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Abstract—In this paper we consider the problem of dis-
tributed channel allocation in large networks under the
frequency-selective interference channel. Performance is mea-
sured by the weighted sum of achievable rates. First we present
a natural non-cooperative game theoretic formulation for this
problem. It is shown that, when interference is sufficiently
strong, this game has a pure price of anarchy approaching
infinity with high probability, and there is an asymptotical ly in-
creasing number of equilibria with the worst performance. Then
we propose a novel non-cooperative M Frequency-Selective
Interference Game (M-FSIG), where users limit their utilit y
such that it is greater than zero only for their M best channels,
and equal for them. We show that the M-FSIG exhibits, with
high probability, an increasing number of optimal pure Nash
equilibria and no bad equilibria. Consequently, the pure price
of anarchy converges to one in probability in any interference
regime. In order to exploit these results algorithmically we
propose a modified Fictitious Play algorithm that can be
implemented distributedly. We carry out simulations that show
its fast convergence to the proven pure Nash equilibria.

I. I NTRODUCTION

Channel allocation, the problem of assigning frequency
bands to users, is a fundamental element in wireless net-
works. Channel allocation is necessary when channel access
is through frequency division techniques such as FDMA
or the more recent bandwidth efficient technique OFDMA.
Other approaches, based on iterative water filling (IWF, see
[1]), allow users to allocate their power over the spectrum as
a whole. It is well-known that IWF leads to a FDMA solu-
tion for strong interference, and hence is more suitable for
weak interference and is generally considered more complex.
When splitting the channel into sub-channels, the question
of how to assign these sub-channels to users arises. In
the frequency-selective interference channel, differentusers
experience different conditions in each channel due to fading
and interference, so different allocations will result in varying
levels of performance.

At first glance, it may seem that channel allocation is
a special case of resource allocation and as such can be
solved as an optimization problem. IfN is the number
of users and resources, the optimal permutation between
them can be found with a complexity ofO(N3), using the
famous Hungarian Algorithm [2]. The basic problem with
this approach is the information required to compute the

optimal solution. To do so, some network entity (the base
station, access point, etc) needs to know the preferences for
all nodes. This entity should compute the optimal solution
and transmit it back to the nodes. In a wireless environment,
these preferences are not constant so this central knowledge
involves significant communication overhead on the network.
As networks grow larger, this requirement becomes less rea-
sonable. Furthermore, future networks (like ad-hoc networks
and cognitive radio) are envisioned to be more distributed in
nature and less dependent on central entities. This leads to
the need for a distributed channel allocation algorithm.

Recently, it has been shown that the optimal solution
to the channel allocation problem can be achieved using
a distributed algorithm [3], [4], [5]. This algorithm is a
distributed version of the auction algorithm [6] and relieson
a CSMA protocol. Although it has a very slow convergence
rate, this result serves as a proof of concept and suggests that
other approaches may achieve close to optimal performance
in a distributed fashion. In [7], the authors designed an
algorithm based on the stable matching concept that also
uses a CSMA protocol. This algorithm has a much faster
convergence rate and a good sum-rate performance. Due to
their dependence on CSMA, both algorithms are vulnerable
to the hidden terminal and exposed terminal problems. In
order to avoid these problems, a RTS/CTS mechanism has
to be implemented. Besides causing delays, RTS/CTS imple-
mentation requires some central network entities, and thus
negatively impact the network scalability. Additionally,both
algorithms have strong user synchronization requirements.
Last, but not least, these algorithms ignore the inherent
possibility of sharing channels between users.

There has been a considerable amount of work designed
to apply game theory as a framework for distributed chan-
nel allocation algorithms (see [8], [9]). While game theory
addresses the distribution requirement naturally, it doesnot
guarantee good global performance. For example, it is well-
known that the fixed points for the IWF algorithm are the
Nash equilibrium points of the Gaussian interference game.
For a two-user Gaussian interference game, a prisonerâĂŹs
dilemma may occur which leads to a suboptimal solution
[10]. To overcome this obstacle, some form of cooperation
can be added using different game theoretic concepts. In
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[11] the authors proposed a potential game theoretic for-
mulation that requires each user to know the interference
he causes to other users. In [12] the authors used the Nash
bargaining solution and coalitions to enhance the fairness
of the allocation at the price of a centralized architecture.
In [13] and [14], a more stable algorithm to obtain the
Nash bargaining solution was proposed, based on convex
optimization techniques. Although cooperation can indeed
enhance performance, it may be extremely complicated to
achieve cooperative game-theoretic solution concepts in the
general case without communication between users, which
limits the distributed nature of the network.

