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Abstract—Real-world transceiver designs for multiple-input
multiple-output (MIMO) wireless communication systems are
affected by a number of hardware impairments that already
appear at the transmit side, such as amplifier non-linearities,
quantization artifacts, and phase noise. While such transmit-
side impairments are routinely ignored in the data-detection
literature, they often limit reliable communication in practical
systems. In this paper, we present a novel data-detection algo-
rithm, referred to as large-MIMO approximate message passing
with transmit impairments (short LAMA-I), which takes into
account a broad range of transmit-side impairments in wireless
systems with a large number of transmit and receive antennas.
We provide conditions in the large-system limit for which
LAMA-I achieves the error-rate performance of the individually-
optimal (IO) data detector. We furthermore demonstrate that
LAMA-I achieves near-IO performance at low computational
complexity in realistic, finite dimensional large-MIMO systems.

I. INTRODUCTION

Practical transceiver implementations for wireless communi-
cation systems suffer from a number of radio-frequency (RF)
hardware impairments that already occur at the transmit
side, including (but not limited to) amplifier non-linearities,
quantization artifacts, and phase noise [1]–[11]. This paper
deals with optimal data detection in the presence of such
impairments for large (multi-user) multiple-input multiple-
output (MIMO) wireless systems with a large number of
antenna elements at (possibly) both ends of the wireless
link [12], [13]. In particular, we consider the problem of
estimating the MT-dimensional transmit data vector s ∈ OMT ,
where O is a finite constellation set (e.g., QAM or PSK),
observed from the following (impaired) MIMO input-output
relation [1], [2]:

y = H(s + e) + n. (1)

Here, the vector y ∈ CMR corresponds to the received signal,
the matrix H ∈ CMR×MT represents the MIMO channel, the
vector e ∈ CMT models transmit impairments, and the vector
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n ∈ CMR corresponds to receive noise; the number of receive
and transmit antennas is denoted by MR and MT, respectively.

A. Contributions

We build upon our previous results in [14] and develop a
novel, computationally efficient data detection algorithm for
the model (1), referred to as LAMA-I (short for large-MIMO
approximate message passing with transmit impairments). We
provide conditions for which LAMA-I achieves the error-rate
performance of the individually optimal (IO) data-detector,
which solves the following optimization problem:

ŝIO
` = arg min

s̃`∈O
P(s̃` 6= s`). (2)

In words, LAMA-I aims at minimizing the per-user symbol-
error probability [15], [16]. Assuming p(s) =

∏MT
i=1 p(si)

and i.i.d. circularly-symmetric complex Gaussian noise with
variance N0 per complex entry of the noise vector n, we
define the effective transmit signal x ∈ CMT as x = s+e with
the transmit-impairment distribution p(x|s) =

∏MT
`=1 p(x`|s`).

Besides user-wise independence, we do not impose any
conditions on the statistics of the transmit impairments—
this allows us to model a broad range of transmit-side
impairments, including hardware non-idealities that exhibit
statistical dependence between impairments and the data
symbols, as well as deterministic effects (e.g., non-linearities).

Our optimality conditions are derived via the state-evolution
(SE) framework [15], [16] of approximate message passing
(AMP) [17]–[19] and for the asymptotic setting, i.e., the so-
called large-system limit. Specifically, we fix the system ratio
β = MT/MR and let MT →∞, and assume that the entries
of H are i.i.d. circularly-symmetric complex Gaussian with
variance 1/MR per complex entry. To demonstrate the efficacy
of LAMA-I in practice, we provide error-rate simulation
results in finite-dimensional large-MIMO systems.

Figure 1 illustrates the performance of LAMA-I in a
128× 8 and 128× 128 large-MIMO system (we use the
notation MR ×MT) with QPSK transmission, and transmit
impairments modeled as i.i.d. circularly-symmetric complex
Gaussian noise [1]. We observe significant symbol error-rate
(SER) improvements compared to that of regular LAMA,
which achieves—given certain conditions on the MIMO sys-
tem are met—the error-rate performance of the individually-
optimal (IO) data detector in absence of transmit impairments
(see [14], [20] for the details). We emphasize that LAMA-I

ar
X

iv
:1

51
0.

06
09

7v
1 

 [
cs

.I
T

] 
 2

1 
O

ct
 2

01
5



−20 −10 0 10 20 3010−3

10−2

10−1

100

average received SNR [dB]

sy
m

bo
le

rr
or

ra
te

(S
E

R
)

LAMA, no EVM
LAMA, EVM
LAMA-I, EVM
LAMA whitening, EVM
IO, EVM

(a) 128 BS antennas and 8 users.
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(b) 128 BS antennas and 128 users.

