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Large-scale Charging of Electric Vehicles:
A Multi-Armed Bandit Approach

Zhe Yu†, Yunjian Xu‡, and Lang Tong†

Abstract—The successful launch of electric vehicles (EVs)
depends critically on the availability of convenient and economic
charging facilities. The problem of scheduling of large-scale
charging of EVs by a service provider is considered. A Markov
decision process model is introduced in which EVs arrive ran-
domly at a charging facility with random demand and completion
deadlines. The service provider faces random charging costs,
convex non-completion penalties, and a peak power constraint
that limits the maximum number of simultaneous activation of
EV chargers.

Formulated as a restless multi-armed bandit problem, the
EV charging problem is shown to be indexable. A closed-form
expression of the Whittle’s index is obtained for the case when the
charging costs are constant. The Whittle’s index policy, however,
is not optimal in general. An enhancement of the Whittle’s index
policy based on spatial interchange according to the less laxity
and longer processing time principle is presented. The proposed
policy outperforms existing charging algorithms, especially when
the charging costs are time varying.

Index Terms—Charging of electric vehicles; deadline schedul-
ing; Markov decision processes; multi-armed bandit problem;
Whittle’s index.

I. I NTRODUCTION

A CCORDING to a recent study [1], a transition from
gasoline based transportation to electric vehicles (EV),

coupled with integrating renewable resources for EV charging,
will play a critical role in achieving the goal of halving the
CO2 emissions by 2050. In 2015, the global electric drive
vehicle sales (including hybrid, plug-in vehicle and battery
electric vehicle) reaches over 498,000, which is2.87% of the
annually all vehicle sales [2]. In the US, the annually EV
sales has grown 20 times since 2011. Similar trend exists in
the EV charging station market. Through the end of 2014,
there are more than 15,000 fast charging points and 94,000
slow charging points over the world. The EV charging station
stock more than doubled for slow charging points between
the end of 2012 and 2014, and increased eightfold for fast
charging points [3]. As of March 2016, there are more than
12,700 electric stations and 31,800 charging outlets deployed
in the United States [4].

EV charging services play an essential role in the successful
launch of EVs. A sufficient amount of charging services
attracts more consumers to purchase EVs and high EV market
share brings more investment in the charging services [5],
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[6]. Large charging facilities with fast charging capabilities
in public spaces such as parking garages, parking lots at
commercial locations, and highway rest stops serve to alleviate
range anxiety of EV consumers and stimulate the market share
of EVs. These facilities that serve a large number of EVs at any
given time bring the additional benefit of providing ancillary
services and maintaining operation stability of the power grid
[7], [8].

Large scale EV charging at the capacity of hundreds of
vehicles faces a different set of technical challenges fromthose
associated with individual home charging. First, consumers
expect charging to be completed within a relatively short
period of time. Thus, fast charging devices operated at high
peak power becomes essential. Currently, level 2 and DC fast
charging are most widely used in public charging stations.
Level 2 charging supplies up to 30 miles of travel for one
hour of charging with a 6.6kWh on-board charger. DC fast
charging supplies up to 40 miles of range of driving for
every 10 minutes of charging, which equals approximately 15
average size residential central air conditioning units. These
types of charging, if un-managed, may have detrimental effects
on power system reliability [9], [10]. It is thus necessary to
limit the number of simultaneously activated chargers.

Second, there is a high level of uncertainty in charging
demand at public facilities. EVs arrive at a charging facility
randomly, each with stochastic demand and random deadlines,
which makes it difficult for the scheduler to meet consumer
demands.

Third, the cost (or the profit) of the service provider may be
stochastic. For instance, the service provider may participate
in the wholesale electricity market and is subject to real-
time price fluctuations. In addition, the service provider may
integrate local renewable energy such as solar with intermittent
generatioin.

Finally, the energy management system that schedules EV
charging operates in real time. Therefore, the scheduling algo-
rithm must be scalable with respect to the size of the charging
facility, which rules out the use of brute-force optimization
techniques.

A. Summary of Results

This work extends the results from [11], which is the first
article to apply the restless multi-armed bandit problems to
the EV charging. We propose an online scheduling algorithm
that is computationally scalable and capable of dealing with
demand and cost uncertainty. We introduce a constrained
Markov decision process (MDP) model with the objective of
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maximizing expected (discounted) profit subject to a constraint
on the maximum number of simultaneously activated chargers.
The constructed MDP model captures the randomness in EV
arrivals, EVs’ charging requests and deadlines, as well as the
charging costs. The evolution of charging cost is random, and
is assumed to be independent of the actions taken by the
operator.

We note that computing exact optimal scheduling policies
by brute-force dynamic programming is intractable, because
the number of system states grows exponentially with the
number of chargers. In order to derive effective online schedul-
ing algorithms, we reformulate the MDP as a restless multi-
armed bandit (MAB) problem with simultaneous plays [12].
We first establish the indexability of the formulated restless
MAB problem, which enables us to apply theWhittle’s index
policy to the EV charging problem. The special structure of
the EV charging problem, in particular the pre-determined
charging deadlines, simplifies the computation of the Whittle’s
index. For the case with constant charging cost we derive the
Whittle’s indexes in closed form.

We establish the optimality of the Whittle’s index policy
for random charging cost when the constraint on the number
of simultaneously activated EV charging is loose. When the
constraint of simultaneous activation is strict, Whittle’s index
policy is not optimal in general. In this context, we provide
a procedure based on the LLLP (Less Laxity and Longer
Processing) principle [11] as an improvement of the Whittle’s
index policy. Numerical results demonstrate that the LLLP
principle could significantly improve the performance of the
Whittle’s index policy, especially when the charging cost is
stochastic and the EV arrival traffic is relatively heavy.

B. Related Work

The centralized EV charging problem considered in this
paper falls in the category of multi-processor deadline schedul-
ing problems. In this context, EVs are jobs and chargers are
processors.

Earlier work on deadline scheduling are based on the
deterministic worst case objectives. The problem of deadline
scheduling with one processor is well understood. In this
case, simple online algorithms such as the earliest deadline
first (EDF) policy [13] and the least-laxity first (LLF) policy
[14], are optimal, when the completion of all tasks before
deadlines is feasible. Under certain conditions, it is shown that
the EDF scheduling minimizes the amount of unfinished work
in single-processor deadline scheduling [15], [16]. Thereis
also a substantial literature on deadline scheduling of multiple
processors (for a survey, see [17]). It is shown in [18] that an
optimal online scheduling policy does not exist in general for
the worst case performance measure.

The problem of stochastic multi-processor deadline schedul-
ing, of which the EV charging problem is a special case,
is less understood, primarily because the stochastic dynamic
programming for such problems are not tractable in practice.
The work similar to ours are [19], [20] where the authors
studied the deadline scheduling problem in wireless commu-
nications. The authors of [21] formulate the stochastic deadline

scheduling problem (in wireless communications) as a restless
MAB problem, and establish indexability for the formulated
MAB problem. Related problems of scheduling packets with
deadlines in ad hoc networks are studied in [22]. We note
that there are fundamental differences between the job arrival
and processing cost models adopted in this paper and in the
aforementioned literature, and that the results derived inthese
existing works do not apply to our model.