The rest of this paper is organized as follows. In section
II we formulate our wireless network scenario and present
our approach. In section III we present a natural game
formulation for this problem and show that it suffers from
major drawbacks. In section IV we propose an enhanced
game and provide its equilibria analysis. Section V suggests
an algorithm each user can implement in a distributed fashion
to converge to these equilibria. In section VI we present
simulations of our proposed algorithm that show fast conver-
gence to the proven equilibria. Finally, we draw conclusions
in section VII.

II. PROBLEM FORMULATION

Consider a wireless network consisting ofN transmitter-
receiver pairs (users) andK frequency bands (channels).
Each user forms a link between his transmitter and receiver
using a single frequency band. The channel between each
transmitter and receiver is Gaussian frequency-selectiveand
we assume that each frequency band is smaller than the
coherence bandwidth of the channel. We also assume that
the coherence time is large enough so that the channel gains
can be considered static for a sufficiently long time.

The channel gains (fading coefficients) are modeled as
N2K independent random variables - one for each channel,
each transmitter and each receiver. The coefficient between
user ns transmitter and userms receiver in channelk is
denotedhn,m,k. We also assume thathm,n,1, ..., hm,n,K are
identically distributed for eachm,n = 1, ..., N .

Note that NK of these coefficients serve as channel
coefficients between a transmitter and receiver pair and are
denoted for convenience byhn,k for usern in channelk.
The otherNK(N − 1) coefficients serve as interference
coefficients between transmitters and unintended receivers.
In this paper we assumeN = K for simplicity.

Each user has some preferred order of theK channels.
Due to the independence of the channel coefficients between
users, these preference lists are different and independent
between users. Note that this preference order considers only
the absolute value of the channel coefficient and not the
interference (which indeed affects the achievable rate). We
denote byhn,(N−i+1) the i-th best channel coefficient for
usern (so hn,(1) is the worst channel).

We assume that each user has perfect channel state in-
formation (CSI) of all hisK channel coefficients, which he
can achieve using standard estimation techniques. In addition

we assume that each user can sense the exact interference
he experiences in each channel. Nevertheless, users do not
have any knowledge about the channel coefficients of other
users or about any of the interference coefficients. There isno
central entity of any sort that knows the channel coefficients
of all users. Note that, in contrast to [4] and [7], we do not
prohibit two or more users in the same channel.

Our global performance metric is the weighted sum of
achievable rates while treating interference as noise. Denote
by a the allocation vector (soon to be called the strategy
profile), s.t.an = k if user n is using channelk. We want
to maximize the following performance function over all
possible allocations

W (a) =
N
∑

n=1

wn log2

(

1 +
Pn|hn,an

|2

N0 + In,an
(a−n)

)

whereN0 is the Gaussian noise variance which is assumed
to be the same for all users,Pn is userns transmission power
and In,k (a−n) =

∑

m|am=k

|hm,n,k|2Pm is the interference

usern experiences in channelk. We assume that the weights
satisfywmin ≤ wn ≤ wmax for somewmin, wmax > 0, for
all n.

We want to find a fully distributed way to achieve close
to optimal solutions for our channel allocation problem.
Hence we need to analyze the interaction that results from
N independent decision makers and ensure that the outcome
is desirable. The natural way to tackle this problem is by
applying game theory.

Definition 1. A normal-form game is defined as the tuple

G =< N , {An}n∈N , {un}n∈N >

whereN is the set of players,An is the set of pure strategies
of playern andun : A1×...×AN → R is the utility function
of playern.

Game theory aims at analyzing the possible outcomes of
a given interaction using solution concepts. The best known
solution concept is the celebrated Nash Equilibrium (NE).

Definition 2. A strategy profile(a∗n, a
∗
−n) ∈ A1 × ...× AN

is called a pure Nash equilibrium (PNE) ifun(a
∗
n, a

∗
−n) ≥

un(an, a
∗
−n

) for all an ∈ An and alln ∈ N .

This means that for each playern, if the other players act
according to the equilibrium, playern can not improve his
utility with another strategy. A game may exhibit multiple
pure NE or none at all.

A more general notion of an equilibrium is the mixed Nash
equilibrium, which is a probability assignment on the pure
strategies set. It is well known that in any game with a finite
number of players and finite strategy spaces, there exists a
mixed NE [15]. We choose to avoid the notion of mixed NE
due to its lack of practical meaning as a solution for the
channel allocation problem.

In our case, the players are users (through their receiver)
and the set of strategies for each player is the set of channels.
The choice of the utility function is a more delicate issue.



