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Abstract—We consider a cache-enabled K-user broadcast era-
sure packet channel in which a server with a library of N files
wishes to deliver a requested file to each user who is equipped
with a cache of a finite memory M . Assuming that the transmitter
has state feedback and user caches can be filled during off-peak
hours reliably by decentralized cache placement, we characterize
the optimal rate region as a function of the memory size, the
erasure probability. The proposed delivery scheme, based on the
scheme proposed by Gatzianas et al., exploits the receiver side
information established during the placement phase. Our results
enable us to quantify the net benefits of decentralized coded
caching in the presence of erasure. The role of state feedback
is found useful especially when the erasure probability is large
and/or the normalized memory size is small.

I. INTRODUCTION

The exponentially growing mobile data traffic is mainly
due to video applications (e.g. content-based video streams).
Such video traffic has interesting features characterized by
its asynchronous and skew nature. Namely, the user demands
are highly asynchronous (since they request when and where
they wish) and a few very popular files are requested over
and over. The skewness of the video traffic together with the
ever-growing cheap on-board storage memory suggests that
the quality of experience can be boosted by caching popular
contents at (or close to) end users in wireless networks. A
number of recent works have studied such concept under
different models and assumptions (see [1]–[3] and references
therein). In most of these works, it is assumed that the caching
is performed in two phases: placement phase to prefetch users’
caches under their memory constraints (typically during off-
peak hours) prior to the actual demands; delivery phase to
transmit codewords such that each user, based on the received
signal and the contents of its cache, is able to decode the
requested file. In this work, we focus on a coded caching
model where a content-providing server is connected to many
users, each equipped with a cache of finite memory [1]. By
carefully choosing the sub-files to be distributed across users,
coded caching exploits opportunistic multicasting such that a
common signal is simultaneously useful for all users even with
distinct file requests. A number of extensions of [1] have been
developed including the case of decentralized placement phase
[5], the case of non-uniform demands [4], [6], [9], the case of
unequal file sizes [10]. Although the potential merit of coded
caching has been highlighted in these works, many of them

have ignored the inherent features of wireless channels.
The main objective of this work is to quantify the benefit

of coded caching by relaxing the unrealistic assumption of
a perfect shared link. To this end, we model the bottleneck
link as a broadcast packet erasure channel (BPEC) to cap-
ture random failure or disconnection of any server-user link
that a packet transmission may experience especially during
high-traffic hours (deliverly phase). The placement phase is
performed either in a decentralized [5] or centralized manner
[1] over the erasure-free shared link. We further assume
that the broadcast packet erasure channel is memoryless and
independent and identically distributed (i.i.d.) across users
and that the server acquires the channel states causally via
feedback sent by users. Under this setting, we study the achiev-
able rate region of the cache-enabled BPEC as a function
of the main system parameters. Our contributions are two-
hold: 1) a comprehensive analysis of the algorithm proposed
by Gatzianas et al. [14], hereafter called GGT algorithm,
which enables to characterize the achievable rate of high-order
packet transmission; 2) characterization of the achievable rate
region of the BPEC with feedback under decentralized cache
placement for the case of distinct file requests. We prove that a
simple delivery scheme extending GGT algorithm to the case
of receiver side information can achieve the rate region.

Finally, we remark that a few recent works [7], [8] have
considered coded caching by relaxing the perfect shared
link assumption during delivery phase along the line of this
work. On the one hand, the work [7] studies the resource
allocation problem by modeling the bottleneck link as multi-
carrier fading channels. On the other hand, the authors in
[8] characterize the information theoretic tradeoff between
the reliable communication rate and the cache sizes in the
erasure broadcast channel with asymmetric erasure probability
across users. In both works, it is found that the performance
of coded caching is somehow limited by the worst case user.
Contrary to this rather pessimistic conclusion, we find that
state feedback is useful to improve the performance of coded
caching especially in the regime of a small memory size (with
respect to the number of files) and with a large erasure
probability. This is because the packets not received by the
intended users but overheard by unintended users can create
multicast opportunity for later transmission at the price of a
delay.
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Fig. 1. A cached enabled broadcast packet erasure channel for the case of
K = 3 and Fi = F for all i

