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Abstract

Consider a channel where authorized transmitter Jack sends packets to authorized receiver Steve according

to a Poisson process with rate λ packets per second for a time period T . Suppose that covert transmitter Alice

wishes to communicate information to covert receiver Bob on the same channel without being detected by a

watchful adversary Willie. We consider two scenarios. In the first scenario, we assume that warden Willie cannot

look at packet contents but rather can only observe packet timings, and Alice must send information by inserting

her own packets into the channel. We show that the number of packets that Alice can covertly transmit to Bob

is on the order of the square root of the number of packets that Jack transmits to Steve; conversely, if Alice

transmits more than that, she will be detected by Willie with high probability. In the second scenario, we assume

that Willie can look at packet contents but that Alice can communicate across an M/M/1 queue to Bob by

altering the timings of the packets going from Jack to Steve. First, Alice builds a codebook, with each codeword

consisting of a sequence of packet timings to be employed for conveying the information associated with that

codeword. However, to successfully employ this codebook, Alice must always have a packet to send at the

appropriate time. Hence, leveraging our result from the first scenario, we propose a construction where Alice

covertly slows down the packet stream so as to buffer packets to use during a succeeding codeword transmission
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phase. Using this approach, Alice can covertly and reliably transmit O(λT ) covert bits to Bob in time period T

over an M/M/1 queue with service rate µ > λ.

Keywords: Covert Bits Through Queues, Covert Communication, Covert Communication over Queues,

Covert Computer Network, Covert Wired Communication, Low Probability of Detection, LPD, Covert

Channel, Covert Timing Channel, Covert Packet Insertion, Poisson Point Process, Information Theory.

I. INTRODUCTION

The provisioning of security and privacy is critical in modern communication systems. The vast

majority of research in this area has focused on protecting the message content through encryption [2] or

emerging methods in information-theoretic security [3]. However, there are applications where the very

existence of the message must be hidden from a watchful adversary. For example, in the organization of

social unrest against an authoritarian regime, the mere existence of an encrypted message would likely

lead to the shut down of that communication and possible punishment of the users. Other applications

include hiding the presence or scale of military operations, or removing the ability of users to be tracked

in their everyday activities.

Whereas the provisioning of undetectable communications in objects with symbols drawn from

a finite field and transmitted over noiseless channels (e.g. images) has been extensively studied in

the steganogaphic community over a number of years [4], the consideration of hiding messages on

continuous-valued noisy channels has only recently drawn considerable attention. In particular, despite

the extensive historical use of spread spectrum systems for low probability of detection (LPD) com-

munications, the fundamental limits of covert communications over the additive white Gaussian noise

(AWGN) channel were only recently obtained [5], [6]. The work of [5], [6] motivated significant further

work (e.g. [7]–[19]), with these works taken together providing an almost complete characterization

of the foundational limits of covert communications over discrete memoryless channels (DMCs) and

AWGN channels.

In this paper, we turn our attention to the consideration of a covert timing channel appropriate

for packet-based communication channels, e.g., computer networks. More specifically, we study how

packet insertion or inter-packet delays can be used for covert communications. The use of inter-packet

delays for covert communication was first explored by Girling [20] and was later studied by a number of

other authors [21]–[24]. In particular, Anantharam et al. [25] derived the Shannon capacity of the timing

channel with a single-server queue, and Dunn et al. [26] analyzed the secrecy capacity of such a system.

Considerable work has focused on quantifying and optimizing the capacity of timing channels [27]–

[32] by leveraging information theoretic analysis and the use of various coding techniques [33]–[35].
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Moreover, methods for detecting timing channels [36] as well as eluding the detection by leveraging

the statistical properties of the legitimate channel have been proposed [37].

In this paper, we consider a channel where an authorized (overt) transmitter, Jack, sends packets to

an authorized (overt) receiver, Steve, within a time period T , where the timings of packet transmission

are modeled by a Poisson point process with rate λ packets per second. Covert transmitter Alice may

wish to transmit data to a covert receiver, Bob, on this channel in the presence of a warden, Willie, who

is monitoring the channel between Alice and Bob precisely to detect such transmissions. We consider

two scenarios in detail. In the first scenario, we assume: (1) the warden Willie is not able to see packet

contents, and therefore cannot verify the authenticity of the packets (e.g., whether they are actually sent

by Jack); and (2) Alice is restricted to packet insertion. Willie is aware that the timing of the packets

of the overt communication link follows a Poisson point process with rate λ, so he seeks to apply

hypothesis testing to verify whether the packet process has the proper characteristics. We show that (see

Theorem 1) if Alice decides to transmit O
(√

λT
)

packets to Bob, she can keep Willie’s sum of error

probabilities PFA + PMD > 1 − ε for any 0 < ε < 1, where PFA and PMD are Willie’s probability of

false alarm and missed detection, respectively. Conversely, we prove that if Alice transmits ω
(√

λT
)

packets, she will be detected by Willie with high probability.

