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On Proactive Caching with Demand and Channel Uncertainties

L. Srikar Muppirisetty, John Tadrous Atilla Eryilmaz?, and Henk Wymeersch

Abstract— Mobile data traffic has surpassed that of voice Proactive design strategies have gained importance very
to become the main component of the system load of today's recently. The work in [11] introduced a novel proactive re-
wireless networks. Recent studies |nd|c_ate that the data de g4 rce allocation paradigm by exploiting the predictapii
mand patterns of mobile users are predictable. Moreover, tk . . : .
channel quality of mobile users along their navigation patis e user behavior. It provided a solid theoretical backgebu
is predictable by exploiting their location information. This ~and demonstrated significant spectral efficiency gainsiin va
work aims at fusing the statistically predictable demand anl  ous scenarios. In [10], proactive resource allocation retse
channel patterns in devising proactive caching strategiethat  ynder time-invariant and time-varying demand statisties a
alleviate network congestion. Specifically, we establish@nda-  gy,gied. The authors proposed fundamental lower bounds on
mental bound on the minimum possible cost achievable by any . . .
proactive scheduler under time-invariant demand and chanel e achievable costs, and developed asymptotically optima
statistics as a function of their prediction uncertainties and  Policies that approach these bounds when the prediction win
develop an asymptotically optimal proactive service polig that ~ dow size is increased. In [12], [13], the impact of proactive
attains this bound as the prediction window grows. In additon,  scheduling on user delay has been investigated under ideal-
the established bound yields insights on how the demand and jgiic queuing scenarios whereby it is shown that proactive
channel statistics affect proactive caching decisions. Weveal . . . .
some of these insights through numerical investigations. scheduling reduces average delay exponentially in praacti

window size. However, the utilization of predicted CQM
|. INTRODUCTION for proactive resource allocation is not captured in privact

The major bottleneck for future networks lies in handlingscheduling thus far. Energy efficient scheduling such as in
the increasingly high mobile data traffic from the usersl14], [15] studied optimal policies with statistically kwo
It is predicted that mobile data traffic will see a nine-foldCQM, but assumed perfectly predictable demand. Clearly,
increase by the end of 2020 [1]. Therefore, networks shoutfiere is a gap in the research area of designing optimal
consider employing various smart resource allocatiortestra proactive schedulers with demand and channel uncertaintie
gies to comply with this rapidly rising user data demanddn [5]-[8], a location-aided framework was proposed and
Interestingly, the demand patterns of the mobile users [2phowed how large-scale channel characteristics of the- wire
[4] and also their experienced channel quality metrics (QQMess channel can be predicted by exploiting the user’simeat
including, e.g., received signal strength, RMS delay spreainformation. Since location-aided predicted CQM is cogitse
and interference levels are predictable [5]—[8]. can be efficiently harnessed in predictive/proactive resmu

Today’s networks predominantly employ reactive strateallocation whereby demand dynamics and large scale channel
gies for resource allocation in which the user requests agdaracteristics vary within the same time scale.

served by the network after being initiated by the user. This |n this work, we Study proacti\/e resource allocation
reactive approach suffers from huge penalty when there dgrategies that exploit both the predictable data demand
heavy traffic from the users requesting data. In contrasind channel characteristics, with uncertainties. Espigcia
proactive resource allocation strategies, which are seen @e consider a time-invariant demand statistics model in
one of the key disruptive technologies for 5G wirelesgyhich all the incoming requests from the user over time
networks [9], can track, learn, and then predict the usejre statistically indistinguishable. We further consitlere-
demand requests ahead of time, and hence possess mg@{@riant channel statistics model in which user expetienc
flexibility in scheduling these requests before their alctug channel state over time is independent and identically
time of arrival. The main advantage of this approach igjistributed. The main contributions of this paper can be
network load balancing over large time scale dynamics, aymmarized as follows:
the expense of possible waste of network resources [10].

