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Abstract—Given a private source of information, X™ and a with high probability and the leakage of information (the
public correlated source,Y™, we study the problem of encoding information obtained by an eavesdropper, Eve) ahtit
the two-dimensional source(X™,Y™) into an index J such that  is no more thanA > 0. It is clear that no non-trivial

a remote party, knowing J and some external side information . . - . . .
7", can losslessly recovel™ while any eavesdropper knowing Ievgl of privacy can be obtained if no side information is
J and possibly a correlated side information E™ can retrieve available to Bob. Hence, we assume Bob has access to
very little information about X™. We give general converse some correlated side information and after observing the
results for the amount of information about X™ that might channel output wants to recovéf™ with asymptotically

be leaked in such systems and and also achievability resunsvanishing error probability. We study this problem in terms

that are optimal in some special cases. f th . t d also the inf i leak
Index Terms—Equivocation, information leakage, utility, pri- o € compression rate and aiso the information leaxage

vacy, lossless source coding with side information. about X" (or equivalently the equivocation between the
compressed and the private data). We give converse results
. INTRODUCTION for different cases including when Bob has coded or uncoded

Information-theoretic secrecy models concern a tradeS#€ information, when Eve has uncoded side information, or
between utility and privacy. Given a sourte', the goal is When the private sourcey™, is hidden even from Alice.
to transmit this source securely and reliably over a nossele WhenX =Y/, the problem we consider here reduces to
public channel which might be perfectly observed by & Well-known model which has been extensively studied,
passive adversary. The utility is defined as the accuracy R €xample seel[2]=[6]. In particular, Prabhakaran and
the recovering off™ by a remote receiver and the privacﬁamchandrarl [2] considered a similar secure losslesagetti

is defined as the uncertainty of the source given the mess¥§i! X = Y and Bob and Eve having correlated uncoded
sent over the channel. However. in some cases. it msiie information. They focused on the best achievable in-

be desirable to define utility and privacy for two differenformation leakage rate when the public channel has not rate
sources, that is, we want the receiver to kngi with some limit. Glinduz et al.[[3], [[4] gave converse and achievapilit

level of accuracy while revealing very little informatiobgut  ounds for a similar setting for both compression rate and
a correlated sourc&™. which we refer to as the privmemformanon leakage which do not necessarily match. Tandon

source. et al. [6] considered a simpler case in which Eve has no

To motivate this setting, consider the following example's.id? information, gave a single letter characterizatiothef
SupposeY denotes an attribute of a bank customer th@Ptimal rates, and information leakage and showed that a
a trusted advertising company would like to target axid SimPle coding scheme based on binning, similar to the one
denotes another, more sensitive, attribute of the custorfdiPPosed by Wynerin[7], is indeed optimal with and without
The bank has databag&™, Y") corresponding ta. different the privacy constraint. Our results recover all these tesnl
users. The company pays the bank to recéiveas accu- € Special case ok =Y. _ ,
rately as possible. However, some governing laws proHibit t The rest of thls_paper is organized as follows. In Section
databasex™ from being revealed too extensively over publid!: We formally define our problem and state an outer bound
communication channels. Consequently, the data givereto Mhich is our main result. In Section Ill, we consider a more

company must be chosen so that at most a prescribed amdifneral model in which Eve has side information and present
of information is revealed abod™ over the communication gnother outer bound. We then present a coding scheme which

channel while the recovery df" by the company satisfies 'S shown to be optimal in some special cases. We complete
some level of quality. the paper with some concluding remarks in Section IV.

