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Abstract—Given a private source of information, Xn and a
public correlated source,Y n, we study the problem of encoding
the two-dimensional source(Xn, Y n) into an index J such that
a remote party, knowing J and some external side information
Zn, can losslessly recoverY n while any eavesdropper knowing
J and possibly a correlated side informationEn can retrieve
very little information about Xn. We give general converse
results for the amount of information about Xn that might
be leaked in such systems and and also achievability results
that are optimal in some special cases.

Index Terms—Equivocation, information leakage, utility, pri-
vacy, lossless source coding with side information.

I. I NTRODUCTION

Information-theoretic secrecy models concern a tradeoff
between utility and privacy. Given a sourceY n, the goal is
to transmit this source securely and reliably over a noiseless
public channel which might be perfectly observed by a
passive adversary. The utility is defined as the accuracy in
the recovering ofY n by a remote receiver and the privacy
is defined as the uncertainty of the source given the message
sent over the channel. However, in some cases, it may
be desirable to define utility and privacy for two different
sources, that is, we want the receiver to knowY n with some
level of accuracy while revealing very little information about
a correlated sourceXn, which we refer to as the private
source.

To motivate this setting, consider the following example.
SupposeY denotes an attribute of a bank customer that
a trusted advertising company would like to target andX

denotes another, more sensitive, attribute of the customer.
The bank has database(Xn, Y n) corresponding ton different
users. The company pays the bank to receiveY n as accu-
rately as possible. However, some governing laws prohibit the
databaseXn from being revealed too extensively over public
communication channels. Consequently, the data given to the
company must be chosen so that at most a prescribed amount
of information is revealed aboutXn over the communication
channel while the recovery ofY n by the company satisfies
some level of quality.

Inspired by Yamamoto [1] where a lossy source coding
problem is studied under a privacy constraint, we consider a
secure lossless source coding model in which an encoder
(Alice) encodes a two-dimensional source(Xn, Y n) such
that the receiver (Bob) is able to reconstructY n correctly
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with high probability and the leakage of information (the
information obtained by an eavesdropper, Eve) aboutXn

is no more than∆ ≥ 0. It is clear that no non-trivial
level of privacy can be obtained if no side information is
available to Bob. Hence, we assume Bob has access to
some correlated side information and after observing the
channel output wants to recoverY n with asymptotically
vanishing error probability. We study this problem in terms
of the compression rate and also the information leakage
about Xn (or equivalently the equivocation between the
compressed and the private data). We give converse results
for different cases including when Bob has coded or uncoded
side information, when Eve has uncoded side information, or
when the private source,Xn, is hidden even from Alice.

WhenX = Y , the problem we consider here reduces to
a well-known model which has been extensively studied,
for example see [2]–[6]. In particular, Prabhakaran and
Ramchandran [2] considered a similar secure lossless setting
with X = Y and Bob and Eve having correlated uncoded
side information. They focused on the best achievable in-
formation leakage rate when the public channel has not rate
limit. Gündüz et al. [3], [4] gave converse and achievability
bounds for a similar setting for both compression rate and
information leakage which do not necessarily match. Tandon
et al. [6] considered a simpler case in which Eve has no
side information, gave a single letter characterization ofthe
optimal rates, and information leakage and showed that a
simple coding scheme based on binning, similar to the one
proposed by Wyner in [7], is indeed optimal with and without
the privacy constraint. Our results recover all these results in
the special case ofX = Y .

The rest of this paper is organized as follows. In Section
II, we formally define our problem and state an outer bound
which is our main result. In Section III, we consider a more
general model in which Eve has side information and present
another outer bound. We then present a coding scheme which
is shown to be optimal in some special cases. We complete
the paper with some concluding remarks in Section IV.

II. YAMAMOTO ’ S LOSSLESSSOURCE CODING: CODED

SIDE INFORMATION AT BOB

Yamamoto [1] considered a lossy source coding scheme
with a privacy constraint at the legitimate decoder. This
is contrasted with the typical information-theoretic secrecy
models in which the privacy is defined as the uncertainty
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of the source against a passive eavesdropper. In this model,
having observed(Xn, Y n), the encoderϕ : Xn × Yn →
{1, 2, . . . , 2nR}, transmits a message to the decoder,ψ :
{1, 2, . . . , 2nR} → Ŷn, which is required to recoverY n

within some distortionD while revealing little information
aboutXn. More precisely, for a given distortion measure
d : Y × Ŷ → R+, we require 1