« We extend the work in [10] with the inclusion of
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« We demonstrate that the designed proactive scheduierP.(g). Note thatg € C, whereC = [],, C,,. We can thus
offers better performance in terms of lower achievablevrite P.(g) = [],, P(g9,). We further denote{g;}; as a
cost in contrast to the baseline reactive scheduler.  sequence of channel realization of all users over time

Notation: Vectors and matrices are written in bold (e.g., .
a vectork and a matrixK); E[.] denotes expectatior{;}, Cost function model
denotes a collection of elements, af)d denotes a sequence We denoteCy(z), Cq : Ry — R4, as the demand cost
of elements. function for serving a demand > 0 in a time slot. The
demand cost functiof;(z) is assumed to be strictly convex
and increasing. We denotg.(g), C. : Ry — Ry, as the
We consider a network which consists of a sefofisers  channel cost function to utilize the chanmel 0 in a time
N ={1,2,...,N}. The network is equipped with a servicesiot. The channel cost functiofi.(¢) is decreasirgin g.
provider which serves the user data requests by allocating
resources to them on a per time slot basis. Reactive network model

User demand model We consider reactive network as a baseline scenario in

We assume the data requests from the Users is not erfeé’t\ihiCh the requests are served upon their arrival. The load of
4 P a)ﬁsem in time slot¢ for a reactive network under channel

predictable but with l_Jncertainties. Let,, € {0,1} be__ realizationg,, , is written as
a binary random variable that captures the probabilistic '
nature of the data request from a userin time slot ¢, LR, (gni) = Sdnt Co(gn.r)- (1)
whered, ; = 1 indicates a data request with probability . ' )
Tt = P(d,s = 1). Each usem € N over an infinite The tlme—gveraged expected cost of all users under reactive
time period generates independent sequence of data requégeration is

{dn.¢+}+- We assume time-invariant demand statistics for the -1 N

data requests from the udkrdhen, {d,,}, for each user R (7, W) = limsupl Z E{Cd (Z Lth(gnt))], )

n is an independent and identically distributed sequence t—oo t 1S —=

of random variables wittE[d,, ;] = 7,,. Let us denote the
demand profile of the users as= (7,),. We assume that
the service provider is aware of the demand prafijevhich
captures the statistical characteristics of future demBadh  prgactive network model
request from the user is served by the network by spending
S amount of its resourcés

Il. SYSTEM MODEL

where expectation is over the demand and channel statistics
of the users.

We assume the service provider is aware of the demand
7 and channelF profiles of the users over & time slot
Wireless channel model prediction window. As shown in [10], the network traffic load

We assume each user in a time slott experiences IS averaged out over time if the service provider employs a

one of theK,, possible channel states from the ggt = Proactive operation. Following the same notation as in,[10]
{gy(f) k = 1,...,K,} with corresponding probabilities let us denoteu, (7) as the amount of proactive service
Y = {w(k) E o= 1 K,}, such thatZK" w(k) _applied to a usen at time slott for a future possible request

n - n - PRI | nifs k:l n - . .

1,¥n € N. It should be noted that the set of channefter 7 slotd], e, at timet + 7, wherel < 7 < T The
statesC,,, the number of possible channel stat&s, and proactive service of a future request cannot exceed thé tota

the possible channel stat@ék) are all dependent on userdemand of$' units of service, i.e.,

index n. Therefore, different users tend to have different T

support sets of channel realizations. All channel redtinat > (1) <8, Vn,t, 3)
are assumed to be non-negative and finite. We further assume =1

time-invariant channel statistics for the channel stafah® and the proactive service can never be negative, i_e_,
users across different time slots. In other words, user

experiences a channel stegﬂc), which is independent and Un,t(T) >0, Vn,t,T. (4)

identically distributed across different time slko:tf. Tll(hlannel Let us denote the amount of load generated by a user

1 i (k) (k) oK,
profile of users is denoted aB = (gn ’, ¥n ' ),—1  N"- . . P )
. S in a time slott as L under proactive control
Let us define a channel realization vectgy = ot (Wt Gn,t) P

[91:92, -, gn] denoting a possible realization of channels 5. . s for example, as the total number of bis= 3", b; to

for all n users. The probability of this vector being realizedse gelivered over & time slot period. There is a channel cost for sending
bt bits in each time slot. The channel cost is related to the atmofuenergy

1The system can further be generalized to time-varying (fatotg) spentE; to sendb; bits over the wireless channgl Obviously, the cost is

demand characteristics as in [10], yet this will lead to cicaged notation  more if channel is bad and vice-versa. So, the cdst is inversely related

without significant conceptual benefit. Hence, we have naosicered this  to the channel statg.