Inspired by Yamamoto [1] where a lossy source codingII
problem is studied under a privacy constraint, we consider a”
secure lossless source coding model in which an encoder
(Alice) encodes a two-dimensional sour¢&™,Y") such Yamamoto [[1] considered a lossy source coding scheme

that the receiver (Bob) is able to reconstrict correctly With a privacy constraint at the legitimate decoder. This
is contrasted with the typical information-theoretic sagr
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of the source against a passive eavesdropper. In this modelVe note that for a special case &f= Y, inner and outer
having observed X™,Y™), the encoderp : X" x Y™* — bounds on the achievable region were initially presented in
{1,2,...,2"7}, transmits a message to the decoder; [4, Theorem 3.1], although these bounds do no match in
{1,2,...,2"%} — Y™, which is required to recove¥” general. Tight bounds were then given ifi [6, Theorem 1]
within some distortionD while revealing little information whose achievability resembles the binning scheme proposed
about X™. More precisely, for a given distortion measurdy Wyner [{] for standard source coding with coded side
d:YxY — Ry, we require: STE[d(Y;,Y;)] < D while information at the decoder. This therefore shows that the
the normalized uncertainty abo#it® at the decoder is lower- privacy constraint[{2) does not change the optimal scheme.
bounded, i.e.l H(X"|p(X",Y™")) > E for a non-negative ) )
E < H(X). This requirement is different from the privacy!"€orem 1. For any achievable triplé R4, Rc, A) € R we
constraint usually considered in information-theoregicrecy Nave
(e.g., [3], [8], [€], and[[5]), in that here the utility andipacy Ra
are measured with respect to two different souidesnd X,
respectively. In this sens& andY correspond to the private
and public sources, respectively. The correlation betwgen A
andY makes the utility and privacy constraints contradictin
We study a similar model as Yamamoto’s but fossless

> H(Y|V),
Re = 1(Z;V),
< I(X,Y;V)+ H(X|U) - H(Y[U),
Yor some auxiliary random variable¥ € V andU € U

. ) ; . - ! ~> such thatP(z,y, z,u,v) = P(x,y,2)P P ,y) with
compression. Clearly, if no side information is avaﬂablEM < || X%)'yjluaﬁé V) <(sz| j)2 (vlz)Pule,y)
to the decoder, then the eavesdropper can obtain as m ch_ - '
information aboutX™ as the legitimate decoder and hencproof. First note that Bob is required to reconstruct

only trivial levels of privacy can be achieved when losslesgsslessly given/ and K, and thus by Fano’s inequality we
compression oY is required. We, therefore, assume that sidgave

information is provided at the decoder, as depicted in[Big. 1 HY"|J,K) < nep, (3)

wheree,, — 0 asn — oo.
We start by obtaining a lower bound fét4 as follows:

Z"™ —| Charlie

nRay > H(J)>H(JIK)
(@)
.y : J A > HY" J|K)—ne,
(X", Y"™) —| Alice Bob— y» > HEK) - ne,
Fig. 1. Yamamoto's lossless source coding. z”: HY Y K)
= [ ) — Nénp
. . 1=1
A (2"Ra 2nEe n) code for private lossless compression n
in this setup is composed of two encoding functions at Alice > Z H(yi|yi—1,Xi—17 K) —ne,
and Charlie, respectively,y : X" x Y™ — {1,2,... 2"Ra} i1
and fo : 2" — {1,2,...,2"f 9}, and a decoder at Bob, ® O
fp o+ {1,2,...27Ba) x {1,2,... 27Rc} 5 P where = > H(Yi|Vi) — nen
(X", Y™, Z™) aren independent and identically distributed i=1
(i.i.d.) copies of(X, Y, Z) with joint distribution P(z, y, 2). © H(Yo|Vo, Q) — nen
We assume that both encoders communicate to Bob over (@ ’
noiseless channels; however, the channel between Alice and = nHY|V)—ne,

Bob is subject to eavesdropping and hence a passive party%rére(a) follows from (3), and(b) is due to the definition
have access to the messagéransmitted over this channeI.V_ — (Y1, X1 K). In ’(C) we have introduced a time-

