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finite dimensional Gaussian channels
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Abstract— We firstly extend the interpretation of feedback
communication over stationary finite dimensional Gaussian
channels as feedback control systems by showing that, the
problem of finding stabilizing feedback controllers with maxi-
mal reliable transmission rate over Youla parameters coincides
with the problem of finding strictly causal filters to achieve
feedback capacity recently derived in [1]. The aforementioned
interpretation provides an approach to construct deterministic
feedback coding schemes (with double exponential decaying
error probability). We next propose an asymptotic capacity-
achieving upper bounds, which can be numerically evaluated
by solving finite dimensional dual optimizations. From the filters
that achieve upper bounds, we derive feasible filters which lead
to a sequence of lower bounds. Thus, from the lower bound
filters we obtain communication systems that achieve the lower
bound rate. Extensive examples show the sequence of lower
bounds is asymptotic capacity-achieving as well.

Index Terms— Capacity, Gaussian, convex optimization, station-
arity.

I. I NTRODUCTION

We consider a discrete-time Gaussian channel with noise-
less feedback. The additive Gaussian channel is modeled as

Yi =Ui +Wi, i = 1,2, · · · (1)

where the Gaussian noise{Wi}∞
i=1 is assumed to be stationary

with power spectrum densitySw(eiθ )> 0 for ∀θ ∈ [−π ,π).
Unless the contrary is explicitly stated, “stationary” without
specification refers to stationary in wide sense. LetRH 2

be the set of stable, strictly proper1 rational filters in Hardy
spaceH2.

Assumption 1:In this paper, noiseW is assumed as the
output of a finite-dimensional linear time invariance (LTI)
stable systemH ∈ RH 2, not necessarily minimum phase,
driven by white Gaussian noise with zero mean and unit
variance. The power spectral density ofW is given by
Sw(ejθ ) = |H(ejθ )|2 (i.e. canonical spectral factorization).

Note that any stationary process can be approximated
with arbitrary accuracy by this LTI filtering model and this
approximation is very ”efficient”, as it corresponds to the
rational approximation of the spectral density [2].

For a code of rateR, we specify a (n,2nR) channel
code as follows.M is a uniformly distributed message
index whereM ∈ {1,2,3, · · · ,2nR}. There exists an encod-
ing processUi(M,Yi−1), where Yi−1 = {Y0,Y1, · · · ,Yi−1}),
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1As will be seen later, strictly proper introduces one step delay in the
feedback processing of the information fromyi

for i = 1,2, · · · ,n and U1(M,Y0) = U1(M) with average
transmit power constraint and a decoding function g:Yn →
{1,2, · · · ,2nR} with an error probability satisfyingP(n)

e =
1

2nR ∑2nR

M=1 p(M 6= g(yn)|M) ≤ εn, where limn→∞ εn = 0. This
coding process indicates that the channel inputUi is de-
termined by the message indexM and previous channel
output Yi−1. The objective of communication is to deliver
M to the receiver at highest code rate with arbitrarily small
error probability. The feedback capacityCf b is defined as the
supremium of all achievable ratesR.

As it is shown in [1], if Sw has a canonical spectral
factorization, the feedback capacity can be characterizedby

Cf b =max
Q

1
2π

∫ π

−π
log|1+Q(eiθ)|dθ ,

s.t.
1

2π

∫ π

−π
|Q(eiθ )|2Sw(e

iθ )dθ ≤ P,

Q(eiθ )is strictly causal, Q ∈ RH 2.

(2)

While the above characterization is elegant, it is infinite
dimensional, and except for thefirst-order auto-regressive
moving average(ARMA) noise, finding the feedback capac-
ity, either analytically or numerically, remains open.

In this paper, we revisit and extend the interpretation of
feedback communication over Gaussian channels as feedback
control problems, [3]. In particular, we highlight the central
role ofYoula parameterization over all stabilizing controllers
in connecting these two theories and show that the character-
ization of the maximum-rate over all stabilizing controllers
and the feedback capacity over all coding schemes (2)
coincide. Moreover, our result provides the explicit (sub-
)optimal communication scheme (i.e. encoder and decoder)
directly from Q. It is worth noting that [1] (Theorem 6.1
and Lemma 6.1) has shown ank-dimensional generalization
of the Schalkwijk-Kailath coding scheme achieves the feed-
back capacity for any ARMA noise spectrum of orderk.
Alternatively, we herein provide a feedback coding scheme
from Q by leveraging control-oriented derivations, which
can be directly constructed and implemented. We next pro-
vide an alternative characterization of the feedback capacity,
from which an asymptotic capacity-achieving sequence of
upper bounds is derived and can be numerically evaluated
by solving finite dimensional optimizations. Furthermore,a
sequence of lower bounds on the feedback capacity are ob-
tained by constructing specific deterministic coding schemes
with double exponential decaying error probability, which
reveal a direct connection with Youla parameter besides
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being an generalized Schalkwijk-Kailath scheme studied by
Elia [4], Kim [1], Liu-Elia [5], Shayevitz-Feder [6] and
others. The archived lower bound and the upper bounds
provide a way to evaluate how close is the scheme to the
feedback capacity. From extensive examples, the sequence
of lower bounds converges arbitrarily close to the capacity,
yielding an asymptotic optimal feedback coding scheme.