scenario here. 4The notation of the proactive servies, () can best understood with
2The results obtained in this work can directly be generdlizethe case an example. Consider the case witk: 1 andr = 2, thenu,, 1 (2) indicates

where such amount of resources is user and time-depend®nfyi ¢, yet  the proactive service applied in time sibtfor a future possible request in

known to the system within the prediction window Bfslots in advance. time slot 3, i.e., two slots ahead of the current time slot.



u,: = (u, (7)), and the channel realizatiap, ;, which is  where

written as
T _ _ .
(7, ¥) = min {Z P.(g) Z Py(B)x
th(un,tagn,t) = (S - Zun,t—T(T)) dn,t Cc(gn,t) {fin(B.g)}n.g.5 gec BCN
T=1
T Ca (Z (s Celgn) — (Z P.(h)
+ Z Un,t(7) Ce(gn,t); ®) neB hec
T=1
< X PAD) 1 (D1 ) Culn)
where the termezlu,,ht_T(r) corresponds to the past ng;v
ap}F)Iied proactive services for each userand the term N
> -1 un:(7) captures the proactive service to be applied + Zﬂ” (B,g) Celgn)
for usern over the nextl" slots. ot

Problem statement subject 100 < jin (B, g) < 5, Vn. B.g (8)
The goal of the proactive controller is to determine thavhereP;(B) is the probability of sef3; = B under the time-
optimal online proactive service policy that minimizes thénvariant demand statistics mode®.(g) is the probability
time averaged expected cost while delivering the content af channel realizatiorg under the time-invariant channel
time. The optimization problem of the proactive controllesstatistics model.
is written asch. (7, ¥) = Proof: See AppendiX]I. ]
i N In the objective of [(B), the term
min tmsug Y E|C( 3 Lifuengnn)| Sl Mooy WD) (D) cortesponds o
{unt(Mlntr  tooo b1 —= the average proactive service assigned to a request from
user n before the request is actually realized. The term
S.t. @), @. 6 - ; , , h
in (B, g) is the total expected proactive service assigned to
The subscripfl” captures the proactive service window sizeall possible requests from user when the current set of
and the superscrigP indicates proactive operation. demanding users i8 and their channel realization g We
note that the optimization af, (7, ¥) is convex and yields
I1l. L OWERBOUND AND ASYMPTOTICALLY OPTIMAL a unique solution due to strict convexity @fy(-). The
DESIGN theorem establishes that no proactive scheduling polioy ca

Under the time-invariant demand statistics model, th@Chieve a lower cost than the non-trivial bougg(w, ¥) -
incoming demand requests from the user over time are stdnder the uncertainties _as_somated with the time-invarian
tistically indistinguishable. Under the time-invariamtamnel démand and channel statistics. In contrast to [10, Theojem 1
statistics model, a channel state experienced by a usates inWith only time-invariant demand statistics model, the lowe
pendent and identically distributed across different tatmgs.  Poundg, (7, ¥) accounts for the additional information of
For this model, the proactive gains come from the abilitghannel statistics available at the scheduler.
to harness available demand and channel statistics tagethe
with observable instantaneous realizations of demand afd Asymptotically optimal design
channels to flatten the network load over time at minimum
cost. As in [10], the exact solution ofl(6) is not tractableth
due to infinite dimensionality of the problem. Instead, w
resort to find a global lower bound on the achievable cost 386 lower bound: (7, W)
a function of demand and channel uncertainties, and develo NN

P NN
an asymptotically optimal policy which attain that bound as %if;'t;%rl]uﬁo(ﬁotgc&/g);' \'/‘\Z[ égrféfj ,egr)}ﬁbBéiti\(j:nsocfre]ezjhuelin
proactive widow size grows. P : p ¢

policy p that observes the set of requesting usBysand
A. Global lower bound on minimum achievable cost channel gain realizationg; every time slott, and assigns
aﬁroactive controlsu, (1) = %, Vn,t,1 <7 <T.

From the definition, the online policy is stationary
and depends only on the current realization of demand and
channel quality. In addition, it is a simple policy that ditlg
employs a look-up table of length" [], K,, which entails
2 search process of complexit( N + >, log(K,)). Note
that, to apply policyp, the solution of[(B) has to be obtained
offline based on the demarrd and channell profiles.

Now, we establish the asymptotic optimality property of

cr(m, W) > cy(7, ®) (7) policy p.

In this subsection, we develop a simple stationary policy
at hinges on the solution dfl(8) to deliver efficient perfor
ance in moderat& regimes, and asymptotically realizes

In this subsection, we state a fundamental, non-trivi
bound on achievable costs by any proactive policy.