The scheduling of charging multiple EVs has received much
recent attention. In [23], the authors proposed an intelligent
energy management system for the large-scale public charing
stations taking into account of EV admissions, scheduling
and renewable energy. Applications of deterministic deadline
scheduling models are applied in [24], [25], [26], [27] to
study the scheduling of EV charging. With an objective of
minimizing the load variance, a few recent papers propose
several approaches for EV charging scheduling, based on
game theoretic analysis [28], [29] and decentralized algorithms
[30]. In addition, the authors of [31], [32], [33] developed
control algorithm to minimize the power losses and improve
the voltage profile. Distributed pricing strategy and algorithm
are proposed in [34], [35] to incentivize EVs to participatein
frequency regulation. In [36] and [37], two-settlement central-
ized control algorithms are proposed: charging trajectories of
EVs are optimized day ahead and adjustment is carried out in
real-time. The authors of [38] further investigate the real-time
adjustment balancing of predetermined charging trajectories
according to regulation signals.

Closely related to this work, the authors of [39] construct a
dynamic framework on EV charging that explicitly takes into
account the stochasticity in both EV arrival and charging cost.
Through a dynamic programming approach, they establish the
Less Laxity and Longer Processing time (LLLP) principle:
priority should be given to vehicles with less laxity and longer
processing time. The LLLP principle is shown to be able to
improve any charging policy on a sample-path basis [39], and
will be used in this paper to improve the Whittle’s index policy.

II. PROBLEM FORMULATION

We now formulate the EV charging problem as a stochastic
deadline scheduling problem subject to processing capac-
ity constraints. In Section II-A, we formulate a constrained
Markov decision process (MDP). In Section II-B, we provide
an upper bound on the total discounted reward, which is useful
for benchmark comparisons.

A. An MDP Formulation of Stochastic Deadline Scheduling

Fig. 1 shows a schematic of an energy management system
at an EV charging facility. We assume that the facility has
N parking spots, each with a charger that can be activated
or deactivated by the scheduler. Each charger can only be
connected to one vehicle.

EVs arrive at the facility independently. If at least one
charger is available, a newly arrived EV will park at a spot
and attach to its charger. The EV owner communicates the
charging demandBi (measured in charging time), and the
deadline for completiondi to the scheduler. The scheduler
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Fig. 1. Architecture of a charging station
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Fig. 2. An illustration for the charger’s state.ri is the arrival time of an EV
at chargeri, di the deadline for completion,Bi[t] the amount of charging to
be completed bydi, Ti[t] the lead time to deadline.

receives the information and updates the state of chargers in
the system.

We now present elements of the discounted infinite-horizon
discrete-time MDP. At the beginning of each time slot, the
real time marginal charging cost is released and new EVs may
arrive at the facility. The scheduler collects the states ofthe
EVs in the facility and the charging cost, and makes a decision
on which chargers to activate or deactivate in the current slot.

The assumptions in the paper are summarized as follows;
they are approximations of practical operating conditionsand
are made for tractable analytical developments.

A1. Each charger can be connected to only one EV, and it
is removed from the EV at the deadlinedi. Each EV is
charged at a fixed rate normalized to1.

A2. The EV arrivals are independent.
A3. The price of charging is in proportion to the charging

demand, normalized to1 dollar/hour.
A4. The marginal charging costc[t] is an exogenous finite

state Markov chain [40] whose evolution is independent
of the state evolution and actions of charging.

A5. The charging of EVs is preemptive without cost.
A6. The penalty for incomplete charging is a convex function

of the incomplete amount at the deadline.

1) State space:The state of the charging system consists
of the state of individual chargers, charging cost, and ”period
index”. The state of chargeri ∈ {1, · · · , N} is defined by

Si[t]
∆
=(Ti[t], Bi[t]); as illustrated in Fig. 2,Ti[t] , di − t is

the lead time andBi[t] is the remaining charging demand
measured in charging time. If there is no EV attached to
chargeri, we setSi[t] = (0, 0).

The system charging costc[t] is the cost of electricity. It

is the electricity price from the wholesale market biased by
the local renewable generation. Both of the wholesale price
and the renewable generation are random and we assume the
charging cost follows a Markov chain that is known to the
scheduler.

We assume that the distribution of EV arrivals is time
varying but periodic, i.e., the arrival distribution at thesame
period of each day is the same. Such a model allows us to
incorporate a “typical day” travel pattern for arrival statistics
and convert a non-stationary arrival to a cyclostationary one
by introducing a “period index”. Specially, each day is equally
divided intoNτ periods (for example, 24 hours) and the period
stateτ [t] = (t modNτ ) is the period index which forms a
deterministic periodic Markov chain. The arrival rate and the
probability mass function (PMF) of the initial state of EVs
within the same period (for example, 9 AM-10 AM) across
different days are assumed the same. The arrival rate and the
initial state PMF within periodτ , which are known to the
scheduler, are denoted byρτi and Qτ

i (T,B). Note that the
Markov chain of charging costs needs not to be periodic (with
lengthNτ ).

Thus the state space of the charging system is defined by
S[t] = (τ [t], c[t], S1[t], · · · , SN [t]) ∈ Sτ × Sc × S1 × · · · × SN .

Here,Sτ is the period space,Sc the state space of the cost, and
Si the state space of individual chargeri, for i = 1, . . . , N .

We note that the constructed MDP is stationary because the
time dependency is incorporated by including in the system
state a periodic Markov chain that describes time evolution.

2) Action: The action of the scheduler is defined bya[t] =
(a1[t], · · · , aN [t]) ∈ {0, 1}N whereai[t] = 1 means that the
charger is activated (active) whereasai[t] = 0 means that the
charger is deactivated (passive).

3) State evolution:We assume that the charging costc[t]
evolves as an exogenous finite state Markov chain with
transition probability matrixP = [Pi,j ]. The evolution of the
charging cost is independent of the actions taken by the
scheduler.

The period state forms a deterministic periodic Markov
chain. The evolution is stated as:(τ [t+1] | τ [t] = τ) = {τ+1}
where{τ + 1} = (τ + 1 modNτ ).

Given the period indexτ [t] = τ , the evolution of chargers’
states depends on the scheduling actiona[t] = {ai[t]}Ni=1, i.e.,

(Ti[t+ 1], Bi[t+ 1]) = (Ti[t]− 1, Bi[t]− ai[t]).

EVs leave the chargers at their deadlines. New EVs arrive
at the charging facility following a geometric distribution with
probability ρτi . The probability mass function (PMF)Qτ

i (·, ·)
governs the initial states of newly arrived EVs. The probability
distribution of EV arrivals follows the periodic cycle with
length Nτ , and depends only on period indexτ [t] (not t).
Formally, the state evolution of chargeri with stateSi[t] under
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actionai[t] = 1 is given by
(

Si[t+ 1] | ai[t] = 1, τ [t] = τ
)

=



































(Ti[t]− 1, Bi[t]− 1) w.p. 1, if Bi[t] > 0, Ti[t] > 1,

(Ti[t]− 1, Bi[t]) w.p. 1, if Bi[t] = 0, Ti[t] > 1,

(0, 0) w.p. (1− ρτi ), if Ti[t] ≤ 1,

(1, 1) w.p. ρτiQ
τ
i (1, 1), if Ti[t] ≤ 1,

· · ·

(T̄ , B̄) w.p. ρτiQ
τ
i (T̄ , B̄), if Ti[t] ≤ 1,

(1)
where T̄ and B̄ is the maximum deadline and charging
demand.

4) Reward: At time t, the reward received from chargeri
under actionai[t] is given by

Rai[t](Si[t], c[t])

=















(1− c[t])ai[t], if Bi[t] > 0, Ti[t] > 1,

(1− c[t])ai[t]− F (Bi[t]− ai[t]),
if Bi[t] > 0, Ti[t] = 1,

0, otherwise,
(2)

whereF (B) is an increasing and convex penalty function with
F (0) = 0. Note that the scheduler obtains one unit of reward
if the EV is charged for one period. At the EV’s deadline,
i.e., whenTi[t] = 1, the scheduler pays the compensation for
unfulfilled charging request,F (Bi[t]− a).