A. Related Work

We review the literature along two avenues of information
theory and feedback control theory. As a complete survey is
vast and most of them are out of the scope of our discussion,
we herein list most relevant results to this paper. In the
field of information theory, the investigation on feedback
Gaussian capacity has been experiencing a decade journey.
[7] and its sequel [8] are recognized as the first work on
feedback Gaussian channels by proposing feedback coding
schemes. [9] [10] developed an elegant linear feedback
coding scheme of achieving the capacity of additive white
Gaussian noise (AWGN) channel with noiseless feedback.
Thereafter, several work by Butman [11], [12], Tiernan [13]
[14], Wolfowitz [15] and Ozarow [16] [17] extended this
notable result to ARMA Gaussian channels, with objective
to find channel capacity and optimal feedback codes. As a
consequence, many interesting upper and lower bounds were
obtained. Based on the insight/results from aforementioned
literature, [18] made a major breakthrough on characterizing
the n-block capacity of arbitrary feedback Gaussian channels
by using asymptotic equipartition property (AEP) theorem.It
was also shown that feedback capacity for arbitrary Gaussian
channels cannot be increased by factor two or half bit.
This n-block capacity was extended to the case of feed-
back Gaussian channels with noisy feedback where capacity
bounds and other interesting results were obtained [19] [20]–
[22]. As hinted by this n-block capacity characterization,[1]
developed a variational characterization on the capacity of
stationary feedback Gaussian channels, which is an infinite
dimensional optimization problem. For first-order ARMA
noise, this variational characterization yields a closed-form
solution on the capacity and shows the optimality of the
Schalkwijk-Kailath scheme.

In the field of feedback control theory, many control-
based technical tools have been utilized to attack the prob-
lem of finding feedback Gaussian channel capacity and
capacity-achieving codes. [4] proposed the derivation of
feedback communication schemes based on a feedback con-
trol method. These results were obtained from considering
the problem of stabilization of a given unstable plant over a
Gaussian communication channel. The communication rate
(in the sense of Shannon) over the channel was connected
to the degree on instability of the plant. The minimal
transmission power for a given unstable plant was obtained
by solving the classicalH2 (or Linear Quadratic Gaussian)
problem. However, plants with the same degree of instability
may require different transmission power to be stabilized.[4]
provided the plants that can be stabilized most efficiently,
i.e. with the least transmission power for a given degree of

Fig. 1. Gaussian channels with feedback.

instability for special case channels. This approach provides
a method of finding feedback coding scheme for Gaussian
channels. The approach has been further extended to various
channels [23], connected to the classical Linear Quadratic
Gaussian (LQG) control problem [24]. Finally, [5] extended
the convergence of the fundamental limitations of control
and communication to include the limitations of estimation.
In light of this unified framework, a set of achievable rates
of feedback Gaussian channels were obtained by construct-
ing specific feedback coding schemes via control-oriented
approaches. [25] converted the problem of finding feedback
Gaussian channel capacity into a form of stochastic control
and used dynamic programming to compute the n-block
capacity.

II. FEEDBACK CONTROL INTERPRETATION OF

FEEDBACK CAPACITY FOR GAUSSIAN CHANNELS

We recall that [4] provides feasible communication
schemes for a given channel. However, in order to construct
capacity-achieving feedback codes, two things are necessary
a) the capacity must be known and b) an unstable controller,
in the terminology of this paper, must be found. Both steps
are not easy, although we know from [1] that linear scheme
is capacity achieving.

In this section, we propose a modification of the approach
of [4] that provides a derivation of the feedback capacity
formula for finite dimensional LTI Gaussian channels, from
control theory principles. The proposed approach based on
[4] provides feasible feedback communication schemes with
guaranteed transmission rate. Extensive simulations show
that this coding scheme can achieve (arbitrarily) close to the
feedback capacity.

Given the channel/plant (see Fig. 1)

yi = ui +wi , (3)

wherewi satisfies Assumption 1. As shown in Fig. 1, we are
interested in the closed loop stabilization problem over the
given channel. Note that the noiseless feedback communica-
tion scheme will measurey and use it help produceu with
one step delay.

