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Abstract— We firstly extend the interpretation of feedback for i = 1,2,---,n and U;(M,Y%) = Uy(M) with average

communication over stationary finite dimensional Gaussian transmit power constraint and a decoding functiovi"g=

channels as feedback control systems by showing that, the _ onR . - P ()
problem of finding stabilizing feedback controllers with maxi- {1’ 2,52 } with an error probability satisfying" =

nR . .
mal reliable transmission rate over Youla parameters coinides 2%% =1 P(M # g(y")|M) < &, where limy e &y = 0. This
with the problem of finding strictly causal filters to achieve coding process indicates that the channel inputis de-
feedback capacity recently derived in [1]. The aforementinoed termined by the message indé& and previous channel
interpretation provides an approach to construct determiristic Outputyi—l. The objective of communication is to deliver

feedback coding schemes (with double exponential decaying . . . L
error probability). We next propose an asymptotic capacity M to the receiver at highest code rate with arbitrarily small

achieving upper bounds, which can be numerically evaluated €rror probability. The feedback capactly, is defined as the
by solving finite dimensional dual optimizations. From the fiters ~ supremium of all achievable raté&s
that achieve upper bounds, we derive feasible filters whichelad As it is shown in [1], if Sy has a canonical spectral

to a sequence of lower bounds. Thus, from the lower bound factorization, the feedback capacity can be charactetized
filters we obtain communication systems that achieve the logr

bound rate. Extensive examples show the sequence of lower _ i m i0
bounds is asymptotic capacity-achieving as well. Co _maX2 7nlog|1+(@(e' )lde,
Index Terms— Capacity, Gaussian, convex optimization, station- 1 io io 2
arity. st. ZT/,;T'Q(GI )|?Sw(€®)de < P, @)
| INTRODUCTION Q(e¥)is strictly causalQ € Z.5>.

less feedback. The additive Gaussian channel is modeledig1€nsional, and except for tHest-order auto-regressive
moving averagéARMA) noise, finding the feedback capac-

Yi = Ui+ W, =12, 1) ity, either analytically or numerically, remains open.
where the Gaussian noi$W}r°:l is assumed to be Stationary In this paper, we revisit and extend the intel’pretation of
with power spectrum densit§iy(€9) > 0 for v6 € [-m,mm).  feedback communication over Gaussian channels as feedback
Unless the contrary is explicitly stated, “stationary” mgtit ~—control problems, [3]. In particular, we highlight the ceait

specification refers to stationary in wide sense. &%, role of Youla parameterization over all stabilizing controllers
be the set of stable, strictly proéraﬂonm filters in Hardy in connecting these two theories and show that the character

space . ization of the maximum-rate over all stabilizing controdle

Assumption 1:n this paper, nois&V is assumed as the and the feedback capacity over all coding scheniés (2)
output of a finite-dimensional linear time invariance (LTI)coincide. Moreover, our result provides the explicit (sub-
stable systenHl € #Z.5,, not necessarily minimum phase,)optimal communication scheme (i.e. encoder and decoder)
driven by white Gaussian noise with zero mean and unétirectly from Q. It is worth noting that [1] (Theorem 6.1
variance. The power spectral density Wf is given by and Lemma 6.1) has shown &rdimensional generalization
Sw(eje) — |H(eJe)|2 (|e canonical Spectra| factorization)_ of the SChallejk-Kallath COding scheme achieves the feed-

Note that any stationary process can be approximaté@ck capacity for any ARMA noise spectrum of order
with arbitrary accuracy by this LTI filtering model and thisAlternatively, we herein provide a feedback coding scheme
approximation is very "efficient”, as it corresponds to théfom Q by leveraging control-oriented derivations, which
rational approximation of the spectral density [2]. can be directly constructed and implemented. We next pro-

For a code of rateR, we specify a(n,2"R) channel vide an alternative characterization of the feedback dapac
code as follows.M is a uniformly distributed message from which an asymptotic capacity-achieving sequence of
index whereM e {1,2,3,---,2"R}. There exists an encod- Upper bounds is derived and can be numerically evaluated
ing processUi(M,Yifl), whereYi—1 = Yo,Y1,---,Yi1}), by solving finite dimensional optimizations. Furthermaae,

sequence of lower bounds on the feedback capacity are ob-
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1As will be seen later, strictly proper introduces one stefaydén the with double exponential decaying error probability, which
feedback processing of the information from reveal a direct connection with Youla parameter besides
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being an generalized Schalkwijk-Kailath scheme studied by N(O,1)