One of our goals in this work is to show that this degree of
freedom in the choice of the utility function can be exploited
to achieve better global performance without inducing co-
ordination between the users. Thus we distinguish between
the global performance metric and the utility function each
user aims to maximize, and we view the dynamic of the game
solely as an algorithmic tool to converge to the desired steady
state point (NE) in terms of global performance.

Unfortunately, not every game formulation has nice equi-
libria in terms of both tractability and performance. The
notion of NE helps us predict the outcome of the result-
ing interaction between programmed distributed agents. The
problem of tuning the dynamics to a desired equilibrium
among all existing NE (equilibrium selection) is generally
difficult and may require some coordination between the
users. For this reason, a game formulation that results in a
simple and robust equilibrium is desirable. The cost of this
uncertainty on the resulting NE is often measured by the
price of anarchy, defined as follows.

Definition 3. The pure price of anarchy (PPoA) of a game
G =< N , {An}n∈N , {un}n∈N > with the performance

functionW : A1× ...×AN → R is
max

a∈A1×...×AN

W (a)

min
a∈Ep

W (a) , where

Ep is the set of PNE.

It is not hard to think of special cases of interference
networks that have bad equilibria or no pure equilibria at all.
We are interested in the vast majority of networks as dictated
by the fading distribution, especially in large networks.
Therefore, our approach is probabilistic and asymptotic in
the number of usersN (i.e. will produce results in the “with
high probability” sense).

III. T HE NAIVE FREQUENCY-SELECTIVE INTERFERENCE

GAME

Given our performance metric, a natural choice for the
utility of each user is his achievable rate. This choice makes
the weighted sum-rate the weighted social welfare of the
game. This means that in this game we do not exploit the
degree of freedom when choosing the utility function and
hence we call this the “naive game”. This naivetÃl’ can be
interpreted as selfishness of the users and we will show that
it may lead to poor global performance.

Definition 4. The Naive Frequency-Selective Interference
Game (Naive-FSIG) is a normal-form game withN users
as players, where each hasAn = {1, 2, ...,K} as a strategy
space. The utility function for playern is

un (a) = log2

(

1 +
Pn|hn,an

|2

N0 + In,an
(a−n)

)

In this section we analyze the PNE of the Naive-FSIG
for strong interference and evaluate the PPoA. Trivially,
a user who obtained his best channel without interference
cannot improve his utility. On the other hand, a user who
is not in his best channel (with the best channel coefficient)
cannot necessarily improve his utility if there are users inhis
more preferable channels. The influence of other users in the

channel of usern on his utility is caused by the interference.
Consequently, the strength of the interference has a crucial
effect on the identity of the NE.

If the interference is strong enough, users in the same
channel achieve negligible utility and the interference game
becomes a “collision game”.

Lemma 5. If 1
N0

min
k

|hn,k|
2
> max

l

|hn,l|
2

N0+min
m
(|hm,n,l|

2Pm)
for

eachn, then the set of PNE of the Naive-FSIG is the set of
permutations between users and channels, with cardinality
N !.

Proof: The inequality condition means that for every
strategy profile that is a permutation of users to channels,
a user who deviates gets lower utility. Consequently, ev-
ery permutation is an equilibrium. Conversely, every pure
equilibrium must be a permutation because all users prefer
an empty channel over a shared one (i.e. with positive
interference).

The lemma above implies that in strong enough interfer-
ence, a PNE of the Naive-FSIG may assign some users a bad
channel. The next lemma shows that a bad channel can be
asymptotically useless.

Lemma 6. Assume that|hn,1| , ..., |hn,N | are i.i.d for each
n, with continuous distributionFn (x), s.t.Fn (x) > 0 for all
x > 0. LetMN be a sequence s.t.lim

N→∞

MN

N
= 0. If m ≤ MN

thenmax
n

∣

∣hn,(m)

∣

∣→ 0 in probability asN → ∞.