The structure of the paper is as follows. Section II introduces
first the system model and definitions, and then highlights
the main results of this work. Sections III and IV prove
the converse and the achievability of the rate region of the
cache-enabled BPEC with feedback, respectively. Section V
provides some numerical results to show the performance of
our proposed delivery scheme and finally section VI concludes
the paper. Throughout the paper, we use the following no-
tational conventions. The superscript notation Xn represents
a sequence (X1, . . . , Xn) of variables. XI is used to denote
the set of variables {Xi}i∈I. Logarithm is to the base 2. The
entropy of X is denoted by H(X). We define Ik , {1, . . . , k}
for k = 1, . . . ,K and let [K] = {1, . . . ,K}.

II. SYSTEM MODEL AND MAIN RESULTS

A. System model and definitions

We consider a cache-enabled network depicted in Fig. 1
where a server is connected to K users through a broadcast
packet erasure channel (BPEC). The server has an access to N
files W1, . . . ,WN where file i, i.e. Wi, consists of Fi packets
of L bits each (FiL bits). Each user k has a cache memory
Zk of MF packets for M ∈ [0, N ], where F , 1

N

∑N
i=1 Fi is

the average size of the files. Under such a setting, consider a
discrete time communication system where a packet is sent in
each slot over the K-user BPEC. The channel input Xi ∈ Fq
belongs to the input alphabet of size L = log q bits1. The
channel is assumed to be memoryless and i.i.d. across users
so that in a given slot we have

Pr(Y1, Y2, . . . , YK |X) =

K∏
k=1

Pr(Yk|X) (1)

Pr(Yk|X) =

{
1− δ, Yk = X,

δ, Yk = E
(2)

where Yk denote the channel output of receiver k and E
denotes erasure. We let Si ∈ S = 2{1,...,K} denote the state of

1Throughout the paper, we assume that L > log2 K so that the achiev-
ability results of [14] hold.

the channel in slot i which indicates the users who received
correctly the packet. We assume that the transmitter obtains the
state feedback Si−1 at the end of slot i while all the receivers
know Sn at the end of the transmission.

The caching is performed in two phases: placement phase
and delivery phase. In placement phase, the server fills the
caches of all users Z1, . . . , ZK up to the memory constraint.
As in most works in the literature, we assume that the place-
ment phase is done without error and neglect the cost, since
it takes place usually during off-peak traffic hours. Once each
user k makes a request dk, the server sends codewords so that
each user can decode its requested file as a function of its cache
content and received signals during delivery phase. We pro-
vide a more formal definition below. A (M,Fd1 , . . . , FdK , n)
caching scheme consists of the following components.
• N message files W1, . . . ,WN are independently and

uniformly distributed over W1×· · ·×WN with Wi = FFi

q

for all i.
• K caching functions are given by φk : F

∑N
i=1 Fi

q → FFMq
map the files W1, . . . ,WN into the cache contents

Zk , φk(W1, . . . ,WN ) (3)

for each user k.
• A sequence of encoding functions which transmit at slot i

a symbol Xi = fi(Wd1 , . . . ,WdK , S
i−1) ∈ Fq , based on

the requested file set and the channel feedback up to slot
i − 1 for i = 1, . . . , n, where Wdk , dk ∈ {∅, 1, . . . , N},
denotes the message file requested by user k.

• A decoding function of user k is given by the mapping
gk : Fnq × FFMq × Sn → FFdk

q so that the decoded file
is Ŵdk = gk(Y

n
k , Zk, S

n) as a function of the received
signals Y nk , the cache content Zk, as well as the state
information Sn.

A rate tuple (R1, . . . , RK) is said to be achievable if, for every
ε > 0, there exists a (M,Fd1 , . . . , FdK , n) caching strategy
that satisfies
• reliability condition

max
(d1,...,dK)∈{1,...,N}K

max
k

Pr(gk(Y
n
k , Zk, S

n) 6=Wdk) < ε

• rate condition

Rk <
Fdk
n
. (4)

Throughout the paper, we express the entropy and the rate
in terms of packets in oder to avoid the constant factor L =
log2 q. In this work, we focus on the case of equal file size
Fi = F for simplicity.

