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Abstract—In this work, we consider the class of multi-state
autoregressive processes that can be used to model non-stationary
time series of interest. In order to capture different autoregressive
(AR) states underlying an observed time series, it is crucial to
select the appropriate number of states. We propose a new and
intuitive model selection technique based on the Gap statistics,
which uses a null reference distribution on the stable AR filters to
identify whether adding a new AR state significantly improves
the performance of the model. To that end, we define a new
distance measure between two AR filters based on the mean
squared prediction error, and propose an efficient method to
generate stable filters that are uniformly distributed in the
coefficient space. Numerical results are provided to evaluate the
performance of the proposed approach.

I. I NTRODUCTION

Modeling and forecasting time series is of fundamental
importance in various applications. There may be occasional
changes of behavior in a time series. Some examples are
the changes in the stock market due to the financial crisis,
or the variations of an EEG signal caused by the mode
change in the brain. In the econometrics literature, this kind
of time series is referred to asregime-switchingmodel [1],
[2]. In regime switching models, the time series{x(n), n =
1, 2, . . .} is assumed to haveM states, and ifx(n) belongs to
statem (m = 1, 2, . . . ,M ), the probability density function
(pdf) of x(n) conditioning on its past is in the form of
fm(x(n)|x(n−1), . . . , x(1)). The autoregressive (AR) model,
one of the commonly used techniques to model stationary time
series [2], is usually used to model each state. The autore-
gression of statem is given byx(n) + γT

mx
(n) = ε(n) where

ε(n) are independent and identically distributed (i.i.d.) noises
with zero mean and varianceσ2

m. Here x(n) = [1, x(n−1),
. . . , x(n−L)]T, γm = [γm0, γm1, . . . , γmL]

T is a real-valued
vector of lengthL + 1 that characterizes statem. A more
detailed survey on this model can be found in [3]. We refer
to this model as a multi-state AR model and toγm as the
AR filter or AR coefficients of statem. The above model
with γm = 1 was first analyzed by Lindgren [4] and Baum
et al. [5]. The model with generalγm is widely studied
in the speech recognition literature [6]. The multi-state AR
model is a general statistical model that can be used to fit
data in many real world applications. It was shown that the
model is capable of representing non-linear and non-stationary
time series with multimodal conditional distributions andwith
heteroscedasticity [7]. There are two basic underlying assump-
tions in this model: 1. Autoregression assumption, which is
reasonable if the observations are obtained sequentially in

time; 2. Multi-state assumption, which is reasonable if the
stochastic process exhibits different behaviors in different time
epochs. For example, stock prices may have dramatic while not
permanent changes in the case of business cycles or financial
crises, and those dynamics can be described by stochastic
transitions among different states.

Despite the wide applications of the multi-state AR model,
there are few results on how to estimate the number of states
M in a time series. Obviously, different values ofM produce
a nested family of models and models with largerM ’s fit the
observed data better. The drawback of using complex models
with a largeM is the over-fitting problem which decreases
the predictive power of the model. Hence, a proper model
selection procedure that identifies the appropriate number
of states is vital. It is tempting to test the null hypothesis
that there areM states against the alternative ofM + 1.
Unfortunately, the likelihood ratio test of this hypothesis fails
to satisfy the usual regularity conditions since some parameters
of the model are unidentified under the null hypothesis. An
alternative is to apply Akaike information criterion (AIC)[8]
or Bayesian information criterion (BIC) [9] to introduce a
penalty on the complexity of the model in the model selection
procedure. However, in general AIC and BIC are shown to be
inaccurate in estimating the number of states [10].

In this paper, we propose a model selection criterion in-
spired by the work of Tibshirani et al. [11] who studied the
clustering of i.i.d. points under Euclidean distance. The idea
is to identify M by comparing the goodness of fit for the
observed data with its expected value under a null reference
distribution. To that end, we first draw areference curvewhich
plots the “goodness of fit” versusM based on the most non-
informative distributed data, and describes how much adding
new AR states improves the goodness of fit. We then draw
a similar curve based on the observed data. In this work
we choose the “goodness of fit” measure to be the mean
squared prediction error (MSPE). Finally, the point at which
the gap between the two curves is maximized is chosen as the
estimatedM .