Elia [4], Kim [1], Liu-Elia [5], Shayevitz-Feder [6] and 1
others. The archived lower bound and the upper bounds
provide a way to evaluate how close is the scheme to the H
feedback capacity. From extensive examples, the sequence

N . w
of lower bounds converges arbitrarily close to the capacity U p=femop i
yielding an asymptotic optimal feedback coding scheme. + K w

channel

A. Related Work

We review the literature along two avenues of information
theory and feedback control theory. As a complete survey is Fig. 1. Gaussian channels with feedback.
vast and most of them are out of the scope of our discussion,
we herein list most relevant results to this paper. In the
field of information theory, the investigation on feedback . . . .
Gaussian capacity has bgen experiencg}ng a decade journ'gys/'.tab'“ty for s_peqal case channel;. This approach pkesi .
a“method of finding feedback coding scheme for Gaussian

[7] and its sequel [8] are recognized as the first work 0P:hannels. The approach has been further extended to various

feedback Gaussian channels by proposing feedback codi . . .
schemes. [9] [10] developed an elegant linear feedba%ﬁannels [23], connected to the classical Linear Quadratic

coding scheme of achieving the capacity of additive whit aussian (LQG) control problem [24]. Finally, [5] extended

Gaussian noise (AWGN) channel with noiseless feedbacfp.e convergence of th? fundament_al_llmltatlons Of. cor_1tro|
nd communication to include the limitations of estimation

Thereatter, several work by Butman [11], [12], Tieman [13 n light of this unified framework, a set of achievable rates

[14], Wolfowitz [15] and Ozarow [16] [17] extended this : .
: . ... of feedback Gaussian channels were obtained by construct-
notable result to ARMA Gaussian channels, with objective o . : .
. X . ing specific feedback coding schemes via control-oriented
to find channel capacity and optimal feedback codes. As a

; X aeproaches. [25] converted the problem of finding feedback

consequence, many interesting upper and lower bounds w . o .

. T aussian channel capacity into a form of stochastic control
obtained. Based on the insight/results from aforementione . .
X : .. and used dynamic programming to compute the n-block
literature, [18] made a major breakthrough on charactegizi capacit
the n-block capacity of arbitrary feedback Gaussian chlanne pactly.
by using asymptotic equipartition property (AEP) theorém. Il. FEEDBACK CONTROL INTERPRETATION OF
was also shown that feedback capacity for arbitrary Ganssia Fgeppack CAPACITY FOR GAUSSIAN CHANNELS
channels cannot be increased by factor two or half bit. , . o
This n-block capacity was extended to the case of feed- W& recall that [4] provides feasible communication

back Gaussian channels with noisy feedback where capacigh€mes for a given channel. However, in order to construct
bounds and other interesting results were obtained [1g}[20CaPacity-achieving feedback codes, two things are negessa

[22]. As hinted by this n-block capacity characterizatifi, a) the capacity must be known and b) an unstable controller,

developed a variational characterization on the capadity §! the terminology of this paper, must be found. Both steps
stationary feedback Gaussian channels, which is an infinifs® NOt €asy, although we know from [1] that linear scheme

dimensional optimization problem. For first-order ARMAS Capacity achieving. o
noise, this variational characterization yields a clofmth In this section, we propose a modification of the approach

solution on the capacity and shows the optimality of th@f [4] that provides a derivation of the feedback capacity

Schalkwijk-Kailath scheme. formula for finite dimensional LTI Gaussian channels, from
In the field of feedback control theory, many control-CONtrol theory principles. The proposed approach based on

based technical tools have been utilized to attack the probtl Provides feasible feedback communication schemes with

lem of finding feedback Gaussian channel capacity arg)uarar_]teed _transmission rate. I_Extensivg simulations show
capacity-achieving codes. [4] proposed the derivation c;pat this coding _scheme can achieve (arbitrarily) closééo t
feedback communication schemes based on a feedback c8izdPack capacity.

trol method. These results were obtained from considering GVen the channel/plant (see Fig. 1)

the problem of stabilization of a given unstable plant over a Vi = Ui + Wi, 3)
Gaussian communication channel. The communication rate