Proof: Let ε > 0. Due to the i.i.d assumption, the
numberNε,n of r.v. from |hn,1| , ..., |hn,N | that are smaller
thanε has a binomial distribution withpn = Pr (|hn,1| < ε).
We use the Chernoff-Hoeffding Theorem [16] as a tail bound
for MN

N
< pn. By the assumption onMN , MN

N
< pn holds

for all N > N1 for some large enoughN1, and so

Pr (Nε,n ≤ MN ) ≤ exp

(

−ND

(

MN

N
‖pn

))

whereD(q‖p) = q ln q

p
+ (1− q) ln 1−q

1−p
, and in our case

D

(

MN

N
‖pn

)

=
MN

N
ln

MN

Npn
+

(

1−
MN

N

)

ln
1− MN

N

1− pn

for which

lim
N→∞

D

(

MN

N
‖pn

)

= − lim
N→∞

ln N
MN

N
MN

− ln pn lim
N→∞

MN

N
+ ln

(

1

1− pn

)

lim
N→∞

(

1−
MN

N

)

+ lim
N→∞

(

1−
MN

N

)

ln

(

1−
MN

N

)

= ln

(

1

1− pn

)

So for large enoughN the inequality D
(

MN

N
‖pn
)

≥

ln
(

1
1−pn

)

−ln
(

1
1−p2

n

)

holds and hence we get the following



upper bound

Pr (Nε,n ≤ MN) ≤ exp

(

−ND

(

MN

N
‖pn

))

≤ (1− pn)
N

(

1

1− p2n

)N

=

(

1

1 + pn

)N

→ 0

Clearly, if there are at leastMN successes then theMN

smallest variables among|hn,1| , ..., |hn,N | are smaller than
ε. Consequently, using the union bound we get

lim
N→∞

Pr
(

max
n

∣

∣hn,(m)

∣

∣ > ε
)

=

lim
N→∞

Pr

(

N
⋃

n=1

{∣

∣hn,(m)

∣

∣ > ε
}

)

≤ lim
N→∞

N
∑

n=1

1

(1 + pn)
N

= 0

for eachm ≤ MN and eachε > 0, and we reached our
conclusion.

Since 1
N

∑

n wnun ≤ wmaxmax
n

un, it follows from the
lemma above that the users that are assigned one of their
MN worst channel coefficients have an average utility that
converges to zero in probability. To evaluate the performance
of the worst PNE of the Naive-FSIG, we need to know how
many users can be assigned such a bad channel. Unfortu-
nately, there is anMN s.t. lim

N→∞

MN

N
= 0, for which there

exists a permutation between users and channels such that
each user gets one of hisMN worst channel coefficients.
Even worse, there are actually many such permutations. Our
result is based on the following theorem.

Theorem 7 (Frieze & Melsted [17]). Let Γ be a bipartite
graph chosen uniformly from the set of graphs with biparti-
tion L,R, |L| = n, |R| = m s.t. each vertex ofL has degree
d ≥ 3 and each vertex ofR has degree at least two. Then
with high probability the maximum matching inΓ is with
sizemin {m,n} .

Lemma 8. Assume that{hn,m,k} are independent and
hn,1, ..., hn,N are identically distributed for eachn. Let
Mn =

{

k | |hn,k| ≤
∣

∣hn,(MN )

∣

∣

}

. If MN ≥ (1 + ε) ln(N)
for someε > 0, then the probability that a perfect matching
exists between users and channels s.t. eachn ∈ N gets a
channel fromMn approaches 1 asN → ∞.

Proof: The degree of each user node is exactlyMN . We
want to bound the probability of the event that there exists
a channel with degree zero or one. Due to the i.i.d channel
coefficients of each user, the probability that usern is not
connected to channelk is given by

Pr (k /∈ Mn) =

(

N − 1
MN

)

(

N
MN

) =

(N−1)!
(N−1−MN )!

N !
(N−MN )!

= 1−
MN

N

Since channel coefficients of different users are independent,
the probability that the degree of vertexk is less than two
is given by the binomial distribution of the number of users
who prefer channelk, with p = MN

N

Pr (deg(k) < 2) =

(

1−
MN

N

)N

+N
MN

N

(

1−
MN

N

)N−1

So by the union bound on the channel vertices and forMN ≥
(1 + ε) ln(N) with someε > 0 we get, forδ > 0 and large
enoughN , that

Pr

(

min
k

deg(k) < 2

)

≤

N

(

1−
MN

N

)N

+NMN

(

1−
MN

N

)N−1

≤

(1 + δ)
(

Ne−MN +NMNe−MN
)

≤ (1 + δ)
(1 + ε) ln(N) + 1

Nε

which goes to zero asN → ∞. We know from Theorem 7
that givenmin

k
(deg(k)) ≥ 2, the probability that a perfect

matching exists approaches 1 asN → ∞ so by combining
these results we obtain our conclusion.

The conditionMN ≥ (1 + ε) ln(N) was necessary to
ensure that with high probability, no channel node degree
is smaller than two. This large user nodes degree has its own
major effect on the equilibria as well.

