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Abstract—In this paper we consider the problem of dis-
tributed channel allocation in large networks under the
frequency-selective interference channel. Performancesimea-
sured by the weighted sum of achievable rates. First we prese
a natural non-cooperative game theoretic formulation for this
problem. It is shown that, when interference is sufficiently
strong, this game has a pure price of anarchy approaching
infinity with high probability, and there is an asymptotical ly in-
creasing number of equilibria with the worst performance. Then

we propose a novel non-cooperative M Frequency-Selective

Interference Game (M-FSIG), where users limit their utility
such that it is greater than zero only for their M best channek,
and equal for them. We show that the M-FSIG exhibits, with
high probability, an increasing number of optimal pure Nash
equilibria and no bad equilibria. Consequently, the pure price
of anarchy converges to one in probability in any interfererce
regime. In order to exploit these results algorithmically we
propose a modified Fictitious Play algorithm that can be
implemented distributedly. We carry out simulations that show
its fast convergence to the proven pure Nash equilibria.
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optimal solution. To do so, some network entity (the base
station, access point, etc) needs to know the preferences fo
all nodes. This entity should compute the optimal solution
and transmit it back to the nodes. In a wireless environment,
these preferences are not constant so this central knowvledg
involves significant communication overhead on the network
As networks grow larger, this requirement becomes less rea-
sonable. Furthermore, future networks (like ad-hoc netaor
and cognitive radio) are envisioned to be more distributed i
nature and less dependent on central entities. This leads to
the need for a distributed channel allocation algorithm.
Recently, it has been shown that the optimal solution
to the channel allocation problem can be achieved using
a distributed algorithm[]3],[14],[15]. This algorithm is a
distributed version of the auction algorithi [6] and relos
a CSMA protocol. Although it has a very slow convergence
rate, this result serves as a proof of concept and suggests th
other approaches may achieve close to optimal performance
in a distributed fashion. In[[7], the authors designed an

Channel allocation, the problem of assigning frequen@lgorithm based on the stable matching concept that also

bands to users, is a fundamental element in wireless neses a CSMA protocol. This algorithm has a much faster
works. Channel allocation is necessary when channel accesavergence rate and a good sum-rate performance. Due to
is through frequency division techniques such as FDMteir dependence on CSMA, both algorithms are vulnerable
or the more recent bandwidth efficient technique OFDMAo the hidden terminal and exposed terminal problems. In
Other approaches, based on iterative water filling (IWF, seeder to avoid these problems, a RTS/CTS mechanism has
[]), allow users to allocate their power over the spectrsm & be implemented. Besides causing delays, RTS/CTS imple-
a whole. It is well-known that IWF leads to a FDMA solu-mentation requires some central network entities, and thus
tion for strong interference, and hence is more suitable foegatively impact the network scalability. Additionallyoth
weak interference and is generally considered more complaigorithms have strong user synchronization requirements
When splitting the channel into sub-channels, the questibast, but not least, these algorithms ignore the inherent
of how to assign these sub-channels to users arises.pbssibility of sharing channels between users.
the frequency-selective interference channel, differesdrs  There has been a considerable amount of work designed
experience different conditions in each channel due tofadito apply game theory as a framework for distributed chan-
and interference, so different allocations will result arying nel allocation algorithms (se&][8].][9]). While game theory
levels of performance. addresses the distribution requirement naturally, it dosts

At first glance, it may seem that channel allocation iguarantee good global performance. For example, it is well-
a special case of resource allocation and as such cankbewn that the fixed points for the IWF algorithm are the
solved as an optimization problem. W is the number Nash equilibrium points of the Gaussian interference game.
of users and resources, the optimal permutation betwedeor a two-user Gaussian interference game, a prisér?eré
them can be found with a complexity 6¥(N?), using the dilemma may occur which leads to a suboptimal solution
famous Hungarian Algorithm_[2]. The basic problem witj10]. To overcome this obstacle, some form of cooperation
this approach is the information required to compute tlman be added using different game theoretic concepts. In
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[11] the authors proposed a potential game theoretic fare assume that each user can sense the exact interference

mulation that requires each user to know the interferenbe experiences in each channel. Nevertheless, users do not

he causes to other users. [n][12] the authors used the Naslre any knowledge about the channel coefficients of other

bargaining solution and coalitions to enhance the fairnessers or about any of the interference coefficients. Thare is

of the allocation at the price of a centralized architectureentral entity of any sort that knows the channel coeffigent

