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Abstract

In recent years rank aggregation has received significant attention from the machine learning
community. The goal of such a problem is to combine the (partially revealed) preferences over
objects of a large population into a single, relatively consistent ordering of those objects. How-
ever, in many cases, we might not want a single ranking and instead opt for individual rankings.
We study a version of the problem known as collaborative ranking. In this problem we assume
that individual users provide us with pairwise preferences (for example purchasing one item over
another). From those preferences we wish to obtain rankings on items that the users have not had
an opportunity to explore. The results here have a very interesting connection to the standard
matrix completion problem. We provide a theoretical justification for a nuclear norm regularized
optimization procedure, and provide high-dimensional scaling results that show how the error in
estimating user preferences behaves as the number of observations increase.

1 Introduction

We have seen a number of recent advancements to the theory of rank aggregation. This problem has
a number of applications ranging from marketing and advertisements to competitions and election.
The main question of rank aggregation is how to consistently combine various individual preferences.
This type of data is frequently available to us: what webpage did a user select, who won the chess
match, which movie did a user watch, etc.... All of these examples yield comparisons without explicitly
revealing an underlying score. That is, only the preference is observed, not necessarily the strength
of the preference (in the case of sports one might argue that the score indicates such a magnitude
difference). Additionally, numeric scores have been shown to be inconsistent and subject to variations
in calibration in various contexts. Given how natural the problem of rank aggregation is, there has
been a wide body recent [9, 2] and classical work [3, 4, 7, 17] to understand how to consistently
combine preferences. However, all of these methods have a major drawback: they aim to find one
ranking. In many settings, various individuals will have separate preferences, and we wish to model
those distinctions. For example, we might wish to provide personalized ads, search results, or movie
recommendations on a per user basis. In standard contexts we assume that there is one consistent
ranking that does well to approximate the behavior of all users, but these aggregation methods cannot
model the discrepancies across users. Our goal is to understand how to analyze a method that has the
flexibility to account for user differences and can be adaptive; that is, if there are no differences, then
the method should have stronger performance guarantees. This task can be seen as rank aggregation
analog to the standard collaborative filtering problem.

While there have been significant theoretical advances in the understanding of collaborative filter-
ing, or more generally matrix completion [6, 13, 21], there has been far less work in understanding how
to perform the proposed type of collaborative ranking. Recent work has demonstrated that taking
rankings into consideration can significantly improve upon rating prediction accuracy [15, 28, 29, 30],
thus it is a natural question to understand how such collaborative ranking methods might behave. One
reason for this discrepancy is this theoretical understanding of single user rank aggregation is already
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a very challenging problem as discussed above. Whereas, single rating aggregation is trivial: take an
average. Another, possibly more interesting distinction is in the amount of apparent information made
available. In the standard matrix completion setting we have direct (albeit noisy) access to the true
underlying ratings. Therefore, if the noise is sufficiently small, we could order the information into
a list. On the other hand, in the collaborative ranking problem we never have direct access to the
true signal itself and only observe relative differences. In some sense, this is a harder problem [25]
owing to the fact that the comparisons are in themselves functions of the underlying ratings. When
we are given, for example, p ratings, then we can convert that to

(
p
2

)
pairwise comparisons. This

crude analysis seems to indicate that we would require far greater pairwise comparisons in order to
recover the true underlying matrix. We will show that this increase in the number of examples is not
required. In the sequel, we will show that under a natural choice model for collaborative ranking,
the total number of comparisons needed to estimate the parameters is on the same order as the total
number of explicit ratings observations required in the standard matrix completion literature. Thus,
we demonstrate that collaborative ranking based pair-wise comparisons from a simple and natural
model can yield very similar results as in the standard matrix completion setting.

Past Work As alluded to above there has been some work in understanding collaborative rank-
ings and learning user preferences. The nuclear norm approach is fundamentally a regularized M -
estimator [19]. The application of the nuclear norm approach to collaborative ranking was first pro-
posed by Yi et al. [30]. There work showed very good empirical evidence for using such a nuclear
norm regularized based approach. However, that work left open the question of theoretical guaran-
tees. Other results also assume that the underlying ratings are in fact available. However, rather
than inferring unknown ratings their goal is to infer unknown ranked preferences from known ratings.
That is, they wish to deduce if a user will prefer one item over another rather than guess what their
ratings of that item might be [15, 29, 23]. The work by by Weimer et. al. [29] also uses a nuclear norm
regularization, but that work assumes access to the true underlying ratings, while we assume access
only to pairwise preferences. Other algorithms aggregate users ratings by exploiting the similarity of
users by nearest neighbor search [5, 28], low-rank matrix factorization [22, 23, 29], or probabilistic
latent model [10, 16]. However, as noted, numeric ratings can be highly varied even when preferences
are shared.