Given the initial system stateS[0] = s and a policyπ that
maps each system stateS[t] to an action vectora[t], the
expected discounted system reward is defined by

Gπ(s)
∆
=Eπ

(

∞
∑

t=0

N
∑

i=1

βtRai[t](Si[t], c[t]) | S[0] = s

)

, (3)

whereEπ is the conditional expectation over the randomness
in costs and EVs arrival under a given scheduling policyπ
and 0 < β < 1 is the discount factor. The analysis can be
extended to the average case [41].

5) Constrained MDP and optimal policy:We impose a
constraint on the number of simultaneously activated chargers,
i.e.,

∑N

i ai[t] ≤ M for all t. In practice, such a constraint
limits the peak power consumption of the charging facility,
due to feeder and transmission line capacity constraints.

The EV charging scheduling problem can be formulated as
a constrained MDP. The maximum expected reward is given
by

G(s) = sup
{π:

∑
N
i aπ

i
[t]≤M,∀t}

Gπ(s), (4)

whereaπi [t] is the action generated by policyπ. A policy π∗

is optimal if Gπ∗(s) = G(s). Without loss of optimality, we
will restrict our attention to stationary policies [42].

B. A Performance Upper Bound

In (4), the power limit must be satisfied for allt. By relaxing
this constraint and requiring that the average power usage does
not exceedM , we obtain a performance upper bound for (4).

In particular, a relaxed problem can be stated as

supπ Eπ

{

∑∞
t=0

∑N

i=1 β
tRai[t](Si[t], c[t]) | S[0]

}

subject to (1− β)E
∑∞

t=0

∑N

i=1 β
tai[t] ≤ M.

(5)
Problem (5) is not a practical formulation for the large scale
EV charging since the power usage could be far more thanM
at certain time.

Since the charging cost is the same for all chargers, the
relaxed problem (5) is equivalent to the following problem
(on the scheduling of a single chargeri).

supπ NEπ

{
∑∞

t=0 β
tRai[t](Si[t], c[t]) | Si[0], c[t]

}

subjec to (1− β)E
∑∞

t=0 β
tai[t] ≤ M/N.

(6)
Problem (6) seeks to maximize the discounted reward from

a single chargeri with no more thanM/N active action (per
time period) on average. The optimal solution and the optimal
objective of (6) are the same as those of (5). The optimal
objective of (6) can be used as a performance upper bound
for the original scheduling problem in (4).

The constrained MDP problem in (6) has a much smaller di-
mensionality and can be easily solved by linear programming
(cf. Chap. 3 of [42] for a survey).

III. W HITTLE ’ S INDEX AND CONSERVATION LAW

Since the MDP formulation does not result in a scalable
optimal scheduling policy, we seek to obtain anindex policy
[43] that can provide a scalable solution. An index policy
schedules the charging of EVs based on the ranked order
of indices associated with the states of chargers. Specifically,
the index of chargeri is a mapping from its extended state
S̃i[t] , (Si[t], c[t], τ [t]) to an index value. The index value
of each state is independent from the states of other chargers
and can be computed off-line which makes the index policy
scalable.

A. A Restless MAB Problem

We now formulate problem (4) as a restless multi-armed
bandit (MAB) problem. The restlessness is due to the fact
that the state of a charger, in particular, the lead time evolves
even if the charger is not activated.

A complication of casting (4) as a restless MAB prob-
lem comes from the inequality constraint on the maximum
number of simultaneous activated chargers. This complication
can be circumvented by introducingM dummy chargers
and requiring that exactlyM chargers must be activated
in each period. Specifically, each dummy charger always
accrues zero reward, and the state of dummy chargers stays at
Si = (0, 0). We let {1, · · · , N} be the set of regular chargers
and{N + 1, · · · , N +M} be the set of dummy chargers.

1) Arms: The formulated restless multi-armed bandit
(MAB) problem hasN + M arms: each arm represents a
(regular or dummy) charger. We define the extended state
of each charger as̃Si[t] , (Si[t], c[t], τ [t]), and denote the
extended state space as̃Si , Si × Sc × Sτ . The actions and
the reward functions remain unchanged.
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2) MAB formulation: By including dummy chargers, the
MDP in (4) is equivalent to a restless MAB problem where
exactlyM out of N +M chargers (arms) are active in each
period. The restless MAB problem is formulated as follows

supπ Eπ

{

∑∞
t=0

∑N+M

i=1 βtRai[t](S̃i[t]) | S̃i[0]
}

s.t.
∑N+M

i=1 ai[t] = M, ∀ t.
(7)

In (7), the arms are coupled by the charging cost and period
index, and are not independent.

B. The Whittle’s Index

We now examine the Whittle’s index policy for the restless
MAB problem defined in (7). To this end, we first introduce
the Whittle’s index and establish the indexability of the restless
MAB problem in Theorem 1.

We consider the following single charger reward maximiz-
ing problem without constraint: given the initial statẽSi[0],
policy π activates and deactivates a single charger to maximize
the reward without any power limit:

Vi(s̃) , sup
π

Eπ

{

∞
∑

t=0

βtRai[t](S̃i[t]) | S̃i[0] = s̃

}

, (8)

whereVi is the value function of chargeri. Note that the value
function defined above is different from the value function
defined in (4) (for the constrained MDP).

Let La be the Markov transition operator on the extended
stateS̃i and an arbitrary functionf(S̃i) defined as

(Laf)(s̃) , E{f(S̃i[t+ 1]) | S̃i[t] = s̃, ai[t] = a}.

The maximum discounted reward of problem (8) is determined
by the Bellman equation

Vi(s̃) = max{R0(s̃) + β(L0Vi)(s̃), R1(s̃) + β(L1Vi)(s̃)}.

The Whittle’s index is defined by introducing aν-subsidy
problem, which is a modified version of the single charger
problem defined in (8). In theν-subsidy problem, whenever
the passive action is taken, the scheduler receives an extra
rewardν [12]. The Bellman equation for the single charger
ν-subsidy problem is given by

V ν
i (s̃) = max{R0(s̃)+ν+β(L0V

ν
i )(s̃), R1(s̃)+β(L1V

ν
i )(s̃)},

(9)
whereV ν

i is the value function for theν-subsidy problem.
Let S̃i(ν) denote the set of charger states under which it is

optimal to take the passive action on chargeri in theν-subsidy
problem. Thus any statẽs ∈ S̃i(ν) makes the first term in (9)
larger or equal to the second term. We are now ready to define
the indexability of an MAB problem.

Definition 1 (Indexability [12]). Charger (arm)i is indexable
if the set S̃i(ν) increases monotonically from∅ to S̃i as ν
increases from−∞ to +∞. The MAB problem is indexable if
all the chargers (arms) are indexable.

Given the definition of indexability, the Whittle’s index is
defined as follows.

Definition 2 (Whittle’s index [12]). If charger (arm) i is
indexable, its Whittle’s indexνi(s̃) of the extended statẽs
is the infimum subsidyν under which the passive action is
optimal at statẽs, i.e.,

νi(s̃) , infν{ν : R0(s̃) + ν + β(L0V
ν
i )(s̃)

≥ R1(s̃) + β(L1V
ν
i )(s̃)}.

