) - F(B-T)),
the first case in equation (14) equalsito Thus whenB > T,
the closed-form of index is stated as:

vi(T,B,7)=1—co+ T F(B-T+1)- F(B-T)].
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