n

∑

E[d(Yi, Ŷi)] ≤ D while
the normalized uncertainty aboutXn at the decoder is lower-
bounded, i.e.,1

n
H(Xn|ϕ(Xn, Y n)) ≥ E for a non-negative

E ≤ H(X). This requirement is different from the privacy
constraint usually considered in information-theoretic secrecy
(e.g., [3], [8], [6], and [5]), in that here the utility and privacy
are measured with respect to two different sourcesY andX ,
respectively. In this sense,X andY correspond to the private
and public sources, respectively. The correlation betweenX

andY makes the utility and privacy constraints contradicting.
We study a similar model as Yamamoto’s but forlossless

compression. Clearly, if no side information is available
to the decoder, then the eavesdropper can obtain as much
information aboutXn as the legitimate decoder and hence
only trivial levels of privacy can be achieved when lossless
compression ofY is required. We, therefore, assume that side
information is provided at the decoder, as depicted in Fig. 1.

Alice(Xn, Y n) Bob Ŷ n

CharlieZn

J

K

Fig. 1. Yamamoto’s lossless source coding.

A (2nRA , 2nRC , n) code for private lossless compression
in this setup is composed of two encoding functions at Alice
and Charlie, respectively,fA : Xn×Yn → {1, 2, . . . , 2nRA}
and fC : Zn → {1, 2, . . . , 2nRC}, and a decoder at Bob,
fB : {1, 2, . . . , 2nRA} × {1, 2, . . . , 2nRC} → Ŷn, where
(Xn, Y n, Zn) aren independent and identically distributed
(i.i.d.) copies of(X,Y, Z) with joint distributionP (x, y, z).
We assume that both encoders communicate to Bob over
noiseless channels; however, the channel between Alice and
Bob is subject to eavesdropping and hence a passive party can
have access to the messageJ transmitted over this channel.
A triple (RA, RC ,∆) ∈ R

3
+ is said to be achievable if for

any ε > 0, there exists a(2nRA , 2nRC , n) code forn large
enough such that

Pr(fB(J,K) 6= Y n) < ε, (1)
1

n
H(Xn|J) ≥ ∆− ε, (2)

whereJ := fA(X
n, Y n) andK := fC(Z

n). We denote the
set of all achievable triples(RA, RC ,∆) by R. One special
case of interest is whenJ contains absolutely no information
about the private source, that is, whenJ is independent of
Xn, which is called perfect privacy.

We note that for a special case ofX = Y , inner and outer
bounds on the achievable region were initially presented in
[4, Theorem 3.1], although these bounds do no match in
general. Tight bounds were then given in [6, Theorem 1]
whose achievability resembles the binning scheme proposed
by Wyner [7] for standard source coding with coded side
information at the decoder. This therefore shows that the
privacy constraint (2) does not change the optimal scheme.

Theorem 1. For any achievable triple(RA, RC ,∆) ∈ R we
have

RA ≥ H(Y |V ),

RC ≥ I(Z;V ),

∆ ≤ I(X,Y ;V ) +H(X |U)−H(Y |U),

for some auxiliary random variablesV ∈ V and U ∈ U
such thatP (x, y, z, u, v) = P (x, y, z)P (v|z)P (u|x, y) with
|U| ≤ |X | × |Y|+ 1 and |V| ≤ |Z|+ 2.

Proof. First note that Bob is required to reconstructY n

losslessly givenJ andK, and thus by Fano’s inequality we
have

H(Y n|J,K) ≤ nεn, (3)

whereεn → 0 asn→ ∞.
We start by obtaining a lower bound forRA as follows:

nRA ≥ H(J) ≥ H(J |K)

= H(Y n, J |K)−H(Y n|J,K)
(a)

≥ H(Y n, J |K)− nεn

≥ H(Y n|K)− nεn

=

n
∑

i=1

H(Yi|Y
i−1,K)− nεn

≥
n
∑

i=1

H(Yi|Y
i−1, X i−1,K)− nεn

(b)
=

n
∑

i=1

H(Yi|Vi)− nεn

(c)
= H(YQ|VQ, Q)− nεn
(d)
= nH(Y |V )− nεn

where(a) follows from (3), and(b) is due to the definition
Vi := (Y i−1, X i−1,K). In (c) we have introduced a time-
sharing random variableQ which is distributed uniformly
over {1, 2, . . . , n} and is independent of(Xn, Y n, Zn). In
(d) we have definedV := (VQ, Q) and used the fact thatYQ
has the distribution ofY and hence we can replaceYQ with
Y .