Theorem 9(Marshall Hall Jr [18, Theorem 2]). Suppose that
A1, A2, ..., AN are the finite sets of desirable resources, i.e.
user n desires resourcea if and only if a ∈ An. If there
exists a perfect matching between users and resources and
|An| ≥ M for n = 1 , ..., N whereM < N , then the number
of perfect matchings is at leastM !.

Joining together Theorem 9, Lemma 5, Lemma 6 and
Lemma 8 we arrive at the following theorem, by choosing
MN = Nµ for someµ < 1.

Theorem 10. Assume that{hn,m,k} are independent and
|hn,1| , ..., |hn,N | are identically distributed for eachn, with
continuous distributionFn (x), s.t. Fn (x) > 0 for all
x > 0. Also assume that there existwmin, wmax > 0,
s.t. wmin ≤ wn ≤ wmax for all n. If 1

N0
min
k

|hn,k|
2 >

max
l

|hn,l|
2

N0+min
m
(|hm,n,l|

2Pm)
holds for eachn, then for allµ < 1,

there are at least(Nµ)! PNE s.t. 1
N

∑

n wnun → 0 in
probability asN → ∞. Specifically, The PPoA of the Naive-
FSIG approaches infinity in probability asN → ∞.

IV. T HE M FREQUENCY-SELECTIVE INTERFERENCE

GAME

In this section, we want to exploit the degrees of freedom
in choosing the utility function. Inspired by the hazards
demonstrated by the naive game, we propose a new game
formulation. The greediness of the users is moderated by
an a-priori agreement to limit the utility of each user to be
greater than zero only for hisM best channels, and equal
for them.

Definition 11. The M Frequency-Selective Interference
Game (M-FSIG) is a normal-form game with parameter



M > 0, N users as players, where each hasAn =
{1, 2, ...,K} as a strategy space. The utility function for
playern is

un (a) =

{

log2

(

1 +
Pn|hn,(N−M+1)|

2

N0+In,an (a−n)

)

|hn,an |

|hn,(N−M+1)|
≥ 1

0 else

Define the set of indexes of theM best channel coefficients

of user n by Mn =

{

k |
|hn,k|

|hn,(N−M+1)|
≥ 1

}

. Note that

because
∣

∣hn,(N−M+1)

∣

∣ > 0 for eachn ∈ N with probability
1, usern will never choose a channel outsideMn. Also
note that due to the replacement ofhn,an

by hn,(N−M+1)

in the utility, maximizingun is equivalent to minimizing
In,an

. Hence in the M-FSIG each usern ∈ N accesses only
channels inMn and prefers those with smaller interference.

The identification ofMn is superior both in performance
and practice over evaluating all the channels that are better
than some threshold as was done in [3], [4]. If this threshold
is constant with respect toN a significant rate loss may
occur due to truncation, because the expected value of the
best channel coefficients grows withN . If the threshold is
dependent onN , this dependence is dictated by the fading
distribution, which is not known to the users.

We will show that the M-FSIG has asymptotically only
good PNE in any interference regime. For this reason, in this
game, the convergence to some PNE is sufficient to provide
good global performance. Furthermore, it only requires each
user to track a small number of channels (e.g.O (lnN)
instead ofN ).

A. Existence of an Asymptotically Optimal Permutation
Equilibrium

In this subsection we establish that asN → ∞ the proba-
bility that an asymptotically optimal PNE exists approaches
1.

The existence result in Lemma 8 (and Theorem 9) of
permutations where each usern gets a channel fromMn

is of course unaffected by how we choose theM members
of the setMn. With Mn as defined for the M-FSIG we get
the following corollary.

Corollary 12. Assume that{hn,m,k} are independent and
hn,1, ..., hn,N are identically distributed for eachn. If the
M-FSIG parameter is chosen s.t.M ≥ (1+ε) ln(N) for some
ε > 0, then the probability that the M-FSIG has at leastM !
PNE that are permutations of users to channels, s.t. usern
gets a channel fromMn for eachn ∈ N , approaches 1 as
N → ∞.

Finally, we state the result that shows that this set of
permutation equilibria are indeed asymptotically optimal.
This result depends on the statistics of the fading coefficients,
and here we choose to present the common case of Rayleigh
fading, although the same is true for a broad class of fading
distributions. Details will be given in [19].

Theorem 13. Assume that{hn,m,k} are independent and
|hn,1|, ..., |hn,N | are i.i.d Rayleigh distributed variables for

each n. If lim
N→∞

M
Nµ = 0 for µ < 1 and lim

N→∞
M = ∞,

then there exist at leastM ! PNE for the M-FSIG for which

min
n∈N

log2

(

1+Pn
N0

|hn,a∗
n
|2
)

log2

(

1+Pn
N0

|hn,(N)|2
) → 1 in probability asN → ∞.