In the second scenario, we assume that Willie can look at packet contents and therefore can verify

packets’ authenticity. Thus, Alice is not able to insert packets, but we allow Alice in this scenario

to alter the packet timings to convey information to Bob, whom is receiving the packets through a

M/M/1 queue with service rate µ > λ. To do such, Alice designs an efficient code [25], where a

codeword consists of a sequence of packet timings drawn from the same process as the overt traffic;

hence, a codeword transmitted with those packet timings is undetectable. However, there is a causality

constraint, as Alice clearly cannot send the next packet (i.e. codeword symbol) unless she has a packet

from the Jack to Steve link available to transmit. This suggests the following two-stage process. In

the first stage, Alice covertly slows down the transmission of the packets from Jack to Steve so as to

buffer some number of packets. In the second stage, Alice continues to add packets transmitted by Jack

to her buffer while releasing packets with the inter-packet delay appropriate for the chosen codeword.

Alice’s scheme breaks down when her buffer is empty at any point before completing the codeword

transmission. Hence, the question becomes: how long must Alice collect packets during the first stage

so as to guarantee (with high probability) that she will not run out of packets before the completion of

codeword transmission during the second stage?

First in Lemma 1, we show that Alice can collect and store O
(√

λT
)

packets in an interval of length

T while keeping Willie’s sum of error probabilities PFA+PMD > 1−ε for any 0 < ε < 1; conversely, if
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she collects more, she will be detected by Willie with high probability. Building on Lemma 1, we prove

(Theorem 2) that, using our two-stage covert communications approach, Alice can reliably transmit

O(λT ) covert bits to Bob within the time period T while keeping Willie’s sum of error probabilities

bounded as PFA + PMD > 1− ε for any 0 < ε < 1.

The remainder of the paper is organized as follows. In Section II, we present the system model and

the metrics employed for the two scenarios of interest. Then, we provide constructions and their analysis

for the two covert communication scenarios in Sections III and IV.

II. SYSTEM MODEL AND METRICS

A. System Model

Suppose that Jack transmit packets to Steve on the interval [0, T ]. We model the packet transmission

times by a Poisson point process with parameter λ. Hence, the average number of packets that is

sent from Jack to Steve in a duration of time T is λT . Assume Alice wishes to use the channel to

communicate with Bob without being detected by warden Willie, whom is observing the channel from

Alice to Bob and attempting to detect any covert transmissions.

In Scenario 1, which is analyzed in Section III, we assume that Willie does not have access to the

contents of the packets and therefore is not able to perform authentication and determine whether a

packet is from Jack or not. We assume that Alice, with knowledge of λ, is allowed to use the channel

only by inserting and transmitting her own packets to Bob, and Bob is able to authenticate, receive and

remove the covert packets. Therefore Steve does not observe the covert packets. We consider the rate ∆ at

which Alice can insert packets while remaining covert. Willie knows that the legitimate communication

is modeled by a Poisson point process with parameter λ, and he knows all of the characteristics of

Alice’s insertion scheme (rate, method of insertion, etc.)

In Scenario 2, which is analyzed in Section IV, we assume that Willie is able to access packet contents

and hence authenticate whether a packet is coming from Jack. Hence, Alice is not able to insert packets

into the channel. However, we allow Alice to buffer packets and release them when she desires into the

channel, thereby enabling covert communication through packet timing control. The problem is made

non-trivial by assuming that Bob has access to the resulting packet stream only through an M/M/1

queue with service rate µ > λ; in other words, the service times of the packets are independently

and identically distributed (i.i.d) random variables according to an exponential random variable with

average 1/µ. Again, Willie knows that the legitimate communication is modeled by a Poisson point

process with parameter λ, and he knows all of the characteristics of Alice’s packet buffering and release

scheme except a secret key that is pre-shared between Alice and Bob. Fig. 2 depicts the system model
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Fig. 1. System configuration for Scenario 1: Alice adds her packets to the channel between Jack and Steve to communicate covertly with

Bob. The average number of packets from Jack in a duration of time T is λT , and the average number of total packets observed by either

Bob and Willie in T is (λ+ ∆)T . The blue color shows the legitimate communication and the green shows the covert communication.

Fig. 2. System configuration for Scenario 2: Alice is able to buffer packets in order to alter packet timings.

for this scenario. In this scenario, we consider the rate at which Alice can reliably transmit information

to Bob without detection by Willie.

B. Hypothesis Testing

Willie is faced with a binary hypothesis test: the null hypothesis (H0) corresponds to the case that Alice

is not transmitting, and the alternative hypothesis H1 corresponds to the case that Alice is transmitting.

We denote the distribution Willie observes under H1 by P1, and the distribution Willie observes under

H0 by P0. Also, we denote by PFA the probability of rejecting H0 when it is true (type I error or false

alarm), and PMD the probability of rejecting H1 when it is true (type II error or missed detection). We

assume that Willie uses classical hypothesis testing with equal prior probabilities and seeks to minimize

PFA + PMD; the generalization to arbitrary prior probabilities is straightforward [6].