Fig. 1. Symbol error-rate of LAMA-I in large-MIMO systems with QPSK and strong Gaussian transmit noise (EVM = −10 dB). LAMA-I enables
significant performance improvements compared to conventional LAMA and requires lower complexity than regular LAMA with noise whitening.

entails virtually no complexity increase (compared to regular
LAMA) and achieves the same SER performance of whitening-
based approaches, which require prohibitive computational
complexity in large MIMO systems.

B. Relevant Prior Art

Channel capacity expressions for the transmit-impaired
MIMO system model (1) have first been derived in [1]. A
corresponding asymptotic analysis has been provided recently
in [21], which uses the replica method [22] to obtain capacity
expressions for large MIMO systems. The results in [1],
[21] build upon on the so-called Gaussian transmit-noise
model, which assumes that the transmit impairments in e
can be modeled as i.i.d. additive Gaussian noise that is
independent of the transmit signal s. While the accuracy of this
model for a particular RF implementation in a MIMO system
using orthogonal frequency-division multiplexing (OFDM)
has been confirmed via real-world measurements [1], it may
not be accurate for other RF transceiver designs and/or
modulation schemes. LAMA-I, as proposed in this paper,
enables us to study the fundamental performance of more
general transmit impairments (which may, for example, exhibit
statistical dependence with the transmit signal and even
include deterministic non-linearities), which is in stark contrast
to the commonly used transmit-noise model in [1]–[11], [21].
For the well-established Gaussian transmit-noise model, we
will show in Section IV that the state-evolution equations of
LAMA-I coincide to the “coupled fixed point equations” in
[21], which reveals that LAMA-I is a practical algorithm that
delivers the same performance as predicted by replica-based
capacity expressions in the large-system limit.

Data detection algorithms in the presence of transmit
impairments were studied in [1]. The proposed methods rely
on the Gaussian transmit-noise model, which enables one

to “whiten” the impaired system model (1) by multiplying
the received vector y with a so-called whitening matrix
W = N0Q

− 1
2 , where Q = NTHHH + N0IM is the

covariance matrix of the effective transmit and receive noise
n + He, and NT denotes the variance of the entries of the
transmit-noise vector e. By applying the whitening filter W to
the received vector in (1), we obtain the following statistically-
equivalent, whitened input-output relation [1], [2]:

ỹ = H̃s + ñ, (3)

where ỹ = Wy, H̃ = WH, and ñ = W(n + He). Optimal
(as well as suboptimal) data detection can then be performed
by considering the whitened system model in (3). While
such a whitening approach enables optimal data detection
in conventional, small-scale MIMO systems (see [1] for the
details) under the Gaussian transmit-noise model, computation
of the whitening matrix W quickly results in prohibitive
computational complexity in large-MIMO systems consisting
of hundreds of receive antennas—a situation that arises in
massive MIMO [12], [13], [23], an emerging technology
for 5G wireless systems. LAMA-I avoids computation of
the whitening matrix W altogether, which results in (often
significantly) reduced computational complexity. Furthermore,
the generality of our system model enables LAMA-I to be
resilient to a broader range of transmit-side impairments.

C. Notation

Lowercase and uppercase boldface letters designate column
vectors and matrices, respectively. For a matrix A, we define
its conjugate transpose to be AH. The entry on the k-th
row and `-th column is Ak,`, and the k-th entry of a vector
a is ak. The M × M identity matrix is denoted by IM
and the M × N all-zeros matrix by 0M×N . We denote
the averaging operator by 〈a〉 = 1

N

∑N
k=1 ak. Multivariate



complex-valued Gaussian probability density functions (PDFs)
are denoted by CN (m,K), where m represents the mean
vector and K the covariance matrix; EX [·] and VarX [·] denote
expectation and variance with respect to the PDF of the
random variable (RV) X , respectively. We use P(X = x) to
denote the probability of the RV X being x.

D. Paper Outline

The rest of the paper is organized as follows. Section II
details the LAMA-I algorithm along with the state-evolution
framework. Section III provides conditions for which LAMA-I
achieves the performance of the IO data detector. Section IV
analyzes the special case of Gaussian transmit-noise. We
conclude in Section V.