Besides the simplicity and effectiveness, another benefit of
the proposed model selection criterion is that it is adaptive to
the underlying characteristics of AR processes. The criterion
for the processes of little dependency, i.e., the roots of whose
characteristic polynomial are small, is different from the
criterion for those of large dependency. In this sense, it takes
into account the characteristics behind the observed data in an
unsupervised manner, even though no domain knowledge or
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prior information is given.
The remainder of the paper is outlined below. In Section II,

we propose the Gap statistics for estimating the number of
AR states in a time series. Section III formulates a specific
class of the multi-state AR model, where the transitions
between the states are assumed to be a first order Markov
process. We emphasize that this parametric model is consid-
ered primarily for simplicity and the proposed Gap statistics
can be applied to general multi-state AR processes. A new
initialization approach is also proposed that can effectively
reduce the impact of a bad initialization on the performance
of the expectation-maximization (EM) algorithm. Section IV
presents some numerical results to evaluate the performance of
the proposed approach. Experiments show that the accuracy of
the proposed approach in estimating the number of AR states
surpasses those of AIC and BIC.

II. GAP STATISTICS

This section describes our proposed criterion for selecting
the number of states in a multi AR process, inspired by [11].
We draw a reference curve, which is the expected value of
MSPE under a null reference distribution versusM , and use
its difference with the MSPE of the observed data to identify
the number of states,M . We show that computing each point
of the reference curve turns out to be a clustering problem in
the space of AR coefficients of a fixed size, where the distance
measure for clustering is derived from the increase in MSPE
when a wrong model is specified. We derive the distance
measure in closed form, introduce an approach to generate
stable AR filters that are uniformly distributed, and apply the
k-medoids algorithm to approximate the optimal solution for
the clustering problem. We first outline our proposed model
selection criterion in Subsection II-A, and then elaborateon
the distance measure in Subsections II-B and the generation
of random AR filters in Subsections II-C.

A. The Model Selection Criterion

We use superscript(n) to represent the data at time step
n, andN (µ, σ2) to denote the normal distribution with mean
µ and varianceσ2. Symbols in bold face represent vectors
or matrices. We start from a simple scenario where the data
{x(n), n = 1, 2, . . .} is generated using a single stable AR
filter ψA: x(n) = −ψT

Ax
(n) + ε(n), wherex(n) = [1, x(n−1),

. . . , x(n−L)]T, ψA = [ψA0, ψA1, . . . , ψAL]
T, and ε(n) are

i.i.d. N (0, σ2
A). Suppose we are at time stepn − 1 and we

want to predict the value at timen. If x̂(n) = −ψT

Ax
(n) is

used for prediction, the MSPE isE{(x(n) + ψT

Ax
(n))2} =

E{(ε(n))2} = σ2
A. But if another AR filter is used for

prediction instead ofψA, i.e., x̂(n) = −ψT

Bx
(n), the MSPE

becomesE{(x(n) + ψT

Bx
(n))2}. The difference of the two

MSPE is defined by

D(ψA,ψB) = E

{

[

x(n) +ψT

Bx
(n)
]2
}

− σ2
A

= E

{

[

(ψA −ψB)
Tx(n)

]2
}

. (1)

It is easy to observe thatD(ψA,ψB) is always nonnegative,
which means that using the mismatch filter for prediction
increases MSPE. We refer toD(ψA,ψB) as the mismatch
distance between two filtersψA andψB, though it is not a
metric. When the data generated fromψA has zero mean, i.e.,
ψA0 = 0, we letψA also represents[ψA1, . . . , ψAL]

T of length
L (with constant term omitted) with a slight abuse of notation,
and we useψB in the same manner.

As has been mentioned in Section I, our model selection
criterion is based on a reference curve that describes how much
adding a new state increases the goodness of fit in the most
non-informative or the “worst” case. To that end, we consider
anM -state zero mean AR process where at each time stepn,
nature chooses random mismatch filters (with zero constants)
for prediction. In such a worst scenario, theM filters that
minimize the average mismatch distances to the random filters
are naturally believed to be the true data generating filters, and
that minimal value, which is the average MSPE, is plotted
as the reference curve. This leads to the following clustering
problem in the space of stable AR filtersRL(r) ⊂ R

L, where

RL(r) ={[λ1, . . . , λL]T | zL +

L
∑

ℓ=1

λℓz
L−ℓ =

L
∏

ℓ=1

(z − aℓ),

λℓ ∈ R, |aℓ| < r, 0 < r ≤ 1, ℓ = 1, . . . , L}.