If the charger is indexable, anyν < νs(s̃) will make the
first term strictly smaller than the second term in (9) and it is
optimal to activate the charger. Anyν ≥ νs(s̃) will make the
first term greater or equal to the second term and the optimal
action is to deactivate the charger.

Given the definition of Whittle’s index, the Whittle’s index
policy is stated as follows.

Definition 3 (Whittle’s index policy). For a multi-charger
(arm) problem defined in (7), the Whittle’s index policy sorts
all chargers by the Whittle’s index value in a descend order
and activates the firstM chargers.

C. Indexability and Close-form Expression of Whittle’s Index

In this subsection, we show that the MAB problem is
indexable and the Whittle’s index policy is optimal when the
power limit is loose (M = N ). We also give the closed-form
expression for the Whittle’s index when the charging cost is
constant.

Theorem 1(Indexability, optimality and closed-form indexes).

1) Each charger is indexable and the MAB problem (7) is
indexable.
2) WhenM = N , the Whittle’s index policy is optimal for the
multi-armed bandit problem defined in (7).
3) If c[t] = c0 for all t, the Whittle’s index of a regular charger
i ∈ {1, · · · , N} is given by

νi(T,B, c0, τ)

=



















0 if B = 0,

1− c0 if 1 ≤ B ≤ T − 1,

1− c0+
βT−1[F (B − T + 1)− F (B − T )] if T ≤ B.

(10)
The Whittle’s index of a dummy charger is zero.

νi(0, 0, c0, τ) = 0, i ∈ {N + 1, · · · , N +M}.

Proof: An elementary proof of indexability can be found
in Appendix A. The proof of optimality of Whittle’s index
policy with M = N can be found in Appendix B. The proof
of closed-form of Whittle’s index with constant charging cost
can be found in Appendix C.

In (10), when it is feasible to fulfill EVi’s charging request
(i.e. its lead time is no less than its remaining processing
time), EV i’s Whittle’s index is simply the (per-unit) charging
profit 1− c0. When non-completion penalty is inevitable, the
index takes into account both the charging profit and the non-
completion penalty. We note that the Whittle’s index gives
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higher priority to EVs with less laxity. Here, the laxity of
chargeri is defined asLi[t] , Ti[t]−Bi[t] (cf. Fig. 2).

When the power limit is loose (M = N ), the MAB problem
breaks intoN independent single arm problems and Whittle’s
index policy is optimal. It balances the charging cost and
the penalty of non-finished demand by deactivating (regular)
chargers when the charging cost is high. Simple index policies
such as the earliest deadline first (EDF) and least laxity first
(LLF) policies do not take charging cost into account and may
lead to significant performance loss. However, whenM < N ,
we note that the Whittle’s index policy does not distinguish
EVs with positive laxity, and is therefore suboptimal. In the
next section we will introduce an enhanced heuristic policy
based on the Whittle’s index.

IV. W HITTLE ’ S INDEX POLICY WITH LLLP
INTERCHANGE

For the objective of time average (β = 1) profit maxi-
mization, the Whittle’s index policy is shown (under some
conditions on the evolution of arm states) to be asymptotically
optimal, as the number of arms increases to infinity [44]. For
the discounted profit maximization setting considered in this
paper, the asymptotic optimality of Whittle’s index policyis
not clear. For small systems with finitely many arms, there are
counter-examples where an optimal index policy does not exist
(and therefore the Whittle’s index policy cannot be optimal).

In this section, we will apply the Less Laxity and Longer
remaining Processing time (LLLP) principle (originally pro-
posed in [39]) to improve the Whittle’s index policy.

The LLLP principle is a priority rule for the scheduling of
charging multiple EVs, which is defined as follows.

Definition 4 (The LLLP Principle). Consider chargers (arms)
i and j at time t. We sayj dominatesi (j � i), if j has less
laxity and longer remaining processing time, i.e.,Lj[t] ≤ Li[t]
andBj [t] ≥ Bi[t], with at least one of the inequalities strictly
holds.

LLLP defines a partial order over the EVs’ states such
that the EV with less laxity and longer remaining charging
demand should be given priority. In [39], the authors applied
an interchange argument to show that LLLP could improve the
performance of any given policy along every sample path, and
further, there exists an optimal stationary policy that follows
the LLLP principle under mild conditions.

To apply the LLLP principle, note that the Whittle’s index
policy for the multi-armed bandit problem is a stationary
policy: at each time it orders (the states of) theM +N arms,
and activates the firstM arms. The proposed heuristic policy
re-order every pair of arms that violates the LLLP principle(cf.
Algorithm 1). As such, the proposed heuristic policy always
gives priority to EVs with less laxity and longer remaining
processing time.

V. NUMERICAL RESULTS

A. Benchmark Policies

In this section, results of numerical experiments are pre-
sented to compare the performance of proposed index policy

Algorithm 1 Whittle index with LLLP interchange
1. Calculate the Whittle’s indexes of all chargers and sort
them in a descend order.
2. Suppose the order of chargers isi1, i2, · · · , iM+N .
for j = i1 : iM

for k = iM+1 : iM+N

if k � j in the sense of Definition 4
exchange the orders ofj andk

end
end

end
3. Activate theM chargers with highest priority.

with other simple heuristic (index) policies,i.e., EDF (ear-
liest deadline first) [13], LLF (least laxity first) [14], valley
filling [30], and the original Whittle’s index (without LLLP
interchange) [12].

If feasible, EDF chargesM EVs with the earliest deadlines,
and LLF chargesM EVs with the least laxity. Both policies
will fully utilize the capacity and chargeM EVs as long
as there are at leastM unfinished EVs in the system. The
Whittle’s index policy, on the other hand, ranks all chargers
by the Whittle’s index and activates the firstM arms, and
may put some (regular) chargers idle (deactivated) when the
charging cost is high.

The centralized valley filling algorithm is proposed in [30]
as an optimal offline scheduling policy for a setting with
continuous charging rate, deterministic charging cost, and no
newly arrival EVs. In our setting with newly incoming EVs,
the algorithm is repeatedly executed based on the most updated
information on the arrived EVs. At the beginning of each
period, the algorithm schedules EV charging based on the
information of all EVs that have arrived, assuming there is
no new incoming EVs in the future. The charging schedule
is carried out only for current time slot; at the beginning of
the next period, the scheduling plan is recomputed. The (real-
time adjusted version of) valley filling algorithm is used in
our simulation as a benchmark.1

B. Numerical Results

We first considered a special case of problem (7) with a
constant charging cost. Since the charging cost was time-
invariant, it was optimal to fully utilize the charging capacity
to chargeM unfinished EVs.

In Fig. 3, we fixed the traffic of EVs and the total number
of regular chargers and varied the power limitM . All policies
besides the EDF scheduling performed well and close to the
upper bound of the performance. WhenM/N = 1, all EVs
can be fully charged. Thus all policies achieved optimality.