II. LAMA-I: LARGE MIMO APPROXIMATE MESSAGE
PASSING WITH TRANSMIT IMPAIRMENTS

Large MIMO is believed to be one of the key technologies
for 5G wireless systems [24]. The main idea is to equip the
base station (BS) with hundreds of antennas while serving a
tens of users simultaneously and within the same frequency
band. One of the key challenges in practical large MIMO
systems is the high computational complexity associated with
data detection [25]. We next introduce LAMA-I, a novel
low-complexity data detection algorithm for large-MIMO
systems that takes into account transmit-side impairments.
We derive the associated complex state-evolution (cSE)
framework, which will be used in Sections III and IV to
establish conditions for which LAMA-I achieves the error-
rate performance of the IO data detector for the impaired
system model (1).

A. Summary of the LAMA-I Algorithm

In the remainder of the paper, we consider a complex-
valued data vector s ∈ CMT , whose entries are chosen from
a discrete constellation O, e.g., phase shift keying (PSK) or
quadrature amplitude modulation (QAM). We further assume
i.i.d. priors p(s) =

∏MT
`=1 p(s`) with

p(s`) =
∑
a∈O

paδ(s` − a), (4)

where pa corresponds to the (known) prior probability of the
constellation point a ∈ O. In the case of uniformly distributed
constellation points, we have pa = |O|−1, where |O| is the
cardinality of the set O. We define the effective transmit
signal x = s + e, which is distributed as p(x) =

∏MT
`=1 p(x`)

with

p(x`) =

∫
C
p(x`|s`)p(s`)ds`, (5)

where p(x`|s`) models the transmit-side impairments. We can
now rewrite the input-output relation (1) as

y = Hx + n. (6)

The key idea behind LAMA-I is to perform data detection
in two steps. We first use message passing on the factor graph

.
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(a) Impaired MIMO system with LAMA-I as the data detector.
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(b) Equivalent decoupled MIMO system.

Fig. 2. In the large-antenna limit, LAMA-I decouples the impaired MIMO
system into MT parallel and independent AWGN channels, which allows us
to perform impairment-aware MAP data detection, independently per user.

for the distribution p(s,x|y,H) in order to obtain the marginal
distribution p(s`|y,H). Once the message passing algorithm
converged, we assume that it converged to the marginal
distribution, which allows us to perform maximum a-posteriori
(MAP) detection on p(s`|y,H) to obtain estimates ŝ` for the
transmit data signals independently for every user. Since the
factor graph for p(s,x|y,H) is dense, i.e., for every entry in
the receive vector y we have a factor that is connected to
every transmit symbol x`, an exact message passing algorithm
is computationally expensive. However, by exploiting the
bipartite structure of the graph and the high dimensionality
of the problem (i.e., both MT and MR are large), the entire
algorithm can be simplified.1 In particular, we simplify our
message-passing algorithm using complex Bayesian AMP (cB-
AMP) as proposed in [14], [20] for the MIMO system model
(6). cB-AMP calculates an estimate for the effective transmit
signal x̂`, ∀`. The MAP estimate can then be calculated
from x̂` independently for every user. The resulting two-step
procedure of LAMA-I is illustrated in Fig. 2.

As illustrated in Fig. 2(a), we first use cB-AMP to compute
the Gaussian output zt and the effective noise variance σ2

t

at iteration t. Since the Gaussian output of cB-AMP can
be modeled as zt` = x` + wt` with wt` ∼ N (0, σ2

t ), being
independent from x`, s` and e` ∀`, in the large-system limit
(see [16] for the details), the MIMO system is effectively
decoupled into a set of MT parallel and independent additive
white Gaussian noise (AWGN) channels. Fig. 2(b) shows
the equivalent decoupled system. Since the effective transmit

1We refer to [26] for more details on these claims.



signals are defined as x` = s` + e`, ` = 1, . . . ,MT, we have

zt` = s` + e` + wt`, (7)

which allows us to compute the MAP estimate for each data
symbol independently using

ŝ` = arg max
s`∈O

p(s`|zt`). (8)

Here, the probability p(s`|zt`) is obtained from Bayes’ rule
p(s`|zt`) ∝ p(zt`|s`)p(s`) and from

p(zt`|s`) =

∫
C
p(x` = zt` − wt`|s`)p(wt`)dwt`. (9)

The resulting LAMA-I algorithm is summarized as follows.

Algorithm 1 (LAMA-I). Initialize x̂1` = EX [X], r1 = y,
and τ1 = β VarX [X]/N0 with X ∼ p(x`) as defined in (5).