Clustering of Stable Filters: For a fixedM , let F = {ψ1,
ψ2, . . ., ψF } be a set of uniformly generated stable filters
of a given lengthL. We clusterF into M disjoint clusters
C1, C2, . . . , CM , and define the within cluster sum of distances
to be

WM = min
γ1,...,γM







1

F

M
∑

m=1

∑

ψ∈Cm

D(γm,ψ)







+ 1, (2)

whereD(γm,ψ) is defined in (1) and will be further sim-
plified in (4), (5) and (6). By computinglog(WM ) for M =
1, . . . ,Mmax, we obtain the reference curve. The optimization
problem (2) can be solved by thek-medoids algorithm [12].

The model selection criterion is outlined in Table 1. We
note that the bound for the roots0 < r ≤ 1 is determined by
the estimated filters, and thus the reference is data-dependent.
Intuitively, if the process has less dependency, or in other
words a point has less influence on its future points, the roots
of the characteristic polynomials of each AR process are closer
to zero and the MSPE curve will have smaller values. Thus,
the filters from which the reference curve is calculated should
also be drawn from a smaller bounded space.

B. Distance Measure for Autoregressive Processes

In this subsection, we provide the explicit formula for the
distance in Equation (1). Assume that the data is generated by

a stable filterψA of lengthL. LetΨA(z) =
L
∑

ℓ=1

ψAℓz
−ℓ be the

characteristic polynomial ofψA, and leta1, . . . , aL denote the



Algorithm 1 Model Selection Based on Gap Statistics

Input: {x(n), n = 1, . . . , N}, Mmax (which is assumed to contain the “correct” number of states)
Output: The number of AR statesMopt.

1: for M = 1 → Mmax do
2: Fit a multi-state AR model to the data (for instance using theEM algorithm described in Algorithm 4 )
3: Compute the MSPÊWM based on the estimated model.
4: end for
5: Plot log(ŴM ),M = 1, . . . ,Mmax, referred to as the “observed MSPE curve”
6: Compute the largest absolute value of the roots of each estimated AR filter for the caseM = Mmax, denoted byr1, . . . , rMmax. Let

r = min{max{r1, . . . , rMmax}, 1}.
7: for ℓ = 1 → Iter (number of iterations)do
8: Run Algorithm 3 (to be introduced in Subsection II-C) to generateF (e.g.F = N ) independent and uniformly distributed stable

filters F = {ψ1, . . . ,ψF } from RL(r).
9: for M = 1 → Mmax do

10: Run Algorithm 2 to approximate the optimum of (2), and obtainlog(WMℓ),M = 1, . . . ,Mmax.
11: end for
12: end for
13: Let WM =

∑Iter

ℓ=1 WMℓ/Iter. Plot log(WM),M = 1, . . . ,Mmax as the reference curve (see Fig. 2 for an example).
14: ChooseMopt to be the smallestM (1 ≤ M < Mmax) that satisfieslog(WM )− log(ŴM ) ≥ log(WM+1)− log(ŴM+1) if there exists

any; otherwiseMopt = Mmax.

Algorithm 2 Clustering Stable AR filters via “k-medoids” Algorithm

Input: A set of stable filtersF = {ψ1, . . ., ψF }, the number of desired clustersM , a number0 < δ < 1 (used for the stopping criterion).
Output: The minimum within-cluster sum of distances (WCSD)wℓ and{ψc1 , . . . ,ψcM } ⊂ F that approximate theM centers.

1: Generate a matrixDF×F whose elements are pairwise distances between filters:Duv = D(ψu,ψv).
2: Initialize M clusters characterized by centerscm and associated sets of indicesIm (m = 1, . . . ,M ) that form a partition of{1, . . . , F}.
3: Computew1 =

∑M

m=1

∑

u∈Im
D(ψcm ,ψu). Let w0 = 2w1/(1− δ), ℓ = 1 (for initialization purpose).