1The original valley filling algorithm proposed in [30] has a hard constraint
that all EVs’ charging request must be fulfilled. We note thatit may not be
feasible to fulfill all EVs’ charging requests under the charging capacityM .
When implementing the valley filling algorithm in our setting, we modify
the objective function of the valley filling algorithm so as to maximize the
total reward subject to the maximum power limit; in its objective function,
the charging reward is calculated based on expected future charging cost and
the non-completion penalty functionF (·) (introduced in (2)).
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In Fig. 4, we zoomed in the case whenM/N = 0.5 and
varied the total number of regular chargerN . We observed
that the Whittle’s index policy with LLLP interchange and
LLF achieved similar performance, since both policies roughly
followed the least laxity first principle. The performance of
these two policies was close to the performance upper bound.
The EDF policy performed poorly because it did not take the
remaining charging demand into account. The gap between
the Whittle’s index policy and the Whittle’s index policy with
LLLP interchange came from the reordering of EVs with
positive laxity (cf. the discussion following Theorem 1).
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For the dynamic charging cost case, we used the real-time
pricing signal from the California Independent System Oper-
ator (CAISO) and trained a Markovian model that describes
the marginal charging costs (cf. Sections III and V of [40]).
Each period of the constructed Markov chain (on charging
cost) lasted for 1 hour, and each periodic cycle lasted for
one day withNτ = 24. For each period, the real-time price
was quantized into discrete price states, and the transition
probability (of the Markov chain) was simply the frequency

the price changed from one state to another.
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Fig. 5. Performance comparison: dynamic charging cost,ρτ
i
= 0.7, T̄ = 12,

B̄ = 9, β = 0.999, F (B) = 0.2B2.

In Fig. 5, we fixed the EV traffic and the total number
of regular chargersN = 10 and varied the power limit con-
straints. When the power limit was low andM/N is small,
there was no enough power to charge EVs and the penalty
dominated the charging profit. In this case the performance
of different policies were close since the limited resource
allowed not much to do. When the power limit was adequate
andM = N , all EVs could be fully charged on time. In this
case, the Whittle’s index policy solved the problem optimally
as stated in Theorem 1 and achieved the upper bound. The
interchange did not happen because the LLLP principle was
always satisfied in this case. The valley filling algorithm did
not consider the future arrivals and EDF and LLF did not
consider the dynamic charging cost, thus they performed sub-
optimal. When the power constraint was neither too tight
(M/N ≈ 0) nor too loose (M/N ≈ 1), LLLP could reduce
the number of unfinished EVs with large remaining charging
demand and therefore reduced the non-completion penalties.

In Fig. 6, we compared the performance of different policies
by fixing the power limit ratioM/N = 0.5 and varied
the number of regular chargers. Both EDF and LLF sought
to activate as many regular chargers as possible, up to the
capacity constraintM . The Whittle’s index policy, on the
other hand, took the advantage of the pricing fluctuation and
charged more EVs at price valley and kept some chargers
idle when charging cost was high. Based on the Whittle’s
index policy, the LLLP interchange reduced the penalty of
unfinished EVs and improved the performance of Whittle’s
index policy. The total reward achieved by the Whittle’s index
with LLLP interchange policy was more than 1.7 times of
that obtained by EDF; the performance gap between the the
Whittle’s index with LLLP interchange policy and the LLF
policy was over25%. We also noted that the LLLP principle
improved Whittle’s index by around10%.

VI. CONCLUSION

We considered the problem of scheduling of large scale EV
charging in public facilities—a problem of particular potential
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significance as EV penetration deepens. In such settings, it
is essential to develop highly efficient and online charging
algorithms. To this end, index policies considered in this paper
are attractive for its implementation simplicity and versatility
in incorporating various operation uncertainties.

APPENDIX

A. Proof of Indexability

In this subsection, we provide an elementary proof of
indexability. That is, for any charger states̃, there is a critical
ν(s̃) such that if and only ifν ≥ ν(s̃) the first term in the
Bellman equation (9) is larger or equal to the the second term
in a single chargerν-subsidy problem.

The indexability of dummy chargers is straightforward. For
i ∈ {N + 1, · · · , N +M}, there is no EV arrival, and only the
charging cost and period index evolve. The Bellman equation
of the ν-subsidy problem is given by

V ν
i (0, 0, cj, τ) = max{β

∑

k Pj,kV
ν
i (0, 0, ck, {τ + 1}) + ν,

β
∑

k Pj,kV
ν
i (0, 0, ck, {τ + 1})}.

If and only if ν ≥ 0, the first term is larger than the
second term and it is optimal to deactivate the dummy charger.
Otherwise, the active action is optimal. So a dummy charger
is indexable and its Whittle’s index isνi(0, 0, cj, τ) = 0.

For the regular chargers, we prove the indexability by
induction.

1) WhenT = 0: There is no EV attached to the charger.
The Bellman equation is stated as

V ν
i (0, 0, cj, τ) = max{ν + βW ν

j,τ , βW
ν
j,τ}.

where

W ν
j,τ

= (1− ρτi )
∑

k Pj,kV
ν
i (0, 0, ck, {τ + 1})+

ρτi
∑

T

∑

B

∑

k Q
τ
i (T,B)Pj,kV

ν
i (T,B, ck, {τ + 1})

is the expected reward of possible arrivals. If and only ifν ≥ 0,
the first term is larger and the passive action is optimal. Thus
νi(0, 0, cj, τ) = 0.

2) WhenT = 1: There are two possible conditions.

• If B = 0, the Bellman equation is stated as

V ν
i (1, 0, cj, τ) = max{ν + βW ν

j,τ , βW
ν
j,τ}.

Thusνi(1, 0, cj, τ) = 0.
• If B ≥ 1, the Bellman equation is stated as

V ν
i (1, B, cj , τ) = max{ν − F (B) + βW ν

j,τ ,
1− cj − F (B − 1) + βW ν

j,τ}.

If and only if ν ≥ 1− cj + F (B)− F (B − 1), the pas-
sive action is optimal.

Thus the arm is indexable and the Whittle’s index forT = 1
is stated as follows.

νi(1, B, cj , τ)

=

{

0 if B = 0
1− cj + F (B)− F (B − 1) if B ≥ 1

We summarize some properties of the Whittle’s index prove
them for the caseT = 1.

Proposition 1 (Monotonicity of Whittle’s index). Whittle’s
index is non-decreasing in the charging demandB whenB ≥
T .

νi(T,B, cj, τ) ≤ νi(T,B + 1, cj, τ), ∀B ≥ T.

Proof: Since the penalty functionF (·) is convex, Whit-
tle’s index is nondecreasing whenB ≥ T andT = 1.

Proposition 2 (Difference of value functions). Denote the
difference of the value function as

gνh(T,B, cj, τ) = V ν
i (T,B + h, cj , τ)− V ν

i (T,B, cj, τ),

whereh ∈ {1, · · · , B̄ −B} and B̄ is the maximum charging
demand.

Thusgνh is piecewise linear inν and has following proper-
ties.

• gνh(T,B, cj, τ) is continuous inν.
• There existνh(T,B, cj , τ) and ν̄h(T,B, cj , τ) such that,

gνh(T,B, cj, τ) is piecewise linear and∂gνh/∂ν ≥ −h
when ν ∈ [νh(T,B, cj, τ), ν̄h(T,B, cj, τ)]. Otherwise,
gνh(T,B, cj, τ) is constant .

Proof:

• WhenB = 0,

gνh(1, B, cj , τ) = V ν
i (1, h, cj, τ)− V ν

i (1, 0, cj, τ).

If νi(1, h, cj, τ) > νi(1, 0, cj, τ) = 0,

gνh(1, B, cj, τ)

=







1− cj − F (h− 1), if ν < 0;
1− cj − F (h− 1)− ν, if 0 ≤ ν < νi(1, h, cj, τ);
−F (h), if νi(1, h, cj , τ) ≤ ν.

If νi(1, h, cj, τ) ≤ νi(1, 0, cj, τ) = 0,

gνh(1, B, cj , τ, )

=







1− cj − F (h− 1), if ν < νi(1, h, cj, τ);
ν − F (h), if νi(1, h, cj, τ) ≤ ν < 0;
−F (h), if νi(1, h, cj, τ) ≤ ν.
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• WhenB ≥ 1,

gνh(1, B, cj , τ) = V ν
i (1, B + h, cj , τ)− V ν

i (1, B, cj , τ).