C. Covertness

Alice’s transmission is covert if and only if she can lower bound Willie’s sum of probabilities of

error (PFA + PMD) by 1− ε for any ε > 0 [6].
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D. Reliability

A transmission scheme is reliable if and only if the probability that a codeword transmission from

Alice to Bob is unsuccessful is upper bounded by ζ for any ζ > 0. Note that this metric applies only

in Scenario 2.

III. COVERT COMMUNICATION VIA PACKET INSERTION (SCENARIO 1)

In this section, we consider Scenario 1: Willie cannot authenticate packets to see whether they are

from Jack or Alice, and Alice is only allowed to send information to Bob by adding packets to the

channel.

Theorem 1. Consider Scenario 1. Alice can covertly insert O(
√
λT ) packets in the period of time T .

Conversely, if Alice attempts to insert ω
(√

λT
)

packets in the period of time T , there exists a detector

that Willie can use to detect her with arbitrarily low sum of error probabilities PFA + PMD.

Proof. (Achievability)

Construction: Alice generates a Poisson point process with parameter ∆ and based on this, adds her

covert packets to the channel between Jack and Steve. Bob collects and removes the packets generated

by Alice.

Analysis: First we show that the number of packets observed during the time period of length T is

a sufficient statistic by which Willie can perform the optimal hypothesis test to decide whether Alice

is transmitting or not. The observation of the Poisson point process at Willie is characterized by the

collection of inter-packet delays. Let x̄ = (x1, x2, · · · ) be this observation vector, where xi is the delay

between the arrival time of packet i and packet i+1. The optimal hypothesis test is based on a likelihood

ratio (LRT) between the null hypothesis H0 (Alice is not transmitting) and the alternative hypothesis

H1 (Alice is transmitting):

Λ(x̄) =
f(x̄|H1)

f(x̄|H0)
=

∑
n1
f(x̄|H1, n1)P1(n1)∑

n0
f(x̄|H0, n0)P0(n0)

where P0 is the probability distribution function for the number of packets that Willie observes under

the null hypothesis H0 (Alice is not transmitting) corresponding to a Poisson point process with rate

λ, and P1 is the probability distribution function for the number of packets that Willie observes under

hypothesis H1 (Alice is transmitting) corresponding to a Poisson point process with rate λ+ ∆. Since

the processes under H0 and H1 are Poisson, f (x̄ |H0, n) = f(x̄|H1, n) for all n, and

Λ(x̄) =

∑
n1
f(x̄|n1)P1(n1)∑

n0
f(x̄|n0)P0(n0)

(1)
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Suppose that x̄ has n non-zero entries for a given observation. Since f(x̄|n1) = 0 when n1 6= n,

Λ(x̄) =
f(x̄|n)P1(n)

f(x̄|n)P0(n)
=

P1(n)

P0(n)
(2)

Therefore, the number of packets that Willie observes during time interval T is a sufficient statistic for

Willie’s decision.

Now, Willie applies the optimal hypothesis test on the number of packets during time T . Then [6]

PFA + PMD ≥ 1−
√

1

2
D(P0||P1) (3)

PFA + PMD ≥ 1−
√

1

2
D(P1||P0) (4)

where E[·] denotes the expected value, and D(P0||P1) is the relative entropy between P0 and P1.

We next show how Alice can lower bound the sum of average error probabilities by upper bounding√
1
2
D(P0||P1). Consider the following fact (proved in the Appendix):

Fact 1. For two Poisson distributions Pλ1(n), Pλ2(n):

D(Pλ1(n)||Pλ2(n)) = λ2 − λ1 + λ1 log λ1/λ2 (5)

By Fact. 1, for the given P1 and P0 the relative entropy is:

D(P0||P1) = ∆ · T − λT ln

(
1 +

∆

λ

)
(6)

We prove in the Appendix that:

ln(1 + u) ≥ u− u2

2
for u ≥ 0, (7)

Applying (7) on (6) yields:

D(P0||P1) ≤ ∆2

λ
T. (8)

Suppose Alice sets

∆ =

√
2λ

T
ε (9)

where 0 < ε < 1 is a constant. Then, √
1

2
D(P0||P1) ≤ ε

and E[PFA + PMD] ≥ 1− ε as long as ∆ · T = O
(√

λT
)

.