In [13] and [14], a more stable algorithm to obtain thef all users. Note that, in contrast tal [4] and [7], we do not

Nash bargaining solution was proposed, based on conyawhibit two or more users in the same channel.

optimization techniques. Although cooperation can indeedOur global performance metric is the weighted sum of

enhance performance, it may be extremely complicated d@ohievable rates while treating interference as noiseof®en

achieve cooperative game-theoretic solution concepthen ty a the allocation vector (soon to be called the strategy

general case without communication between users, whiglofile), s.t.a,, = k if usern is using channek. We want

limits the distributed nature of the network. to maximize the following performance function over all
The rest of this paper is organized as follows. In sectigrossible allocations

Il we formulate our wireless network scenario and present N P )

our app.roach. In_ section Il we present a natural game W(a) = an log, <1+ nlPnan | >

formulation for this problem and show that it suffers from No + In.a, (a—n)

major drawbacks. _In sec_t|_on_ IV we propose an enhanc ere Ny is the Gaussian noise variance which is assumed
game and provide its equilibria analysis. Section V SUSDESE he the same for all userB,, is userns transmission power

an algorithm each user can_i_mplementin gdistributed fashi Nd s (an) = 3 |hmnil?Pw is the interference
to converge to these equilibria. In section VI we present ’ mlam=k
simulations of our proposed algorithm that show fast convarsern experiences in channgl We assume that the weights
gence to the proven equilibria. Finally, we draw conclusiorsatisfy w.,in < w, < Wpee fOr SOMEW,in , Winaee > 0, for
in section VII. all n.
We want to find a fully distributed way to achieve close
to optimal solutions for our channel allocation problem.
Consider a wireless network consisting 8f transmitter- Hence we need to analyze the interaction that results from
receiver pairs (users) anfl frequency bands (channels).N independent decision makers and ensure that the outcome
Each user forms a link between his transmitter and receiverdesirable. The natural way to tackle this problem is by
using a single frequency band. The channel between eagplying game theory.
transmitter and receiver is Gaussian frequency-seleatiee
we assume that each frequency band is smaller than
coherence bandwidth of the channel. We also assume that G =< N, {Ap} nen; {tun}nen >

the coherence time is large enough so that the channel gains . . .
can be considered static for a sufficiently long time. where\"is the set of playersd,, is the set of pure strategies

The channel gains (fading coefficients) are modeled g%playern anduy, : Ay x...x Ay — Ris the utility function
N?K independent random variables - one for each chann® ,playern.
each transmitter and each receiver. The coefficient betweerGame theory aims at analyzing the possible outcomes of
user ns transmitter and usems receiver in channek is a given interaction using solution concepts. The best known
denotedh,, ,,, . We also assume thét,, , 1,..., hmn,x are solution concept is the celebrated Nash Equilibrium (NE).
identically distributed for eacln,n =1,..., N. _— PR

Note that NK of these coefficients serve as channdp€finition 2. A strategy profile(a;,,a”,,) € A, X X An
coefficients between a transmitter and receiver pair and ésrecalled*a pure Nash equilibrium (PNE) ik, (e, a,,) >
denoted for convenience by, ; for usern in channelk. tn(an, a”y) for all a, € A, and alin € V.
The other NK (N — 1) coefficients serve as interference This means that for each player if the other players act
coefficients between transmitters and unintended receiveaccording to the equilibrium, player can not improve his
In this paper we assum& = K for simplicity. utility with another strategy. A game may exhibit multiple

Each user has some preferred order of fiechannels. pure NE or none at all.
Due to the independence of the channel coefficients betwee more general notion of an equilibrium is the mixed Nash
users, these preference lists are different and indepéndequilibrium, which is a probability assignment on the pure
between users. Note that this preference order considérs astrategies set. It is well known that in any game with a finite
the absolute value of the channel coefficient and not timamber of players and finite strategy spaces, there exists a
interference (which indeed affects the achievable rated. Whixed NE [15]. We choose to avoid the notion of mixed NE
denote byh,, (v_;+1) the i-th best channel coefficient fordue to its lack of practical meaning as a solution for the
usern (so h,, (1) is the worst channel). channel allocation problem.