B. Decentralized cache placement

We mainly focus on decentralized cache placement pro-
posed in [5] and adapt it to the packet-based broadcast channel
(with no error). Under the memory constraint of MF packets,
each user k independently caches a subset of MF

N packets of
file i, chosen uniformly at random for i = 1, . . . , N . By letting
Wi|K denote the sub-file of Wi stored in the cache memories



(known) of the users in K, the cache memory Zk of user k
after decentralized placement is given by

Zk = {Wi |K ∀k ⊆ K ⊆ [K], ∀i = 1, . . . , N.} (5)

To illustrate the placement strategy, consider an example of
K = 3 users and a file A of F packets. After the placement
phase, a given file A will be partitioned into 8 subfiles:

A = {A0, A1, A2, A3, A12, A13, A23, A123} (6)

where, for K ⊂ {1, 2, 3}, AK denotes the packets of file A
stored exclusively in the cache memories of users in K. By a
law of large numbers as F →∞, the size of |AK| measured
in packets is given by

|AK|
F

= p|K|(1− p)3−|K|. (7)

C. Main results

In order to characterize the rate region of a cached-enabled
BPEC with state feedback, we focus on the case of most
interest with N ≥ K and assume further that users’ demands
are all distinct.

Theorem 1. The optimal rate region of the cached-enabled
BPEC with state feedback under decentralized cache place-
ment is given by

K∑
k=1

(
1− M

N

)k
1− δk

Rπk
≤ 1 (8)

for any permutation π of {1, . . . ,K}.

The proof of Theorem 1 is provided in upcoming sections.
This region yields the following symmetrical rate Rk =
Rsym(K) for all k with

Rsym(K) =
1∑K

k=1
(1−M

N )
k

1−δk

. (9)

The following corollary holds.

Corollary 1. The minimum number of transmissions to deliver
a distinct file to each user in the cached-enabled BPEC under
decentralized cache placement is given by

Ttot = Θ(F )

K∑
k=1

(
1− M

N

)k
1− δk

(10)

as F →∞.

The following remarks are in order. The results cover some
special cases of interest. For the case without cache memory
M = 0, the region in Theorem 1 simply boils down to the
BPEC with state feedback [14]. For the case of no erasure, the
number of transmission in Corollary 1 scaled by F is precisely
the rate-memory tradeoff under decentralized cache placement
for N ≥ K [5]. In fact, after some simple algebra, the number

of transmissions normalized by the file size can be rewritten
as

Ttot
F

=
N

M

(
1− M

N

){
1−

(
1− M

N

)K}
. (11)

This coincides with the “rate” measured as the number of files
to be sent over the shared perfect link as defined by Maddah-
Ali and Niesen [5]. In the following sections we provide the
proof of the converse and achievability.

III. OPTIMALITY OF DELIVERY PHASE

In this section, we provide the converse part of Theorem
1 under the assumption that decentralized cache placement is
performed. We let p = M

N denote the probability of storing
a file in a given user’s cache memory. First we provide two
useful lemmas.

Lemma 1. [11, Lemma 5] For the broadcast erasure channel
with independent erasure events (with probability {δk}) for
different users, if U is such that Xi ↔ UY i−1I Si−1 ↔
(Si+1, . . . , Sn), ∀ I,

1

1−
∏
i∈I δi

H(Y nI |U, Sn) ≤
1

1−
∏
i∈J δi

H(Y nJ |U, Sn),

(12)

for any sets I, J such that J ⊆ I ⊆ {1, . . . ,K}.

Proof: Appendix A.

Lemma 2. Under decentralized cache placement [5], the
following equality holds for any i and K ⊆ [K]

H(Wi | {Zk}k∈K) = (1− p)|K|H(Wi).

Proof:

H(Wi | {Zk}k∈K)

= H(Wi | {Wl|J}J:J∩K6=∅, l=1,...,N ) (13)
= H(Wi | {Wi|J}J:J∩K6=∅) (14)
= H({Wi|J}J:J∩K=∅) (15)

=
∑

J:J∩K=∅

H(Wi|J) (16)

=
∑

J:J∩K=∅

p|J|(1− p)K−|J|H(Wi) (17)

= H(Wi)

K−|K|∑
l=0

(
K − |K|

l

)
pl(1− p)K−l (18)

= (1− p)|K|H(Wi) (19)

where the first equality follows from (5), the second equality
follows due to the independence between message files, the
third equality follows by identifying the unknown parts of Wi

given the cache memories of K and using the independence
of all sub-files; (16) is again from the independence of the
sub-files; (17) is from the law of large number similarly as in
(7); finally the last equality follows by applying the binomial
theorem.