(Converse) To establish the converse, we provide an explicit detector for Willie that is sufficient to

limit Alice’s throughput across all potential transmission schemes (i.e. not necessarily insertion according

to a Poisson point process). Suppose that Willie observes a time interval of length T and wishes to
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detect whether Alice is transmitting or not. Since he knows that the packet arrival process for the link

between Jack and Steve is a Poisson point process with parameter λ, he knows the expected number of

packets that he will observe. Therefore, he counts the number of packets S in this duration of time and

performs a hypothesis test by setting a threshold U and comparing S with λT + U . If S < λT + U ,

Willie accepts H0; otherwise, he accepts H1. Consider PFA

PFA = P (S > λT + U |H0) = P (S − λT > U |H0) ≤ P (|S − λT | > U |H0) (10)

When H0 is true, Willie observes a Poisson point process with parameter λ; hence,

E [S |H0 ] = λT (11)

Var [S |H0 ] = λT (12)

Therefore, applying Chebyshev’s inequality on (10) yields PFA ≤ λT
U2 . Thus, Willie can achieve PFA ≤ α

for any 0 < α < 1 if he sets U =
√

λT
α

. Next, we will show that if Alice transmits ∆ · T = ω
(√

λT
)

covert packets, she will be detected by Willie with high probability. Consider PMD

PMD = P (S ≤ λT + U |H1) = P (S − (λ+ ∆)T ≤ U −∆ · T |H1)

= P (− (S − (λ+ ∆)T ) ≥ − (U −∆ · T ) |H1)

≤ P (|S − (λ+ ∆)T | ≥ |U −∆ · T | |H1) (13)

When H1 is true, since Willies observes a Poisson point process with parameter λ+ ∆,

E [S |H1 ] = (λ+ ∆)T (14)

Var [S |H1 ] = (λ+ ∆)T (15)

Therefore, applying Chebyshev’s inequality on (13) yields PMD ≤ (λ+∆)T

(U−∆·T )2
. Since U =

√
λT
α

, if Alice

sets ∆ · T = ω
(√

λT
)

, Willie can achieve PMD < β for any 0 < β < 1. Combined with the results

for probability of false alarm above, if Alice sets ∆.T = ω
(√

λT
)

, Willie can choose a U =
√

λT
α

to

achieve any (small) α > 0 and β > 0 desired. �

IV. COVERT TIMING CHANNEL USING INTER-PACKET DELAYS (SCENARIO 2)

In this section, we consider Scenario 2: Willie can authenticate packets to determine whether or not

they were generated by the legitimate transmitter Jack. Therefore, Alice cannot insert packets into the

channel; rather, we assume that Alice is able to buffer packets and release them when she desires; hence,

she can encode information in the inter-packet delays by using a secret codebook shared with Bob.
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In the construction below, each of Alice’s codewords will consist of a sequence of inter-packet delays

to be employed to convey the corresponding message. But this immediately presents a problem for

Alice, as she must have a packet in her buffer to transmit at the appropriate time. To clarify this issue,

suppose Alice were to attempt to start codeword transmission immediately. Suppose that the first letter

of Alice’s codeword for the current message is 10µs, and thus she has to apply this delay between the

first and second packet. To send this letter, Alice receives the first packet from Jack and immediately

transmits it to Bob. Then, she waits for the second packet. If the second packet arrives earlier than 10µs,

she stores the packet and transmits it 10µs after the first transmission. But, if the second packet arrives

from Jack after the 10µs interval, she cannot accurately transmit the codeword. Hence, the codeword

failure rate would be quite high with such a scheme.

This suggests that Alice must build up some number of packets in her buffer before starting codeword

transmission, and, in fact, this is the scheme that we employ. In particular, Alice will employ a two-

phase system. In the first phase, she will (slightly) slow down the transmission of packets from Jack

to Steve so as to build up a backlog of packets in her buffer. Then, during the codeword transmission

phase, she will release packets from her buffer with the inter-packet delays prescribed by the codeword

corresponding to the message, while continuing to buffer arriving packets from Jack. Two questions

dictate the resulting throughput of the scheme: (1) Phase I: how much can Alice slow down the packet

stream from Jack to Steve without it being detected by warden Willie?; (2) Phase II: how many packets

must Alice accumulate in her buffer by the start of Phase II so as to, with high probability, have a packet

in her buffer at all of the times required by the codeword? To answer the first question, we calculate

the number of packets that Alice can covertly collect by slowing down the packet stream from Jack

to Steve in a duration of time T and present the results in Lemma 1. Then, in Theorem 2, we answer

the second question to present an achievability result for the number of bits that Alice can reliably and

covertly transmit to Bob through packet timings.

Lemma 1. If Alice can buffer packets on the link from Jack to Steve, she can covertly buffer O(
√
λT )

packets in a period of time of length T . Conversely, if Alice buffers ω
(√

λT
)

packets in the period of

time T , there exists a detector that Willie can use to detect such buffering with arbitrarily low sum of

error probabilities PFA + PMD.

Proof. For the achievability result, Alice buffers packets by slowing down the incoming process of rate

λ to one of rate λ−∆ (i.e. slightly scaling up the packet timings) and buffering the packets of the (faster:

of rate λ) incoming process that have yet to exit the buffer by the (slower: of rate λ − ∆) outgoing

process. P0 is the probability distribution function for Willie’s observation under the null hypothesis H0
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and corresponds to a Poisson point process with rate λ, and P1 is the probability distribution function

for observations under the hypothesis H1 and corresponds to a Poisson point process with rate λ−∆.