1) Run cB-AMP for tmax iterations by computing the
following steps for t = 1, 2, . . . , tmax:

zt = x̂t + HHrt

x̂t+1 = F(zt, N0(1 + τ t))

τ t+1 =
β

N0

〈
G(zt, N0(1 + τ t))

〉
rt+1 = y −Hx̂t+1 +

τ t+1

1 + τ t
rt.

The scalar functions F(zt`, σ
2
t ) and G(zt`, σ

2
t ) operate

element-wise on vectors, and correspond to the posterior
mean and variance, respectively, defined as

F(zt`, σ
2
t ) =

∫
C
x`f(x`|zt`, σ2

t )dx` (10)

G(zt`, σ
2
t ) =

∫
C
|x`|2f(x`|zt`, σ2

t )dx`−
∣∣F(zt`, σ

2
t )
∣∣2. (11)

Here, the message posterior distribution is
f(x`|zt`, σ2

t ) = 1
Z p(z

t
`|x`, σ2

t )p(x`), where
p(zt`|x`, σ2

t ) ∼ CN (x`, σ
2
t ) and Z is a normalization

constant.
2) Compute the MAP estimate using (8) for t = tmax with

the posterior PDF p(s`|ztmax
` ) as defined in (9) and

p(wtmax
` ) ∼ N (0, σ2

tmax
). The effective noise variance

σ2
tmax

is estimated using the postulated output variance
N0(1 + τ tmax) from cB-AMP (see [20, Def. 3]).

B. State Evolution for LAMA-I

Virtually all existing theoretical results are incapable of
providing performance guarantees for the success of message-
passing on dense graphs. In our specific application, however,
the structure of the factor graph of p(s`, x`|y,H) enables
us to study the associated theoretical properties in the
large-system limit. As shown in [20], the effective noise
variance σ2

t can be calculated analytically for every iteration
t = 1, 2, . . . , tmax, using the complex state evolution (cSE)
recursion. In Section III, we will use the cSE framework to
derive optimality conditions for which LAMA-I achieves the

error-rate performance of the IO data detector in (2). The cSE
for cB-AMP is detailed in the following theorem.

Theorem 1 ([20, Thm. 3]). Suppose that p(x) ∼∏MT
`=1 p(x`)

and the entries of H are i.i.d. circularly-symmetric complex
Gaussian with variance 1/MR. Let n ∼ CN (0MR×1, N0IMR)
and F be a pseudo-Lipschitz function as defined in [27,
Sec. 1.1, Eq. 1.5]. Fix the system ratio β = MT/MR and let
MT →∞. Then, the effective noise variance σ2

t+1 of cB-AMP
at iteration t is given by the following cSE recursion:

σ2
t+1 = N0 + βΨ(σ2

t ). (12)

Here, the mean-squared error (MSE) function Ψ is defined by

Ψ(σ2
t ) = EX,Z

[∣∣F(X + σtZ, σ
2
t

)
−X

∣∣2] (13)

with X ∼ p(x`), Z ∼ CN (0, 1), and F is defined in (10).
The cSE recursion is initialized by σ2

1 = N0 + β VarX [X].

The cSE in Theorem 1 tracks the effective noise variance
σ2
t for every iteration t, which enables us to compute the

posterior distribution (9) required in Step 2) of Algorithm 1.

Remark 1. The posterior mean function F and consequently
the MSE function Ψ(σ2

t ) in (13) depend on the effective
transmit signal prior p(x) in (5), which is a function of the
data-vector prior p(s) and the conditional probability p(x|s)
that models the transmit-side impairments.

III. OPTIMALITY OF LAMA-I
We now analyze the optimality of LAMA-I for the impaired

system model (1).

A. Optimality Questions
The cSE framework enables us to characterize the perfor-

mance of LAMA-I in the large-system limit. In this section,
we use this framework to study the optimality of LAMA-I. In
particular, we address the following two optimality questions:

(i) We derived LAMA-I using a message-passing algorithm.
However, there exists a broader class of algorithms
to accomplish the same task. More specifically, the
version of LAMA-I that uses sum-product message
passing employs the posterior mean function F as defined
in (10). One can potentially change F (or even pick
different functions at different iterations) and come
up with estimates x̂`, ∀`, and perform data detection
by using MAP detection on to these new estimates.
Such alternative data-detection algorithms can still be
analyzed through the state evolution framework. The
first optimality question we can ask is whether we
can improve the performance of LAMA-I by choosing
functions different to those we introduced in (10)? As we
will show in Section III-B, the posterior mean functions
we used in (10) are indeed optimal.