4: while wℓ−1 − wℓ > δwℓ−1 do
5: ℓ = ℓ+ 1, wℓ = wℓ−1.
6: for m = 1 → M do
7: Suppose thatIm = {Im[1], . . . , Im[im]} and letk = 1.
8: while k < im do
9: Consider the candidates for the new centers,ĉ1, . . . , ĉM , whereĉm′ = cm′ (m′ = 1, . . . ,M, m′ 6= m) and ĉm = Im[k].

10: For eachu = 1, . . . , F , let u ∈ Îm′ if D(ψĉm′
,ψu) ≤ D(ψĉj ,ψu) (j = 1, . . . ,M, j 6= m′).

11: Compute the WCSD given the new clusters:ŵℓ =
∑M

m′=1

∑

u∈Îm′
D(ψĉm′

,ψu).
12: if ŵℓ < wℓ then
13: k = 1, wℓ = ŵℓ, cm = Im[k], Im′ = Îm′ (m′ = 1, . . . ,M).
14: else
15: k = k + 1.
16: end if
17: end while
18: end for
19: end while

roots of1 + ΨA(z), i.e., 1 + ΨA(z) =
L
∏

ℓ=1

(1− aℓ/z), where

a1, . . . , aL lie inside the unit circle (|aℓ| < 1). Similarly define
ΨB(z), b1, . . . , bL for ψB. The value in (1) can be computed
using the power spectral density and Cauchy’s integral theorem
as:

D (ψA,ψB) = D0 (ψA,ψB) +











1 +
L
∑

ℓ=1

ψBℓ

1 +
L
∑

ℓ=1

ψAℓ

ψA0 + ψB0











2

(3)

whereD0 (ψA,ψB) =

σ2
A

2π

∫ π

−π

∣

∣ΨA(e
jω)−ΨB(e

jω)
∣

∣

2

|1 + ΨA(ejω)|2
dω

= σ2
A

L
∑

k=1

L
∏

ℓ=1

(ak − bℓ)

ak
L
∏

ℓ=1
ℓ 6=k

(ak − aℓ)











L
∏

ℓ=1

(1− akb
∗
ℓ )

L
∏

ℓ=1

(1− aka∗ℓ )

− 1











, (4)

for ak 6= 0, ak 6= aℓ, k 6= ℓ, wherea∗ denotes the complex
conjugate ofa. For the degenerate cases whenak = 0 or
ak = aℓ, D(ψA,ψB) reduces tolimak→0D(ψA,ψB) or



limak→aℓ
D(ψA,ψB).

Remark 1. For now we assume thatx(n) at each state has zero
mean by default, unless explicitly pointed out. We useD0(·)
in Identity (4) instead ofD(·) in Identity (3) to compute the
reference curve. The derived reference curve can be applied
to the general case. The reason is that it is more difficult to
detect two AR states with the same mean than those that have
different means. Therefore, the reference curves for the zero
mean case (the “worst” case) can be used in general.

The distance measure defined in Equation (4) is propor-
tional to σ2

A. We considerσ2
A = σ2 which results in a

constantlog σ2 in the computation oflogWM in (2). Since
it is the same for differentM ’s, we setσ2 = 1 without loss of
generality.

The distance between two AR filters can be explicitly
expressed in terms of the coefficients. This is computationally
desirable if the filters are random samples generated in the
coefficient domain, as will be discussed in Subsection II-C.

Notations: Consider two polynomials of nonnegative
powers p(z) and q(z) respectively of degreesu > 0 and
v > 0. Let q(z), pq(z) respectively denote the reciprocal
polynomial of q(z), and the multiplication ofp(z) and q(z),
i.e., q(z) = zvq(z−1), pq(z) = p(z)q(z). Let Res(p(z), q(z))
be the resultant ofp(z) and q(z). DefinePo(p(z), q(z)) =
∑u

k=1 q(ak) andPo(p(z), 0) = 0, wherea1, . . . , au are the
roots ofp(z).

Lemma 1. The values ofRes(p(z), q(z)) andPo(p(z), q(z))
can be computed as polynomials of the coefficients ofp(z)
and q(z).

The proof follows from the fact that the resultant ofp(z)
and q(z) is given by the determinant of their associated
Sylvester matrix [13], and that for anyn ∈ N,

∑u
k=1 a

n
k can

be computed as polynomials in the coefficients ofp(z) via
Newton’s identities. We further provide the following result.