Next we obtain a lower bound onRC :

nRC ≥ H(K) = I(Zn;K) =

n
∑

i=1

I(Zi;K|Zi−1)

(a)
=

n
∑

i=1

I(Zi;K,Z
i−1)



(b)
=

n
∑

i=1

I(Zi;K,Z
i−1, X i−1, Y i−1)

≥
n
∑

i=1

I(Zi;K,X
i−1, Y i−1) = nI(ZQ;VQ, Q)

= nI(Z;V )

where(a) is due to the fact thatZi is independent ofZi−1

for eachi and (b) follows from the Markov chain relation
Zi ⊸−− (K,Zi−1) ⊸−− (Y i−1, X i−1).

We now upper bound the equivocation that any asymptot-
ically lossless scheme produces. First we show the following
identity which expressesH(Xn|J) in terms ofH(Y n|J) and
some auxiliary terms:

H(Xn|J)−H(Y n|J) =
n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)], (4)

where Ui := (Xn
i+1, Y

i−1, J). We will prove a general
version of this identity later in Lemma 1.

The equivocation can be then be upper bounded as

n(∆− ε) ≤ H(Xn|J)

(a)
= H(Y n|J) +

n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)]

= H(Y n|K, J) + I(Y n;K|J)

+

n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)]

≤ nεn + I(K;Y n, Xn|J)

+
n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)]

(b)

≤ nεn + I(K;Xn, Y n)

+

n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn +

n
∑

i=1

I(K;Xi, Yi|X
i−1, Y i−1)

+

n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn +
n
∑

i=1

I(K,X i−1, Y i−1;Xi, Yi)

+

n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn +

n
∑

i=1

I(Vi;Xi, Yi)

+

n
∑

i=1

[H(Xi|Ui)−H(Yi|Ui)]

= nεn + nI(VQ;XQ, YQ|Q)

+n[H(XQ|UQ, Q)−H(YQ|UQ, Q)]

(c)
= nεn + nI(VQ, Q;XQ, YQ)

+n[H(XQ|UQ, Q)−H(YQ|UQ, Q)]

(d)
= nεn

+n[I(V ;X,Y ) +H(X |U)−H(Y |U)],

where (a) follows from (4), (b) follows from the Markov
chain relation J ⊸−− (Xn, Y n) ⊸−− K and hence
I(Xn, Y n;K|J) ≤ I(Xn, Y n;K), (c) is due to the fact that
Q is independent of(XQ, YQ) and in(d) we have introduced
U := (UQ, Q).

We note that by definitions ofU andV , the Markov chain
conditions(X,Y ) ⊸−− Z ⊸−− V andZ ⊸−− (X,Y ) ⊸−−
U are satisfied. The cardinality bounds given in the statement
of the theorem can be proved using support lemma [9].

Remark1. As mentioned earlier, the special caseX = Y

is studied in [6] where it is shown that for any achievable
triple (RA, RC ,∆), the optimal equivocation satisfies∆ ≤
I(Y ;V ). We see that Theorem 1 yields the same result and
thus gives a tight bound in this special case.

In practice, the private sourceX might not be directly
available to Alice. In this case, her mapping isfA : Yn →
{1, 2, . . . , 2nRA} and the above theorem reduces to the
following corollary.

Corollary 1. When the sourceXn is not available to Alice,
any achievable triple(RA, RC ,∆) satisfies

RA ≥ H(Y |V ),

RC ≥ I(Z;V ),

∆ ≤ I(Y ;V ) +H(X |U)−H(Y |U),

for someU ∈ U and V ∈ V such thatP (x, y, z, u, v) =
P (x, y, z)P (v|z)P (u|y) and|U| ≤ |Y|+1 and|V| ≤ |Z|+2.

Proof. The proof follows easily from the proof of The-
orem 1. In particular, introducingVi := (Y i−1,K) and
Ui := (Xn

i+1, Y
i−1, J), we can follow easily the chain

of inequalities given for the equivocation analysis with ap-
propriate modifications. Since nowJ = fA(Y

n), we have
(Xi, Zi) ⊸−− Yi ⊸−− Ui.