Pairwise preference based ranking methods can effectively address the limitations of rating based
methods. Furthermore, numerical ratings can always be transformed into pairwise comparisons. Sali-
mans et al. [24] use a bilinear model and do estimation in the Bayesian framework. Liu et al. [16] use
the Bradley-Terry-Luce (BTL) Model. Rather than our low-rank setting, they characterize the simi-
larity between different users by using a mixture model. Both methods are computationally inefficient.
More important, all these methods fail to provide theoretical justifications of their algorithms.

There are some theoretical works for learning a single ranking list from pairwise comparisons. Work
by Jamieson and Nowak [11] seeks to exploit comparisons to significantly reduce the number of samples
required to obtain a good estimate of an individual’s utility function. Their method demonstrates that
when the objects exist in a lower-dimensional space, then the number of queries required to learn the
user’s utility significantly decreases. One drawback of their approach is that the authors must assume
that descriptors or features for the underlying objects are provided; which is not necessarily the case
in all contexts. Negahban et al. [18] propose the Rank Centrality algorithm and show rate optimal
(up to log factors) error bounds of their algorithm under BTL model. They also provide theoretical
analysis of penalized maximum likelihood estimator, which serves as an inspiration of our work.

Our contributions In this report, we present the first theoretical analysis of a collaborative ranking
algorithm under a natural observation model. The algorithm itself is quite simple and falls into the
framework of regularized M -estimator [19]. We provide finite sample guarantees that hold with high
probability on recovering the underlying preference matrix. Furthermore, the techniques outlined
in the proof section our general and can be applied to a variety of sampling operators for matrix
completion. For example, a simple modification of our proof yields a different class of results for the
“one-bit” matrix completion problem [8].
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In the following we present an explicit description of our model in Section 2. In Section 3 we
present the proposed estimation procedure that we wish to analyze. Finally, in Section 4 we provide a
statement of the main theorem followed by experiments in Section 5. Finally, in Section 6 we present
the proof.

Notation: For a positive integer n we will let [n] = {1, 2, . . . , n} be the set of integers from 1 to
n. For two matrices A, B ∈ R

d1×d2 of commensurate dimensions, let 〈〈A, B〉〉 = trace(ATB) be the
trace inner product. For a matrix A ∈ R

d1×d2 let Ai,j denote the entry in the ith row and jth column
of A. Take σi(A) to be the ith singular value of A where σi(A) ≥ σi+1(A). Let |||A|||2 = σ1(A),

|||A|||nuc =
∑min(d1,d2)

j=1 σj(A) be the nuclear norm of A, i.e. the sum of the singular values of A, and

|||A|||F =
√
〈〈A, A〉〉 =

√∑min(d1,d2)
j=1 σ2

j (A) to be the Frobenius norm of A. Finally, we let ‖A‖∞ =

maxi,j |Ai,j | to be the elementwise infinity norm of the matrix A.

2 Problem Statement and Model

In this section we provide a precise description of the underlying statistical model as well as our
problem.

2.1 Data and Observation Model

Recall that each user provides a collection of pairwise preferences for various items. We assume that
the data are the form (X(i), yi) where X

(i) ∈ R
d1×d2 . We assume that the ith piece of data is a query

to user k(i) asking if she prefers item l(i) to item j(i). If she does, then yi = 1, otherwise yi = 0. In
other words, yi = 1 if user k(i) prefers item l(i) to item j(i), otherwise yi = 0. Let the underlying
(unknown and unobservable) user preferences be encoded in the matrix Θ∗ ∈ R

d1×d2 such that Θ∗
k,j is

the score that user k places on item j. We will also assume that |||Θ∗|||F ≤ 1 to normalize the signal.
For identifiability we assume that the sum of the rows of Θ∗ is equal to zero. We must also assume
that ‖Θ∗‖∞ ≤ α√

d1d2
. Similar assumptions are made in the matrix completion literature and is known

to control the “spikyness” of the matrix. Both of these assumptions are discussed in the sequel. For
compactness in notation we let X(i) =