A triple (Ra, Rc,A) € R3 is said to be achievable if for _; ~ . . L .
any = > 0, there exists 4214, 2R ) code forn large sharing random variablé) which is distributed uniformly

enouah such that over {1,2,...,n} and is independent ofX™, Y™, Z™). In

ugh su (d) we have defined” := (V, Q) and used the fact thafy
Pr(fp(J,K)#Y™) < &, (1) has the distribution o¥” and hence we can repla¢g with

1 N Y.

EH(X /) =2 A-e @ Next we obtain a lower bound oR¢:

whereJ := f4(X™, Y") and K := fc(Z™). We denote the . " i

set of all achievable triple6R 4, Rc, A) by R. One special nRe > H(K)=I1(Z"K)= ZI(Z“MZ )

case of interest is whes contains absolutely no information . =1

about the private source, that is, whenis independent of (a) ZI(Z" K, 7Y

X", which is called perfect privacy. pt



n

i=1
n

> Y NZs K X'7LY'TY) = nl(Zg; Ve, Q)

=1

= > HZsK, 27 XY

= nl(Z;V)

where (a) is due to the fact thag; is independent ofZ*~!

+n[H(Xq|Uq, Q) — H(Yq|Uq, Q)]
(d)
= ne,
+n[I(V; X, Y)+ H(X|U) - HY|U),
where (a) follows from (4), (b) follows from the Markov

chain relationJ —— (X™Y") —— K and hence
I(X™, Y™ K|J) <I(X™ Y™ K), (c) is due to the fact that

for eachi and (b) follows from the Markov chain relation @ is independent of X, Yq) and in(d) we have introduced
Zi Lo (K, Zi—l) Lo (Yi_l,Xi_l).
We now upper bound the equivocation that any asymptot-we note that by definitions df andV/, the Markov chain
ically lossless scheme produces. First we show the follgwigonditions(X,Y) —— Z —— V andZ —o— (X,Y) —o—
identity which expresseH (X"|.J) in terms of H(Y"|.J) and U are satisfied. The cardinality bounds given in the statement
some auxiliary terms:

H(X"|J) = H(Y"J) =Y _[H(X:|U;) — HY;|U3)], (4)

where U; := (X[,,Y""',J). We will prove a general

n

=1

version of this identity later in Lemnid 1.

The equivocation can be then be upper bounded as

n(A—g) <

IN

—
IN=

H(X"|J)

H(Y"J) + ) [H(X:|U;) = H(Y;|U;)]
=1

H(Y™K,J)+ (Y™ K|J)

+ Z[H(Xi|Ui) — H(Y;|U)]
=1

nen + I(K; Y™, X"|J)

+ Z[H(Xi|Ui) — H(Y;|U)]
=1

ne, + I(K; X", Y™)
+ 3 [H(X|Us) — H(Y;|Us))

i=1

nen + Y I(K; X3, Y| Xyt
i=1

+ Y [H(X|U;) = H(Y|U;)]

i=1
nen + Y I(K,X7LYN X, Y)
i=1

+ Y [H(X|U;) — H(Y;|U)]
i=1

nen+ > I(Vi; X3, Y5)

1=1
+ Y [H(X|U;) — H(Yi|U;)]
=1
ne, +nl(Vg; X0, Yo|Q)
+n[H (Xq|Uq, Q) — H(Yq|Uqg, Q)]
nen, +nl(Vg,Q; Xq,Yq)

U = (UQ,Q)

of the theorem can be proved using support lemma [

Remarkl. As mentioned earlier, the special case= Y

is studied in [[6] where it is shown that for any achievable
triple (R4, Rc, A), the optimal equivocation satisfies <
I(Y; V). We see that Theorel 1 yields the same result and
thus gives a tight bound in this special case.

In practice, the private sourc¥ might not be directly
available to Alice. In this case, her mappingfis : V" —
{1,2,...,2"4} and the above theorem reduces to the
following corollary.