We assume that each user has perfect channel state inn our case, the players are users (through their receiver)
formation (CSI) of all hisK channel coefficients, which heand the set of strategies for each player is the set of channel
can achieve using standard estimation techniques. IniadditThe choice of the utility function is a more delicate issue.

n=1

Il. PROBLEM FORMULATION

t[%%finition 1. A normal-form game is defined as the tuple



One of our goals in this work is to show that this degree @hannel of usen on his utility is caused by the interference.
freedom in the choice of the utility function can be expldite Consequently, the strength of the interference has a drucia
to achieve better global performance without inducing ceffect on the identity of the NE.

ordination between the users. Thus we distinguish betweerf the interference is strong enough, users in the same
the global performance metric and the utility function eacthannel achieve negligible utility and the interferencenga
user aims to maximize, and we view the dynamic of the garbecomes a “collision game”.

solely as an algorithmic tool to converge to the desireddstea R
state point (NE) in terms of global performance. Lemma 5. If g-min o 1| > mlaXNOerin‘(h‘Z:LIn R o

Unfortunately, not every game formulation has nice equiachy, then the set of PNE of the Naive-FSIG is the set of

libria in terms of both tractability and performance. Theermytations between users and channels, with cardinality
notion of NE helps us predict the outcome of the resuliy

ing interaction between programmed distributed agente. Th
problem of tuning the dynamics to a desired equilibrium Proof: The inequality condition means that for every
among all existing NE (equilibrium selection) is generallgtrategy profile that is a permutation of users to channels,
difficult and may require some coordination between tHe user who deviates gets lower utility. Consequently, ev-
users. For this reason, a game formulation that results iff&y permutation is an equilibrium. Conversely, every pure
simple and robust equilibrium is desirable. The cost of thRfAuilibrium must be a permutation because all users prefer
uncertainty on the resulting NE is often measured by tf& empty channel over a shared one (i.e. with positive
price of anarchy, defined as follows. interference). u

- . The lemma above implies that in strong enough interfer-
gef:ilo/rlv%;h}e pure{ pn}ce of a;na\l,;ictf;]y t(hpepoé‘zfg:r:agzg]%nce, a PNE of the Naive-FSIG may assign some users a bad

P WAnfneNs WngneN V?,(a) channel. The next lemma shows that a bad channel can be

, Wwhere asymptotically useless.

max
acAy X...XAn
rg}sn W (a)
. 2 p ..
E, is the set of PNE. Lemma 6. Assume thath,, 1], ..., |hn n| are i.i.d for each

It is not hard to think of special cases of interferencé’ wghl_(:otr]l&nugus dlsmbum[ﬂlé@’ ?thFﬁ (OI)”> OLO;\;”
networks that have bad equilibria or no pure equilibria ht af’ > U. LetiMy beasequence s.um “g= = U. 1tm = My

We are interested in the vast majority of networks as didtatéenmax |Aun,(m)| — 0 in probability as N — oo.
by the fading distribution, especially in large networks. _ . _
Therefore, our approach is probabilistic and asymptotic in Proof: Let e > 0. Due to the i.i.d assumption, the

the number of userd’ (i.e. will produce results in the “with NUMPErNe, Of rv. from |f, 4, ..., [hy,n| that are smaller
high probability” sense). thane has a binomial distribution witp,, = Pr (|, 1] < €).

We use the Chernoff-Hoeffding Theorem [16] as a tail bound
Il1. THE NAIVE FREQUENCYSELECTIVE INTERFERENCE for MTN < pn. By the assumption o/, MTN < p, holds
GAME for all N > N, for some large enough;, and so

Given our performance metric, a natural choice for the
utility of each user is his achievable rate. This choice rsake Pr(N., < My) < exp (—ND (ﬂlpn))
the weighted sum-rate the weighted social welfare of the ’ N
game. This means that in this game we do not exploit the
degree of freedom when choosing the utility function anthereD(g|p) = ¢In £ + (1 —¢)In =2 , and in our case
hence we call this the “naive game”. This naivetAl can be
interpreted as selfishness of the users and we will show that

functionW : A; x ... x Ay — R is

it may lead to poor global performance. My My . My My — My

D{—|pn)=——1n +{1———)In
Definition 4. The Naive Frequency-Selective Interference N N Npn N L=pn
Game (Naive-FSIG)is a normal-form game withlV users for which

as players, where each hds, = {1,2,..., K} as a strategy
space. The utility function for player is

. My .