(ii) We also ask ourselves whether the optimal LAMA-I, i.e.,
LAMA-I that sets F to a posterior mean, achieves the
same error-rate performance as the IO data detector (2)?

In what follows, we will answer both of these questions in
the large-system limit.



B. Optimality of Posterior Mean for LAMA-I

Consider the following generalization of LAMA-I, where
the posterior mean function is replaced with a general pseudo-
Lipschitz function Ft [16] that depends on the iteration step t,
i.e., where we use

x̂t+1 = Ft(z
t, N0(1 + τ t)).

The first optimality question we would like to address is
whether there exists a choice for the functions F1,F2, . . .,
such that the resulting data-detection algorithm achieves lower
probability of error. The following theorem establishes the fact
that it is impossible to improve upon the choice of LAMA-I,
where we use the posterior mean.

Theorem 2. Let the assumptions made in Theorem 1 hold for
F1, . . . ,Ftmax . Suppose that we run LAMA-I for tmax iterations
and then, perform element-wise data detection. Let ŝ` be the
estimate we obtain for s`. We denote the detection error
probability as PF1,...,Ftmax

(ŝ` 6= s`) to emphasize on the
dependence of this probability on the functions employed
at every iteration. The choice of F1, . . . ,Ftmax that minimizes
PF1,...,Ftmax

(ŝ` 6= s`) is the posterior mean employed in (10).

A detailed version of the proof for this theorem is given
in [26]. For the sake of brevity, we only sketch the main
steps of the proof. Since F1, . . . ,Ftmax are pseudo-Lipschitz
according to Theorem 1, we know that ztmax

` can be modeled
as

ztmax
` = s` + e` + wtmax

` ,

where wtmax
` is Gaussian. The effect of F1, . . . ,Ftmax is

summarized by the variance of wtmax
` . It is straightforward to

prove that the smaller the variance of wtmax
` is, the smaller

the error probability PF1,...,Ftmax
(ŝ` 6= s`) will be. Hence, we

should use a sequence of functions F1, . . . ,Ftmax that minimize
the variance of wtmax

` . We can use induction to establish that
the posterior mean leads to the minimum variance. In the
last iteration tmax, if the variance of wtmax−1

` is fixed, then it
is straightforward to prove that we should use the posterior
mean in the last iteration to minimize the variance of wtmax

` .
By employing induction and by following the same line of
argumentation, we can show that F1, . . . ,Ftmax must all be
the posterior mean.

We now use the cSE framework in Theorem 1 to establish
conditions for which LAMA-I is optimal. We consider the
case where the number of iterations tmax →∞ for which, as
explained in [20, Sec. IV], the cSE recursion (12) converges
to the following fixed-point equation:

σ2 = N0 + βΨ(σ2). (14)

This equation can in general have one or more fixed points. If
it has more than one fixed point, then LAMA-I may converge
to different fixed points, depending on its initialization [28].

As the first step toward proving that LAMA-I is optimal,
we derive conditions under which the fixed point equation
(14) has a unique solution. To establish such conditions, we
first define the following quantities (also see [14, Defs. 1-4]).

Definition 1. For a given transmit data-vector prior p(s) and
transmit-impairment distribution p(x|s), we define the exact
recovery threshold (ERT) βmax and the minimum recovery
threshold (MRT) βmin as

βmax = min
σ2>0

{(
Ψ(σ2)

σ2

)−1}
, βmin = min

σ2>0

{(
dΨ(σ2)

dσ2

)−1}
.

The minimum critical noise Nmin
0 (β) is defined as

Nmin
0 (β) = min

σ2>0

{
σ2 − βΨ(σ2) : β

dΨ(σ2)

dσ2
= 1

}
,

and the maximum guaranteed noise Nmax
0 (β) is defined as

Nmax
0 (β) = max

σ2>0

{
σ2 − βΨ(σ2) : β

dΨ(σ2)

dσ2
= 1

}
.

Using Definition 1, the following theorem establishes
several regimes in which the fixed point of LAMA-I is unique.

Lemma 3 (Optimality Conditions of LAMA-I). Let the
assumptions made in Theorem 1 hold and let tmax → ∞.
Fix p(s) and p(x|s). If the variance of the receive noise N0

and system ratio β are in one of the following three regimes:
1) β ∈

(
0, βmin

]
and N0 ∈ R+

2) β ∈
(
βmin, βmax

)
and N0 ∈

[
0, Nmin

0 (β)
)
∪

(Nmax
0 (β),∞)

3) β ∈ [βmax,∞) and N0 ∈ (Nmax
0 (β),∞)

then LAMA-I solves the optimal problem.