We apply genie aided bounds to create a degraded erasure
broadcast channel by providing the messages, the channel out-
puts, as well as the receiver side information (contents of cache
memories) to enhanced receivers. We focus on the case without
permutation and the demand (d1, . . . , dK) = (1, . . . ,K) due
to the symmetry. We have for user k, k = 1, . . . ,K,

n(1− p)kRk = (1− p)kH(Wk) (20)

= H(Wk|ZkSn) (21)

≤ I(Wk;Y
n
Ik
|ZkSn) + nε′n,k (22)

≤ I(Wk;Y
n
Ik
,W k−1 |ZkSn) + nε′n,k (23)

= I(Wk;Y
n
Ik
|W k−1ZkSn) + nε′n,k (24)

where the second equality is by applying Lemma 2 and noting
that Sn is independent of others, (22) is from the Fano’s
inequality; the last equality is from I(Wk;W

k−1 |ZkSn) = 0.
Putting all the rate constraints together, and letting εn,k ,
ε′n,k/(1− p)k,

n(1− p)(R1 − εn,1) ≤ H(Y n1 |Z1S
n)−H(Y n1 |W1Z1S

n)

...

n(1− p)K(RK − εn,K) ≤ H(Y nIK |W
K−1ZKSn)

−H(Y nIK |W
KZKSn) (25)

We now sum up the above inequalities with different weights,
and applying Lemma 1 for K − 1 times, namely, for k =
1, . . . ,K − 1,

H(Y nIk+1
|W kZk+1Sn)

1− δk+1
≤
H(Y nIk+1

|W kZkSn)

1− δk+1
(26)

≤
H(Y nIk |W

kZkSn)

1− δk
(27)

where the first inequality follows because removing condition-
ing increases the entropy. Finally, we have

K∑
k=1

(1− p)k

1− δk
(Rk − εn)

≤ H(Y n1 |Z1S
n)

n(1− δ)
−
H(Y nIK |W

KZKSn)

n(1− δK)
(28)

≤ H(Y n1 )

n(1− δ)
≤ 1 (29)

which establishes the converse proof.

IV. ACHIEVABILITY

Exploiting the polyhedron structure, the vertices of the rate
region (8) can be proven to be

Rk =

{
Rsym(|K|), k ∈ K

0, k /∈ K
(30)

for K ⊆ [K]. The proof follows the same footsteps as [13,
Section V] and shall be omitted. This means that when only
|K| users are active in the system, each active user achieves the
same symmetrical rate as the reduced system of dimension |K|.

Then, it suffices to prove the achievability of the symmetrical
rate for a given dimension K. To this end, we first revisit the
algorithm proposed by Gatzianas et al. [14], hereafter called
GGT algorithm, and characterize the high-order transmission
rates. Then, we extend GGT algorithm to the context of the
cached-enabled broadcast erasure packet channel.

A. GGT algorithm revisited

The algorithm proposed by Gatzianas et al. [14] consists
of K phases. In each phase k, the transmitter sends order-k
packets simultaneously useful to a subset of k users. A phase
k is further partitioned into

(
K
k

)
subphases in each of which

the transmitter sends packets intended to a unique subset of k
users. We wish to provide an informal but intuitive description
of GGT algorithm along the line of [13] by assuming the
number of private packets N0 per user is arbitrarily large so
that the length of each phase becomes deterministic. First we
introduce the basic notions together with key parameters. To
simplify the description of the algorithm, we let i, j denote
the cardinality of I, J.
• tj denotes the duration of a given subphase intended to
j users in slots. The duration of phase j is given by
Tj =

(
K
j

)
tj .

• A packet of order-i becomes order-j for a given user for
i < j ≤ K if erased by this user and all users in [K] \ J
but received by J \ I. The probability of this event is
denoted by αi→j = δK−j+1(1− δ)j−i. We let

Ni→j = tiαi→j (31)

denote the number of such packets.
• An order-j packet is consumed for a given user if this

user or at least one user in [K] \ J receives it. The
probability of this event is denoted by βj = 1− δK−j+1.