Sinceνi(1, h+B, cj , τ) ≥ νi(1, B, cj , τ),

gνh(1, B, cj , τ)

=































F (B − 1)− F (B + h− 1),
if ν < νi(1, B, cj , τ);
1− cj − ν + F (B)− F (B + h− 1),
if νi(1, B, cj , τ) ≤ ν < νi(1, B + h, cj , τ);
F (B)− F (B + h),
if νi(1, B + h, cj , τ) ≤ ν.

Thus,gνh(1, B, cj , τ) is piecewise linear and continuous inν.
The derivative satisfies Property 2.

Proposition 3 (Concavity of value functions). The difference
of value functionsgν1 (T,B, cj , τ) is non-increasing inB when
B ≥ T . ThusV ν

i (T,B, cj , τ) is concave inB whenB ≥ T .

Proof: Since whenB ≥ 1, νi(1, B, cj , τ) is nondecreas-
ing in B,

gν1 (1, B + 1, cj , τ)− gν1 (1, B, cj, τ)
= V ν

i (1, B + 2, cj, τ) + V ν
i (1, B, cj , τ)−

2V ν
i (1, B + 1, cj, τ)

=















































2F (B)− F (B + 1)− F (B − 1),
if ν ≤ νi(1, B, cj, τ);
ν − (1− cj) + F (B)− F (B + 1),
if νi(1, B, cj, τ) < ν ≤ νi(1, B + 1, cj, τ);
1− cj − ν − F (B) + F (B + 1),
if νi(1, B + 1, cj, τ) < ν ≤ νi(1, B + 2, cj, τ);
2F (B + 1)− F (B)− F (B + 2),
if νi(1, B + 2, cj, τ) ≤ ν;

≤ 0.

The first and last cases are non-positive since the penalty
function F (B) is convex. The second and third cases are
non-positive because of the expressions of the indexνi. Thus
V ν
i (1, B, cj , τ) is concave inB whenB ≥ 1.
3) T ≥ 2: Assuming indexability and Proposition 1, 2, 3

hold for T − 1, we show that they hold forT .
If B = 0, the Bellman equation is stated as follows.

V ν
i (T, 0, cj, τ)

= max{β
∑

k Pj,kV
ν
i (T − 1, 0, ck, {τ + 1}) + ν,

β
∑

k Pj,kV
ν
i (T − 1, 0, ck, {τ + 1})}.

If and only if ν ≥ 0, the first term is larger than the
second term and the passive action is optimal. Thus
νi(T, 0, cj, τ) = 0.

If B ≥ 1, the Bellman equation is stated as follows.

V ν
i (T,B, cj , τ)

= max{β
∑

k Pj,kV
ν
i (T − 1, B, ck, {τ + 1}) + ν,

β
∑

k Pj,kV
ν
i (T − 1, B − 1, ck, {τ + 1}) + 1− cj}.

(11)
Denote the difference between the two actions as

fν(T,B, cj, τ) , ν − (1− cj)+

β
∑

k Pj,kg
ν
1 (T − 1, B − 1, ck, {τ + 1}),

where

gν1 (T − 1, B − 1, ck, τ)
= V ν

i (T − 1, B, ck, τ) − V ν
i (T − 1, B − 1, ck, τ).

Since Proposition 2 holds forT − 1, fν(T,B, cj, τ) is
continuous and piece-wise linear inν. Denote

ν(T,B, cj, τ) , mink ν1(T − 1, B − 1, ck, τ),

ν̄(T,B, cj, τ) , maxk ν̄1(T − 1, B − 1, ck, τ).

We have

∂fν(T,B, cj , τ)/∂ν

=

{

1, if ν /∈ [ν(T,B, cj, τ), ν̄(T,B, cj , τ)];
≥ 0, otherwise.

So fν(T,B, cj , τ) is continuous and non-decreasing in
ν. When ν = −∞, fν(T,B, cj , τ) = −∞. When ν = +∞,
fν(T,B, cj, τ) = +∞. Thus there is a cross point off and the
x-axis. Defineν(T,B, cj , τ) , minν{fν(T,B, cj , τ) = 0}. If
and only if ν ≥ ν(T,B, cj , τ), the first term in (11) is larger
or equal to the second term and the passive action is optimal.
By definition,ν(T,B, cj , τ) is the Whittle’s index.

The indexability ofT is shown. Next we will prove Propo-
sition 1, 2, 3 forT assuming that they are true forT − 1.

Proof of Proposition 1: WhenB ≥ T ,

fν(T,B, cj, τ)− fν(T,B + 1, cj, τ)
= β

∑

k Pj,kg
ν
1 (T − 1, B − 1, ck, {τ + 1})−

β
∑

k Pj,kg
ν
1 (T − 1, B, ck, {τ + 1})

≥ 0

The inequality is because thatV ν
i (T − 1, B, ci, τ) is concave

in B whenB ≥ T − 1.
Sincefν(T,B, cj , τ) ≥ fν(T,B + 1, cj , τ) we have

ν(T,B, cj, τ) ≤ ν(T,B + 1, cj, τ), ∀B ≥ T.

Proof of Proposition 2:
If B = 0,

gνh(T,B, cj, τ) = V ν
i (T, h, cj, τ) − V ν

i (T, 0, cj, τ).

• If νi(T, h, cj, τ) > νi(T, 0, cj, τ) = 0,

gνh(T, 0, cj, τ)

=































1− cj + β
∑

k Pj,kg
ν
h−1(T − 1, 0, ck, {τ + 1}),

if ν < 0;
1− cj − ν + β

∑

k Pj,kg
ν
h−1(T − 1, 0, ck, {τ + 1}),

if 0 ≤ ν < νi(T, h, cj, τ);
β
∑

k Pj,kg
ν
h(T − 1, 0, ck, {τ + 1}),

if νi(T, h, cj , τ) ≤ ν.

• If νi(T, h, cj, τ) ≤ νi(T, 0, cj, τ) = 0,

gνh(T, 0, cj, τ)

=































1− cj + β
∑

k Pj,kg
ν
h−1(T − 1, 0, ck, {τ + 1}),

if ν < νi(T, h, cj , τ);
ν + β

∑

k Pj,kg
ν
h(T − 1, 0, ck, {τ + 1}),

if νi(T, h, cj , τ) ≤ ν < 0;
β
∑

k Pj,kg
ν
h(T − 1, 0, ck, {τ + 1}),

if 0 ≤ ν.

If B ≥ 1,

gνh(T,B, cj, τ) = V ν
i (T,B + h, cj , τ)− V ν

i (T,B, cj , τ).
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• If νi(T,B + h, cj , τ) > νi(T,B, cj , τ),

gνh(T,B, cj , τ)

=







































β
∑

k Pj,kg
ν
h(T − 1, B − 1, ck, {τ + 1}),

if ν < νi(T,B, cj , τ);
1− cj − ν+
β
∑

k Pj,kg
ν
h−1(T − 1, B, ck, {τ + 1}),

if νi(T,B, cj , τ) ≤ ν < νi(T,B + h, cj , τ);
β
∑

k Pj,kg
ν
h(T − 1, B, ck, {τ + 1}),

if νi(T,B + h, cj , τ) ≤ ν.