Lemma 2. Let pA(z) = zL(1 + ΨA(z)) =
∏L

ℓ=1(z −
aℓ), pB(z) = zL(1 + ΨB(z)) =

∏L
ℓ=1(z − bℓ), p′A(z) =

∂(zpA(z))/∂z. The value ofD0(ψA,ψB) in Equation (4)
(with σA = 1) can be computed in terms of the coeffi-
cients ofψA and ψB as in Equation (5) (on the top of
the next page), whereui = Po

(

pA(z), (p
′
ApA(z))

i
)

, vi =

Po
(

pA(z), (p
′
A(z))

i
)

, i = 1, . . . , L − 1, and the function

S(·, ·) is defined asS([s1, . . . , sh], t) =

1

h!
det



















s1 − t 1 0 · · · 0

s2 − t2 s1 − t 2
. . .

...
...

...
. . .

. . . 0

sh−1 − th−2
...

. . .
. . . h− 1

sh − th sh−1 − th−1 · · · s2 − t2 s1 − t



















for h > 0, S(·, ·) = 1 for h = 0, andS(·, ·) = 0 for h < 0,
wheredet(·) denotes the determinant of a square matrix.

Another simple way to compute the distance measure is
given by the following lemma.

Lemma 3. Let ΨA = [ψ1, . . . , ψL]
T be the true filter of

an autoregression with zero mean. The varianceγ0, the
correlationsρk = ρ−k (k = 1, . . . , L), and the covariance
matrix Γ of the autoregression are respectively defined to
be γ0 = E

{

(x(n))2
}

, ρk = ρ−k = E(x(n)x(n−k)), Γ =
[γ0ρi−j ]

L
i,j=1. Defineρ = [ρ1, . . . , ρL]

T, ψk = 0 for k ≤ 0 and
k > L, δi,j = 1 if i = j andδi,j = 0 otherwise(1 ≤ i, j ≤ L).
Thenρ and γ0 can be computed by

ρ = −Φ
−1ψA, γ0 = (1 + ρTψA)

−1,

whereΦ = [Φi,j ]1≤i,j≤L is determined byΦi,j = ψi+j +
ψi−j + δi,j . The value ofD0 (ψA,ψB) in terms ofψA and
ψB can be computed by

D0 (ψA,ψB) = (ψA −ψB)
T
Γ(ψA −ψB). (6)

C. Generating Uniformly Distributed Filters with Bounded
Roots

As mentioned before, Gap statistics requires a reference
curve that is calculated by clustering the filters randomly cho-
sen from a reference distribution. In some scenarios we need
to generate sample filters fromRL(r), wherer is calculated
from the observed data. Inspired by the work of Beadle and
Djurić [14], we provide the following result on how to generate
a random point inRL(r) with uniform distribution

Lemma 4. Generation of an independent uniform sample of
[λ1,L, . . . , λL,L]

T ∈ RL(r) can be achieved by the following
procedure:
1. Draw λ1,1 uniformly on the interval[−r, r];
2. For k = 2, . . . , L, suppose that we have obtained
[λ1,k−1, . . . , λk−1,k−1]

T that is uniformly distributed in
Rk−1(r). Draw λk,k independently from a pdf proportional
to the following function on the interval[−rk, rk]

(

1 +
λk,k
rk

)⌊ k
2 ⌋
(

1− λk,k
rk

)⌊ k−1
2 ⌋

, (7)

where

λi,k = λi,k−1 +
λk,kλk−i,k−1

r2k−2i
(i = 1, . . . , k − 1). (8)

Proof. We prove by induction. The pdf ofλ1,1 is pro-
portional to one. Fork > 1, suppose that the pdf of
[λ1,k−1, . . . , λk−1,k−1]

T is proportional one insideRk−1(r)
and zero elsewhere. Suppose thatλk,k ∈ [−rk, rk] and
λ1,k, . . . , λk−1,k are determined by (8). The Levinson-Durbin
recursion in (8) automatically enforces the stability con-
straint that [λ1,k, . . . , λk,k]T falls insideRk(r). The pdf of
[λ1,k, . . . , λk,k]

T can be computed as

p(λ1,k, . . . , λk,k) = p(λk,k)p(λ1,k, . . . , λk−1,k | λk,k)
= p(λk,k)p(λ1,k−1, . . . , λk−1,k−1)|Jk|−1