Corollary 1. When the sourc&™ is not available to Alice,
any achievable tripld R4, Rc, A) satisfies

Re > I(Z;V),
A < I(Y;V)+ H(X|U) - HY|U),

for someU € Y andV € V such thatP(z,y, z,u,v) =
P(z,y,2)P(v|z)P(uly) and U] < |Y|+1and|V| < | Z|+2.

Proof. The proof follows easily from the proof of The-
orem[1. In particular, introducing/; := (Y*~! K) and
Ui = (X[,,Y""",J), we can follow easily the chain
of inequalities given for the equivocation analysis with- ap
propriate modifications. Since noWl = f4(Y"), we have

Ill. YAMAMOTO'S LOSSLESSSOURCE CODING:
UNCODED SIDE INFORMATION AT EVE

We now turn our focus to the case where there is an
eavesdropper, Eve, with perfect access to the channel from
Alice to Bob and also side informatiof™. Unlike in the
last section, in this model the achievalil®s, R, A) has
not been fully characterized in the caseXf= Y. However,
Gundiuz et al.[[8] and Probhakaran and Ramchandran [2]
showed that ifRc > H(Z), that is uncoded side information
is available at Bob, thefR4,A) is an achievable pair if
and only if R4 > H(Y|Z) and A < max[[(Y;Z|U) —
I1(Y; E|U)] where the maximization is taken ovéf that
satisfiesZ —— Y —— U, thus providing a full single-letter
characterization of the achievable rate-equivocatioioredn
this section, we assume coded side information is available
at Bob and Eve has uncoded side informatiBf. As in
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n

= H(Y",E"|J) - H(X",E"|J) — Z[H(Yi, B X YU BT ) - H(X, By X2 Y BT )

<.
—

n

= H(Y"|E",J)— H(X"E",J) =Y [HYi|E;, X, Y E™J)— H(X;|E;, X'y, Y LB, )]

N
Il
-

© gy B, J) — HX|E",J) -

I

Il
-

(H(Yi|Ei, U;) — H(Xi|E;, Us)] (5)

K3

[6], we assume that the Eve’s side informatibil forms the Theorem 2. The set of all achievable triple&R 4, Rc, A)

Markov chainX™ —o— Y™ —o— E™, for this model when Eve is provided with side information
A. A Converse Result E™ and E" —o— Y™ —— X", satisfies
We consider the model depicted in Hig. 2 in which Eve has Rys > H(YIV),
a}l(cr(l:ess to side informatioR™ which satisfiest™ — Y™ — Re > I1(Z;V),
' A < I(X,Y;V)-I(X,Y;E|U)
Z" — Charlie +H(X|E,U) - H(Y|E,U),
for someU and V' which form(Z, E) —— (X,Y) —— U
K and(X,Y,E) —— Z —— V.
J Proof. The lower bounds for botl® 4 and R follow along
(X™,Y™) — Alice Bob|— y» the same lines as in the proof of Theorem 1. We shall show
the upper bound for the equivocation. We note that since Bob
is required to reconstruct™ losslessly, Fano’s inequality

implies that
L H(Y"™J,K) < ne, (7

Fig. 2. Yamamoto’s lossless source coding with eavesdrdpgpeng
side information.

E" Eve—

for €, — 0 asn — oo. As before, let/ = f4(X™,Y™) and
K = fc(Z7).

The upper bound for the equivocation is obtained in
(8) shown on top of the next page whefe) follows
From Lemmall and(b) is due to [[J). SinceK ——
(X™Y") —— J and E" —— Y™ —— J, we have

EH(X”ERJ)EA%' © [(X"YUK) < I(X"Y™K) and (Y E"|) =
n I(Y™, E™) — I(E™;J) and hence(c) follows. We again
Before we get to an outer bound for the achievable region é$ed the Markov chain relatioR” —— Y™ —— X™ in