Due to the symmetry across users, we can focus on any
arbitrary user to define the parameters Ni→j and βj . Under
this setting, the length of order-j subphase is given recursively
by

tj =
1

βj

j−1∑
i=1

(
j − 1

i− 1

)
Ni→j . (32)

Here is a brief summary of the algorithm:
1) Phase 1 (order-1 transmission): send N0 private uncoded

packets to each user. This generates N1→j order-j packets
to be sent during phase j = 2, . . . ,K.

2) Phase j (order-j transmission) for j = 2, . . . ,K: in each
subphase intended to a subset J of users, send random
linear combinations2 of

∑j−1
i=1

(
j
i

)
Ni→j packets for all

I ⊆ J. This subphase generates Nj→j′ order-j′ packets
to be sent in phase j′ > j. Proceed sequentially for all
subsets J of cardinality j.

Fig. 2 illustrates the phase (subphase) organization for
K = 3 and the packet evolution viewed by user 1. The

2The exact generation method to generate the linear combination is ex-
plained in [14] and shall not be repeated here.



Fig. 2. Phase organization for K = 3 and packet evolution viewed by user
1.

order-3 packet is created both from phases 1 and 2. More
precisely, the order-1 packets for user 1 becomes order-3 (via
linear combination) if erased by user 1 and received by others
(ERR). The number of such packets is N1→3. Order-2 packets
intended to {1, 2} becomes order-3 if erased by user 1 but
received by user 3 (EXR) while packets intended to {1, 3}
become order-3 if erased by user 1 and received by user 2
(event EXR). The total number of order-3 packets created
from phase 2 is 2N2→3.

Lemma 3. In the K-user erasure broadcast channel with
feedback, the sum rate of order-i packets, denoted by Ri(K)
is upper bounded by

Ri(K) ≤
(
K
i

)
∑K−i+1
k=1

(K−k
i−1 )

1−δk

. (33)

Algorithm GGT achieves the RHS of (33) with equality.

Proof: Appendix B.
As a corollary of Lemma 3, the symmetrical rate (9) can

be rewritten in a convenient form.

Corollary 2. The order-1 rate, R1(K) = KRsym of the
K-user broadcast erasure channel with feedback can be
expressed as a function of R2, . . . , RK as follows.

R1(K) =
KN0

KN0

β1
+
∑K
j=2

(Kj )N1→j

Rj(K)

(34)

where KN0

β1
is the duration of phase 1,

(
K
j

)
N1→j corresponds

to the total number of order-j packets generated in phase 1.

Proof: Appendix C.

B. Proposed delivery scheme

Now we are ready to describe the delivery phase by ex-
tending GGT algorithm to the context of the cached-enabled
network. For simplicity, we first provide an example of K = 3
users and three files A,B,C of size F packets each. After
decentralized placement phase, each file is partitioned into 8
subfiles as seen in (6). Obviously, the subfile AJ for 1 ∈ J, i.e.
A1, A12, A13, A123 are received by the destination and shall
not be transmitted in delivery phase. The same holds for BJ

for 2 ∈ J as well as CJ for 3 ∈ J.
In the presence of users’ caches, the packets to be sent

in phases j are composed by order-j packets created by the

algorithm and placement phase. By treating placement phase
as phase 0, we let N0→j denote the number of order-j packets
generated in placement phase for a subset of j users for j ≥ 2.
For j = 1, we use a short-hand notation N0→1 = N0. By
focusing on user 1, we have

N0 = |A0| = F (1− p)3, N0→3 = |A23| = Fp2(1− p)
N0→2 = |A2| = |A3| = Fp(1− p)2. (35)

a) Phase 1: The transmitter sends A0, B0, C0 in TDMA.
Each packet is repeated until at least one user receives it. After
a subphase intended to user 1, the subfile A0 is partitioned into:
A0 = {A01, A02, A03, A012, A013, A023, A0123} where A0J

denotes with some abuse of notation the part of A0 received
by receivers in J for J ⊆ {1, 2, 3}. In other words, a subphase
creates order-j packets whose number is given by