(in the sense of Shannon) over the channel was connectetierew; satisfies Assumptidi 1. As shown in Fig. 1, we are
to the degree on instability of the plant. The minimalinterested in the closed loop stabilization problem over th
transmission power for a given unstable plant was obtainegiven channel. Note that the noiseless feedback communica-
by solving the classicab# (or Linear Quadratic Gaussian) tion scheme will measurg and use it help produce with
problem. However, plants with the same degree of instghilitone step delay.

may require different transmission power to be stabilifé. Any such closed loop system must produgewith the
provided the plants that can be stabilized most efficientlyequired transmission powd?, Any controller that produces
i.e. with the least transmission power for a given degree dfounded transmission power in the loop must be a stabilizing




controller. Differently from [4] where a specific plant wasformula, sinceS is stable, this integral only depends on the
stabilized over the channel, here we consider the map froneros ofS outside the unit disc, i.e., non-minimum phase
Ui to y; as the plantG. SinceG is stable, all strictly causal (NMP) zeros. Given the relation betweénhand [4), i.e.,
finite dimensional LTI stabilizing controllers for such apt K = —QS ™1, this implies thaik must be unstable i) do not
have the following expression [26], represented as transfeave NMP zeros that cancel thosel ef Q (which is always

functions: true). This fact is later verified by numerical examples.
B | 1 | 1 4 The average power of channel inputequired for stabi-
K=-Q(1+6Q)"=-Q(+Q) ) lization, under the current assumptions, is given by
whereQ is any finite-dimensional LTI strictly causal stable o1n 1 o\ 12
system, i.eQ € Z., strictly causal. rl,[fl,ﬁ Ui :ZTL"|SU(€ )|~dé
=

The above parametrization is known as the Youla 1 g . .
parametrization of stabilizing controllers. Working with :—/ IT(e°)H(e?)|?do
instead of the set of stabilizing controlleksis more conve- 2171' o (8)
nient. The main advantage comes from the fact that the above :—/ |- Q(e%)H(e9)°de
transformation convexifies the set of achievable closeg loo 21 )
maps by a stabilizing controller. In particular, considee t

= [ o) Psu(e®)de.

complementary sensitivity mdp from w to u and sensitivity 21 )
maps$ from w to y, respectively. Simple feedback operationd\Note that the first equality follows from Parseval’s theorem
lead to Thus, we can search over strictly causale 2.5, to
T(K) = K(1+ GK)*l maximize the Bode Integral Formula over the average power
) for stabilization constraint. Therefore, the largest achble
while rate of all strictly causal LTI stabilizing controllers isvgn
S(K) = (1+GK)* by
Substituting [4) intdS and T, it follows that Ry = Max 4i /‘" log|1-+ Q(e9)[2d8,
S(K) =(1 - GQ(1 +6Q) ) © g o o
I +GQ=1+Q st. 5= [ 0(e9)5u(@)d0 <P &
and Q(e?) s strictly causalQ € Z2.7#5.
T(K) =-Q( +GQ)~!s Notice that the above optimization, derived from Youla
=—Q(+ GQ)A(' +GQ) (6) parameterization, is identical tl (2) derived from infotina
B theory. In summary,
T 1) the above derivation extends the feedback control in-
It was shown in [4] that the Bode Integral formula 8f terpretation of communication system over Gaussian
the sensitivity function is tightly connected to the Diredtt channels with access to feedback and shows how the
Informatiofd rate of the channel, which measures the reliable Youla parametef) is central to the feedback capacity
transmission rate through the channel, see also [30]@.[33] problem;
Specifically, the rate 2) as will be seen next, feasible feedback coding schemes
1 can be explicitly constructed from controll& with
R=lim —I u"—=Y" guaranteed transmission rate (in the sense of Shannon);
_ 1 /" Iog|S(ée)|2d6 A. Feasible Coding Schemes
an A @) Once a feasibleQ is found for the above optimization,
_1 /"log|(1+GK),1|2d9 (possibly optimal or arbitrarily close to optimal) we can
Art)-n obtain a systenK = Q(I + Q) stabilizing the channel
_ i/"bg“ +Q(ei9)|2d6 within the prescribed in_put average power limit. We shoyv
4m ) —n how to construct a feasible feedback coding scheme, which

where (U™ — Y") denotes the directed information from s deterministic (time-invariant) and has double expoiant

random sequence" = {U;}'; to random sequenceé” = decaying decoding error probability and computable trans-