Polh o |2 lim D <—||pn) = — lim -

U, (a) =log, |1+ | ) nl N—so0 N N—oo %

NO + In,an (afn) MN 1 MN

In this section we analyze the PNE of the Naive-FSIG —lnpnNhjan +ln (1 —pn) i <1 - T)
for strong interference and evaluate the PPoA. Trivially,

My My 1
1——— |In(1-— -~ )= In

a user who obtained his best channel without interference + lim

N—o0

cannot improve his utility. On the other hand, a user who
is not in his best channel (with the best channel coefficient) : . My
cannot necessarily improve his utility if there are userbig ?ﬁ:(for large enoughtv. the mequalltyD(THpn) 2

1_1% ) —In (—1_117%) holds and hence we get the following

more preferable channels. The influence of other users in



upper bound

M"Y My My \Y!
M = _ =X =N _ =N
Pr(Nen < My) < exp (—ND (TNIIpn)) Pr (deg(k) < 2) (1 N ) HN—= (1= =
1 N 1 N So by the union bound on the channel vertices andfgr >
<(1 —pn)N ( 2) = < > -0 (1 +¢)In(N) with somee > 0 we get, ford > 0 and large
L=pn 1+ pn enoughN, that
Clearly, if there are at least/y successes then th&ly
smallest variables amond,, 1|, ..., |hn.n| @are smaller than )
e. Consequently, using the union bound we get Pr (mklndeg(k) < 2> <
. My \" My\Y!
i Pr (ma [ | > <) = N(l_T) N My (“T :
N N -M -M
1 N N
lim Pr U{’hn.(m)‘>5} < lim 27]\[:0 (1+5)(Ne + NMpe )
N—roo it} ' N—oo £= (14 py) (I+e)ln(N)+1

<(1+49) e
for eachm < My and eache > 0, and we reached OurWhich goes to zero ad — oco. We know from Theorerl7

conclusion. that givenmin (deg(k)) > 2, the probability that a perfect

Since & 3, Wty < WmazMmaxu,, it follows from the _ : e
n ) matching exists approaches 1 &As— oo so by combining
lemma above that the users that are assigned one of ﬂ%ﬁ'erse results we obtain our conclusion -

My worst channel coefficients have an average utility that The conditionMy > (1 + ¢)In(N) was necessary to

converges to zero in probability. To evaluate the perforrean . . o
of the worst PNE of the Naive-FSIG, we need to know hognsure that with high probability, no channel node degree

) IS smaller than two. This large user nodes degree has its own
many users can be assigned such a bad channel. Unfanl‘Ja-.or effect on the equilibria as well
nately, there is alV/y s.t. lim XX = 0, for which there J '

N
exists a permutation between users and channels such fHagorem 9(Marshall Hall Jr[18, Theorem 2])Suppose that
each user gets one of hMN worst channel coefficients. Al, AQ, cey AN are the finite sets of desirable resources, 1.e.

Even worse, there are actually many such permutations. {§er » desires resource: if and only ifa € A,. If there
result is based on the following theorem. exists a perfect matching between users and resources and

_  JAy|>Mforn=1,.., NwhereM < N, then the number
Theorem 7 (Frieze & Melsted [[17]) Let I" be a bipartite of perfect matchings is at leadt!.

graph chosen uniformly from the set of graphs with biparti- =
tion L, R, |L| = n,|R| = m s.t. each vertex of has degree  Joining together Theoreri 9, Lemn 5, Lemija 6 and

d > 3 and each vertex oR has degree at least two. ThenLemmal8 we arrive at the following theorem, by choosing
with high probability the maximum matching il is with M~ = N* for somey < 1.
sizemin {m,n}. Theorem 10. Assume that{h,, ., x} are independent and