√
d1d2e

(k(i))(e(l(i)) − e(j(i)))T where e(a) is the standard basis
vector that takes on the value 1 in the ath entry and zeros everywhere else. Taking the trace inner
product between Θ∗ and X(i) yields

〈〈Θ∗, X(i)〉〉 =
√
d1d2 (Θ∗

k(i),l(i) −Θ∗
k(i),j(i) )

and denotes the relative preference that user k(i) has for item l(i) versus j(i). Our observation model
takes the form

P(yi = 1|l(i) = l, j(i) = j, k(i) = k) =
exp(〈〈Θ∗, X(i)〉〉)

1 + exp(〈〈Θ∗, X(i)〉〉) (1)

The above is the standard Bradley-Terry-Luce model for pairwise comparisons. In full generality, one
can also consider the Thurstone models for pairwise preferences.

We shall take Θ∗ to be low-rank or well approximate by a low-rank matrix. This is analogous to
the matrix completion literature and models the fact that the underlying preferences are derived from
latent low-dimensional factors. In this way, we can extract features on items and users without explicit
domain knowledge.

Discussion of assumptions: In the above we assume that the ℓ∞ norm of the matrix is bounded.
This form of assumption is required for estimating the underlying parameters of the matrix and can be
thought of as an incoherence requirement in order to ensure that the matrix itself is not orthogonal to
the observation operator. For example, suppose that we have a matrix that is zeros everywhere except
in one row where we have a single +1 and a single −1. In that case, we would never be able to recover
those values from random samples without observing the entire matrix. Hence, the error bounds that
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we derive will include some dependency on the infinity norm of the matrix. If generalization error
bounds are the desired outcome, then such requirements can be relaxed at the expense of slower error
convergence guarantees and no guarantees on individual parameter recovery. Also noted above is the
requirement that the sum of each of the rows of Θ∗ must be equal to 0. This assumption is natural
owing to the fact that we can ever only observe the differences between the intrinsic item ratings.
Hence, even if we could exactly observe all of those difference, the solution would not be unique up to
linear offsets of each of the rows. We refer the reader to other work in matrix completion [6, 21] for a
discussion of incoherence.

3 Estimation Procedure

We consider the following simple estimator for performing collaborating ranking. It is an example of
a regularized M -estimator [19].

Θ̂ = argminΘ∈Ω

1

n

n∑

i=1

log(1 + exp(〈〈Θ, X(i)〉〉)) − yi〈〈Θ, X(i)〉〉
︸ ︷︷ ︸

Ln(Θ)

+λ|||Θ|||nuc, (2)

where Ln(Θ) is the random loss function and

Ω = {A ∈ R
d1×d2 | ‖A‖∞ ≤ α, and ∀j ∈ [d1] we have

d2∑

k=1

Aj,k = 0}

This method is a convex optimization procedure, and very much related to the matrix completion
problems studied in the literature. A few things to note about the constraint set presented above.
While in practice, we do not impose the ℓ∞ constraint, the theory requires us to impose the condition
and an interesting line of work would be to remove such a constraint. A similar constraint appears in
other matrix completion work [21]. As discussed above, the second condition is a fundamental one. It
is required to guarantee identifiability in the problem even if infinite data were available.

The method itself has a very simple interpretation. The random loss function encourages the
recovered parameters to match the observations. That is, if yi = 1 then we expect that Θ∗

k(i),l(i) >
Θ∗
k(i),j(i). The second term is the nuclear norm and that encourages the underlying matrix Θ∗ to be

low-rank [6].

4 Main Results

In this section we present the main results of our paper, which demonstrates that we are able to recover
the underlying parameters with very few total observations. The result is analogous to similar results
presented for matrix completion [13, 12, 21],

Theorem 1. Under the described sampling model, let d = (d1 + d2)/2, assume n < d2 log d, and take

λ ≥ 32
√

d log d
n . Then, we have that the Frobenius norm of the error ∆ = Θ̂−Θ∗ satisfies

|||∆|||F ≤ c1 max

(
α,

1

ψ(2α)

)
max





√
rd log d

n
,



√
rd log d

n

min{d1,d2}∑

j=r+1

σj(Θ
∗)




1/2




with probability at least 1− 2
d2 for some universal constant c1.