The achievable(R4, R, A) in this model is defined
similarly as before with the utility constraint](1) and th
privacy constraint

this model, we need to state the following lemma which ig?). The definitionV; := (X, Xi=1yi=1) and the fact
a generalization of identity {4) that we used in the proof d¢hat I(E;; J, E‘~1) < I(E;;U;) are used in(e). Note that
Theoren{]L. since U; —— (X;,Y;) —— E; we have in(f) that

I(X;, Yy E5|U;y) = I(Xy,Ys; Ey) — I(Es;Us). The proof
completes by introduction of a time sharing random variable
Q uniformly distributed over1,2,...,n} and independent
H(X"|E™,J) —H(Y"|E",J) of (X", Y™ Z" E") and letting X = Xg,Y = Yo,
E:EQ,V:(VQ,Q) andU:(UQ,Q). u

Lemma 1. Let (J, X", Y™ E™) be jointly distributed ac-
cording to P(j,z™,y™,e™). Then we can write:

= Y [H(X|E;,U;) — H(Y|E;, Uy)]

— Remark?. SettingE™ = () and thus removing the eavesdrop-

o _ per’s side information, Theorem 2 yields < I(X,Y; V) +
whereU; := (X7, Y"™, E7",J) foreachl <i <nand f(x|U)— H(Y|U) and hence Theorehi 2 subsumes Theo-
E7 = (B, B rem[1.

Proof. The proof is presented if](5), wher@) follows In the simple case oKX =Y, the optimal scheme when
from Ciszar sum identity [10, page 25], {i#) we used the coded side information is available at Bob af# = 0 is
definition of U;. m proposed in[[B6] which is shown to resemble the binning



B, 0) @ HE )+ S (G U) — BB, Uy
=1
= HY"J,K)+I(Y"; K|J) - I(Y"; E"|J) + Xn:[H(XilEia Ui) — H(Yi|E;, Us)]
=1
D e 4 IX Y K|T) — (Y™ B ) + zn:[H(XAEi, U,) — H(Y|E:, UD)]
i=1
(g nen + I(X™ Y™ K) = I(Y"; E") + I(E™; J) + zn:[H(XJEz, Ui) — H(Y;|E;, U;)]
=1

D e+ STUXGL Vi K, XL Y = 1Y, X Ei) + (B J,E)

=1

(e) "

< ne + Y (X, Y Vi) = 1Yy, X3 By) + I(E; U) + H(X,| B, Us) — H(Yi B3, Uy)
=1

L+ SU(X0, Vi Vi) = 1Y, Xis BilU) + H(X| By, Us) — H(Yi|E:, U]
=1

9)
D e, + I(Xq,Yq; Vo, Q) — I(Yg, Xq; Eq|Uq, Q) + H(Xq|Eq,Uqg, Q) — H(Yg|Eq,Uq, Q)] (8)

scheme of Wyner in[]7]. Although, a tight bound for the +H(X|E,U)—- H(Y|E,U),
equivocation wherE™ is available is not yet known, Theo-
rem[2, specialized t& =Y, implies

A<I(Y;V)-I(Y;EU),

is achievable where the auxiliary random varialileforms
the Markov chainX,Z,E) —— Y —— U.

Proof. Our scheme is similar to the ones proposedlin [3]

for auxiliary random variable&” andV" which form Markov 5.4 [11]. Giveny™, we generat@™!(ViU)+) independent

chainsV —— 7 —— (Y, E) andU —— Y —— (Z, E). codewords of lengt, U™ (w), w € {1,2,...,2"(;U)+e}
B. A Coding Scheme When Bob Has Uncoded Side Infornd&cording to][;_, P(u;). We then uniformly bin all the
tion U™ sequences inta"(!(Y;U)=1(U:2)) pins. LetB(i) be the

. . . indi i i i 1(U;2)
As a special case, we consider the case where Alice d(')%dlceS assigned to bih There are approximate”"