The proof follows from [14, Table II]. Note that for
LAMA-I, the quantities in Definition 1 do not only depend on
the data-vector prior p(s), but also on the transmit-impairment
distribution p(x|s) (cf. Remark 1).

C. LAMA-I vs. Individually Optimal (IO) Data Detection

We now show that in the large-system limit, LAMA-I
achieves the error-rate performance of the IO data detector (2),
if the fixed-point equation (14) has a unique fixed point.
As will be clear from our arguments, even in cases where
LAMA-I does not have a unique fixed point, one of its
fixed points corresponds to the solution of IO. It is, however,
difficult to find a suitable algorithm initialization that would
cause our method to converge to the optimal fixed point. The
core of our optimality analysis is the result on the performance
of IO data detection based on the replica analysis presented
in [29]. The replica analysis for IO data detection makes the
following assumption about ŝIO

` .

Definition 2. The IO solution is said to satisfy hard-soft
assumption, if and only if there exist a function D : R→ O,
whose set of discontinuities has Lebesgue measure zero and

ŝIO
` = D(E(s`|y,H)).

For some popular constellation sets, we can prove that
the hard-soft assumption is in fact true. For example, for
equiprobable BPSK constellation points, we have

E(s`|y,H) = P(s` = 1|y,H)− P(s` = −1|y,H),



and hence, ŝIO
` = sign(E(s`|y,H)).

The next theorem establishes conditions for which LAMA-I
achieves the performance of the IO data detector.

Theorem 4. Suppose that the IO solution satisfies the hard-
soft assumption. Furthermore, assume that the assumptions
underlying the replica symmetry in [29] are correct. Then,
under all the conditions of Lemma 3 and in the large-
system limit, the error probability of LAMA-I is the same
as probability of error of the IO data detector.

For the sake of brevity, we only present a proof sketch;
see [26] for the proof details. From the hard-soft assumption
we realize that in order to characterize the probability of
error of the IO data detector, we have to characterize the
joint distribution of (s`,E(s`|y,H)). Note that in [29] the
limiting distribution of (x`,E(x`|y,H)) is calculated. A
similar approach will work for our problem too. However,
we have to slightly modify the problem and make it closer
to the one in [29]. As the first step, we first derive the
limiting distribution of (s`, x`,E(s`|y,H)). Note that the joint
distribution of (s`, x`) is known. Furthermore, s` → x` → y
form a Markov chain. Hence, s` → x` → E(x`|y,H) is a
Markov chain, and conditioned on x`, the two quantities s`
and E(x`|y,H) are independent. This implies that in order
to characterize the distribution of (s`, x`,E(s`|y,H)), we
only need to characterize the distribution of (x`,E(s`|y,H)).
Furthermore, we have

E(s`|y,H) =

∫
E(s`|x`)dp(x`|y,H).

Define L(x`) = E(s`|x`). Our original problem of characteriz-
ing the limiting distribution of (s`,E(s`|y,H)) is simplified to
characterizing the limiting distribution of (x`,E(L(x`)|y,H)).
This latter problem can be solved by the replica method
as explained in [22]. The final result is the following:
the joint distribution of (s`, x`,E(s`|y,H)) converges to
(S,X,E(S|X+σ̃Z)), where S ∼ p(s`), X|S = s ∼ p(x`|s`),
Z ∼ N(0, 1) and is independent of both S and X , and
finally σ̃ satisfies the fixed point equation

σ̃2 = N0 + βΨ(σ̃2). (15)

Note that this is the same fixed point equation as the one we
have for LAMA-I (14). Hence, whenever (15) has a unique
fixed point, the replica analysis and LAMA-I will necessarily
lead to the same solution. So far, we have shown that the
effective noise level is the same for LAMA-I and IO. It is
straightforward to show that since the effective noise levels
are the same, the error probability of both schemes is the
same. For the details, refer to our journal paper [26].

IV. LAMA-I FOR THE GAUSSIAN
TRANSMIT-NOISE MODEL

Theorem 2, Lemma 3, and Theorem 4 as given above
hold for general transmit-impairment distributions p(x|s).
We now focus on the well-established Gaussian transmit-
noise model [1], [3]. In particular, we start by providing

the remaining LAMA-I algorithm details and then, derive
more specific conditions for which LAMA-I is optimal. We
furthermore provide simulation results for finite-dimensional
systems.