N1→j+1 = |A0J| =
N0

1− δ3
(1− δ)jδ3−j (36)

for any J of cardinality j = 1, 2.
b) Phase 2: The transmitter sends packets in three sub-

phases for users {1, 2}, {1, 3}, {2, 3}, where each subphase
is of size

t2 =
N1→2 +N0→2

1− δ2

• subphase {1, 2}: linear combinations F between A2, A02

and B1, B01

• subphase {1, 3}: linear combinations G between A3, A03

and C1, C01

• subphase {2, 3}: inear combinations H between B3, B03

and C2, C02

Phase 2 creates order-3 packets given as linear combinations
of F13, F23, G12, G23, H12, H13. The size of any of these
packets is given by N2→3 = |F13| = t2δ(1− δ)2.

c) Phase 3: Send order-3 packets obtained by linear
combinations of A23, B13, C12 created in placement phase,
A023, B013, C012 created in phase 1, and F13, F23, G12, G23,
H12, H13 created in phase 2. The length of phase 3 is given
by

T3 = t3 =
N0→3 +N1→3 + 2N2→3

1− δ
. (37)

For the three-user example, it is possible to compute the
length of each phase recursively to find the symmetrical
rate. In fact, it suffices to consider additionally the packets
generated in phase 0 by adding N0→j in (32). However, this
straightforward approach is no longer feasible for a large
K. Therefore, we apply Corollary 2 to find the symmetrical
rate. From Lemma 3, we have R2(3) = 1−δ2

1+2(1+δ) and
R3(3) = 1− δ. Plugging (35), (36), we readily obtain

R1
cache(3) = 3

(
1− p
1− δ

+
(1− p)2

1− δ2
+

(1− p)3

1− δ3

)−1
. (38)

which coincides with 3Rsym(3).
A generalization to the K-user case is rather trivial since the

placement phase only yields the high-order packets to be sent
together with those generated by the algorithm. The achievable



symmetrical rate is obtained by modifying (34) by including
the packets generated from placement phase as

R1
cache(K) =

KN0

KN0

β1
+
∑K
j=2

(Kj )(N0→j+N1→j)

Rj(K)

. (39)

By repeating the same steps as the proof of Corollary 2,
it readily follows that the above expression coincides with
KRsym(K).

V. NUMERICAL EXAMPLES

In this section we provide some numerical examples to
show the performance of our proposed delivery scheme. Fig. 3
illustrates the tradeoff between the erasure probability and the
memory size for the case of K = 3. Each curve corresponds
to a different symmetrical rate Rsym(3). The arrow shows
the increasing Rsym from 1/3, corresponding to the broadcast
channel without memory M = 0 and erasure δ = 0, to infinity.
The cache memory increases the rate performance even in
the presence of erasure and the benefit of memory cache is
significant for smaller erasure probabilities as expected from
the analytical expression. Fig. 4 compares the number of
transmission Ttot, normalized by the file size F , achieved by
our delivery scheme with feedback and the scheme without
feedback. We consider the system with N = 100,K = 10
and the erasure probabilities of δ = 0 (perfect link), 0.2, and
0.6. We observe that state feedback can be useful especially
when the memory size is small and the erasure probability
is large. In fact, it readily follows that the rate region of the
cached-enabled broadcast channel with no feedback is given
by

K∑
k=1

(
1− M

N

)k
1− δ

Rπk
≤ 1 (40)

yielding

Ttot−noFB = F

∑K
k=1

(
1− M

N

)k
1− δ

. (41)

This corresponds to the total number of transmission over the
perfect link expanded by a factor 1

1−δ > 1 because any packet
must be received by all users whatever the order of the packet
is. Recalling that the feedback is useless for multicasting, the
merit of feedback becomes significant if packets of lower order
dominate the order-K packets. The case of small p = M

N and
large erasure probability corresponds to such a situation.

VI. CONCLUSIONS

In this work, we studied decentralized coded caching in
the broadcast erasure packet channels with state feedback.
Our main contribution is the characterization of the achievable
rate region of the channel at hand for the worst case demand
such that users’ requests are all different in the regime of a
large number of files N ≥ K. Contrary to the pessimistic
conclusion made by recent work [7], [8] , it is found that the
performance of coded caching is no longer limited by the worst
user in the presence of state feedback. In fact, state feedback

is useful to improve the rate performance especially when the
erasure probability is large and/or the normalized memory size
is small.