Lemma 8. Assume that{h,.} are independent and |hn71.|, s |hn7lN|.are_identicaIIy distributed for each, with
huts .y hay are identically distributed for each. Let continuous distributionf;, (z), st. Fy (z) > 0 for all
M, = {k| ] < |hn,(1\41\7)‘}- If My > (1+2)ln(N) 2 > 0. Also assume that there exmtwim,vjumm >2 0,
for somes > 0, then the probability that a perfect matchingS-t: Wmin < Wn < Wmas for all n. If gmin o gel” >
exists between users and channels s.t. each V' gets a .« .l holds for eactn, then for all < 1,

channel fromM,, approaches 1 asV — . £ Notmin(Jhom,n.i|*Pr) .
there are at least(N*)! PNE s.t. &> wpu, — 0 in

Proof: The degree of each user node is exadtly,. We  propability asN — co. Specifically, The PPoA of the Naive-

want to bound the probability of the event that there exisfss|G approaches infinity in probability a& — oo.
a channel with degree zero or one. Due to the i.i.d channel

coefficients of each user, the probability that useis not

IV. THEM FREQUENCY¥SELECTIVE INTERFERENCE

connected to channél is given by GAME
In this section, we want to exploit the degrees of freedom
( N-1 > (N—1)! in choosing the utility function. Inspired by the hazards
Pr(k ¢ M,) = My _ (Nflzg‘sz)! —1_ My demonstrated by the naive game, we propose a new game
< N ) N M N formulation. The greediness of the users is moderated by
Mn an a-priori agreement to limit the utility of each user to be

reater than zero only for hid/ best channels, and equal

Since channel coefficients of different users are independ
or them.

the probability that the degree of vertéxis less than two
is given by the binomial distribution of the number of userBefinition 11. The M Frequency-Selective Interference
who prefer channet, with p = % Game (M-FSIG) is a normal-form game with parameter



M > 0, N users as players, where each hag = eachn. If lim & = 0 for x < 1 and lim M = oo,

. . N— 00 s N—oo i
{1,2,.., K} as a strategy space. The utility function foknen there exist at least/! PNE for the M-ESIG for which

layern is logo (1422 Ry o |2 . .
pay min e ;V“‘ «il’) — 1 in probability asN — oc.
neN 1ogy (1452 [, ) |2)
Palhn (v nl® | | i o
up (2) = { log, (1 + Fottee o) ) v ] = 1 B. Non-Existence of Bad Equilibria
0 else It turns out that the asymptotically optimal permutation

Define the set of indexes of the best channel coefficients PNE are typical equilibria for this game; in other words all
of usern by M, — {k| i |7 ] > lr} Note that ©ther equilibria are almost a permutation and hence have the

n,(N—M+1) same asymptotic performance. This property eases the re-

becausgh,, (y_ns+1)| > 0 for eachn € A with probability ~ quirements for the dynamics and allows simpler convergence
1, usern will never choose a channel outsidel,,. Also with good performance. We define a sharing user as a user
note that due to the replacementof ., by h, (v—am+1) who is in the same channel with at least one more user.
in the utility, maximizing u,, is equivalent to minimizing .
I,, 4, . Hence in the M-FSIG each userc N accesses only Theorem 14. Ass_ume.that{h,},m:k} are independent and
channels inM,, and prefers those with smaller interferencd».1» - fin, v @re identically distributed for each. Suppose

The identification ofM,, is superior both in performancetN@t} > (1+¢)In(V) for somes > 0. If a” is @ PNE of the
and practice over evaluating all the channels that are ettdFSIG with N. sharing users, theds — 0 in probability

than some threshold as was donelin [3], [4]. If this threshoftf &V — o0

is constant with respect t&v a significant rate loss may  Proof: The proof is based on the fact that the larger
occur due to truncation, because the expected value of the number of sharing users, the larger the number of empty
best channel coefficients grows with. If the threshold is channels and hence the probability that none of these empty
dependent onV, this dependence is dictated by the fadinghannels is inM,, for somen decreases withV. Details are
distribution, which is not known to the users. omitted due to page constraints and will be giver{in [1M].