Theorem 1:Let B, = {n € N': d, = 1} be the set of
users that generate data requests at tinaecording tom,
andg; € C be the channel realization vector of all the user
at timet according to®. Then, under time-invariant demand
and channel statistics model and for dhy> 1, the optimal
proactive scheduling cosf. (7, ¥) of (6), satisfies



l —o— u' 03 07 —e— gl —1 We denotes; = jin(0,91"), p2 = fn(1,9{"), ps =

[i1(0, '), s = fir (1, ¢?) to be make the notation simpler.
The proactive controlg:; and ps corresponds to the two
channels states when there is no demand requests, and the
corresponding controls with demand requestsiarand zu4.

Then the lower bound to the proactive scheduling cost can

—©— Reactive be computed fron{8) as

| = B = Proactive

Expected cost
o

D Qu(ﬁlag§1)7g§2)7w§1))

= min V(1 -m)pf (1/g) +pm
(k1,02 403,14) =0

x (1/gi (1= 001 = 7w — 0P mae — (1 9{")

-a-"
- ==
u—-n—--a--"'u'

4
: : _ 1)y = 1
0 0.2 0.4 0.6 0.8 1 x (1 —71)us — (1 — 1/}§ ))W1M4 + ug) +(1- 1% ))
Average probability of demand 7y
= 4 (2))4 (D~ (2)\4
X (L=m)ps (1/977)" + (L =y )7 (1/9,7)
Fig. 1. Comparison of reactive and proactive costs for singer (1) B (1)~ (1)
scenario under the time-invariant demand and channeststatmodel. The X | 1— ¢1 (1 - 771)#1 - 1/11 T2 — (1 — Py )
probabilities of the demand; and channewl1 are varied with the channel 4
states fixed tcyﬁl) = 1 (bad channel stateyf) = 2 (good channel state). x (1 — ﬁl)uB — (1 — §1))7_rlu4 + #4) (20)

: - (1) (2) (1)
Theorem 2:Denote the time average expected cost under ~/9- oA thc(el)averag.e cost(m, 917,91, ¥n )
), achievable by the reactive and

policy p by & (7, ¥). Then policyp is asymptotically opti- a1d /(71,91 . 917,91 ), a
mal, in the sense thaim sup, P (7, W)~ R(7,P)| proactive schemes respectively. It can be observed that the
’ —00 T ’ ’

—0. proactive scheduling offers lower cost compared to the re-
Proof: Please refer to AppendixlIl. m active scheme for anwl,wﬁl)). The reactive scheme bears

Thanks to strong law of large numbers, equal allocatioR® freedom in the scheduling strategy to minimize the cost
of proactive service throughout the prediction window ofsS it has to serve the demand requests after they have been
size T, policy p achieves the global lower bound #5— initiated, whereas the proactive scheme offers flexibility
0. Having established the key characteristics of proacti@e scheduling strategy by exploiting the demand and cHanne
scheduling under demand and channel uncertainties, we n&i@istics to minimize cost by load balancing. The expected

. . . . 1
move on to deeper insights on the system performan€&@st for both schemes increases with increasg iand{".
through numerical simulations. The cost increases with increase7n due to the fact that

the system is more loaded with incoming demand requests.

V. NUMERICAL RESULTS AND DISCUSSION The reason for the cost to increase sztﬁ) is as the user

A. Scenario more often experiences a bad channel sgéﬂathan a good
The network scheduler is aware of the user demand channel statg\”.
and channel? profiles. The scheduler spends= 1 units It is interesting to note that, unlike in the case with time-

of service for each request. E(fli)Ch (;l)sero_bserves one of invariant demand statistics and no channel knowledge, the
the two possible channel statg, ', g’ } with probabilities  cost of reactive and proactive services do not converge when
{51 — pV1. We considerg'? > g\, henceg? is 7, = 1 (which was reported in [10]). The reason for this
termed the good channel state, Whrjﬁé) is the bad channel behavior can be best understood frém| (10) by setting- 1.
state. We assume the cost function for the demand to be lbfcan be derived easily that proactive service coincideh wi
polynomial formCy(z) = x* and for the channel usage asthe reactive service when the user always observes either
Ce(g) =1/g. the good or bad channel state all the time. Hence, when
B. Impact of demand and channel probabilities on the e>}—he c_hannels are |d_ent|ca| over all SIOt.S and datz_i demar_1d IS
certain, then there is no gain of applying proactive setvice
pected cost
i ) ) However, when the channels vary from one slot to another
We consider a single user scenario to understand ﬂ(ﬁe. 0 < 1/19) < 1), then even with certain data demand there
impact of demand and channel statistics on expected Cqstgij nhotential to apply proactive service in the presenc

for reactive and proactive schedulers. The time average good channel so as to minimize the cost when the bad
expected cost of the reactive scheme can be computed frQi, 1 nel is realized.