Any such closed loop system must produceui with the
required transmission power,P. Any controller that produces
bounded transmission power in the loop must be a stabilizing



controller. Differently from [4] where a specific plant was
stabilized over the channel, here we consider the map from
ui to yi as the plant,G. SinceG is stable, all strictly causal
finite dimensional LTI stabilizing controllers for such a plant
have the following expression [26], represented as transfer
functions:

K=−Q(I +GQ)−1 =−Q(I +Q)−1 (4)

whereQ is any finite-dimensional LTI strictly causal stable
system, i.e.Q ∈ RH 2 strictly causal.

The above parametrization is known as the Youla
parametrization of stabilizing controllers. Working withQ
instead of the set of stabilizing controllersK is more conve-
nient. The main advantage comes from the fact that the above
transformation convexifies the set of achievable closed loop
maps by a stabilizing controller. In particular, consider the
complementary sensitivity mapT from w to u and sensitivity
mapS from w to y, respectively. Simple feedback operations
lead to

T(K) =K(1+GK)−1

while
S(K) = (1+GK)−1

Substituting (4) intoS andT, it follows that

S(K) =(I −GQ(I +GQ)−1)−1

=I +GQ= I +Q
(5)

and

T(K) =−Q(I +GQ)−1S

=−Q(I +GQ)−1(I +GQ)

=−Q

(6)

It was shown in [4] that the Bode Integral formula ofS,
the sensitivity function is tightly connected to the Directed
Information2 rate of the channel, which measures the reliable
transmission rate through the channel, see also [30], [33]3.
Specifically, the rate

R= lim
n→∞

1
n

I(Un →Yn)

=
1

4π

∫ π

−π
log|S(eiθ )|2dθ

=
1

4π

∫ π

−π
log|(1+GK)−1|2dθ

=
1

4π

∫ π

−π
log|I +Q(eiθ )|2dθ

(7)

where I(Un → Yn) denotes the directed information from
random sequenceUn = {Ui}n

i=1 to random sequenceYn =
{Yi}n

i=1. The detailed derivation of the above equalities can
be found in Theorem 4.6 [4]. According to Poisson-Jensen’s

2Directed information, firstly defined by Massey [27], has been vastly
used in characterizing the capacity of channels with feedback [28] [29] [30]
[31]. Moreover, it has interpretation on portfolio theory,data compression
and hypothesis testing [32]

3As shown in [30], the feedback capacity of arbitrary channels can be
obtained by maximizing the rate of directed information of the closed-loop
system

formula, sinceS is stable, this integral only depends on the
zeros ofS outside the unit disc, i.e., non-minimum phase
(NMP) zeros. Given the relation betweenS and (4), i.e.,
K=−QS−1, this implies thatK must be unstable ifQ do not
have NMP zeros that cancel those ofI +Q (which is always
true). This fact is later verified by numerical examples.

The average power of channel inputu required for stabi-
lization, under the current assumptions, is given by

lim
n→∞

1
n

n

∑
i=1

ui =
1

2π

∫ π

−π
|Su(e

iθ )|2dθ

=
1

2π

∫ π

−π
|T(eiθ )H(eiθ )|2dθ

=
1

2π

∫ π

−π
|−Q(eiθ)H(eiθ )|2dθ

=
1

2π

∫ π

−π
|Q(eiθ )|2Sw(e

iθ )dθ .

(8)

Note that the first equality follows from Parseval’s theorem.
Thus, we can search over strictly causalQ ∈ RH 2 to
maximize the Bode Integral Formula over the average power
for stabilization constraint. Therefore, the largest achievable
rate of all strictly causal LTI stabilizing controllers is given
by

Rmax=max
Q

1
4π

∫ π

−π
log|1+Q(eiθ)|2dθ ,

s.t.
1

2π

∫ π

−π
|Q(eiθ )|2Sw(e

iθ )dθ ≤ P,

Q(eiθ ) is strictly causal, Q ∈ RH 2.

(9)

Notice that the above optimization, derived from Youla
parameterization, is identical to (2) derived from information
theory. In summary,

1) the above derivation extends the feedback control in-
terpretation of communication system over Gaussian
channels with access to feedback and shows how the
Youla parameterQ is central to the feedback capacity
problem;

2) as will be seen next, feasible feedback coding schemes
can be explicitly constructed from controllerK with
guaranteed transmission rate (in the sense of Shannon);

A. Feasible Coding Schemes

Once a feasibleQ is found for the above optimization,
(possibly optimal or arbitrarily close to optimal) we can
obtain a systemK = Q(I +Q)−1 stabilizing the channel
within the prescribed input average power limit. We show
how to construct a feasible feedback coding scheme, which
is deterministic (time-invariant) and has double exponential
decaying decoding error probability and computable trans-
mission rate. We follow [4].