A. Algorithm Details

We assume e ∼ CN (0, NTIMT), where e is independent
from s and n, and NT is the transmit-noise power. The fol-
lowing lemma provides the remaining details for Algorithm 1
with this model. The proof is given in Appendix A.

Lemma 5. Assume the MIMO system in (1) with e ∼
CN (0, NTIMT) being independent of s and n. For Step 1) of
Algorithm 1, the probability distribution p(x`) is given by

p(x`) =
∑
a∈O

pa
1

πNT
exp

(
− 1

NT
|x` − a|2

)
.

The posterior mean F and variance G function corresponds
to

F(zt`, σ
2
t ) =

NT

NT + σ2
t

zt` +
σ2
t

NT + σ2
t

∑
a∈O

waa,

G(zt`, σ
2
t ) =

NTσ
2
t

NT + σ2
t

+
∑
a∈O

wa

∣∣∣∣NTz
t
` + σ2

t a

NT + σ2
t

− F(zt`, σ
2
t )

∣∣∣∣2,
respectively, with

wa =
pa exp

(
− |z

t
`−a|

2

NT+σ2
t

)
∑
a∈O

pa exp
(
− |z

t
`−a|2
NT+σ2

t

) . (16)

For Step 2), the MAP estimator (8) is given by

ŝ` = arg min
a∈O

( |ztmax
` − a|2

NT +N0(1 + τ tmax)
− log pa

)
. (17)

For the Gaussian transmit-noise model, we see that
LAMA-I only requires a few subtle modifications to the
functions F and G compared to regular LAMA [20, Alg. 1],
which ignores transmit-side impairments. Hence, making
LAMA robust to the Gaussian transmit-noise impairments
comes at virtually no expense in terms of complexity,
but results in often significant performance improvements
(cf. Section IV-C).

B. Optimality Conditions

The optimality conditions in Lemma 3, which depend on
the system ratio β, receive noise variance N0, as well as
the signal prior and the transmit-impairment model, can be
obtained via the fixed-point equation in (14).

It can be shown that for the Gaussian transmit noise model,
the fixed-point equation (14) is equivalent to the “coupled
fixed point equations” derived in [21, Eqs. 48 and 49], which
have been used to characterize the capacity of the impaired
system (1). While the results in [21] have been obtained via the
replica method [22], LAMA-I provides a practical algorithm
that achieves the same performance in the large-system limit.



The following lemma provides a condition for which
LAMA-I is optimal. Our condition is independent of the
receive noise variance N0 and the transmit-noise power NT.
The proof is given in Appendix B.

Lemma 6. Let the assumptions in Theorem 1 hold and
suppose that the IO solution satisfies the hard-soft assumption.
Define βmin

m = minNT β
min(NT). Furthermore, assume the

Gaussian transmit-noise model. If β ≤ βmin
m , then LAMA-I is

optimal.

This lemma implies that there is a threshold βmin
m on the

system ratio β that enables LAMA-I to achieve the same
error-rate performance as the IO data detector in the large-
system limit. Note that this condition is independent of the
receive and transmit noise levels N0 and NT, respectively.

C. Simulation Results

We now demonstrate the efficacy of LAMA-I for the Gaus-
sian transmit-noise model in more realistic, finite-dimensional
large-MIMO systems. We define the average receive signal-
to-noise-ratio (SNR) as

SNR =
E
[
‖Hs‖2

]
E [‖n‖2]

= β
Es
N0

,

where Es = E
[
|s`|2

]
. We also define the so-called error-

vector magnitude (EVM) as

EVM =
E
[
‖e‖2

]
E [‖s‖2]

=
NT

Es.

Figures 1(a) and 1(b) illustrate the symbol error rate
(SER) simulation results for large MIMO systems with
QPSK modulation, Gaussian transmit-noise, and two antenna
configurations, i.e., 128× 8 and 128× 128. In both figures,
the solid blue line corresponds to the performance of reg-
ular LAMA [14], [20] in absence of transmit noise (i.e.,
EVM = −∞ dB). As shown by the dashed red line, regular
LAMA experiences a significant performance loss in the
presence of transmit noise with EVM = −10 dB. In contrast,
LAMA-I (indicated with the dash-dotted magenta line) yields
significant performance improvements (the maximum number
of LAMA-I iterations for 128×8 and 128×128 was tmax = 10
and tmax = 15, respectively). The solid green line shows the
optimal large-system limit performance. As it can be seen,
LAMA-I closely approaches the optimum SER performance
for finite-dimensional systems.