@) as
1 (@ 1)

R /=

& (7T1791 91 ¥ ) gﬁ)
- ()4 (1) (4 (D) Fig.[2 compares the impact of increaseyif’ on the cost
- ((1/91 o+ (/e 7) (=4 ))' ©) of reactive and proactive schemes for a single user scenario

C. Impact of the value of channel states on the expected cost
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Channel state value g Fig. 3. Proactive controls of the single user with channalastg(l) =1
(bad channel state)gg2 = 2 (good channel state) are (;)1(0 g(l))

Fig. 2. Cqmparisoq of reactive and proactive costs f_or singler scenario  when no demand request and with channel _cg!i&é (ii) M1(17 a1 ) with
under the time-invariant demand and channel statisticseddhe channel demand request and channel s é) (il fi(0, g )) when no demand

probability 1/111 and channel statgl2 are varied with fixed user demand
request and with channel sta_té , and (iv) @1 (1 g1 ) with demand

robability to71 = 0.5 and fixedg{? = 1.
P ty tomm = 91 request and channel sta_f;éQ). Both channel states are equiprobable, i.e.,
¢§1> = 0.5 and user demand probability is sette = 0.7.

For this scenario, the demand probability is setrito= 0.5
and the bad channel state is se'rgﬁb) =1 Whempf) =1
(shown in blue), which means the user always obsem(/]és
there is no impact oyf) on the expected cost for both the
schemes. Fo«pl1 = 0.3 and wf) = 0.7, the cost decreases
with increase ing; (2 This is expected, as when one of the _ 10°¢
channel states becomes good, the applied proactive servi
is shifted to that channel condition to minimize the cost. IZ 100}
should be emphasized that highest gains in terms of reducs Y
cost is observed Whegﬁ2 is twice gl , while beyond this
point the reduction in cost is minimal. ThIS effect is attried
to the fourth-order polynomial of the demand cost function
For lower-order polynomial cost functions, the expectestco 107}
will reduce gradually forgf) > 2. [

103 — :
Tn =0.1

10%F

—— ) =01 —B— ) =05 —— ) =09

1 1.5 2 2.5 3 3.5 4

Number of users

D. Behavior of the pr ivi ntrol ) ) )
ehavior of the proactive controls Fig. 4. Impact of number of users on the proactive cost undertime-

invariant demand and channel statistics model. The demaobability,
The proactive controls of the single user when there is nghannel probability, and the two channel states are kepedamall the

demand requests afg (0, ¢\") and i1 (0, g\*) for the two ~ US&'s:

channels states, respectively, and the correspondmgodxmt

with demand requests afg(l,ggl)) and fi; (1, gl ) Fig.[3

depicts proactive controls of a single user when the demaifd Impact of number of users on the expected cost
probability is7 = 0.7 and with equiprobablegzé1 = 0.5)

channel state@§1) =1, and 912) = 2. For this scenario, = The impact of increasing the number of users in the system
we note that irrespectlve of channel state, proactive servion the expected cost is depicted in Fib. 4. For easier asalysi
is always applied when there is no demand from the usesf the results, we kept the demand probability, channel
However, the applied proactive service increases when tpeobability, and the two channel states to be same for all the
channel conditions are better. Proactive service is ndiepp users. It can be observed that increase in number of users
under bad channel conditions when there are requests frantreases the expected cost, which is due to higher network
the user. On the other hand, it is advantageous to do preactiead with more users. Similar to the single user case (see
service under good channel conditions even when there dig.[1), the expected cost increases with increase in demand
demand requests from the user. and channel probabilities.