First of all, we present controllerK as an LTI single-
input-single-output (SISO) finite-dimensional discrete-time
unstable system with the following state-space model:

K :

[

xs(k+1)
xu(k+1)

]

=

[

As 0
0 Au

][

xs(k)
xu(k)

]

+

[

Bs

Bu

]

y(k)

u(k) =
[

Cs Cu
]

[

xs(k)
xu(k)

] (10)



Fig. 2. Decomposition of controllerK into feedback encoder and decoder.

The eigenvalues ofAu are outside the unit disc while the
eigenvalues ofAs are all strictly inside the unit disc (strictly
stable). Without loss of generality we assume thatAs andAu

are in Jordan form. AssumeAu hasm eigenvalues, denoted
by λi(Au), i = 1,2, · · · ,m .

Starting with the decoder, we decomposeK as follows.
We present the simplest solution here, others are possible.
Decoder
The decoder runsK driven byy.

xs(k+1) = Asxs(k)+Bsy(k), xs(0) = 0
x̂u(k+1) = Aux̂u(k)+Buy(k), x̂u(0) = 0

It produces two signals: an estimate of the initial condition
of the encoder

x̂u0(k) = A−k
u x̂u(k).

and a feedback signal

û(k) =
[

Cs Cu
]

[

xs(k)
x̂u(k)

]

Encoder
The encoder runs the following dynamics

x̃u(k+1) = Aux̃u(k), x̃u(0) = xu0,
ũu(k) = Cux̃u(k)

it receives ˆu and produces the channel input

u(k) = ũu(k)+ û(k)

Since the closed loop is stable,xu(k) = x̃u(k) + x̂u(k) goes
to zero with time if the noise is not present. This implies
that x̂u(k)→−x̃u(k). Thus,−x̂u0(k) is an estimate at timek
of x̃u(0) = xu(0) = xu,0. This coding scheme is illustrated in
Fig.2.

Next theorem describes how fast messages associated with
eachxu,0 is transferred to−x̂u0(k) in the presence of the
channel noise.

Theorem 1:Consider stationary Gaussian channels in (3).
Given a filter Q(eiθ ) ∈ RH 2, the coding scheme de-
scribed above based on the decomposition ofK = −Q(I +
Q)−1 achieves a reliable transmission rate (in the sense
of Shannon) at1

2π
∫ π
−π log|1+Q(eiθ )|dθ = ∑m

i=1 log|λi(Au)|
bits/channel useand has double exponential decaying error
probability.
The proof is omitted as it directly follows from (7) and
Theorem 4.3 in [4]. We remark that the above transmission
rate is achieved by allocating the message indexxu,0 at the
centroid of small hypercubes generated by an unit hyper-
cube in the coordinate system depending onAu. We refer
interested readers to Theorem 4.3 in [4] for details.

In summary, the above discussion provides an approach to
construct feasible feedback coding schemes over stationary
finite dimensional Gaussian channels, by leveraging Youla
parameterQ. However, we need to solve (9) which is an
infinite dimensional non-convex optimization problem. In
the rest of the paper, we provide an approach to find an
asymptotic capacity-achieving capacity upper bounds and the
resulting filterQ, based on which feedback codes can be
constructed as described in this section.

III. U PPERBOUNDS ONCAPACITY

In this section, we firstly present an alternative charac-
terization of Gaussian feedback capacity by leveraging the
inverse Fourier transform. Based on this characterization,
a sequence of asymptotic capacity-achieving upper bounds
is proposed and evaluated by solving finite dimensional
optimization problems.

A. Alternative characterization of Gaussian Feedback Ca-
pacity

We focus on the optimization problem (9) or (2). In what
follows, we characterize the Gaussian feedback capacity by



imposing the causality constraints in terms of the inverse
Fourier transform.

Lemma 1:Under Assumption 1, there exists an optimal
solution Q̂(eiθ ) for (2) with Q̂(eiθ ) = Q̂∗(e−iθ ) where Q̂∗

indicates the complex conjugate. Furthermore, the feedback
capacity can be characterized by

Cf b =max
Γ

1
4π

∫ π

−π
log((1+a(θ ))2+b(θ )2)dθ

s.t.
1

2π

∫ π

−π

(

a2(θ )+b2(θ )
)

Sw(θ )dθ ≤ P,

and strictly causal filter frequency domain constraints
∫ π

−π
a(θ )cos(nθ )dθ +

∫ π

−π
b(θ )sin(nθ )dθ = 0

n= 0,1,2, · · · ,∞
(11)

where the maximum is taken over a functional setΓ defined
as

Γ ={a(θ ),b(θ ) : [−π ,π ]→R|a(θ ),b(θ ) ∈ L2}. (12)

HereSw(θ ) refers toSw(eiθ ) for simplicity. The basic idea of
this characterization is that the strict causality can be imposed
on the non-positive index coefficients of the inverse Fourier
transform ofQ(eiθ ).