III. Y AMAMOTO ’ S LOSSLESSSOURCE CODING:
UNCODED SIDE INFORMATION AT EVE

We now turn our focus to the case where there is an
eavesdropper, Eve, with perfect access to the channel from
Alice to Bob and also side informationEn. Unlike in the
last section, in this model the achievable(RA, RC ,∆) has
not been fully characterized in the case ofX = Y . However,
Gündüz et al. [3] and Probhakaran and Ramchandran [2]
showed that ifRC > H(Z), that is uncoded side information
is available at Bob, then(RA,∆) is an achievable pair if
and only if RA ≥ H(Y |Z) and ∆ ≤ max[I(Y ;Z|U) −
I(Y ;E|U)] where the maximization is taken overU that
satisfiesZ ⊸−− Y ⊸−− U , thus providing a full single-letter
characterization of the achievable rate-equivocation region. In
this section, we assume coded side information is available
at Bob and Eve has uncoded side informationEn. As in



0
(a)
=

n
∑

i=1

I(Yi, Ei;X
n
i+1, E

n
i+1|J, Y

i−1, Ei−1)− I(Y i−1, Ei−1;Xi, Ei|J,X
n
i+1, E

n
i+1)

= H(Y n, En|J)−H(Xn, En|J)−
n
∑

i=1

[H(Yi, Ei|X
n
i+1, Y

i−1, E−i, J)−H(Xi, Ei|X
n
i+1, Y

i−1, E−i, J)]

= H(Y n|En, J)−H(Xn|En, J)−
n
∑

i=1

[H(Yi|Ei, X
n
i+1, Y

i−1, E−i, J)−H(Xi|Ei, X
n
i+1, Y

i−1, E−i, J)]

(b)
= H(Y n|En, J)−H(Xn|En, J)−

n
∑

i=1

[H(Yi|Ei, Ui)−H(Xi|Ei, Ui)] (5)

[6], we assume that the Eve’s side informationEn forms the
Markov chainXn

⊸−− Y n
⊸−− En.

A. A Converse Result

We consider the model depicted in Fig. 2 in which Eve has
access to side informationEn which satisfiesEn → Y n →
Xn.

Alice(Xn, Y n) Bob Ŷ n

CharlieZn

EveEn

J

K

Fig. 2. Yamamoto’s lossless source coding with eavesdropper having
side information.

The achievable(RA, RC ,∆) in this model is defined
similarly as before with the utility constraint (1) and the
privacy constraint

1

n
H(Xn|En, J) ≥ ∆− ε. (6)

Before we get to an outer bound for the achievable region of
this model, we need to state the following lemma which is
a generalization of identity (4) that we used in the proof of
Theorem 1.

Lemma 1. Let (J,Xn, Y n, En) be jointly distributed ac-
cording toP (j, xn, yn, en). Then we can write:

H(Xn|En, J) −H(Y n|En, J)

=

n
∑

i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

whereUi := (Xn
i+1, Y

i−1, E−i, J) for each1 ≤ i ≤ n and
E−i := (Ei−1, E

n
i+1) .

Proof. The proof is presented in (5), where(a) follows
from Ciszár sum identity [10, page 25], in(b) we used the
definition ofUi.

Theorem 2. The set of all achievable triples(RA, RC ,∆)
for this model when Eve is provided with side information
En andEn

⊸−− Y n
⊸−− Xn, satisfies

RA ≥ H(Y |V ),

RC ≥ I(Z;V ),

∆ ≤ I(X,Y ;V )− I(X,Y ;E|U)

+H(X |E,U)−H(Y |E,U),

for someU and V which form(Z,E) ⊸−− (X,Y ) ⊸−− U

and (X,Y,E) ⊸−− Z ⊸−− V .

Proof. The lower bounds for bothRA andRC follow along
the same lines as in the proof of Theorem 1. We shall show
the upper bound for the equivocation. We note that since Bob
is required to reconstructY n losslessly, Fano’s inequality
implies that

H(Y n|J,K) ≤ nεn (7)

for εn → 0 asn→ ∞. As before, letJ = fA(X
n, Y n) and

K = fC(Z
n).