• If νi(T,B + h, cj , τ) ≤ νi(T,B, cj , τ),

gνh(T,B, cj , τ)

=







































β
∑

k Pj,kg
ν
h(T − 1, B − 1, ck, {τ + 1}),

if ν < νi(T,B + h, cj , τ);
ν − (1 − cj)+
β
∑

k Pj,kg
ν
h+1(T − 1, B − 1, ck, {τ + 1}),

if νi(T,B + h, cj , τ) ≤ ν < νi(T,B, cj , τ);
β
∑

k Pj,kg
ν
h(T − 1, B, ck, {τ + 1}),

if νi(T,B, cj , τ) ≤ ν.

Denote

νh(T,B, cj , τ) , min
{k:Pj,k>0}

{νh(T − 1, (B − 1)+, ck, τ)},

and

ν̄h(T,B, cj , τ) , max
{k:Pj,k>0}

{ν̄h(T − 1, B, ck, τ)},

wherea+ = max{0, a}.
Since Proposition 2 holds forT − 1 by assumption,

we have gνh(T,B, cj , τ) is continuous in ν. When
ν ∈ [νh(T,B, cj , τ), ν̄h(T,B, cj, τ)], gνh(T,B, cj , τ) is
piece-wise linear and∂gνh(T,B, cj, τ)/∂ν ≥ −h. Otherwise,
gνh(T,B, cj, τ) is constant.

Proof of Proposition 3:
Sinceνi(T,B, cj , τ) is nondecreasing inB whenB ≥ T ,

gν1 (T,B + 1, cj, τ)− gν1 (T,B, cj , τ)
= V ν

i (T,B + 2, cj, τ) + V ν
i (T,B, cj, τ)−

2V ν
i (T,B + 1, cj , τ)

=































































β
∑

k Pj,kg
ν
1 (T − 1, B, ck, {τ + 1})−

β
∑

k Pj,kg
ν
1 (T − 1, B − 1, ck, {τ + 1}),

if ν ≤ νi(T,B, cj , τ);
ν − (1 − cj) + β

∑

k Pj,kg
ν
1 (T − 1, B, ck, {τ + 1}),

if νi(T,B, cj , τ) < ν ≤ νi(T,B + 1, cj, τ);
1− cj − ν − β

∑

k Pj,kg
ν
1 (T − 1, B, ck, {τ + 1}),

if νi(T,B + 1, cj , τ) < ν ≤ νi(T,B + 2, cj, τ);
β
∑

k Pj,kg
ν
1 (T − 1, B + 1, ck, {τ + 1})−

β
∑

k Pj,kg
ν
1 (T − 1, B, ck, {τ + 1}),

if νi(T,B + 2, cj , τ) ≤ ν;
≤ 0.

The first and forth cases are non-positive because
V ν
i (T − 1, B, cj, τ) is concave whenB ≥ T − 1 according to

the assumption. The second and third cases are non-positive
because of the expressions ofνi(T,B + 1, cj , τ). Thus
V ν
i (T,B, cj , τ) is concave inB whenB ≥ T .

B. Proof of Optimality of Whittle’s Index withM = N

In this appendix, we prove that the Whittle’s index policy
optimally solves the MAB problem defined in (7), which is
equivalent to the MDP problem formulated in (4).

First, we claim that the Whittle’s index policy optimally
solves the single charger problem with dynamic price and
no constraint, as defined in (8). The extended states̃ =
(T,B, c, τ) includes the charging cost and period index. The
Bellman equation of the single charger problem is given by:

Vi(s̃) = max{R0(s̃) + β(L0Vi)(s̃), R1(s̃) + β(L1Vi)(s̃)},
(12)

where actiona = 1 means to activate the charger anda = 0
means to leave it passive.

The Whittle’s index is defined by introducing aν-subsidy
problem, which is a modified version of the single arm
problem defined in (12). In theν-subsidy problem, whenever
the passive action is taken, the scheduler receives an extra
rewardν [12]. The single charger problem defined in (12) is
simply the case when the subsidyν = 0.

The Bellman equation for theν-subsidy problem is given
by

V ν
i (s̃) = max{R0(s̃)+ν+β(L0V

ν
i )(s̃), R1(s̃)+β(L1V

ν
i )(s̃)},

(13)
whereV ν

i is the value function for theν-subsidy problem.
Now define a Whittle’s index policyπ1 for a single charger

(either regular or dummy charger)ν-subsidy problem as to
activates the charger if and only ifνi(s̃) > ν. Thus we have
the following lemma.

Lemma 1. The Whittle’s index policyπ1 is optimal for the
single chargerν-subsidy problem defined in (13). In particular,
when ν = 0, π1 is optimal for the single charger problem
defined in (12).

Proof: We have shown in Appendix A that the Whittle’s
index defined in Definition 2 exists, and therefore the Whittle’s
index policyπ1 is well defined. By Definition 2, for any state
s̃ such thatνi(s̃) > ν, the first term in (13) is strictly smaller
than the second term. The Whittle’s index policyπ1 activates
the charger and obtains the second term as an expected reward
which satisfies the Bellman equation in this case.

Forν = νi(s̃), the first term is greater or equal to the second
term in the Bellman equation by Definition 2. The indexability
result proved in Appendix A guarantees that the passive set
grows monotonously which implies that this inequality is true
for any ν ≥ ν(s̃). Thus, for any statẽs such thatν(s̃) ≤ ν,
the Whittle’s index policyπ1 leaves the charger passive and
obtains the first term as the expected reward, satisfying the
Bellman equation.

Thus,π1 satisfies the Bellman equation (13) and is therefore
optimal for the single chargerν-subsidy problem. In particular,
whenν = 0, π1 is optimal for the single charger problem and
satisfies the Bellman equation (12).

Now we consider the problem (7) withM = N = 1: we
have a regular charger and a dummy charger, and at each
time, we are required to activate exact one charger. For
this constrained two-arm problem, the state is defined as



11

(s̃, 0) = (T,B, c, τ, 0, 0), wheres̃ is the extended state of the
regular charger and0 = (0, 0) the state of the dummy charger.
The actiona′ = 1 means to activate the regular charger, and
a′ = 0 represents activating the dummy charger.

The state of the dummy charger will always be0.
The dummy charger yields no reward regardless of the
taken action. Thus the state transition of two-arm problem
is equivalent to the state transition in problem (12), i.e.,
P ((s̃, 0), (s̃′, 0)|a′) = P (s̃, s̃′|a). The rewards of the two-arm
problem can be presented by the rewards of the single charger
problem in (12):

R′
1(s̃, 0) = R1(s̃),

R′
0(s̃, 0) = R0(s̃).

The Whittle’s index policy for the two-arm prob-
lem (denoted byπ2) activates the regular charger when
(ν(s̃) > ν(0) = 0), and activates the dummy charger (leaving
the regular charger passive) otherwise.

Whenπ1 faces statẽs andπ2 faces state(s̃, 0) for the same
realizations̃, the actions of two policies are the same.π2 will
activate the regular charger in the two-arm problem if and
only if π1 activates the charger in the single charger problem,
and vice versa. Since the reward, transition and the action of
these two policies are the same, the value functions will be the
same. Denoting the value function ofπ1 andπ2 by Vπ1

(s̃) and
Hπ2

(s̃, 0), we haveHπ2
(s̃, 0) = Vπ1

(s̃). SinceVπ1
(s̃) satisfies

the Bellman equation (12), we have

Hπ2
(s̃, 0)

= max{R0(s̃) + β(L0Hπ2
)(s̃, 0), R1(s̃) + β(L1Hπ2

)(s̃, 0)}
= max{R′

0(s̃, 0) + β(L0Hπ2
)(s̃, 0),

R′
1(s̃, 0) + β(L1Hπ2

)(s̃, 0)},

which is in fact the Bellman equation for the constrained two-
arm problem. The Whittle’s index policy satisfies the Bellman
equation for the two-arm problem and is therefore optimal.