B. Upper bounds

We next obtain upper bounds toCf b by considering only
a finite number of causality constraints. The h-upper-bound,
denoted byCf b(h), is defined as follows:

Cf b(h) =sup
Γ

1
4π

∫ π

−π
log((1+a(θ ))2+b(θ )2)dθ

s.t.
1

2π

∫ π

−π

(

a2(θ )+b2(θ )
)

Sw(θ )dθ ≤ P,
∫ π

−π
a(θ )cos(nθ )dθ +

∫ π

−π
b(θ )sin(nθ )dθ = 0

n= 0,1,2, · · · ,h.
(13)

SinceCf b(h) ≥Cf b(h+1) for any h≥ 0, and the sequence
Cf b(h) is bounded from below, we haveCf b = limh→∞ Cf b(h)
being approached from above.

Note Cf b(h) is still a semi-infinite dimensional non con-
vex optimization problem. The next theorem shows that
the optimal solution toCf b(h) exits in L2. Moreover it
characterizes the Lagrangian dual problem and shows that
there is no duality gap between the primal and dual problems.
In what follows we focus on non flat channels as the feedback
capacity of flat channels is solved.

Theorem 2:(main result) Under Assumption 1, further
assume thatSw is non-flat (e.g.Sw(eiθ ) is not constant over
θ ). Let

A(θ ) = [cos(θ ),cos(2θ ), · · · ,cos(hθ )]′,
B(θ ) = [sin(θ ),sin(2θ ), · · · ,sin(hθ )]′.

For λ ≥ 0, η ∈ Rh, andη0 ∈ R, define

r2(θ ) = (2λSw(θ )+η ′A(θ )+η0)
2+(η ′B(θ ))2.

Then,
a) The Lagrangian dual of problemCf b(h) in (13) is given
by the following optimization:

(D) : µh =− max
λ≥0,η∈Rh,η0∈R

g(λ ,η ,η0) (14)

where

g(λ ,η ,η0)

=
1

2π

∫ π

−π

[

1
2

log(2λSw(θ )−ν(θ ))− r2(θ )
2ν(θ )

+λSw(θ )
]

dθ

−λP+η0+
1
2
.

(15)

with ν(θ ) = −r2(θ)+
√

r4(θ)+8λ Sw(θ)r2(θ)
2 .

b) (D) is equivalent to the following convex optimization
problem

µh =− max
λ ≥ 0,η ∈ Rh,η0 ∈ R
ν(θ )≥ 0∈C∞

[−π ,π ]

g̃(λ ,η ,η0,ν(θ )) (16)

where

g̃(λ ,η ,η0,ν(θ ))

=
1

2π

∫ π

−π

[

1
2

log(2λSw(θ )−ν(θ ))− r2(θ )
2ν(θ )

+λSw(θ )
]

dθ

−λP+η0+
1
2
.

(17)

c) Furthermore,Cf b(h) = µh, and the optimalQh(eiθ ) =
a(θ )+ ib(θ ) for Cf b(h) is obtained from the optimal solution
of (14) or (16) as follows:

a(θ ) =
2λSw(θ )+η ′A(θ )+η0

ν(θ )
−1 a.e. (18)

b(θ ) =
η ′B(θ )
ν(θ )

a.e. (19)

C. Computing Cf b(h)

Although the dual problem ofCf b(h) can be casted into
a convex optimization (14) with finite number of variables.
The problem it is not easily computable since the cost is an
integral, not explicitly computable in terms of the variables.
A natural practical approach would be to approximate the
integral with a finite sum by discretizingθ . We apply such
discretization to (16) (with spacingπm) and introduce the
following finite dimensional convex problem from (D). Given
m, consider

Cf b(m,h) =− max
λ≥0,η,η0,νi

gm(λ ,η ,η0,νi) (20)



where

gm(λ ,η ,η0,νi)

=
1

2m

2m

∑
i=1

1
2

log(2λSw(θi)−νi)+
1
2
− r2(θi)

2νi
+λSw(θi)

−λP+η0,

andθi =−π + π
m(i −1).

Clearly, Cf b(m,h) is only an approximation ofCf b(h), al-
though the approximation gets arbitrarily close toCf b(h)
and its solution asm→ ∞; since the integration is over a
compact set, and the variables are either finite dimensional
or continuous.

Notice that the optimization (20) is in a convex form. The
log of an affine function is concave.r

2(θi)
νi

is a quadratic
(composed with an affine function of the variables) over lin-
ear function, therefore convex. Thus, (20) can be efficiently
solved with standard convex optimization tools, e.g. CVX.