∝ p(λk,k)
(

1 + λk,k/r
k
)−⌊k/2⌋ (

1− λk,k/r
k
)−⌊(k−1)/2⌋

,



D0(ψA,ψB) =
Po
(

pA(z), pBpB(z)
)

S([u1, . . . , uL−1], 0)− Po
(

pA(z), pBpBp
′
ApA(z)S([u1, . . . , uL−2], p

′
ApA(z))

)

Res
(

pA(z), p′ApA(z)
)

−
Po
(

pA(z), pB(z)
)

S([v1, . . . , vL−1], 0)− Po
(

pA(z), pBp
′
A(z)S([v1, . . . , vL−2], p

′
A(z))

)

Res
(

pA(z), p′A(z)
) (5)

Fig. 1: 10000 independent and uniformly distributed filtersof
L = 2 and the centers of two clusters, withr = 0.6, 0.8, 1.

whereJk = det[∂λi,k/∂λk−j,k−1]1≤i,j≤k−1 is the Jacobian
from λi,k to λk−i,k−1 (i = 1, . . . , k − 1) taking λk,k to be
given. Therefore, ifp(λk,k) is proportional to the value given
by (7), the joint pdf ofλ1,k, . . . , λk,k is proportional to one
in Rk(r) and zero elsewhere.

Remark 2. The technique presented in Lemma 4 can be
equivalently formulated in a simple way summarized in the
following lemma. The procedure is also described in Algo-
rithm 3.

Lemma 5. A sample of[λ1,L . . . , λL,L]
T that is uniformly dis-

tributed inRL(r) can be generated by the recursionΛ0(z) =
1,Λk(z) = zΛk−1(z)+r

kαkΛk−1(z/r
2), whereαk = 2βk−1

and βk ∼ Beta(⌊k/2 + 1⌋, ⌊(k + 1)/2⌋), k = 1, . . . , L are
independently generated.

Fig. 1 illustrates the filters randomly generated fromR2(r)
with r = 0.6, 0.8, 1. The centers of a two-clustering obtained
using Algorithm 2 are also shown in this figure. These centers
are calculated based on the average of 20 random instances,
each with 1000 samples. Fig. 2 shows the reference curves for
r = 0.6, 0.8, 1 andL = 4.

III. M ODEL

A popular way to describe the switching behavior between
different states is to assume that the transition between the
states follows a first-order Markov process. In this section, we
adopt this assumption to formulate a parametric multi-state AR

Fig. 2: The reference curves forr = 0.6, 0.8, 1, L = 4, which
are obtained based onIter = 32, F = 1000 (see Algorithm 1).

model for illustration purpose, even though the model selection
criterion proposed in Section II is applicable to other multi-
state AR models.

A. Notations and Formulations

Let Sm denote the set of data pointsx(n) that are generated
from statem. Suppose thatx(−L+1), . . . , x(0) are fixed and
known. Let Z = {z(n)}Nn=1 and Y = {y(n)}Nn=1 be a
sequence of missing (unobserved) indicators, wherez(n) is
a M ×M matrix, y(n) is aM × 1 vector, and

z
(n)
mm′ =

{

1 if x(n−1) ∈ Sm andx(n) ∈ Sm′ ,

0 otherwise,

y(n)m =

{

1 if x(n) ∈ Sm,

0 otherwise.

Clearly,z(n) = y(n−1)(y(n))T. We note thaty(n) is a binary
vector of lengthM containing a unique “1”; with a slight abuse
of notationy(n) is the location of that “1”. We assume that
{y(n)}Nn=1 is a Markov chain with transition probability matrix
T , whereP (x(n) ∈ Sm, x

(n+1) ∈ Sm′) = Tmm′ , andy(1) is
drawn fromM(α1, . . . , αM ), whereM denotes the family of
multinomial distributions. In other words, the assumed data
generating process (given a fixedM ) is:

y(n) ∼
{

M(α1, . . . , αM ) if n = 1,

M(Ty(n−1)1, . . . , Ty(n−1)M ) otherwise,
(9)

X(n) ∼ N (−γT
y(n)x

(n), σ2
y(n)), n = 2, . . . , N. (10)



Algorithm 3 Generating a uniform sample[λ1,L, . . . , λL,L]
T within RL(r)

Input: L, r,Λ0(z) = 1.
Output: ΛL(z) = zL +

∑L

ℓ=1 λℓ,Lz
L−ℓ.