Finally, we argue that the Whittle’s index policy is optimal
for the multi-arm problem defined in (7). We haveN regular
chargers andN dummy chargers. At each time, we activate
exact N chargers. We can pair each regular charger witha
dummy charger and implement the Whittle’s index policy for
each pair. The action of each regular charger is decoupled, and
the total reward is simply the sum of reward from all theN
regular chargers. The Whittle’s index policy optimally optimal
solves the problem of each pair, and is therefore optimal for
the original problem in (7). We note, however, that the above
argument no longer holds whenM < N , because the problem
defined in (7) cannot be decoupled intoN single (regular)
charger problems in this case.

C. Proof of Closed-form of Whittle’s Index

Proof: Since the costc0 is constant, we will omit the cost
in the state of chargers for simplicity.

For dummy chargers, there is no EV arrival, and only the
charging cost evolves. The Bellman equation of theν-subsidy
problem is given by

V ν
i (0, 0, τ) = max{ν + β

∑

k Pj,kV
ν
i (0, 0, {τ + 1}),

β
∑

k Pj,kV
ν
i (0, 0, {τ + 1})}.

When ν < 0, it is optimal to activate the dummy charger.
Otherwise, passive action is optimal. So a dummy charger is
indexable and its Whittle’s index isνi(0, 0, τ) = 0.

For regular chargers, we showed in Appendix B2 that
νi(1, 0, τ) = 0 andνi(1, B, τ) = 1− c0 + F (B)− F (B − 1)
whenB ≥ 1. We will show the index closed-form for the case
of T ≥ 2 using induction.

1) WhenT = 2: The discussion is divided into following
two conditions.

If B = 1,

V ν
i (2, 1, τ) = max{ν + βV ν

i (1, 1, {τ + 1}),
1− c0 + βV ν

i (1, 0, {τ + 1})}.

The difference between active and passive actions

fν(2, 1, τ)
= ν − (1− c0) + βgν1 (1, 0, {τ + 1})]

=







ν − (1− β)(1 − c0), if ν < 0;
(1− β)[ν − (1− c0)], if 0 ≤ ν < 1− c0 + F (1);
ν − (1− c0)− βF (1), if 1− c0 + F (1) ≤ ν;

equals to0 whenν = 1− c0. Thusνi(2, 1, τ) = 1− c0.
If B ≥ 2, the Bellman equation is stated as follows.

V ν
i (2, B, τ) = max{ν + βV ν

i (1, B, {τ + 1}),
1− c0 + βV ν

i (1, B − 1, {τ + 1})}.

Denote∆F (B) = F (B)− F (B − 1). The difference between
active and passive actions

fν(2, B, τ)
= ν − (1− c0) + βgν1 (1, B − 1, {τ + 1})

=































ν − (1− c0)− β∆F (B − 1),
if ν < 1− c0 +∆F (B − 1);
(1 − β)[ν − (1− c0)],
if 1− c0 +∆F (B − 1) ≤ ν < 1− c0 +∆F (B);
ν − (1− c0) + β∆F (B),
if 1− c0 +∆F (B) ≤ ν;

equals to 0 when ν = 1− c0 + β[F (B − 1)− F (B − 2)].
Thusνi(2, B, τ) = 1− c0 + β[F (B − 1)− F (B − 2)].

2) WhenT > 2: Assume Equation (10) holds forT − 1,
consider the case forT .

If B = 1,

V ν
i (T,B, τ) = max{ν + βV ν

i (T − 1, 1, {τ + 1}),
1− c0 + βV ν

i (T − 1, 0, {τ + 1})}.

The difference between actions is

fν(T, 1, τ)
= ν − (1 − c0) + βgν1 (T − 1, 0, {τ + 1})

=















ν − (1− β)(1 − c0), if ν < 0;
(1− β)[ν − (1− c0)], if 0 ≤ ν < 1− c0;
ν − (1− c0)+
β2gν1 (T − 2, 0, {τ + 2}) if 1− c0 ≤ ν.

The last case can be rewritten as

(1− β)[ν − (1− c0)] + β(ν − (1 − c0))+
β2(V ν

i (T − 2, 1, {τ + 2}, ν)− V ν
i (T − 2, 0, {τ + 2})),

which equals to 0 when ν = 1− c0 since
νi(T − 1, 1, τ) = 1− c0 by assumption. Thus
νi(T, 1, τ) = 1− c0.
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If 2 ≤ B ≤ T − 2, the difference between actions is stated
as follows.

fν(T,B, τ)
= ν − (1− c0) + βgν1 (T − 1, B − 1, {τ + 1})

=















ν − (1− c0)+
β2gν1 (T − 2, B − 2, {τ + 1}) if ν < 1− c0;
ν − (1− c0)+
β2gν1 (T − 2, B − 1, {τ + 1}) if 1− c0 ≤ ν.

The latter case equals to0 when ν = 1− c0 since
νi(T − 1, B, τ) = 1− c0 when 2 ≤ B ≤ T − 2 by assump-
tion. Thusνi(T,B, τ) = 1− c0 when2 ≤ B ≤ T − 2.

If B = T − 1,

fν(T,B, τ)
= ν − (1 − c0) + βgν1 (T − 1, B − 1, {τ + 1})

=































ν − (1− c0) + β2gν1 (T − 2, B − 2, {τ + 2}),
if ν < 1− c0;
(1− β)[ν − (1− c0)],
if 1− c0 ≤ ν < 1− c0 + βT−2F (1);
ν − (1− c0) + β2gν1 (T − 2, B − 1, {τ + 2}),
if 1− c0 + βT−2F (1) ≤ ν;

equals to0 whenν = 1 − c0. So νi(T,B, τ) = 1− c0 when
B = T − 1.

If B ≥ T ,

fν(T,B, τ)
= ν − (1− c0) + βgν1 (T − 1, B − 1, {τ + 1})

=







































ν − (1− c0) + β2gν1 (T − 2, B − 2, {τ + 1})
if ν < 1− c0 + βT−2∆F (B − T + 1);
(1 − β)[ν − (1− c0)],
if 1− c0 + βT−2∆F (B − T + 1)
≤ ν < 1− c0 + βT−2∆F (B − T + 2);

ν − (1− c0) + β2gν1 (T − 2, B − 1, {τ + 1}),
if 1− c0 + βT−2∆F (B − T + 2) ≤ ν.

(14)
Whenν < 1− c0 + βT−2[F (B − T + 1)− F (B − T )],

ν ≤ νi(T − 1− T ′, B − 1− T ′, τ)
≤ νi(T − 1− T ′, B − T ′, τ)

for all 0 ≤ T ′ ≤ T − 1. Thus in the first case of (14),

β2gν1 (T − 2, B − 2, {τ + 1})
= β3gν1 (T − 3, B − 3, {τ + 2})
= · · ·
= βT−1gν1 (1, B − T + 1, {τ + T − 2})
= βT−1[−F (B − T + 1) + F (B − T )]

So whenν = 1− c0 + βT−1[F (B − T + 1)− F (B − T )],
the first case in equation (14) equals to0 . Thus whenB ≥ T ,
the closed-form of index is stated as:

νi(T,B, τ) = 1− c0 + βT−1[F (B − T + 1)− F (B − T )].
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