{Y:}"_,. The detailed derivation of the above equalities cafission rate. We follow [4]. _

be found in Theorem 4.6 [4]. According to Poisson-Jensen’s First of all, we present controlleK as an LTI single-
input-single-output (SISO) finite-dimensional discrétae

2Directed information, firstly defined by Massey [27], has heastly — unstable system with the following state-space model:
used in characterizing the capacity of channels with feeklfi28] [29] [30]
[31]. Moreover, it has interpretation on portfolio theodata compression K: Xs(k+ 1) _ As O Xs(k) + Bs (k)
and hypothesis testing [32] ’ xu(k+ 1) 10 Ay xu(k) Bu y
3As shown in [30], the feedback capacity of arbitrary chasren be (10)
obtained by maximizing the rate of directed information foé tlosed-loop u(k) _ [Cs Cu} {Xs(k)}
Xu

system (k)



Decoder

Fig. 2. Decomposition of controlleK into feedback encoder and decoder.

The eigenvalues oA, are outside the unit disc while the Theorem 1:Consider stationary Gaussian channelg]n (3).

eigenvalues ofs are all strictly inside the unit disc (strictly Given a filter Q(€9) € #.#,, the coding scheme de-

stable). Without loss of generality we assume thaandA, scribed above based on the decompositiofKef —Q(l +

are in Jordan form. Assum&, hasm eigenvalues, denoted Q)~! achieves a reliable transmission rate (in the sense

by Ai(Ay),i=1,2,---,m. of Shannon) at- [, log|1+Q(€9)|d6 = 3™, log|A;(Au)|
Starting with the decoder, we decompdi€eas follows. bits/channel usend has double exponential decaying error

We present the simplest solution here, others are possiblgrobability.

Decoder The proof is omitted as it directly follows fronl](7) and
The decoder run¥ driven byy. Theorem 4.3 in [4]. We remark that the above transmission
xs(k+1) = Agxs(K)+Bey(K), xs(0) = 0 rate is. achieved by allocating the message mx{g}(at_ the
fuk+1) = AdRu(K) +Buy(K), %,(0) = 0 centroid of small hypercubes generated by an unit hyper-
’ cube in the coordinate system depending/fn We refer
It produces two signals: an estimate of the initial conditio jnterested readers to Theorem 4.3 in [4] for details.
of the encoder . In summary, the above discussion provides an approach to
Kuo(K) = Ay Ru(k). construct feasible feedback coding schemes over stagionar

finite dimensional Gaussian channels, by leveraging Youla

and a feedback signal 9ty
parameterQ. However, we need to solvé](9) which is an

(k) = [Cs Cy [)fs(k)} infinite dimensional non-convex optimization problem. In
Xu(k) the rest of the paper, we provide an approach to find an
Encoder asymptotic capacity-achieving capacity upper boundshed t
The encoder runs the following dynamics resulting filter Q, based on which feedback codes can be
o - - constructed as described in this section.
Ruk+1) = AXu(k), %(0) = Xuo,
du(k) = CuRu(k) I1l. UPPERBOUNDS ONCAPACITY
it receivesu™and produces the channel input In this section, we firstly present an alternative charac-

u(k) = Giu(K) + A(K) terization of Gaussian feedback capacity by leveraging the
inverse Fourier transform. Based on this characterization

Since the closed loop is stablr,(k) = Xu(k) + Xu(k) goes a sequence of asymptotic capacity-achieving upper bounds

to zero with time if the noise is not present. This implieds proposed and evaluated by solving finite dimensional

that X, (k) — —%u(k). Thus,—%,0(k) is an estimate at timk  optimization problems.

of %,(0) = xu(0) =%y 0. This coding scheme is illustrated in ) o )

Fig2. ’ A. Alternatlve characterization of Gaussian Feedback Ca-

Next theorem describes how fast messages associated vt
eachxyp is transferred to—%,o(k) in the presence of the We focus on the optimization problernl (9) &f (2). In what
channel noise. follows, we characterize the Gaussian feedback capacity by



imposing the causality constraints in terms of the inversBor A >0, n € R", andno € R, define

Fourier transform. 5 ) 5 , 5
Lemma 1:Under Assumptiori]l, there exists an optimal r(8) = (2ASw(0) +n'A(8) + no)” + (1'B(6))".

solution Q(€9) for @) with Q(€f) = Q*(e '?) where Q* Then

indicates the complex conjugate. Furthermore, the feédbag . : L
. ; The Lagrangian dual of proble h) in (A3) is given
capacity can be characterized by b; the follgwing optimizatior?: Bro(h) )isg