B. Non-Existence of Bad Equilibria

It turns out that the asymptotically optimal permutation
PNE are typical equilibria for this game; in other words all
other equilibria are almost a permutation and hence have the
same asymptotic performance. This property eases the re-
quirements for the dynamics and allows simpler convergence
with good performance. We define a sharing user as a user
who is in the same channel with at least one more user.

Theorem 14. Assume that{hn,m,k} are independent and
hn,1, ..., hn,N are identically distributed for eachn. Suppose
thatM ≥ (1+ε) ln(N) for someε > 0. If a∗ is a PNE of the
M-FSIG withNc sharing users, thenNc

N
→ 0 in probability

asN → ∞.

Proof: The proof is based on the fact that the larger
the number of sharing users, the larger the number of empty
channels and hence the probability that none of these empty
channels is inMn for somen decreases withN . Details are
omitted due to page constraints and will be given in [19].

The weighted sum-rate of the non-sharing users ap-
proaches the optimal one, and almost all users are non-
sharing users. Nevertheless, the sharing users do not neces-
sarily suffer from poor conditions - they are in their minimal
interference channel out of an increasing (withN ) amount
of good channels.

This result, aided by the existence of an asymptotically
good permutation PNE from the last section, leads to the
following satisfactory property of the M-FSIG that holds for
any interference regime.

Corollary 15. Assume that{hn,m,k} are independent and
|hn,1|, ..., |hn,N | are i.i.d Rayleigh r.v. for eachn, and that
wmin ≤ wn ≤ wmax with somewmin, wmax > 0, for each
n. If M = (1 + ε) ln (N) for someε > 0, then each PNE
a
∗satisfies

∑N

n=1 wn log2

(

1 +
Pn|hn,a∗

n
|2

N0+In,a∗
n

)

∑N

n=1 wn log2

(

1 + Pn

N0

∣

∣hn,(N)

∣

∣

2
) → 1

in probability asN → ∞. Consequently, the PPoA of the
M-FSIG converges to 1 in probability asN → ∞.

Note that because forM = (1 + ε) ln (N) some of the
PNE of the M-FSIG are permutations, the above corollary
suggests that the ratio of the weighted sum-rate of the optimal
permutation to

∑N

n=1 wn log2

(

1 + Pn

N0

∣

∣hn,(N)

∣

∣

2
)

converges
to 1 in probability asN → ∞.

V. M ODIFIED FICTITIOUS PLAY

In order to apply game theory algorithmically, an equilib-
rium analysis, although necessary, is not enough. A learn-
ing algorithm that each user can implement that leads to



convergence to equilibrium is a crucial element. It should
be emphasized that the performance of such an algorithm
is already known from the equilibrium analysis. Therefore
the algorithm that we are looking for is not tailored to
our specific problem but rather has general properties of
convergence to NE. One of the best known candidates for this
task is the Fictitious Play (FP) algorithm [20]. In FP, each
player keeps the empirical mean vectors of the frequencies
each other player has played his actions, and plays his best
response to this fictitious strategy. Alternatively a player can
keep one empirical mean vector of the frequencies each
strategy profile of its rivals has been played (joint strategy
fictitious play). The simple relation of FP convergence to NE
is summarized in the following proposition.

Proposition 16 ([21]). Let N players play according to the
FP algorithm.

1) If a PNE is attained att0 it will be played for allt > t0
and the frequency vectors will converge to it.

2) If FP frequency vectors converge, they must converge
to some NE (maybe mixed).

3) If a ∈A1×...×AN is played for everyt > t1 thena is
a PNE.

Although its strong connection to NE, FP is not guaranteed
to converge at all. Convergence has been proven only for
some special games that do not include our game. Even if FP
converges, it may be to a mixed NE and this is undesirable as
was mentioned above. Furthermore, a common problem with
implementing FP is the information it requires. In a wireless
network, not only does a user have hardly any information
about the previous action of each other user, but he also
barely knows how many users there are. Fortunately, in our
game the effect of the other users on the utility can be
measured by measuring the interference.

To adjust the FP to the wireless environment we propose
to modify it such that each user keeps track of a fictitious
utility vector instead of the empirical mean vector of the
rivals strategy profiles. We denote the fictitious utility for user
n in channelk at time t by Un,k(t). The fictitious utility is
updated according to the following rule

Un,k(t) = (1− α)Un,k(t− 1) + αun,k(t)

with some step size0 < α ≤ 1. To prevent mixed NE we
suggest a constant step size instead of the commonα = 1

t+1

that makesUn,k the empirical mean utility. Note thatα = 1
corresponds to the best-response dynamics.