Similar to (6), by Fact 1:

D(P1||P0) = ∆ · T − (λ−∆)T ln

(
1 +

∆

λ−∆

)
(a)

≤ ∆ · T − (λ−∆)T

(
∆

λ−∆
− 1

2

(
∆

λ−∆

)2
)

= ∆ · T − T
(

∆− ∆2

2(λ−∆)

)
=

T∆2

2(λ−∆)
(16)

where (a) follows from inequality (7). If ∆ = ε
√

2λ/ , then D(P1||P0) ≤ 2ε2 as T → ∞. Therefore,

by (4) and (16), Alice can achieve PFA +PMD ≥ 1− ε as for any 0 < ε < 1 long as ∆ ·T = ε
√

2λT =

O
(√

λT
)

. The proof of the converse follows that of Theorem 1 with minor modifications. �

Theorem 2. Consider Scenario 2. By embedding information in the inter-packet delays, Alice can can

covertly and reliably transmit O (λT ) bits to Bob in a time interval of length T .

Proof. Construction: To establish covert communication over the timing channel, Alice and Bob share

a secret key (codebook) to which Willie does not have access. To build a codebook, a set of M

independently generated codewords {C(Wl)}l=Ml=1 are generated for messages {Wl}l=Ml=1 according to

realizations of a Poisson process with parameter λ that mimics the overt traffic on the channel between

Jack and Steve, where M is defined later. In particular, to generate a codeword C(Wl), first a random

variable N is generated according to a Poisson distribution with mean λT . Then, N inter-packet delays

are generated by placing N points uniformly and independently on an interval of length T [25] (see

Fig. 3). For each message transmission, Alice uses a new codebook to encode the message into a

codeword. According to the codebook, each message corresponds to a codeword that is a series of

inter-packet delays. To send a codeword, Alice applies the inter-packet delays to the packets that are

being transmitted from Jack to Steve.

Per above, Alice’s communication includes two phases: a buffering phase and a transmission phase.

During the buffering phase of length ψT , where 0 < ψ < 1 is a parameter to be defined later, Alice

slows down the packet transmission process to λ − ∆ in order to build up packets in her buffer. In

particular, Alice’s purpose in the first phase is to buffer enough packets to ensure she will not run out

of packets during the transmission phase, of length T ′ = (1− ψ)T , with high probability (see Fig. 4).

Analysis: (Covertness) Suppose that Willie knows when each of the two phases start and end.

According to Lemma 1, during the first phase, Alice can lower bound the sum of Willie’s error probability
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Fig. 3. Codebook generation: Alice and Bob share a codebook (secret), which specifies the sequence of inter-packet delays corresponding

to each message. To generate each codeword, a number N is generated according to the Poisson distribution with parameter λT , and

then N points are placed uniformly and randomly on the time interval [0, T ].

Fig. 4. Two-phased construction: Alice divides the duration of time T into two phases with lengths ψT and (1−ψ)T . In the first phase,

Alice slows down the transmission to λ − ∆ and buffers the excess packets. In the next phase, she transmits packets to Bob at rate λ

according to the inter-packet delays in the codeword corresponding to the message to be transmitted.

by 1− ε and collect m = ∆ · ψT packets. Thus, in this phase, Alice’s buffering is covert. By (9),

m = ε
√

2λψT (17)

During the second phase, the packet timings corresponding to the selected codeword are an instantiation

of a Poisson point process with rate λ and hence the traffic pattern is indistinguishable from the pattern

that Willie expects on the link from Jack to Steve. Hence, the scheme is covert.

(Reliability) Next we show that Alice will have a reliable communication to Bob. The notion of

reliability is tied to two events. First, Bob should be able to decode the message with arbitrarily low

probability of error, which follows by adapting the coding scheme of [25]. Second, Alice needs to

avoid a “failure” event, in which Alice is unable to create the packet timings for the selected codeword

because she has run out of packets in her buffer at some point in the codeword transmission process.

Therefore, in the transmission phase, we need to demonstrate that Alice can achieve Pf < ζ for any

ζ > 0, where Pf is probability of the event “failure”.

Suppose that Alice has accumulated m packets and wishes to communicate with Bob during an

interval of length T ′. There are two processes which impact the probability of running out of packets

in Alice’s buffer: the transmission of packets to Bob and the reception of packets from Jack (that are

11



intended for Steve). Each of these processes is a Poisson point process with parameter λ. Consider

the union of these two processes as a single process, termed “T-R Process”. The T-R Process is a

Poisson point process with parameter 2λ. Note that the probability of an event in this aggregate process

corresponding to Alice buffering a packet is the same as the probability that it corresponds to her

sending a packet to convey the next code symbol. Therefore, we toss a fair coin for each packet; if it

is heads, Alice buffers a received packet; otherwise, she releases a packet from her buffer.