Figures 1(a) and 1(b) furthermore compare LAMA-I to
regular LAMA operating on the whitened system (3) shown
by the dotted black line. While both approaches achieve near-
optimal performance, the whitening-based approach entails
prohibitive complexity, mainly caused by the inverse matrix
square root. In addition, the whitening-based approach is
designed specifically for the Gaussian transmit-noise model;
in contrary, LAMA-I is applicable to a broader range of
real-world transmit-side impairments.

V. CONCLUSION

We have introduced LAMA-I, a novel, computationally
efficient data detection algorithm suitable for large-MIMO
systems that are affected by a broad range of transmit-side
impairments. We have developed conditions in the large-
system limit for which LAMA-I achieves the error rate
performance of the individually optimal (IO) data detector.
For the special case of the Gaussian transmit-noise model and
for practical antenna configurations, we have demonstrated
that LAMA-I enables significant performance improvements
compared to impairment-agnostic algorithms at virtually
no overhead in terms of computational complexity. As a
consequence, LAMA-I is a practical data-detection algorithm
that renders practical large-MIMO systems more resilient
to user equipment that suffers from strong transmit-side
impairments.

APPENDIX A
DERIVATION OF F AND G FOR GAUSSIAN TRANSMIT NOISE

We first derive p(x) as used in Step 1) of Algorithm 1.
From (4) and the Gaussian transmit-noise model e ∼
CN (0, NTIMT), which assumes independence from s`, we
can write effective transmit signal prior (5) as follows:

p(x`) =

∫
C

1

πNT
exp

(
− 1

NT
|s` − x`|2

)∑
a∈O

paδ(s` − a)ds

=
∑
a∈O

pa
1

πNT
exp

(
− 1

NT
|x` − a|2

)
.

With this result, we can write the message posterior distribu-
tion f(x`|x̂`, σ2

t ) defined in Step 1) of Algorithm 1 as:

f(x`|zt`, σ2
t ) =

1

Zπ2NTσ2
t

∑
a∈O

pa exp

(
−|z

t
` − a|2

NT + σ2
t

)

× exp

(
−NT + σ2

t

NTσ2
t

∣∣∣∣x` − NTz
t
` + σ2

t a

NT + σ2
t

∣∣∣∣2
)
.

Here the normalization constant Z is chosen so that∫
C f(x`|x̂`, σ2

t )dx` = 1, which can be computed as:

Z =
∑
a∈O

pa
1

π(NT + σ2
t )

exp

(
−|z

t
` − a|2

NT + σ2
t

)
.

Therefore, the posterior mean F(zt`, σ
2
t ) in (10) is given by:

F(zt`, σ
2
t ) =

∫
C
x`f(x`|zt`, σ2

t )dx` =
∑
a∈O

wa
NTz

t
` + σ2

t a

NT + σ2
t

,

with the shorthand notation (16). The message variance
G(zt`, σ

2
t ) defined in (11) can be derived similarly.

For Step 2) of Algorithm 1, the effective noise wtmax
` is dis-

tributed as p(wtmax
` ) ∼ CN (0, N0(1 + τ tmax)) with statistical

independence from the transmit-noise model e` ∼ CN (0, NT),
which yields p(wtmax

` + e`) ∼ CN (0, N0(1 + τ tmax) +NT).
With this result and relation (7), we have p(ztmax

` |s`) ∼
CN (s`, N0(1 + τ tmax) +NT), which together with (4), yields
the following posterior distribution:



p(s`|ztmax
` ) ∝ p(s`)p(z

tmax
` |s`)

=
∑
a∈O

δ(s` − a)
pa

π(NT +N0(1 + τ tmax))

× exp

( −|ztmax
` − s`|2

NT +N0(1 + τ tmax)

)
. (18)

Using the posterior distribution given in (18), we now compute
the MAP estimator (8):

ŝ` = arg max
s`∈O

∑
a∈O

δ(s` − a) pa exp

( −|ztmax
` − s`|2

NT +N0(1 + τ tmax)

)
= arg min

a∈O

( |ztmax
` − a|2

NT +N0(1 + τ tmax)
− log pa

)
.

APPENDIX B
PROOF OF LEMMA 6

If β ≤ minNT β
min(NT), then β ≤ βmin

m ≤ βmin(NT) for
any NT. As a result, by Lemma 3, LAMA-I achieves the
performance of the IO problem (2) for any N0 and NT.
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