. . indices in each bin. We also uniformly bi" sequences into
not see the_ private source and a}%@ > H(Z) (i.e., Bob has on(H(YIU.2)+<) bins and leC'(k) be th)é set of sqequencé’s?
uncoded side information). In this case, Theoftdm 2 |mpllgs

that the best achievable equivocation is upper bounded bg]nblgféeAl;ﬁeﬂ?g?ﬁg Satr\;vol-gjlits igfo;'zg dse(\:/\t]:rgs &w(?ven

max[I[(Y;Z) — I(Y;E|U)+ H(X|E,U)— H(Y|E,U)], suchthatY" U"(w)) € A}, where A}, denotes the set
L ) of all strongly typical(y™,u™) € Y™ x U™ with respect to
VI\\/llhelie theh maxmlui_atl([)]n IS tak;n over vahg:thorrFs tthhe the distributionP(y, ). She then reveals the bin inde

arkov chain relationl/. —— Y —o— (Z,B,X). In the g, ynap,  B(Jy). In the second part, she revelssuch
following we give a simple coding scheme which incurs N n

. . - , : atY”™ € C(Jz).

smaller equivocation and is thus suboptimal. In fact, if the . ! o .
above maximization results in & which is independent of _Given i, J> andZ™, Bob can find, with high probability,
7, then the following coding scheme is optimal. On the othéf " (w) such thatw € B(J1) and (U"(w), Z2") € Ay . It
hand, if the maximization results in @ which is constant, IS then clear from the Slepian-Wolf theorem that Bob can
then it implies that Slepian-Wolf binning is optimal, besau r€COverY™ with high probability given" (w), Z", and Jz.

if Alice uses Slepian-Wolf binning then the equivocation is The rate of this encoder is clearly equall(Y'|U, Z) +

equal toH(X|E) — H(Y|Z), as observed ir_[2]. IY;U)-I(U;Z)=H(Y|Z).
Theorem 3. WhenX ™ is not given to Alice and Bob observes 1N€ equivocation for this scheme can be found as
side informationZ”, then (R4, A) which satisfies H(X"|Jy, Jo, E™)

Ry > H(Y|Z2),

> H(X"|Jy, E™) — I(X™; Jo|J1, E™)
A < I(Y;Z[U)-I(Y;E|U)

H(X"U", E") — H(J2)

Y



H(X™U™, E") = >
(un7en)€un xXEM

=z >

(u™,emETH

>

(u",e")ET[}ﬁE

P(u™,e")

Pu™, e")H(X™"U" =u™, E" =¢€")

Pu", e )H(X" U™ =u", E" =¢€")

-2 P(:c”|u",e“)log(P(x”IU"’e"))]

xneEX™

> Z P(u™e") | — Z P(z™|u™, e")log(P(a"|u", e™))
(u",e")GTl}"E zneT)?‘un’en
©
(un7en)ET[7,E wneT)?\un,en
= n(HY|UE)=8) > Pl e) [Pr{u",e", X") € T¢jnen}
(um,e)eTH &
(a) ,
= n(H(Y|U,E) = 6,)(1 - dy,) 9)

H(X"|U",E™) —nH(Y|U, Z)

n[H(X|U,E)— H(Y|U, Z)]
= nlH(X|E,U)- H(Y|E,U)
+I(Y;Z|U) = I(Y; E|U)],

where (a) follow from the fact that/; is a random variable
over a set of siz&"(Y'1V.2) and(b) is proved in[®) where
i denotes the set of typical sequences, e”) and(c) is
due to the property of typical sequences; in particularypr t
ical ™ sequence with respect f(z"™ |u", e™) for (u™,e") €
Ty we have P(z"[u",e") < 27 (mHEXIUEI=3(n) for

with this simplifying assumption, Theordm 1 and Theofgém 3
reduce to[[6, Theorem 1] and|[3, Corollary 3.2].

However, it is not clear at the moment that the bounds

are tight in general. Constructing an achievability scheme
for the most general case (i.e., the setting of Thedrem 2) is
the subject of our future studies.
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