We will show that the M-FSIG has asymptotically only The weighted sum-rate of the non-sharing users ap-
good PNE in any interference regime. For this reason, in t"ﬁ%aches the optimal one, and almost all users are non-
game, the convergence to some PNE is sufficient to proviggaring users. Nevertheless, the sharing users do not-neces
good global performance. Furthermore, it only requireeagarily suffer from poor conditions - they are in their minima
user to track a small number of channels (e(InN) interference channel out of an increasing (witf) amount

instead oflV). of good channels.
A. Existence of an Asymptotically Optimal Permutation 'NiS result, aided by the existence of an asymptotically
Equilibrium good permutation PNE from the last section, leads to the

. . . following satisfactory property of the M-FSIG that holds fo
In this subsection we establish that/ds— oo the proba- any interference regime,

bility that an asymptotically optimal PNE exists approache
1. Corollary 15. Assume thafh,, ,, 1} are independent and

The existence result in Lemnid 8 (and Theoreém 9) &k, 1], ..., |h, n| are i.i.d Rayleigh r.v. for each, and that
permutations where each usergets a channel frorM,, wWmin < Wy < Wi With SOMeWin, Wmax > 0, for each
is of course unaffected by how we choose thiemembers n. If M = (1 + ¢)In(N) for somee > 0, then each PNE
of the setM,,. With M,, as defined for the M-FSIG we geta*satisfies

the following corollary. Pl

2

. ZNzl wp logy | 1+ w72
Corollary 12. Assume thath,, ., } are independent and n NotInaz
hna, -.., hp,n are identically distributed for each. If the N ( P, 2)
M-FSIG parameter is chosen sil > (14-¢) In(N) for some o=t wnlogy (14 3 ||
e > 0, then the probability that the M-FSIG has at ledst!  in probability as N — co. Consequently, the PPoA of the
PNE that are permutations of users to channels, s.t. user\-FSIG converges to 1 in probability a¥ — co.
gets a channel from\,, for eachn € N, approaches 1 as
N — oo.

— 1

Note that because fab/ = (1 + ¢)In (V) some of the
PNE of the M-FSIG are permutations, the above corollary

Finally, we state the result that shows that this set gfiggests that the ratio of the weighted sum-rate of the @ptim
permutation equilibria are md_egd asymptot!cally Opt'r_nabermutation tOZlewn log, (1+ Z_Z |h'n,(N)‘2) converges
This result depends on the statistics of the fading coeffisie . —

to 1 in probability asN — oo.
and here we choose to present the common case of Rayleigh
fading, although the same is true for a broad class of fading V. MODIFIED FICTITIOUS PLAY

distributions. Details will be given il [19]. In order to apply game theory algorithmically, an equilib-

Theorem 13. Assume thafh,, ..} are independent and rium analysis, although necessary, is not enough. A learn-
|An1l, - |hn,n| are i.i.d Rayleigh distributed variables foring algorithm that each user can implement that leads to



convergence to equilibrium is a crucial element. It shoulafter enough time, and set their fictitious utility to zeraaif
be emphasized that the performance of such an algoritffNE has not been reached.

is already known from the equilibrium analysis. Therefore The Modified FP is described in detail in the Algorithm 1

the algorithm that we are looking for is not tailored tqable, and its properties are summarized in the next proposi
our specific problem but rather has general properties @bn.

convergence to NE. One of the best known candidates for this _ _
task is the Fictitious Play (FP) algorithia [20]. In FP, eacRroposition 17. Let N players play according to the Modi-
player keeps the empirical mean vectors of the frequencfied FP algorithm.

each other player has played his actions, and plays his besi) If o« = L, then the dynamics of the joint strategy FP

. . -y . 1 1
response to this fictitious strategy. Alternatively a plagan where fegch player has perfect information are identical

keep one empirical mean vector of the frequencies each i, those of the Modified FP.
strategy profile of its rivals has been played (joint strateg 2y Assume a constant If a PNE is attained at, then it
fictitious play). The simple relation of FP convergence to NE ~ i pe played for allt > t, and if the fictitious utility

is summarized in the following proposition. vectors converge, then the resulting strategy profile is