1 s
Cro=max—- [ log((L+a(6))*+b(8)?)d8 O :=— max gh.mne)  (14)
1 o A>0,neRN noeR
st ﬁ/in(aZ(e) +b%(6)) Su(8)dO < P, where
and strictly causal filter frequency domain constraints g(A,n, no)
T ~TT 2
a(G)cos(nG)d9+/ b(8)sin(n@)dd = 0 :i/" 1 _ _1(9)
/ |, 2] x| 2109(ASKE) ~ V(8)) — 2 55+ ASW(6) | d6
n:071727"'7°° 1
(11) —)\P—i-l’]o—i-é.
where the maximum is taken over a functional Batefined (15)
as , _ \/74(0)18A5,(0)r2(0)
with v() = r2(6)+ r4(9%+8)\sw(9)r2(9)'
r={a(0),b(6): [—m m — R|a(6),b(8) e Z%}. (12) b) (D) is equivalent to the following convex optimization
problem
HereS,(0) refers toSy(€) for simplicity. The basicideaof =~ Hh =~ max 6(A,n.no,v(6))  (16)
. R : . ) A>0neR" noeR
this characterization is that the strict causality can bedsed 0) > 0cCe
on the non-positive index coefficients of the inverse Faurie v(8)=0¢€ [
o
transform ofQ(e"?). where
B. Upper bounds §(A,n,no,v(0))
We next obtain upper bounds &, by considering only :i/" 1 _ _r(6)
a finite number of causality constraints. The h-upper-bound 2./ 5 2'09(2/\3'”(9) v(6)) 2v(0) +ASu(6)| d6
denoted b h), is defined as follows: 1
Wrn(h). is def W —~AP+no+ 5.
1 m 2
Cro(h) =sup— / log((1+a(6))?+ b(6)?)de (17)
r -n _
1., ) c) FurthermoreCsp(h) = p, and the optimalQn(€) =
st. ﬁln(a (6)+b%(6)) Sw(6)dO <P, a(@)+ib(0) for Csp(h) is obtained from the optimal solution
m n _ of (I4) or [16) as follows:
/ a(6)cos(n6)d6+/ b(6) sin(nB)de — 0 (01 A
-n -n Su(6) +1'A8) + 1
n:O,l,Z,"- 7h- a‘(e) = ( V(e) ( 0 _1 a.e. (18)
(13) ~ n'B(6)
] b(6) = ae (19)
SinceCyp(h) > Csp(h+ 1) for any h > 0, and the sequence v(0)

Ctp(h) is bounded from below, we ha@®p, = limy,_,,, Ctp(h)
being approached from above.
Note Crp(h) is still a semi-infinite dimensional non con- C. Computing G,(h)
vex opt_imization .problem. The _nexF theorem shows. that Although the dual problem o¢s(h) can be casted into
the optimal solution toCp(h) exits in £. Moreover it 5 conyex optimization{14) with finite number of variables.
characterizes the Lagrangian dual problem and shows thate proplem it is not easily computable since the cost is an
there is no duality gap between the primal and dual prOblemiﬁtegral, not explicitly computable in terms of the varigdl
In what follows we focus on non flat channels as the feedback o+ ral practical approach would be to approximate the
capacity of flat channels is solved. _ integral with a finite sum by discretizing. We apply such
Theorem 2:(main resuly Under_éé\s_sumptlorﬂl, further giscretization to [{T6) (with spacing) and introduce the
assume tha,, is non-flat (e.gSw(€"”) is not constant over tq|iowing finite dimensional convex problem from (D). Given
6). Let m, consider

A(B) = [cog0),c0926),---,coghb)], - _
B(8) = [sin(8),sin(20), - - ,sin(h@)]’. Cro(mh) =—  max gm(A.n,m0:vi)  (20)



where This problem is non convex, however, from the solution to

gm(A,N,No, Vi) (20), we can construct
131 1 r2(6) C 2ASW(8) +n'AB) + 1o
“2mZ 2 —Vi)t+5 - a = -1 (23)
nglzlog(Z/\SN(G.) VI)+2 2vi S8 , vi
_/\P+l70, b = ’7%(3) (24)
I

— g T —
and§ = —7r+ (i —1). which are feasible fo[(22).