The upper bound for the equivocation is obtained in
(8) shown on top of the next page where(a) follows
from Lemma 1 and(b) is due to (7). SinceK ⊸−−
(Xn, Y n) ⊸−− J and En

⊸−− Y n
⊸−− J , we have

I(Xn, Y n;K|J) ≤ I(Xn, Y n;K) and I(Y n;En|J) =
I(Y n;En) − I(En; J) and hence(c) follows. We again
used the Markov chain relationEn

⊸−− Y n
⊸−− Xn in

(d). The definitionVi := (K,X i−1, Y i−1) and the fact
that I(Ei; J,E

i−1) ≤ I(Ei;Ui) are used in(e). Note that
since Ui ⊸−− (Xi, Yi) ⊸−− Ei we have in (f) that
I(Xi, Yi;Ei|Ui) = I(Xi, Yi;Ei) − I(Ei;Ui). The proof
completes by introduction of a time sharing random variable
Q uniformly distributed over{1, 2, . . . , n} and independent
of (Xn, Y n, Zn, En) and letting X = XQ, Y = YQ,
E = EQ, V = (VQ, Q) andU = (UQ, Q).

Remark2. SettingEn = ∅ and thus removing the eavesdrop-
per’s side information, Theorem 2 yields∆ ≤ I(X,Y ;V )+
H(X |U)−H(Y |U) and hence Theorem 2 subsumes Theo-
rem 1.

In the simple case ofX = Y , the optimal scheme when
coded side information is available at Bob andEn = ∅ is
proposed in [6] which is shown to resemble the binning



H(Xn|En, J)
(a)
= H(Y n|En, J) +

n
∑

i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

= H(Y n|J,K) + I(Y n;K|J)− I(Y n;En|J) +
n
∑

i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(b)

≤ nεn + I(Xn, Y n;K|J)− I(Y n;En|J) +
n
∑

i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(c)

≤ nεn + I(Xn, Y n;K)− I(Y n;En) + I(En; J) +

n
∑

i=1

[H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(d)
= nεn +

n
∑

i=1

[I(Xi, Yi;K,X
i−1, Y i−1)− I(Yi, Xi;Ei) + I(Ei; J,E

i−1)

+H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(e)

≤ nεn +
n
∑

i=1

[I(Xi, Yi;Vi)− I(Yi, Xi;Ei) + I(Ei;Ui) +H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(f)
= nεn +

n
∑

i=1

[I(Xi, Yi;Vi)− I(Yi, Xi;Ei|Ui) +H(Xi|Ei, Ui)−H(Yi|Ei, Ui)]

(g)
= nεn + I(XQ, YQ;VQ, Q)− I(YQ, XQ;EQ|UQ, Q) +H(XQ|EQ, UQ, Q)−H(YQ|EQ, UQ, Q)] (8)

scheme of Wyner in [7]. Although, a tight bound for the
equivocation whenEn is available is not yet known, Theo-
rem 2, specialized toX = Y , implies

∆ ≤ I(Y ;V )− I(Y ;E|U),

for auxiliary random variablesU andV which form Markov
chainsV ⊸−− Z ⊸−− (Y,E) andU ⊸−− Y ⊸−− (Z,E).

B. A Coding Scheme When Bob Has Uncoded Side Informa-
tion

As a special case, we consider the case where Alice does
not see the private source and alsoRC > H(Z) (i.e., Bob has
uncoded side information). In this case, Theorem 2 implies
that the best achievable equivocation is upper bounded by

max[I(Y ;Z)− I(Y ;E|U) +H(X |E,U)−H(Y |E,U)],

where the maximization is taken overU which forms the
Markov chain relationU ⊸−− Y ⊸−− (Z,E,X). In the
following we give a simple coding scheme which incurs a
smaller equivocation and is thus suboptimal. In fact, if the
above maximization results in aU which is independent of
Z, then the following coding scheme is optimal. On the other
hand, if the maximization results in aU which is constant,
then it implies that Slepian-Wolf binning is optimal, because
if Alice uses Slepian-Wolf binning then the equivocation is
equal toH(X |E)−H(Y |Z), as observed in [2].

Theorem 3. WhenXn is not given to Alice and Bob observes
side informationZn, then(RA,∆) which satisfies

RA ≥ H(Y |Z),

∆ ≤ I(Y ;Z|U)− I(Y ;E|U)

+H(X |E,U)−H(Y |E,U),

is achievable where the auxiliary random variableU forms
the Markov chain(X,Z,E) ⊸−− Y ⊸−− U .