Proposition 16 ([21]). Let N players play according to the a PNE.
FP algorithm. Proof: Assume we are at turn = 7T and define
1) If a PNE is attained aty it will be played for allt > to pi = Zf:l % for the rivals strategy prof"e
and the frequency vectors will converge to it. a; _n,, where[ is the indicator function. Forr = 15 the
2) If FP frequency vectors converge, they must convergguivalence of the algorithms follows immediately from the
to some NE (maybe mixed). identity
3) If acA;x...x Ay is played for every > ¢; thena is
a PNE.
> pitin(an, a; ) =
Although its strong connection to NE, FP is not guaranteed
to converge at all. Convergence has been proven only for Pn|hn.(N7M+1)|2
some special games that do not include our game. Even if FP Zpi log, (1 + N +f (a; ))
converges, it may be to a mixed NE and this is undesirable as i 0T Tman i
was mentioned above. Furthermore, a common problem with 1 & Pn|hn,(N_M+1)|2
implementing FP is the information it requires. In a wirsles -T Zbg? <1 + No+1 (a_ (t)))
=1 0 n,an n

network, not only does a user have hardly any information
about the previous action of each other user, but he algg
barely knows how many users there are. Fortunately, in our

e a
game the effect of the other users on the utility can l%ﬁne case of a constant If a PNE a* is attained at, then

measured by measuring the interference. 0* (t0) — are max 1y x(to) anda® (to) — are max Uy & (fo —
To adjust the FP to the wireless environment we proposg' °/ — B WAX U,k {T0 n\t0) = A8 MaX Ln kit

to modify it such that each user keeps track of a fictitious for eachn € V. Considering the update rule and because
utility vector instead of the empirical mean vector of thén(to) = argmax Uy x(fo — 1) = argmax un i (fo)l we get
rivals strategy profiles. We denote the fictitious utility tser
n in channelk at timet by U, x(t). The fictitious utility is
updated according to the following rule

cause _, p;u,(an,a;,—n) is the mean empirical utility for
according to the fictitious rivals profile. Consider next

arg max (1—a)U,k(to—1) +arg max iy i (to) =

— — argmax U, x(t) = al(to + 1
Up(t) = (1 — )T it — 1) + auni(t) gmaxUnp(t) = anlto +1)

with some step siz® < o < 1. To prevent mixed NE we and so on, for each> t,. If the fictitious utility vectors con-

suggest a constant step size instead of the cor’men:ent%1 verge, thentlim U, (t) exists and is finite for each andn.
—00

that maked/,, . the empirical mean utiIity.lNote that=1 From the update rule we getlim Uni(t) = o lim uy, (1)
corresponds to the best-response dynamics. . | bm2oo | t=oe
T s . . . for eachn, k which meanslim U,, x(t) = lim w, () for

Additionally, we provide a simple mechanism to improve t—oo0 tSo0
the chances of convergence to a PNE. The strategy proﬁ%nStama' Consequently, for alt > ¢, for some large
determines the interference, but knowing the interferevite €NOUINI1, an(t) = arg max Uni(t) = argmaxunx(t) for
not reveal the strategy profile. Nevertheless, the corinueachn € A" and hencea is a PNE. u
of the random channel gains suggests that for each user, thin the next section we show that in our case there is indeed
interference vector is different for different strategpfiles convergence to PNE, and a very fast one.
with probability 1. Hence users can detect that two strategy
profiles are different based on their measured interferdhce ,_ proof it is enough to break ties T, x(t) by choosing the

a _PNE is reached it is played repeatedly, SO we can eXpl%vious action if it is maximal, otherwise break ties agbity. Fort = 0
this fact and let the users check for convergence to a PNp (d) of the Modified FP suggests breaking ties at random.



Algorithm 1 Modified Fictitious Play sum-rate but significantly improves the minimum rate due
1) Initialization - Choose somé® < o < 1 and7 > 0. to the convergence to a permutation with no sharing users.
Each user initializes his fictitious utility &/, ,(0) =0 We can also see the benefits of step (d) of the Modified FP,
for eachk € M,,, whereM,, is the set of his\M best which leads to a detection of non-convergence by the users

channels (interference free). att = 60. This indeed results in a convergence to a PNE
after the users selected initial channels at random again.