Based on the solution to (20), we can actually obtain a
guaranteed upper bound onCf b(h) for eachmusing the upper
bound property of dual feasible solutions. Letλ m,ηm,ηm

0 ,ν
m
i

be the optimal solution to (20). Here we are omitting the
dependence onh for simplicity. Let

Cf b(m,h) =−g(λ m,ηm,ηm
0 ) (21)

where g(·) is defined in (15). Clearly,Cf b(m,h) is easily
computable to arbitrary accuracy.

Corollary 1: Given h ≥ 0, Cf b(m,h) ≥ Cf b(h) ≥ Cf b for
∀m> 0 and limm→∞ Cf b(m,h) =Cf b(h).

Proof: From the solution of (20),λ m,ηm,ηm
0 , νm

i , we
know that λ m,ηm,ηm

0 are feasible for (14). However, any
feasible dual solution provides a cost−g(λ m,ηm,ηm

0 ) which
is an upper bound onCf b(h).
Extensive numerical simulations show that for sufficiently
largem the upper boundCf b(m,h), and thereforeCf b(h) are
close to the capacity even for smallh.

IV. L OWER BOUNDS ONCAPACITY

In the previous section we have introduced a finite dimen-
sional convex optimization, (20). From its optimal solutions
we were able to obtain convergent upper bounds onCf b. In
this section, we show that from the solution to (20) we can
obtain lower bounds onCf b.

The primal problem associated with (20) is the following
optimization. This can be verified analogously to Theorem
2.

Cf b(m,h) = min
ai∈R,bi∈R

1
4m

2m

∑
i=1

log((1+ai)
2+b2

i )

s.t.
1

2m

2m

∑
i=1

(

a2
i +b2

i

)

Sw(θi)≤ P,

2m

∑
i=1

ai cos(nθi)+
2m

∑
i=1

bi sin(nθi) = 0

n= 0,1,2, · · · ,h.
θi =−π +

π
m
(i −1)

(22)

This problem is non convex, however, from the solution to
(20), we can construct

ai =
2λSw(θi)+η ′A(θi)+η0

νi
−1 (23)

bi =
η ′B(θi)

νi
(24)

which are feasible for (22).
Note that (23) and (24) can be interpreted as the co-

efficients of a sampled spectrum̃Qm,h. As such, they are
associated with a periodic impulse response signal ˜qm,h(k) =

∞

∑
n=−∞

cnδ (k−n), with fundamental period 2m, where

cn =
1

2m

2m

∑
i=1

ai cos(nθi)−bi sin(nθi)

θi =−π + π
m(i −1).

(25)

Consider one 2m-period truncation of ˜qm,h(k), denoted by
qm,h(k). We next perform a causal projection onqm,h(k) by
zeroing all the non strictly causal coefficients. Finally, we
extend the signal defined from−m+ 1 to m to have zero
value outside the interval[−m+ 1,m]. Let qc

m,h(k) denote
such strictly causal Finite Impulse Response signal and let
its Fourier Transform beQc

m,h. Qc
m,h will satisfy the power

constraint

1
2π

∫ π

−π
|Qc

m,h(e
iθ )|2Sw(e

iθ )dθ ≤ P

for m large enough. However if for somem it does not, then
we can scaleQc

m,h appropriately so that the scaledQc
m,h(e

iθ )

does. The end result of this procedure is thatQc
m,h(e

iθ ) is
feasible forCf b in (2)(9)(11).

Specifically:

1) Filter Construction: given m,h > 0, solve (20) and
obtain solution(λ ∗

m,h,η
∗
m,h,η

∗
0,m,h). Obtain ai ,bi , i =

1, . . . ,2m from (23) with (λ ∗
m,h,η

∗
m,h,η

∗
0,m,h).

2) One Period Truncation and Causal Projection: com-
pute the strictly casual part of one period of the impulse
response by computing the coefficientscn (n= 1, . . .m)
by

cn =
1

2m

2m

∑
i=1

ai cos(nθi)−bi sin(nθi)

θi =−π + π
m(i −1).

(26)

Then, construct a strictly causal filterQc
m,h(z) =

m

∑
n=1

cnz−n. Lower order rational approximations may

be obtained by Hankel model reduction methods, e.g.
[34], if desired.

3) Power Scale: Let p := 1
2π

∫ π
−π |Qc

h,m(e
iθ )|2Sw(eiθ )dθ . p

can be computed by computing theH2 norm squared
for Qc

h,m(z)H(z). This can be done in state-space by
computing the solution to a Lyapunov equation. We
next rescaleQc

h,m by αm,h =
√

P/p and obtainQcp
m,h =

αm,hQ
c
m,h (αm,h > 0), such that the power budget is

satisfied.



4) Coding Scheme Construction: Q
cp
m,h is a feasible so-

lution to (11). Thus we can construct a feedback
coding scheme fromK = −Q

cp
m,h(I +Q

cp
m,h)

−1 (and its
corresponding state-space representation).