Clearly, Csp(m,h) is only an approximation o€¢,(h), al- .
. ) o Note that [2B) and[{24) can be interpreted as the co-
though the approximation gets arbitrarily close Ggy,(h) efficients of a s;mpled srzectru(@mh. As psuch, they are

and its solution asn— o; since the integration is over a : : o .
" . o .~ associated with a periodic impulse response si R) =
compact set, and the variables are either finite dmensmnai P P P aralk)

or continuous. Z cno(k—n), with fundamental periodrg, where
Notice that the optimizatio (20) is in a convex form. The™=—>

log of an affine function is concavé.z‘(,—ie') is a quadratic 2m )

(composed with an affine function of the variables) over lin- Ch = gnizai cogné) —bisin(né;) (25)

ear function, therefore convex. Thug,](20) can be effigientl
solved with standard convex optimization tools, e.g. CVX.
Based on the solution t¢_{R0), we can actually obtain €onsider one @-period truncation ofgmn(k), denoted by
guaranteed upper bound B, (h) for eachmusing the upper dmn(k). We next perform a causal projection gpn(k) by
bound property of dual feasible solutions. &%, n™, ng",v™  zeroing all the non strictly causal coefficients. Finallyg w
be the optimal solution td (20). Here we are omitting thextend the signal defined fromm+ 1 to m to have zero

6 =—-nm+L(i-1).

dependence oh for simplicity. Let value outside the intervdl-m+1,m]. Let qf (k) denote
_— mom om such strictly causal Finite Impulse Response signal and let
Cro(mh) =—g(A™, 1", ng) (21) its Fourier Transform b&g . QF,,, will satisfy the power
where g(-) is defined in [Ib). ClearlyCip(m h) is easily —constraint
computable to arbitrary accuracy. 1 /7T . o2 i
Corollary 1: Givenh > 0, Csp(m,h) > Csp(h) > Cyp, for ﬁ/ﬁn@mvh(e‘ )|"Sw(€”)d6 <P

vm> 0 and limy e Cip(mM,h) = C¢p(h).

Proof: From the solution of[(20)A™, n™, n", v, we
know thatA™ n™ n{" are feasible for[{l4). However, any
feasible dual solution provides a casg(A™,n™, ng") which
is an upper bound o€;p(h).

for mlarge enough. However if for some it does not, then
we can scalé)f,, appropriately so that the scal€f,  (€°)
does. The end result of this procedure is tkt,(€°) is

feasible forCsy, in 2)(@){T1).

Extensive numerical simulations show that for sufficiently Spe<?|f|cally. . _
largem the upper boun&r,(m, h), and therefor€;y(h) are 1) Fllter_ Construction given m,h > 0, sol_ve [20) _and
close to the capacity even for small obtain solution (A, Nmp; Momp)- Obtain &, bi, i =
1,...,2mfrom (23) with (A3 n; Nmps N6.mp)-
IV. LOWERBOUNDS ONCAPACITY 2) One Period Truncation and Causal Projectiocom-
In the previous section we have introduced a finite dimen-  Pute the strictly casual part of one period of the impulse
sional convex optimization[{20). From its optimal soluso response by computing the coefficientgn=1,...m)
we were able to obtain convergent upper bound€an In by

2m

i i i 1 .
this section, we show that from the solution fo](20) we can 6= ?nizla‘_ cogn) — by sin(ng) 6

obtain lower bounds of+p.

The primal problem associated wifh {20) is the following 6 = _nf%(i —1).
optimization. This can be verified analogously to Theorem , L
o, Tntlen, construct a strictly causal filteQy,,(2) =
_ 1 2m cnz ". Lower order rational approximations may
Cip(mh)= min — leog((1+ a)? 4 b?) n; ) _
aeRbieRAM £ be obtained by Hankel model reduction methods, e.g.

L [34], if desired. . _
st. %Zi (al + bi ) SN(GI) < Pa 3) Power Scalelet p:= %T fn|Qﬁm(el9)|ZSW(e|6)de p
. (22) can be computed by computing thé norm squared
2m 2m c ; 5 X
aicognd)+ S bsin(n) =0 for Qf ,(2H(2). This can be done in state-space by
i; i; computing the solution to a Lyapunov equation. We
n=0,12,---,h. next rescaleédy, ., by amn = /P/p and Obtair@fn?h =

T am,hQrCn’h (amp > 0), such that the power budget is
6 =—m+ E(I -1 satisfied.