1: for k = 1 → L do
2: Draw βk independently from the beta distributionβk ∼ Beta(⌊k/2 + 1⌋, ⌊(k + 1)/2⌋)
3: Let αk = 2βk − 1 andΛk(z) = zΛk−1(z) + rkαkΛk−1(z/r

2).
4: end for

Let Θ = {γm, σ2
m, Tmm′ ,m,m′ = 1, . . . ,M} be the set of

unknown parameters to be estimated, whereγm is of length
L + 1 (including the constant term). Though computing the
maximum-likelihood estimation (MLE) of the above proba-
bilistic model (10) is not tractable, it can be approximatedby a
local maximum via the EM algorithm [15]. The EM algorithm
produces a sequence of estimates by the recursive application
of E-step and M-step to the complete log-likelihood until a
predefined convergence criterion is achieved. The complete
log-likelihood can be written as

N
∑

n=1

log p(x(n) | x(n)) =

N
∑

n=1

N
∑

m,m′=1

z
(n)
mm′

(

log

(

Tmm′√
2πσm′

)

+

(

x(n) − γT
m′x(n)

)2

2σ2
m′

)

. (11)

For brevity, we provide the EM formulas below without
derivation. In theE-step, we obtain a function of unknown
parameters by taking the expectation of (11) with respect to
the missing dataY andZ given the most updated parameters,

Q(Θ | X,Θold) =

N
∑

n=1

N
∑

m,m′=1

w
(n)
mm′

(

log

(

Tmm′√
2πσm′

)

+

(

x(n) − γT
m′x(n)

)2

2σ2
m′

)

, (12)

where

w
(n)
mm′ = E(z

(n)
mm′ | Θold) = P (y(n−1) = m, y(n) = m′ |X)

(13)

can be computed recursively. We note that the parameters
involved in the right-hand side of (13) take values from
the last update. In theM-step, we use the coordinate ascent
algorithm to obtain the following local maximum. The “old”

superscriptions are omitted for brevity.

γm = −
(

N
∑

n=1

M
∑

m′=1

w
(n)
m′mx

(n)(x(n))T

)−1

(

N
∑

n=1

M
∑

m′=1

w
(n)
m′mx

(n)x(n)

)

, (14)

σ2
m =

N
∑

n=1

M
∑

m′=1

w
(n)
m′m

(

x(n) + γT
mx

(n)
)2

N
∑

n=1

M
∑

m′=1

w
(n)
m′m

, (15)

Tmm′ =

N
∑

n=1
w

(n)
mm′

M
∑

m′=1

N
∑

n=1
w

(n)
mm′

. (16)

B. Initialization of EM

The convergence speed of the EM algorithm strongly de-
pends on the initialization and an improper initializationcan
cause it to converge to a local maximum which is far away
from the global optimum. A routine technique is to use
multiple random initializations and choose the output with
the largest likelihood [16], but this can be significantly time
consuming. Here, we use a new initialization technique to
get a fast and reliable convergence for the EM algorithm.
This technique is based on the fact that for time series
obtained in most practical areas, the self-transition probability
of the states is usually close to one, i.e.,Tmm ≈ 1. By
adopting this assumption, we propose the initialization method
in Algorithm 4, which is shown empirically to produce more
reliable and efficient EM results. We note that the “split” style
rule that appears in line 5 of Algorithm 4 is used elsewhere
(e.g. s [17]).

IV. N UMERICAL EXPERIMENTS

This section presents numerical results to evaluate the
performance of the proposed technique.

Fig. 3 shows a time series generated from a 3-state AR
model withL = 4. The observed MSPE curve associated with
the time series shown in Fig. 3 and the reference curve for
L = 4 are plotted in Fig. 4. The gap between the two curves
is maximized atM = 3. Thus, the selectedM is 3. In order
to compare the performance of the proposed technique with
those of AIC and BIC, we have generated synthetic time series
under three different scenarios and apply each technique on
those data to estimate the number of states. The three scenarios



Algorithm 4 EM algorithm with the proposed initialization approach

Input: X = {x(n)}Nn=1.