Theorem 1 shows this coding schemeK achieves a rate
R(h,m) = 1

2π
∫ π
−π log|1+ Q

cp
h,m(e

iθ )|dθ which is a lower
bound on the capacity, and has double exponential decaying
error probability.

Combined with the upper boundCf b(h,m), a numerical
capacity gap can be evaluated byCf b(h,m)−R(h,m).

V. EXAMPLES

In summary, we can compute the upper boundsC(h) with
desired accuracy by solving the finite dimensional convex
optimization (20) with sufficiently largem. We then construct
a strictly causal filterQ for optimization (9) from the solution
of (20). From Q we obtain K and a feasible feedback
communication scheme as described in Section II.A. The
transmission rate can be computed from the NMP zeros of
the sensitivity functionS= I +Q as in Theorem 1. We next
present some examples.

A. Examples

Example 1:Consider a first-order moving average (i.e.
MV(1)) Gaussian processWi = Ui + 0.1Ui−1 whereUi is a
white Gaussian process with zero mean and unit variance.
The power spectral density isSw(eiθ ) = |1+0.1e−iθ |2. Given
power constraintP = 10, our proposed upper and lower
bounds converge to 1.7688bits/channel use, being consistent
with that computed from the closed form solution (44) in [1].

Example 2:Consider the following second order moving
average Gaussian process with

W(z) = 1+0.1z−1+0.5z−2

with associated
Sw(z) = |W(eiθ )|2.

While neither the value of capacity or the optimal codes
is known for this generalized Gaussian noise, both of them
can be efficiently obtained from our approach. With power
constraint P = 10, the capacity is evaluated as 1.9194
bits/channel use(rounded to 4 decimals). This value is
obtained with h = 6 and m = 40. See Table 4 for the
convergence of upper and lower bounds ash increases. It
is shown that the gap is vanishing quickly and the capacity
is evaluated with high accuracy.

The optimal coding schemeK after order reduction via
Hankel Singular Value Decomposition (H-SVD) on the finite
impulse response is given by

K=− 0.22026(z+13.84)z2

(z2+0.01755z+0.03498)(z2+0.4115z+3.783)
,

which is unstable as expected. Note however that it has two
complex conjugate unstable poles at

p1,2 =−0.2057± i1.9340
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Fig. 3. Impulse response ofQ.

which would not be easy to find using the approach of
[4]. Also it can be verified that the achievable rate ofK

is log(|p1||p2|) = 1.9194bits/channel use.
The corresponding optimal closed loop Sensitivity func-

tion is

I +Q=
(z2+0.01755z+0.03498)(z2+0.4115z+3.783)

(z2+0.1088z+0.2644)(z2+0.1z+0.5)

As expected, the Sensitivity has the corresponding non-
minimum phase zeros at the location of the unstable poles
of K. Note also that the optimal closed loop system includes
dynamics that (partially) cancel the noise dynamics. The term
(z2 + 0.1z+ 0.5) is the numerator ofW(z). This feature is
to be consistent with other examples where channels are
modeled as minimum phase finite impulse response (FIR)
filters. Finally, Figure 3 shows the optimal impulse response
of Q, which is strictly causal as required.

VI. CONCLUSION

This paper studied the problem of computing the feedback
capacity of stationary finite dimensional Gaussian channels.
Firstly, the interpretation of feedback communication as
feedback control over Gaussian channels was extended by
leveragingYoula parameterization. This new interpretation
provides an approach to construct feasible feedback coding
schemes with double exponentially decaying error probabil-
ity. We next derived an asymptotic capacity-achieving upper
bounds, which can be numerically computed by solving
finite dimensional optimization. From the resulting filters
that achieve upper bounds, feasible feedback coding schemes
were constructed. The convergence upper bound and the
achievable lower bound allow to evaluate the closeness of
the achievable rate to the feedback capacity. From extensive
examples, the sequence of lower bounds converges arbitrarily
close to the capacity, yielding an asymptotic optimal feed-
back coding scheme. We leave the lower bound convergence
proof to further investigations.

REFERENCES

[1] Y. H. Kim, “Feedback capacity of stationary gaussian channels,” IEEE
Transactions on Information Theory, vol. 56, no. 1, pp. 57–85, 2010.



upper bound lower bound gap
h = 1 1.953615794213734 1.837997383645331 0.115618410568404
h = 2 1.919419110833023 1.919133474756371 2.856360766521071×10−4

h = 3 1.919395054344304 1.919215947145071 1.791071992334192×10−4

h = 4 1.919358863350398 1.919358573743238 2.896071606972583×10−7

h = 5 1.919358787261653 1.919358689375164 9.788648980268988×10−8

h = 6 1.919358744798872 1.919358744265310 5.335623054492089×10−10

Fig. 4. Convergence of upper and lower bounds.