Additionally, we provide a simple mechanism to improve
the chances of convergence to a PNE. The strategy profile
determines the interference, but knowing the interferencewill
not reveal the strategy profile. Nevertheless, the continuity
of the random channel gains suggests that for each user, the
interference vector is different for different strategy profiles
with probability 1. Hence users can detect that two strategy
profiles are different based on their measured interference. If
a PNE is reached it is played repeatedly, so we can exploit
this fact and let the users check for convergence to a PNE

after enough time, and set their fictitious utility to zero ifa
PNE has not been reached.

The Modified FP is described in detail in the Algorithm 1
table, and its properties are summarized in the next proposi-
tion.

Proposition 17. Let N players play according to the Modi-
fied FP algorithm.

1) If α = 1
t+1 , then the dynamics of the joint strategy FP

where each player has perfect information are identical
to those of the Modified FP.

2) Assume a constantα. If a PNE is attained att0 then it
will be played for allt > t0 and if the fictitious utility
vectors converge, then the resulting strategy profile is
a PNE.

Proof: Assume we are at turnt = T and define
pi =

∑T

t=1
I(a−n(t)=ai,−n)

T
for the rivals strategy profile

ai,−n, whereI is the indicator function. Forα = 1
t+1 the

equivalence of the algorithms follows immediately from the
identity

∑

i

piun(an, ai,−n) =

∑

i

pi log2

(

1 +
Pn|hn,(N−M+1)|

2

N0 + In,an
(ai,−n)

)

=
1

T

T
∑

t=1

log2

(

1 +
Pn|hn,(N−M+1)|

2

N0 + In,an
(a−n (t))

)

because
∑

i piun(an, ai,−n) is the mean empirical utility for
an according to the fictitious rivals profile. Consider next
the case of a constantα. If a PNE a

∗ is attained att0 then
a∗n(t0) = argmax

k
un,k(t0) anda∗n(t0) = argmax

k
Un,k(t0−

1) for eachn ∈ N . Considering the update rule and because
a∗n(t0) = argmax

k
Un,k(t0 − 1) = argmax

k
un,k(t0)

1 we get

argmax
k

(1− α)Un,k(t0 − 1) + argmax
k

αun,k(t0) =

argmax
k

Un,k(t) = a∗n(t0 + 1)

and so on, for eacht > t0. If the fictitious utility vectors con-
verge, thenlim

t→∞
Un,k(t) exists and is finite for eachk andn.

From the update rule we getα lim
t→∞

Un,k(t) = α lim
t→∞

un,k(t)

for eachn, k which means lim
t→∞

Un,k(t) = lim
t→∞

un,k(t) for
constantα. Consequently, for allt > t1 for some large
enought1, an(t) = argmax

k
Un,k(t) = argmax

k
un,k(t) for

eachn ∈ N and hencea is a PNE.
In the next section we show that in our case there is indeed

convergence to PNE, and a very fast one.

1For the proof it is enough to break ties inUn,k(t) by choosing the
previous action if it is maximal, otherwise break ties arbitrarily. For t = 0
step (d) of the Modified FP suggests breaking ties at random.



Algorithm 1 Modified Fictitious Play
1) Initialization - Choose some0 < α ≤ 1 and τ > 0.

Each user initializes his fictitious utility -̄Un,k(0) = 0
for eachk ∈ Mn, whereMn is the set of hisM best
channels (interference free).

2) For t=1,...T and for each user n=1,...N do
a) Choose a transmission channel

an(t) = argmax
k

Un,k(t− 1)

b) Sense the interference. For eachk ∈ Mn

In,k(t) =
∑

m|am(t)=k

|hm,n,k|
2Pm

c) Update fictitious utilities. For eachk ∈ Mn

Un,k(t) = (1 − α)Un,k(t− 1) + αun,k(t)

where

un,k(t) = log2

(

1 +
Pn|hn,(N−M+1)|

2

N0 + In,k(t)

)

d) (optional) Check for convergence to a PNE. If
t = τ andIn,k(t) 6= In,k(t− 1) for somek ∈ An

then return to step 1, i.e.t = 0.

VI. SIMULATION RESULTS

Our analysis is probabilistic and asymptotic with the
number of users. Thus, we carried out some simulations to
ensure that the asymptotic effects take place for reasonable
N values. In fact, the situation for some finiteN tends to
be much more optimistic than the lower bounds we used in
most of our proofs.