2) For t=1,..T and for each user n=1,...N do In Fig. 2 we show the effect of the number of users on

a) Choose a transmission channel the rates, with\M/ = [31n (IV)]. We present the average and

minimal achievable rates, compared to the sum-rate optimal
permutation allocation and random permutation allocation
average and minimal achievable rates. The benefit over a
random permutation is significant, especially in terms of
I, 1 (t) = Z |hm7n,k|2Pm the minimal rate. The rates increase is due to the growing
mlan, (t)=k expected value of the best channel coefficients for each
¢) Update fictitious utilities. For each € M,, user. This phenomenon (multi-user divers_ity) of coursesdoe
not take place for a random permutation. In a random
Umk(t) =(1- a)Un,k(t — 1) + aun i (t) permutation the average user gets his median channel co-
efficient, and the minimal allocated channel coefficient &as
) decreasing expectation. The standard deviations of th&mea
tn i () = log, (1 i Pl (N—pr+1)| ) rates are small as ex.pe.cted from thg ;lmllarlty of all .NE,
’ No + I, () and the standard deviations of the minimal rate are higher
d) (optional) Check for convergence to a PNE. “due_ to _changing number of sharing users between different
t = andl, x(t) # Iox(t—1) for somek € 4, realizations.
then return to step 1, i.é.= 0. I_n Fig. 3 we show the effect of the mean SNR on the
gain of our algorithm over a random permutation alloca-
tion, compared to the optimal permutation allocation. This
VI. SIMULATION RESULTS simulation is for N = 200 and M = [3In(N)]. As the
o o ) _ mean SNR grows larger, the logarithmic behavior of the
Our analysis is probabilistic and asymptotic with thgchievaple rate causes the rate difference between twa give
number of users. Thus, we carried out some simulations {Qannel coefficients to be smaller. At the same time, the
ensure that the asymptotic effects take place for reasenajie gifference between an occupied channel and a free one

N values. In fact, the situation for some finifé tends 10 grows and hence the number of sharing users drops (7.68 at
be much more optimistic than the lower bounds we used g p — —10[dB] and 1.2 atSN R = 25[dB])

most of our proofs.
In our simulations we used a Rayleigh fading network; VIl. CONCLUSION

€. {|hm,nx|} are iid Rayleigh random variables. Hence |, his paper we analyzed, using asymptotic probabilistic

\hmn|” ¢ are i.i.d exponential random variables with patools, two game formulations for the distributed channel
rameter\, which is chosen to b& = 1 so all the exponential allocation problem in the frequency-selective interfern
variables have unit variance. Unless specified otherwlge, thannel. The performance metric was the weighted sum of
transmission powers were chosen such that the mean Salfievable rates when treating interference as noise.
for each link, in the absence of interference, is 20[dB].1gse First we presented a naive non-cooperative game (Naive-
play according to the Modified FP algorithm from last sectioRSIG) and showed that with strong enough interference it
including step (d) withr = 60 anda = 0.5. has 2 ((N#)!), for all u < 1, bad pure NE, wheréV/ is the

In Fig. 1 we present the convergence of the Modified RRumber of users.
in two different network realizations, fa¥ = K = 100. We We then proposed an enhanced non-cooperative game for-
can see that convergence is very fast and occurs within 1®@lation (M-FSIG) based on an a-priori agreement between
iterations. The upper figure is fdi/ = 9, where the ratio of users to limit their utility to be greater than zero only fbeir
the sum of achievable rates to that of an optimal allocatiail best channels, with the same value for those channels. We
is close to 1, and the ratio of the minimal achievablproved that for many fading distributions (including Ragte
rate is a bit smaller. This corresponds to a convergenceféling), our game has a pure price of anarchy that approaches
one of the permutation PNE; hence, there are no sharihgds N — oo in any interference regime. For some fixad
users. The lower figure shows another realization for bothe introduced parametéd/ can be chosen to compromise
M = 7,14. The sum-rate ratio to optimal is still close tobetween sum-rate and fairness. This game enables a fully
1, as predicted by the converging PPoA, but the minimdistributed implementation that achieves close to optimal
rate is significantly lower. The minimal rate is experiencegerformance without resorting to coordinated solutions.
by one of the four sharing users in this case. NeverthelessPue to the almost completely orthogonal transmissions in
choosingM = 14 results in a negligible reduction in theequilibria our allocation algorithm is more suitable foeth

an(t) = arg m}gxﬁmk(t -1)

b) Sense the interference. For edck M,,

where
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