[2] E. J. Hannan and M. Deistler,The Statistical Theory of Linear Systems
(Classics in Applied Mathematics). SIAM-Society for Industrial and
Applied Mathematics, 2012.

[3] S.Mitter, “Towards a unified theory of communication andcontrol,”
Seminar, LIDS-MIT, 2001.

[4] N. Elia, “When bode meets shannon: control-oriented feedback
communication schemes,”IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1477–1488, 2004.

[5] J. L. Liu and N. Elia, “Convergence of fundamental limitations in
feedback communication, estimation, and feedback controlover gaus-
sian channels,”Communications in Information and Systems (CIS),
vol. 14, no. 3, pp. 161–211, 2014.

[6] O. Shayevitz and M. Feder, “Optimal feedback communication
via posterior matching,”IEEE Transactions on Information Theory,
vol. 57, no. 3, pp. 1186 – 1222, 2011.

[7] P. Elias, “Channel capacity without coding,”MIT Research Lab. of
Electronics, Cambridge, MA, Quarterly Progr. Rep., 1956.

[8] ——, “Networks of gaussian channels with applications tofeedback
systems,”IEEE Transactions on Information Theory, vol. 13, pp. 493
– 501, 1967.

[9] J. P. M. Schalkwijk and T. Kailath, “A coding scheme for additive
noise channels with feedback i: No bandwidth constraint,”IEEE
Transactions on Information Theory, vol. IT-12, no. 2, pp. 172–182,
1966.

[10] J. P. M. Schalkwijk, “A coding scheme for additive noisechannels with
feedbackii: Band-limited signals,”IEEE Transactions on Information
Theory, vol. IT-12, no. 2, pp. 183–189, 1966.

[11] S. Butman, “A general formulation of linear feedback communication
systems with solutions,”IEEE Transactions on Information Theory,
vol. 15, no. 3, pp. 392 – 400, 1969.

[12] ——, “Linear feedback rate bounds for regressive channels,” IEEE
Transactions on Information Theory, vol. 22, no. 3, pp. 363 – 366,
1976.

[13] J. C. Tiernan and J. P. M. Schalkwijk, “An upper bound to the capacity
of the band-limited gaussian autoregressive channel with noiseless
feedback,”IEEE Transactions on Information Theory, vol. 20, pp. 311
– 316, 1974.

[14] J. C. Tiernan, “Analysis of the optimum linear system for the autore-
gressive forward channel with noiseless feedback,”IEEE Transactions
on Information Theory, vol. 22, pp. 359 – 363, 1976.

[15] J. Wolfowitz, “Signalling over a gaussian channel withfeedback and
autoregressive noise,”J. Appl. Probability, vol. 12, no. 4, pp. 713 –
723, 1975.

[16] L. H. Ozarow, “Random coding for additive gaussian channels with
feedback,”IEEE Transactions on Information Theory, vol. 36, no. 1,
pp. 17 – 22, 1990.

[17] ——, “Upper bounds on the capacity of gaussian channels with
feedback,”IEEE Transactions on Information Theory, vol. 36, no. 1,
pp. 151 – 161, 1990.

[18] T. M. Cover and S. Pombra, “Gaussian feedback capacity,” IEEE
Transactions on Information Theory, vol. 35, no. 1, pp. 37–43, 1989.

[19] C. Li and N. Elia, “Bounds on the achievable rate of noisyfeedback
gaussian channels under linear feedback coding scheme,”IEEE Inter-
national Symposium on Information Theory, pp. 169–173, 2011.

[20] ——, “Upper bound on the capacity of gaussian channels with noisy
feedback,”49th Annual Allerton Conference, pp. 84–89, 2011.

[21] ——, “Noisy feedback communications with side information at the
decoder,”50th Annual Allerton Conference, pp. 1856–1863, 2012.

[22] C. Li, “Fundamental limitations on communication channels with
noisy feedback: information flow, capacity and bounds,”Iowa State
University Ph.D. dissertation, 2013.

[23] J. L. Liu, N. Elia, and S. Tatikonda, “Capacity-achieving feedback
scheme for markov channels with channel state information,” IEEE
International Symposium on Information Theory, pp. 71–75, 2004.

[24] E. Ardestanizadeh and M. Franceschetti, “Control-theoretic approach
to communication with feedback,”IEEE Transactions on Automatic
Control, vol. 57, no. 10, pp. 2576–2587, 2012.

[25] S. Yang, “On the feedback capacity of power-constrained gaussian
noise channels with memory,”IEEE Transactions on Information
Theory, vol. 53, no. 3, pp. 929 – 954, 2007.

[26] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum,Feedback Control
Theory. New York: Macmillan, 1992.

[27] J. L. Massey, “Causality, feedback and directed information,” In Proc.
Int. Symp. Inf. Theory Applic., pp. 303–305, 1990.
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