Output: The initial parameterŝΘM =

{

Γ̂M = {γ̂m}Mm=1, Σ̂M = {σ̂2
m}Mm=1, T̂M =

(

(T̂M )mm′

)M

m,m′=1

}

, M = 1, . . . ,Mmax.

1: for M = 1 → Mmax do
2: for n = 1 → N −N0 + 1 do
3: Estimate the AR filter̂ξn and the noise variancêσ2

n from the sequence{x(n), . . . , x(n+N0−1)} via the least squares method.
4: end for
5: Clusterξ̂1, . . . , ξ̂N−N0+1 into M cluster usingk-means algorithm and obtain the centersˆ̺1, . . . , ˆ̺M with the corresponding noise

varianceŝς21 , . . . , ς̂
2
M . Pick up suchˆ̺k (1 ≤ k ≤ M ) that maximize the sum of Euclidean distances toγ̂1, . . . , γ̂M−1.

6: if M > 1 then
7: Let Γ̂M = Γ̂M−1 ∪ ˆ̺k, Σ̂M = Σ̂M−1 ∪ ς̂2k , (T̂M )mm′ = 1/M (m,m′ = 1, . . . ,M).
8: else
9: Γ̂1 = ˆ̺k, Σ̂1 = ς̂2k , T1 = 1.

10: end if
11: Run EM updates described in (13)-(16) till certain stoppingcriterion is achieved.
12: end for

Method

Scenario 1 Scenario 3 Scenario 2

AIC BIC Gap

(U)

Gap 

(B)

AIC BIC Gap

(U)

Gap 

(B)

AIC BIC Gap

(U)

Gap 

(B)

1 0 %18 0 0 0 %16 0 0 %28 %68 %88 0

2 %37 %82 %26 %4 %51 %72 %11 0 %45 %32 %12 %100

3 %63 0 %74 %96 %43 %12 %72 %8 %27 0 0 0

4 0 0 0 0 %6 0 %17 %92 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0E
st

im
at

ed
 N

u
m

b
er

 

o
f 

A
R

 F
il

te
rs

TABLE I: The estimated number of AR filters for three different scenarios using AIC, BIC and Gap statistics (with the true
number of filters for each scenario highlighted)

Fig. 3: A random instance of multi-state AR time series:
L = 4,M = 3, Tmm = 0.98, µm = 0, σm = 1, Tmm′ =
0.01,m, m′ = 1, . . . , 3,m 6= m′.

are as follows:
Scenario 1:(L,M, r) = (4, 3, 1) ;
Scenario 2:(L,M, r) = (1, 4, 0.8);
Scenario 3:(L,M, r) = (2, 2, 0.6).
For each scenario,100 instances of multi-state AR time series
of length N = 1000 are independently generated, each of
which consists ofM autoregressive filters which are uniformly

Fig. 4: The reference curves and the observed MSPE curve
for the time series shown in Fig. 3. The gap between the two
curves is maximized atM = 3.

drawn from theRL(r) space. For each AR, the mean is
uniformly generated from[−4, 4] and the variance is assumed
to be 1. The transition matrix is considered to beTmm =
0.98, Tmm′ = 0.02/(M − 1) for m,m′ = 1, . . . ,M,m 6=
m′. For each instance, the model parameters for each fixed
M = 1, . . . ,Mmax are estimated using EM algorithm, where
Mmax = 6. Table 1 shows the estimated number of AR filters



using AIC, BIC and Gap statistics, where two types of Gap
statistics are used to estimate the number of states. In the first
type, denoted by Gap (U), the reference curve is generated
from sample AR filters that have roots inside the unit circle,
and is therefore independent of the data. In the second form of
the Gap statistics, represented by Gap (B), the sample filters
are restricted to have roots inside a circle with radiusr, where
r is calculated from the data based on Algorithm 1. According
to these results, Gap (B) outperforms AIC and BIC in all three
scenarios, and it gives a better estimate of the number of states
compared with Gap (U) since it is adaptive to the data.

V. CONCLUSIONS

In this paper we proposed a model selection technique to
estimate the number of states in a time series. The proposed
approach, referred to as the Gap statistics, uses a reference
curve to check whether adding a new state significantly de-
creases the prediction error. The reference curve is calculated
by clustering uniformly generated stable AR filters. Numerical
results show that the performance of the proposed model
selection criterion surpasses those of AIC and BIC.
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