10‘441 ' ' ' ' | channel statistics, where;, , = (un,(7))-. The objective
of the proactive scheduler is

—©— Cost of policy p P 1 =1 N P
10 Asymptotically optimal R Cr (ﬁ', \Il) = lim sup; Z E Cd (Z Lml(uml, gml)) .
=0

t—o00 n—1

9.8 1 (11)

By joint conditioning on all possible sets of requestingrase
B; and their possible experiencing channel state realization
9.4 1 g attimel >0, we can writech (7, ¥) as

t—1
(7, ¥) = limsup1 ZZ Z PB =B,gi=g)

L ] t
9 t=o0 ¥ 920 geC BTN

9.6 d

Time averaged cost

N
8.8 4
‘ ‘ ——o— —o XE{CCI(Z LZZl(un,l;gn,l))‘Bl =B, g g]~
50 100 150 200 250 n=1
(12)

As the set of requesting useiS; in a time slot! is
independent to their observed channel realizagigrwe can
write P(B, = B,g; = g) as product ofP(g; = g) and
F. Impact of prediction window size on the expected cost P(B; = B). Then,

In Fig.[3, we plot the achieved time average cost under 1t
p against the prediction window siZe under time-invariant 7 (%, ) =limsup— Y Y P(gi=g) > P(Bi = B)
demand and channel statistics. The considered scenario con o0 T =o gec BCN
sists of N = 4 users in the system who request services N
based on the demand profilg, = 0.5,n = 1,2,3,4. We X ]E{Cd(z Lf,z(un,z,gn,z))‘Bz =B,g = g]-
assume equiprobable channel states for all usersz/;ﬁ@.,: n=1 13
0.5,n, k, with same channel state valugg’ = 1, {2 = 2, (13)
for all the users. It can be observed easily that the polidyfow, incorporating the definition dﬁﬁl(unyl,gnyl), we have
p converges rapidly witi" to the established lower bound

t—1
¢, (7, ®). For the considered scenario, the policy converges.” (z &) = lim Supl Z Z Plg =g) Z P(B, = B)

Prediction window size T

Fig. 5. Impact of proactive window size on achievable cost.

to the lower bound fofl’ = 250. We can consider that the t—oo t 1S e frrarte

service provider can proactively serve requests up to oype da N T

ahead. In which the day is divided in Toslots, which means < E [%(Z (S Celgnt) = 3 ttnier (7) Celgna)
T = 250 corresponds to a slot size of around 6 minutes — - ’

which is reasonable for a user to generate one data request. T
V. CONCLUSIONS + D una(7) CC(g"=l))) ‘Bl =Be = g]' (14)
T=1

We studied the impact of demand and channel unce . . Lo .
o . . .~ Note that{g;}; is an i.i.d. sequence under the time-invariant
tainties on the design of a proactive scheduler under time;

invariant demand and channel statistics models. We haChann?{L st%gstms mOdSJ)’ thus we could uﬁ)@(g) N
established fundamental lower bound on the achievable ca L_Zk=1 Un E(g" = gn’), wherg Ign = gn ) 'S(,Sn
through proactive scheduling, and developed asymptbticaindicator function that equals one if and onlyg = gn "
optimal policy that attain the lower bound rapidly as theThaF means the §et of channel _states of users in one tl_me slot
proactive scheduling window size increases. We observé(e independentin an another time slot. Furthermidsg}, is

that the proactive resource scheduler provides better p&? i--d- sequence under the time-invariant demand seatist
formance in terms of lower achievable cost, compared t&0del, thus we could us&y(5) = [[,,c5Tn [1ngn(l -
reactive scheduler. The proactive scheduler offers bett@m)- SO, the set of user requests in one time slot are
flexibility in scheduling, and adjusts the loads based om usthdependent in an another time slot. We obtain

demand requests and channel conditions. We showed that 1 =l

the proactive scheduler depends not only on user demard (7, ) = limsup— Y Y " Pe(g) > Pu(B)

S . . . o b
statistics but also on the realized channel qualities asid it = =0 gecC BCN
associated statistics. N T
X E(Ca( Y (S Celgn) = > tuna—+(7) Celgn
A < 3 (5 Celon) = D tni-+() Celon)
PROOF OFTHEOREM 1 T
Let us denotgu}; ,}; be the optimal proactive scheduling + ) tna(7) Cc(gn))) ‘B,g} (15)
policy of usern under time-invariant data demand and =1



We can apply Jensen’s inequality dn](15), sin€g(z) is way
assumed to be strictly convex. Moreousy is independent of