While we restricted ourselves to some regime of interest and
to decentralized cache placement for the sake of simplicity, our
work can be easily extended to other regimes and the case of
centralized coded caching. For example, let us consider the
case where subsets of users request a common file and the
transmitter must convey a mixture of different-order messages
(typically in the regime of N < K), our proposed delivery
scheme can be extended to such situation along the line of
[12]. It should be noticed that the converse proof on the
different-order message rate in Lemma 3 is already general
enough to cover all possible file requests. Interestingly, the
proposed delivery algorithm can apply directly to centralized
coded caching by starting phase-(b + 1) transmission where
b = KM

N is the ratio of the aggregate memory to the library
size. Other interesting yet non-trivial generalization includes
the case of non-uniform popularity distribution as well as the
case of online coded caching.
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Fig. 3. The tradeoff between the memory and the erasure for K = 3. Fig. 4. The number of transmission Ttot as a function of memory size M
for N = 100,K = 10.

APPENDIX

ELEMENTS OF PROOFS

A. Proof of Lemma 1

We have, for J ⊆ I,

H(Y nI |U, Sn) (42)

=

n∑
i=1

H(YI,i |Y i−1I , U, Sn) (43)

=

n∑
i=1

H(YI,i |Y i−1I , U, Si−1, Si) (44)

=

n∑
i=1

Pr{Si ∩ I 6= ∅}H(Xi |Y i−1I , U, Si−1, Si ∩ I 6= ∅)

(45)

=

n∑
i=1

(
1−

∏
i∈I

δi
)
H(Xi |Y i−1I , U, Si−1) (46)

≤
(
1−

∏
i∈I

δi
) n∑
i=1

H(Xi |Y i−1J , U, Si−1) (47)

where the first equality is from the chain rule; the second
equality is due to the current input does not depend on future
states conditional on the past outputs/states and U ; the third
one holds since YI,i is deterministic and has entropy 0 when
all outputs in I are erased (Si ∩ I = ∅); the fourth equality
is from the independence between Xi and Si; and we get the
last inequality by removing the terms Y i−1

I\J in the condition
of the entropy. Following the same steps, we have

H(Y nJ |U, Sn) =
(
1−

∏
i∈J

δi
) n∑
i=1

H(Xi |Y i−1J , U, Si−1)

(48)

from which and (47), we obtain (12).

B. Proof of Lemma 3

We first provide the converse proof. Similarly to section III,
we build on genie-aided bounds and the channel symmetry
inequality. Lemma 1. Let us assume that the transmitter
wishes to convey the message WK to a subset of users
K ⊆ {1, . . . ,K} and receiver j wishes to decode all messages
W̃j

∆
= {WK}j∈K for j = 1, . . . ,K. The messages are all

independent. We let RK denote the rate of the message WK.
In order to characterize the upper bound on the |K|-th order
message rate RK, we use genie-aided bounds by assuming that
receiver k provides Y k to receivers k + 1 to K. Under this
setting and using the Fano’s inequality, we have for receiver
1 :

n

 ∑
1∈J⊆[K]

RJ − ε

 = H(Y n1 |Sn)−H(Y n1 |W̃1S
n) (49)

For receiver k = 2, . . . ,K, we have:

n

 ∑
k∈J⊆{k,...,K}

RJ − ε

 = H(W̃k|W̃ k−1Sn) (50)

≤ I(W̃k;Y
n
1 . . . Y nk |W̃ k−1Sn) (51)

= H(Y n1 . . . Y nk |W̃ k−1Sn)−H(Y n1 . . . Y nk |W̃ kSn) (52)

Summing up the above inequalities with appropriate weights
and applying Lemma 1 K−1 times, we readily obtain for this
user ordering:

n

(
K∑
k=1

∑
k∈J⊆{k,...,K}RJ

1− δk
− ε

)
≤ H(Y n1 |Sn)

1− δ
(53)

≤ 1. (54)

We further impose the symmetrical rate condition such that
RK = RK′ for any subset K,K′ with equal cardinality and
define the j-th order message rate as Rj(K) = RK for any