Proof. Our scheme is similar to the ones proposed in [3]
and [11]. GivenY n, we generate2n(I(Y ;U)+ε) independent
codewords of lengthn, Un(w), w ∈ {1, 2, . . . , 2nI(Y ;U)+ε}
according to

∏n
i=1 P (ui). We then uniformly bin all the

Un sequences into2n(I(Y ;U)−I(U ;Z)) bins. LetB(i) be the
indices assigned to bini. There are approximately2nI(U ;Z)

indices in each bin. We also uniformly binY n sequences into
2n(H(Y |U,Z)+ε) bins and letC(k) be the set of sequencesY n

in bin k. Alice adopts a two-part encoding scheme. Given
Y n, Alice, in the first part, looks for a codewordUn(w)
such that(Y n, Un(w)) ∈ An

Y U , whereAn
Y U denotes the set

of all strongly typical(yn, un) ∈ Yn × Un with respect to
the distributionP (y, u). She then reveals the bin indexJ1
such thatw ∈ B(J1). In the second part, she revealsJ2 such
thatY n ∈ C(J2).

GivenJ1, J2 andZn, Bob can find, with high probability,
Un(w) such thatw ∈ B(J1) and (Un(w), Zn) ∈ An

ZU . It
is then clear from the Slepian-Wolf theorem that Bob can
recoverY n with high probability givenUn(w), Zn, andJ2.

The rate of this encoder is clearly equal toH(Y |U,Z) +
I(Y ;U)− I(U ;Z) = H(Y |Z).

The equivocation for this scheme can be found as

H(Xn|J1, J2, E
n)

= H(Xn|J1, E
n)− I(Xn; J2|J1, E

n)

≥ H(Xn|Un, En)−H(J2)



H(Xn|Un, En) =
∑

(un,en)∈Un×En

P (un, en)H(Xn|Un = un, En = en)

≥
∑

(un,en)∈T n
U,E

P (un, en)H(Xn|Un = un, En = en)

=
∑

(un,en)∈T n
U,E

P (un, en)

[

−
∑

xn∈Xn

P (xn|un, en) log(P (xn|un, en))

]

≥
∑

(un,en)∈T n
U,E

P (un, en)



−
∑

xn∈T n
X|un,en

P (xn|un, en) log(P (xn|un, en))





(c)

≥ n(H(Y |U,E)− δn)
∑

(un,en)∈T n
U,E

P (un, en)





∑

xn∈T n
X|un,en

P (xn|un, en)





= n(H(Y |U,E)− δn)
∑

(un,en)∈T n
U,E

P (un, en)
[

Pr{(un, en, Xn) ∈ T n
X|un,en}

]

(d)

≥ n(H(Y |U,E)− δn)(1− δ′n) (9)

(a)

≥ H(Xn|Un, En)− nH(Y |U,Z)
(b)

≥ n[H(X |U,E)−H(Y |U,Z)]

= n[H(X |E,U)−H(Y |E,U)

+I(Y ;Z|U)− I(Y ;E|U)],

where(a) follow from the fact thatJ2 is a random variable
over a set of size2nH(Y |U,Z) and(b) is proved in (9) where
T n
U,E denotes the set of typical sequences(un, en) and(c) is

due to the property of typical sequences; in particular for typ-
ical xn sequence with respect toP (xn|un, en) for (un, en) ∈
T n
U,E we haveP (xn|un, en) ≤ 2−(n(H(X|U,E)−δ(n))) for
δn → 0 asn→ ∞. We invoked Markov lemma [10, Lemma
12.1] in (d) to conclude that for the Markov chain relation
(X,E) ⊸−− Y ⊸−− U we have(xn, yn, en, un) ∈ T n

X,Y,E,U

and hencePr{(un, en, Xn) ∈ T n
U,E,X} > 1 − δ′n for each

pair (un, en) ∈ (un, en) ∈ T n
U,E andδ′n → 0 asn→ ∞.

IV. CONCLUDING REMARKS

Having combined the idea of compression of private and
public sources of Yamamoto [1] with secure source coding
problem (e.g. [3], [6] and [2]), we introduced a lossless
source coding problem in which, given a two-dimensional
source(Xn, Y n), the encoder must compress the source into
an indexJ with rateRA such that the receiver recoversY n

losslessly and simultaneously reveals only little information
about Xn. This model differs from typical information-
theoretic secrecy models in that the utility and privacy
constraints are defined for two different sources and thus
provides a more general utility-equivocation tradeoff.

We gave converse results for compression rates and also
the information leakage rate (or equivocation) which reduce
to known results in the special case ofX = Y . In particular,

with this simplifying assumption, Theorem 1 and Theorem 3
reduce to [6, Theorem 1] and [3, Corollary 3.2].

However, it is not clear at the moment that the bounds
are tight in general. Constructing an achievability scheme
for the most general case (i.e., the setting of Theorem 2) is
the subject of our future studies.
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