4) Coding Scheme Constructiof);, is a feasible so- .
lution to {I1). Thus we can construct a feedback
coding scheme fronK = —QfP, (I +QiF )~ (and its ¥
corresponding state-space representation). ol
Theorem[dl shows this coding scherife achieves a rate
R(h,m) = 5 [™ log|1 + QFh(€9)[d6 which is a lower i ﬁ
bound on the capacity, and has double exponential decaying 0 7 (%%
error probability. l &
Combined with the upper boun@s,(h,m), a numerical N N
capacity gap can be evaluated Gy, (h,m) — R(h,m). -2}

impulse response of Q

V. EXAMPLES %0 0 20 10 0 10 20 30 40

In summary, we can compute the upper bou@ls) with
desired accuracy by solving the finite dimensional convex Fig. 3. Impulse response @.
optimization [[20) with sufficiently largen. We then construct
a strictly causal filte) for optimization [9) from the solution
of 20). FromQ we obtain K and a feasible feedback Which would not be easy to find using the approach of
communication scheme as described in Sedidn II.A. Thg]. Also it can be verified that the achievable rate Iof
transmission rate can be computed from the NMP zeros & 109(|p1/|p2|) = 1.9194bits/channel use
the sensitivity functiorS= 1+ Q as in Theorerfill. We next The corresponding optimal closed loop Sensitivity func-
present some examples. tion is

(Z2+0.0175%+ 0.03498 (22 + 0.4115+ 3.783)
(2+0.108&+ 0.2644) (224 0.1z+ 0.5)

‘As expected, the Sensitivity has the corresponding non-
ne1inimum phase zeros at the location of the unstable poles
c . X

of K. Note also that the optimal closed loop system includes

dynamics that (partially) cancel the noise dynamics. Thate

power constraintP = 10, our proposed upper and lower . . .
bounds converge to.2688bits/channel usgbeing consistent (ZZ+O'1Z+Q'5) IS the numerator 0W(z). This feature is
to be consistent with other examples where channels are

with that computed from the closed form solution (44) in m'modeled as minimum phase finite impulse response (FIR)

Example 2:Cpn5|der the fo_llowmg second order MOVINGfiyrers. Finally, Figurd B shows the optimal impulse resgons
average Gaussian process with o . X
of @, which is strictly causal as required.

A. Examples I+Q=

Example 1:Consider a first-order moving average (i.e
MV(1)) Gaussian procesdf = U; + 0.1U;_; whereU; is a
white Gaussian process with zero mean and unit varian
The power spectral density $,(€9) =1+ 0.1e |2, Given

W(z) =1+0.1z 1 +0.522 V1. CONCLUSION
with associated This paper studied the problem of computing the feedback
Sw(z) = |W(e?) 2. capacity of stationary finite dimensional Gaussian channel
) . ) . Firstly, the interpretation of feedback communication as
While neither the value of capacity or the optimal codegeedback control over Gaussian channels was extended by
is known for this generalized Gaussian noise, both of thefayeragingYoula parameterization. This new interpretation
can be efficiently obtained from our approach. With poweprovides an approach to construct feasible feedback coding
constraint P = 10, the capacity is evaluated as9194 gchemes with double exponentially decaying error probabil
bits/channel use(rounded to 4 decimals). This value iSity. We next derived an asymptotic capacity-achieving uppe
obtained withh = 6 and m = 40. See Tabld14 for the poynds, which can be numerically computed by solving
convergence of upper and lower boundshasicreases. It finite dimensional optimization. From the resulting filters
is shown that the gap is vanishing quickly and the capacifat achieve upper bounds, feasible feedback coding scheme
is evaluated with high accuracy. were constructed. The convergence upper bound and the
The optimal coding schemi after order reduction via achievable lower bound allow to evaluate the closeness of
Hankel Singular Value Decomposition (H-SVD) on the finitethe achievable rate to the feedback capacity. From extensiv
impulse response is given by examples, the sequence of lower bounds converges arlyitrari
0220262+ 13.84)2 close to 'Fhe capacity, yielding an asymptotic optimal feed-
~ T (Z+00175%+ 003498 (2+ 04115+ 3.783 gf‘ggf‘;gi‘;ﬁhsecrh"e“'j‘ees'tgjﬂfi’e the lower bound convergence
which is unstable as expected. Note however that it has two
complex conjugate unstable poles at REFERENCES
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