Let K be the total number of received and transmitted packets during interval T ′.

Pf = P (F ∩ {K > 4λT ′}) + P (F ∩ {K ≤ 4λT ′}) (18)

≤ P (K ≥ 4λT ′) + P (F ∩ {K ≤ 4λT ′}) (19)

where F is the “failure” event, and (18) is due to the law of total probability. Consider P (K > 4λT ′).

Using the Chernoff bound for the T-R Poisson point process yields:

P (K ≥ 4λT ′) ≤ e−2λT ′
(2λT ′e)4λT ′

(4λT ′)4λT ′ =
(e

4

)2λT ′

(20)

Thus, for any 0 < ζ < 1, if λT ′ is large enough,

P (K ≥ 4λT ′) <
ζ

2
(21)

Now, consider P (F ∩ {K ≤ 4λT ′})

P (F ∩ {K ≤ 4λT ′}) = P (F |K ≤ 4λT ′ )P (K ≤ 4λT ′) (22)

≤ P (F |K ≤ 4λT ′ ) (23)

≤ P (F|K = k′) |k′=4λT ′ (24)

where P (F|K = k′) is the probability of “failure” given the total number of received and transmitted

packets in T ′ is k′, and (24) follows from (23) because P (F|K = k′) is a monotonically increasing

function of k′. This is true since with m initial packets, if the total number of received and transmitted

packets increases, the probability of “failure” increases.

To calculate P (F|K = k′), we model the T-R Process by a one-dimensional random walk. Suppose

that there is a random walker on the z axis that is initially located at the origin z = 0, and walks

at each step from z to either z + 1 or z − 1 with equal probability. If Alice transmits a packet, the

walker’s location is increased by 1, and if Alice receives a packet, the walker’s location is decrease by

1. Given Alice has m packets before starting this process, the event of “failure” in the T-R Process is

the same as the event that, at some point, the random walker (that has started from origin z = 0) hits

12



state z = m+ 1. Clearly, this can only happen if the walker steps from state z = m to state z = m+ 1

at some point. Since the number of times that Alice either receives or transmits a packets in a duration

of time T ′ is the same as the number of steps of the walker K:

P (F|K = k′) = 1− Pm(k′) (25)

where Pm (k′) is the probability that the walker’s location remains x ≤ m during the first k′ steps. From

(Eq. (12.13) in [38]):

lim
k′→∞

Pm (k′) = erf

(
m√
2k′

)
(26)

where erf (·) is the error function. By (17),

lim
T→∞

Pm(k′)|k′=4λT ′ = erf

(
m√
8λT ′

)
= erf

(
ε
√

2λψT√
8λ(1− ψ)T

)
(27)

= erf

(
ε

2

√
ψ

1− ψ

)
(28)

By (24), (25), (28)

lim
T→∞

P (F ∩ {K ≤ 4λT ′}) ≤ lim
T→∞

P (F|K = 4λT ′) = 1− lim
T→∞

Pm (k′)
∣∣∣
k′=4λT ′

1− erf

(
ε

2

√
ψ

1− ψ

)
.

Therefore, if

ψ

1− ψ
=

(
2

ε
erf−1

(
1− ζ

2

))2

(29)

where erf−1 (·) is the inverse error function,

lim
T→∞

P (F |{K ≤ 4λT ′}) ≤ ζ

2
. (30)

Therefore, by (21), (30) Alice can achieve Pf < ζ for any 0 < ζ < 1 and thus the transmission is

reliable.

(Number of Covert Bits) Alice’s rate of packet transmission in the second phase is λ and the capacity

of the queue for conveying information through inter-packet delays is [25, Theorems 4 and 6].

C(λ) = λ log
µ

λ
nats/sec (31)

Since the length of the second phase is T ′ = T (1 − ψ), the amount of information that Alice sends

through inter-packet delays is C(λ)T (1− ψ) = O (λT ).

(Size of the Codebook) Finally, to complete the construction, we find the number M of codewords

in the codebook. According to [25, Definition 1], the rate of the codebook is logM
T ′ = logM

T (1−ψ)
. Since

13



the capacity of the queue at output rate λ is the maximum achievable rate at output rate λ (see [25,

Definition 2]), by (31), the size of the codebook is

M = e(1−ψ)λT log (µ/λ) (32)

where 1− ψ =
((

2
ε

erf−1 (1− ζ)
)2

+ 1
)−1

.