In our simulations we used a Rayleigh fading network;
i.e. {|hm,n,k|} are i.i.d Rayleigh random variables. Hence
{

|hm,n,k|
2
}

are i.i.d exponential random variables with pa-
rameterλ, which is chosen to beλ = 1 so all the exponential
variables have unit variance. Unless specified otherwise, the
transmission powers were chosen such that the mean SNR
for each link, in the absence of interference, is 20[dB]. Users
play according to the Modified FP algorithm from last section
including step (d) withτ = 60 andα = 0.5.

In Fig. 1 we present the convergence of the Modified FP
in two different network realizations, forN = K = 100. We
can see that convergence is very fast and occurs within 100
iterations. The upper figure is forM = 9, where the ratio of
the sum of achievable rates to that of an optimal allocation
is close to 1, and the ratio of the minimal achievable
rate is a bit smaller. This corresponds to a convergence to
one of the permutation PNE; hence, there are no sharing
users. The lower figure shows another realization for both
M = 7, 14. The sum-rate ratio to optimal is still close to
1, as predicted by the converging PPoA, but the minimal
rate is significantly lower. The minimal rate is experienced
by one of the four sharing users in this case. Nevertheless,
choosingM = 14 results in a negligible reduction in the

sum-rate but significantly improves the minimum rate due
to the convergence to a permutation with no sharing users.
We can also see the benefits of step (d) of the Modified FP,
which leads to a detection of non-convergence by the users
at t = 60. This indeed results in a convergence to a PNE
after the users selected initial channels at random again.

In Fig. 2 we show the effect of the number of users on
the rates, withM = ⌈3 ln (N)⌉. We present the average and
minimal achievable rates, compared to the sum-rate optimal
permutation allocation and random permutation allocation
average and minimal achievable rates. The benefit over a
random permutation is significant, especially in terms of
the minimal rate. The rates increase is due to the growing
expected value of the best channel coefficients for each
user. This phenomenon (multi-user diversity) of course does
not take place for a random permutation. In a random
permutation the average user gets his median channel co-
efficient, and the minimal allocated channel coefficient hasa
decreasing expectation. The standard deviations of the mean
rates are small as expected from the similarity of all NE,
and the standard deviations of the minimal rate are higher
due to changing number of sharing users between different
realizations.

In Fig. 3 we show the effect of the mean SNR on the
gain of our algorithm over a random permutation alloca-
tion, compared to the optimal permutation allocation. This
simulation is forN = 200 and M = ⌈3 ln (N)⌉. As the
mean SNR grows larger, the logarithmic behavior of the
achievable rate causes the rate difference between two given
channel coefficients to be smaller. At the same time, the
rate difference between an occupied channel and a free one
grows and hence the number of sharing users drops (7.68 at
SNR = −10[dB] and 1.2 atSNR = 25[dB]).

VII. C ONCLUSION

In this paper we analyzed, using asymptotic probabilistic
tools, two game formulations for the distributed channel
allocation problem in the frequency-selective interference
channel. The performance metric was the weighted sum of
achievable rates when treating interference as noise.

First we presented a naive non-cooperative game (Naive-
FSIG) and showed that with strong enough interference it
hasΩ ((Nµ)!), for all µ < 1, bad pure NE, whereN is the
number of users.

We then proposed an enhanced non-cooperative game for-
mulation (M-FSIG) based on an a-priori agreement between
users to limit their utility to be greater than zero only for their
M best channels, with the same value for those channels. We
proved that for many fading distributions (including Rayleigh
fading), our game has a pure price of anarchy that approaches
1 asN → ∞ in any interference regime. For some fixedN
the introduced parameterM can be chosen to compromise
between sum-rate and fairness. This game enables a fully
distributed implementation that achieves close to optimal
performance without resorting to coordinated solutions.

Due to the almost completely orthogonal transmissions in
equilibria our allocation algorithm is more suitable for the
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Figure 1. Sum-rate and min-rate compared to the optimal permutation
allocation sum-rate for two different realizations
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Figure 2. Rates as a function ofN averaged over 50 realizations

medium-strong interference regime.
We also proposed a modified Fictitious Play algorithm and

showed through simulations that it converges very fast to the
proven pure NE. The fast convergence enables frequent runs
of the algorithm in the network, which results in maintaining
the multi-user diversity in a dynamic fading environment.

The simplicity and high performance of our algorithm
make it an appealing base for a dynamic channel access
protocol for distributed networks.
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