K of cardinality j. By focusing on J of the same cardinality
j in (53), the upper bound on Rj(K) is given by

Rj(K) ≤ 1∑K
k=1

(K−k
j−1 )
1−δk

. (55)

In order to prove the achievability of the i-th order rate, we
proceed GGT algorithm from phase i by sending Ni packets
to each subset I ⊆ [K] with |I| = i. The length of j-order
subphase in (32) is now given by

tij(Ni) =
1

βj

j−1∑
l=i

(
j − 1

l − 1

)
N i
l→j , j > i (56)

where we added the index i and the dependency on Ni to
clarify the fact that the algorithm starts by sending Ni packets
in each subphase in phase i with N i

l→j = tilαl→j . The
dependency on Ni might be omitted if it clear. For j = i,
we have

tii(Ni) =
Ni
βi

(57)

The sum rate of order-i messages achieved by GGT algorithm
is given by

RiGGT(K) =

(
K
i

)
Ni∑K

j=i

(
K
j

)
tij(Ni)

∀j. (58)

We notice that the number of transmission from phase j to
K can be expressed by grouping subphases in the following
different way:

K∑
j=i

(
K

j

)
tij(Ni) =

K∑
j=i

U ij (59)

where

U ij =

j∑
l=i

(
j − 1

l − 1

)
til ∀j ≥ i (60)

By following similar steps as [14, Appendix C], we obtain the
recursive equation given by

U ij =
1

βj

j−i∑
l=1

(
j − 1

l

)
(−1)l+1βj−lU

i
j−l (61)

for j > i. Since we have U ii = tii = Ni

βi
and using

the equality
(
j−1
c

)(
j−c−1
i−1

)
=
(
j−1
j−i
)(
j−i
c

)
and the binomial

theorem
∑n
k=0

(
n
k

)
xkyn−k = (x+ y)n, it readily follows that

we have

U ij =
Ni
βj

(
j − 1

j − i

)
, j ≥ i. (62)

By plugging the last expression in (58), we have

RiGGT(K) =

(
K
i

)
Ni∑K

j=i
Ni

βj

(
j−1
j−i
) (63)

=

(
K
i

)
∑K−i+1
k=1

(K−k
i−1 )

βK−k+1

(64)

which coincides the upper bound of (33). This establishes the
achievability proof.

C. Proof of Corollary 2

We prove that the RHS of (34), denoted here by f , coincides
with R1(K) by exploiting the result of Lemma 3. By replacing
Ri(K) with RiGGT(K) defined in (58) for Ni = N1→i for
i ≥ 2 and N1 = N1→1, we have

f =
KN1

KN1

β1
+
∑K
i=2

∑K
j=i

(
K
j

)
tij(N1→i)

(65)

=
KN1

KN1

β1
+
∑K
j=2

(
K
j

)∑j
i=2 t

i
j(N1→i)

(66)

To prove that f = R1
GGT(K) =

KN1→j∑K
j=1 (

K
j )tj

where tj is
defined in (32), it suffices to prove the following equality:

tj(N1) =

j∑
i=2

tij(N1→i) ∀j ≥ 2 (67)

For j = 2, the above equality follows from (32) and (57).

t2(N1) =
N1→2

β2
= t22(N1→2). (68)

Now suppose that (67) holds true for 2 ≤ l ≤ j − 1 and we
prove it for j. From (32) we have

tj(N1) =
1

βj

j−1∑
l=1

(
j − 1

l − 1

)
Nl→j (69)

=
1

βj

[
j−1∑
i=2

j−1∑
l=i

(
j − 1

l − 1

)
N i
l→j +N1→j

]
(70)

=

j−1∑
i=2

tij + tjj (71)

where the second equality follows by recalling Nl→j = tlαl→j
and plugging the recursive expression (67) in tl for l =
2, . . . , j − 1, the last equality is due to (57). Therefore, we
verify the desired equality also for j. This yields

f =
KN1

Kt11(N1) +
∑K
j=2

(
K
j

)∑j
i=2 t

i
j(N1→j)

(72)

=
KN1

Kt11(N1) +
∑K
j=2

(
K
j

)
t1j (N1→j)

(73)

=
KN1∑K

j=1

(
K
j

)
t1j (N1)

(74)

= R1
GGT(K). (75)
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