�

V. CONCLUSION

In this paper, we have considered two scenarios of covert communication on a timing channel. In

the first one, Alice is able to insert her own packets onto the channel but not modify the timing of

other packets. We established that, if the packet transmission between legitimate nodes is modeled as

a Poisson point process with parameter λ, Alice can transmit O
(√

λT
)

packets to Bob in a period of

duration T without being detected by warden Willie. In the converse, we showed that if Alice inserts

more than O
(√

λT
)

packets, she will be detected by Willie. Next, we analyzed the scenario where

Alice cannot insert packets but instead is able to buffer packets and release them onto the channel at

a later time. We showed that if Alice waits ψT before codeword transmission, where ψ = Θ (1), and

buffers packets, she is able to transmit O (λT ) bits to Bob reliably and covertly in time period T , given

Alice and Bob share a secret of sufficient length (codebook).

REFERENCES

[1] R. Soltani, D. Goeckel, D. Towsley, and A. Houmansadr, “Covert communications on renewal packet channels.” https://arxiv.org/

abs/1610.00368, 2016.

[2] J. Talbot and D. Welsh, Complexity and Cryptography: An Introduction. Cambridge University Press, 2006.

[3] M. Bloch and J. Barros, Physical-Layer Security. Cambridge, UK: Cambridge University Press, 2011.

[4] A. D. Ker, “Batch steganography and pooled steganalysis,” vol. 4437 of Lecture Notes in Computer Science, pp. 265–281, Springer

Berlin Heidelberg, 2007.

[5] B. A. Bash, D. Goeckel, and D. Towsley, “Square root law for communication with low probability of detection on AWGN channels,”

in Proc. IEEE Int. Symp. Inform. Theory (ISIT), (Cambridge, MA, USA), pp. 448–452, July 2012.

[6] B. Bash, D. Goeckel, and D. Towsley, “Limits of reliable communication with low probability of detection on AWGN channels,”

Selected Areas in Communications, IEEE Journal on, vol. 31, pp. 1921–1930, September 2013.

[7] B. A. Bash, D. Goeckel, D. Towsley, and S. Guha, “Hiding information in noise: Fundamental limits of covert wireless

communication,” IEEE Communications Magazine: Special Issue on Wireless Physical Layer Security, Dec. 2015. to appear.

[8] D. Goeckel, B. Bash, S. Guha, and D. Towsley, “Covert communications when the warden does not know the background noise

power,” IEEE Communication Letters, Aug 2015. submitted.

[9] B. A. Bash, S. Guha, D. Goeckel, and D. Towsley, “Quantum Noise Limited Communication with Low Probability of Detection,”

in Proc. IEEE Int. Symp. Inform. Theory (ISIT), (Istanbul, Turkey), pp. 1715–1719, July 2013.

[10] B. Bash, D. Goeckel, and D. Towsley, “LPD communication when the warden does not know when,” in Information Theory (ISIT),

2014 IEEE International Symposium on, pp. 606–610, 2014.

14

https://arxiv.org/abs/1610.00368
https://arxiv.org/abs/1610.00368


[11] R. Soltani, B. A. Bash, D. Goeckel, S. Guha, and D. Towsley, “Covert single-hop communication in a wireless network with distributed

artificial noise generation,” in Proc. Conf. on Commun., Control, Comp. (Allerton), (Monticello, IL, USA), pp. 1078–1085, 2014.

[12] T. Sobers, D. Goeckel, B. Bash, S. Guha, and D. Towsley, “Covert communication with the help of an uninformed jammer achieves

positive rate,” in Proc. Asilomar Conf. on Signals, Systems, and Computers, (Monterey, CA, USA), 2015.

[13] P. H. Che, M. Bakshi, and S. Jaggi, “Reliable deniable communication: Hiding messages in noise,” in Proc. IEEE Int. Symp. Inform.

Theory (ISIT), (Istanbul, Turkey), pp. 2945–2949, July 2013.

[14] S. Kadhe, S. Jaggi, M. Bakshi, and A. Sprintson, “Reliable, deniable, and hidable communication over multipath networks,” in Proc.

IEEE Int. Symp. Inform. Theory (ISIT), (Honolulu, HI, USA), pp. 611–615, July 2014.

[15] J. Hou and G. Kramer, “Effective secrecy: Reliability, confusion and stealth,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT),

(Honolulu, HI, USA), pp. 601–605, July 2014.

[16] M. Bloch, “Covert communication over noisy memoryless channels: A resolvability perspective,” in Proc. IEEE Int. Symp. Inform.

Theory (ISIT), (Hong Kong, China), 2015.

[17] L. Wang, G. W. Wornell, and L. Zhang, “Limits of low-probability-of-detection communication over a discrete memoryless channel,”

in Proc. IEEE Int. Symp. Inform. Theory (ISIT), (Hong Kong, China), 2015.

[18] S. Lee and R. Baxley, “Achieving positive rate with undetectable communication over AWGN and Rayleigh channels,” in Proc.

IEEE Int. Conf. Commun. (ICC), pp. 780–785, June 2014.

[19] P. H. Che, M. Bakshi, C. Chan, and S. Jaggi, “Reliable deniable communication with channel uncertainty,” in Proc. Information

Theory Workshop (ITW), 2014.