Zf 1 un,—~(7), because the current set of usBysdoes not =1 r

influence the past services in the time slfts 1,72, . lggggf ZZE Un,i—r(

T}. However, they will influence the future services because = 0: 11 .

the future services are dependent on the load in the current

time slot. Similarly,g; is independent of""_, w, ;_, (7). 1E,£f Z Z Z Z P(Dy = D)

. 1h DC
The current channel state of the users does not influence [=0 r=1heC DN

past applied proactive controls but on the future proactive® Eluy, - (7)/by = h, D, = D]

services. We can write t—1 T
=Y P.(h) Y Pu(D) (hmmf >N Elup, (1), D])
heC DCN e =0 7=1
cr (7, ®) > limsup— ZZP Z Py(B) ZZP Zpd fin. (D, h)
t=oo ¥ 20 gec BCN hec DCN
T .
« cd<z (5 Celgn) = Y Bl 1, (7)] Celgn)) 2N We obtain
rLElS’ =1

303 B (118, )] e FEw Y ae Y (X (s

n=17=1 gel BCN neh
- (ZP Z Pd Nn D h)) Cc(gn))
Since ZBQ\[Pd(B) = 1, YgecPe(g) = 1, and hEC DCN
1 Zl o1l = 1, we can apply Jensen’s inequality again.
AlSO invoking limsup,_, . (—f(t)) = —liminf; . (f(t)), + Z,Un (B,g) Celgn) |- (19)
we have

It should be noted that constraints on the proactive service

() and [#) impliesd < i, (B,g) < S, Vn,B,g. Now, by
¥) > Z Fe(g) Pa(B) Ca <Z (S Celgn) minimizing the right-hand-side of the last expression aler

geC " 2/ neb feasible choices of i, (B, g)} 8, the theorem is proved.
fhmmf Eluy ,_.( (gn))
tmoo 197 0; " APPENDIX I
[T PROOF OFTHEOREM[Z
+ Ce(gn) hmsup Eluy, ,(7)|B, g)
Z lz;; It suffices to prove thatlimsup,_,., cp(7,®) =

T,
(17)  liminfr_eo cf (7, ¥). We start bylim sup;_, . pT(ﬁ',lIl).
Since policyp is stationary, we can writel.(7, ¥) =

As C,(x) is monotonically increasing im, replacinglim sup
on the right hand side of the expression liw inf, which

N T
E (Cy <Z <S - Zun,tr(7)> dn,tCC(gn,t)

yields
+Zzunt gnt>‘|zpd(6)zpc(g)x
= ch(g) Pd(B) Cd(Z(SCc(gn) n=17=1 BCN gecl
gel CN neB
t 17T <Z <S Zunt T ) (gn)
- hglolgf lz;zlE n,l— 7' (gn>) neB
122z + ) _mn(B.g) | 1B = B,g =g
+ZC n) hmsup ZZE nl 7)|B, g) ,Lz:zl
l 07=1
(18)  Now, we consider the sumy"_, u,, ,(7), which is in-
dependent of3;, g;. Define a random variabl& (D, h)
' ~ _which counts the number of occurrences of the pair of
erimf Z d;;me E[u* (rﬁ%’(B] 8) Then  we 07an requesting seD C A and associated channel gain vector
=1 ™, 8l ’ h € C, inslotst — T, t — 1. Then, ZT 1 Un,t—~(T)

T * . .
reWnte htl'gg;lft Z 1=0 ZT:l E[unylfT(T)] in the fO||0WIng — ZDCN ZhEC M By the Strong law of |arge



numbers,

lim sup

. . . . [
By noting that the system load at any time slot is uniformly

{in (D, h) Zy (D, h)
T

Nn(Dv h)Pd(D>PC(h)7

2. =

T—=00 pCA heC
w.p. 1

bounded above, bounded convergence theorem implies

limsup ¢ (7, ¥) = Z Pd(B)ZPC(g)C’d Z (S—

T—o0

BCN gel neB

3" 3 1D M) PyD) Pu(h) | Celgn)

DCN heC

N
+ Z pn(B,8)Ce(gn) | = (7, ).

(23]

[14]

Thus we have established that average expected cost
under policyp attains the global lower bound as prediction
window size grows to infinity. Now by the definition of
c? (7, ¥) being the minimum possible cost achieved by
proactive scheduling with prediction windoW, it follows
thatlim sup;_, o (7, ®) = liminfr_,, ok (7, ©).
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