[20] C. Girling, “Covert channels in lan’s,” Software Engineering, IEEE Transactions on, vol. SE-13, pp. 292–296, Feb 1987.

[21] V. Berk, A. Giani, and G. Cybenko, “Detection of covert channel encoding in network packet delays (tech. rep. tr2005-536),”

Department of Computer Science, Dartmouth College (November 2005), 2005.

[22] G. Shah, A. Molina, M. Blaze, et al., “Keyboards and covert channels.,” in USENIX Security, 2006.

[23] Y. Liu, D. Ghosal, F. Armknecht, A.-R. Sadeghi, S. Schulz, and S. Katzenbeisser, “Hide and seek in time–robust covert timing

channels,” in Computer Security–ESORICS 2009, pp. 120–135, Springer, 2009.

[24] A. Houmansadr and N. Borisov, “CoCo: coding-based covert timing channels for network flows,” in Information Hiding, pp. 314–328,

Springer, 2011.

[25] V. Anantharam and S. Verdu, “Bits through queues,” Information Theory, IEEE Transactions on, vol. 42, no. 1, pp. 4–18, 1996.

[26] B. P. Dunn, M. Bloch, and J. N. Laneman, “Secure bits through queues,” in Networking and Information Theory, 2009. ITW 2009.

IEEE Information Theory Workshop on, pp. 37–41, IEEE, 2009.

[27] J. K. Millen, “Finite-state noiseless covert channels,” in Computer Security Foundations Workshop II, 1989., Proceedings of the,

pp. 81–86, IEEE, 1989.

[28] A. S. Bedekar and M. Azizoglu, “The information-theoretic capacity of discrete-time queues,” Information Theory, IEEE Transactions

on, vol. 44, no. 2, pp. 446–461, 1998.

[29] S. H. Sellke, C.-C. Wang, N. Shroff, and S. Bagchi, “Capacity bounds on timing channels with bounded service times,” in Information

Theory, 2007. ISIT 2007. IEEE International Symposium on, pp. 981–985, IEEE, 2007.

[30] S. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff, “Tcp/ip timing channels: Theory to implementation,” in INFOCOM 2009, IEEE,

pp. 2204–2212, April 2009.

[31] I. Moskowitz and A. Miller, “The channel capacity of a certain noisy timing channel,” Information Theory, IEEE Transactions on,

vol. 38, pp. 1339–1344, Jul 1992.

[32] I. Moskowitz and A. Miller, “Simple timing channels,” in Research in Security and Privacy, 1994. Proceedings., 1994 IEEE Computer

Society Symposium on, pp. 56–64, May 1994.

[33] N. Kiyavash, T. Coleman, and M. Rodrigues, “Novel shaping and complexity-reduction techniques for approaching capacity over

queuing timing channels,” in Communications, 2009. ICC ’09. IEEE International Conference on, pp. 1–5, June 2009.

15



[34] N. Kiyavash and T. Coleman, “Covert timing channels codes for communication over interactive traffic,” in Acoustics, Speech and

Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pp. 1485–1488, April 2009.

[35] R. Archibald and D. Ghosal, “A covert timing channel based on fountain codes,” in Trust, Security and Privacy in Computing and

Communications (TrustCom), 2012 IEEE 11th International Conference on, pp. 970–977, June 2012.

[36] S. Gianvecchio and H. Wang, “Detecting covert timing channels: an entropy-based approach,” in Proceedings of the 14th ACM

conference on Computer and communications security, pp. 307–316, ACM, 2007.

[37] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia, “Model-based covert timing channels: Automated modeling and evasion,”

in Recent Advances in Intrusion Detection, pp. 211–230, Springer, 2008.

[38] A. Gut, Stopped random walks. Springer, 1998.

APPENDIX

a) Proof of fact 1:

D(Pλ1(n)||Pλ2(n)) =
∞∑
n=0

Pλ1(n) log(Pλ1(n))/Pλ2(n)) =
∑
n

Pλ1(n) log
λn1e

−λ1/n!

λn2e
−λ2/n!

=
∑
n

Pλ1(n)

(
log

λn1
λn2

+ λ2 − λ1

)
= (λ2 − λ1) +

∑
n

Pλ1(n)n log
λ1

λ2

= (λ2 − λ1) + log
λ1

λ2

E1[N ]

= (λ2 − λ1) + λ1 log
λ1

λ2

where E1[K] is the expected value of the Poisson distribution with parameter λ1.

b) Proof of (7): Consider x ≥ 0, f(x) = ln(1 + x), and g(x) = x− x2

2
. Therefore

f ′(x)− g′(x) =
1

1 + x
− (1− x) =

x2

1 + x
≥ 0 (33)

On the other hand f(0) = g(0) = 0, therefore

f(x)− g(x) =

x∫
0

(f ′ (x)− g′ (x)) dx ≥ 0 (34)

Thus, ln(1 + x) ≥ x− x2

2
for x ≥ 0.
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