The above result demonstrates that we can obtain consistent estimates of the parameters Θ∗ using
the convex program outlined in the previous section. Furthermore, the error bound behaves as a
parametric error rate, that is the error decays as 1

n . The result also decomposes into two terms. The
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first is the penalty for estimating a rank r matrix and the second is the price we pay for estimating an
approximately low-rank matrix Θ∗ with a rank r matrix. These results exactly match analogous results
in the matrix completion literature barring one difference: there is also a dependency on the function ψ.
However, this necessity is quite natural since if we are interested in parameter recovery, then it would
be impossible to distinguish between extremely large parameters. Indeed, this observation is related
to the problem of trying to measure the probability of a coin coming up heads when that probability
is extremely close to one. Other results in matrix completion also discuss such a requirement as well
as the influence of the spikyness parameter [13, 8]. The proof of this result, for which we provide an
outline in Section 6, follows similar lines as other results for matrix completion.

5 Experiments

Here we present simulation results to demonstrate the accuracy of the error rate behavior predicted
by Theorem 1. To make the results more clean, we consider the exact low rank case here, which
means each individual user’s preference vector is the linear combination of r preference vectors. Then
according to our main results, the empirical squared Frobenius norm error |||Θ̂ − Θ∗|||2F under our

estimation procedure (2) will be scaled as rd log d
n . For all the experiments, we solved the convex

program (2) by using proximal gradient descent with step-sizes from [1] for fast convergence via our
own implementation in R.
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Figure 1: Plots of squared Frobenius norm error |||Θ̂ − Θ∗|||2F when applying estimation procedure (2)
on the exact low rank matrix. Each curve corresponds to a different problem size d1 = d2 = d ∈
{100, 150, 200, 250} with a fixed rank r = 4. (a) Plots of Frobenius norm error against the raw sample
size. As sample size increases, the error goes to zero. (b) Plots of the same Frobenius norm error
against rescaled sample size n/(rd log d), all plots are aligned fairly well as expected by our theory.

In Figure 1 we report the results of four different problem sizes with equal user size d1 and item
size d2 and the fixed rank r, where d1 = d2 = d ∈ {100, 150, 200, 250}, r = 4. For a given sample

size d, we ran T = 10 trials and computed the squared Frobenius norm error |||Θ̂ − Θ∗|||2F averaged
over those trials. Panel (a) shows the plots of Frobenius norm error versus raw sample size. It shows
the consistency of our estimation procedure because the Frobenius norm error goes to zero as sample
size increases. And the curves shift to right as the problem dimension d increases, matching with the
intuition that larger matrices require more samples. In panel (b), we plot the simulation results versus
the rescaled sample size N = n/(rd log d). Consistent with the prediction of Theorem 1, the error
plots are aligned fairly well and decay at the rate of 1/N
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6 Proof of Main Result

We now present a proof of the main result. We will use the machinery developed by Negahban and
Wainwright [21] and establish a Restricted Strong Convexity (RSC) for our loss. The proof follows
standard techniques, with some care when handling the new observation operator.

6.1 Proof of Theorem 1

The key to establishing the RSC condition is to demonstrate that the error in the first order Taylor
approximation of the loss is lower-bounded by some quadratic function. To that end we note that for
∆ = Θ−Θ∗ and by the Taylor expansion we have that

Ln(Θ)− Ln(Θ∗)− 〈〈∇Ln(Θ∗), ∆〉〉 = 1

2n

n∑

i=1

ψ
(
〈〈Θ∗, X(i)〉〉+ s〈〈∆, X(i)〉〉

)(
〈〈∆, X(i)〉〉

)2
, (3)

where s ∈ [0, 1] and

ψ(x) =
exp(x)

(1 + exp(x))2
.

Now, we may apply the fact that both ‖Θ̂‖∞, ‖Θ∗‖∞ ≤ α/
√
d1d2 and that ψ(x) is symmetric and

decreases as x increases to obtain that equation (3) is lower-bounded by:

1

2n

n∑

i=1

ψ (2α)
(
〈〈∆, X(i)〉〉

)2
(4)

Therefore, it suffices to prove a lower-bound on 1
2n

(
〈〈∆, X(i)〉〉

)2
for all possible vectors ∆. For that,

we present the following lemma.

Lemma 1. For ‖Θ‖∞ ≤ r3 := 2α√
d1d2

, d = (d1 + d2)/2, and n < d2 log d. When X(i) are i.i.d

observations we have with probability greater than 1− 2d−218

1

n

n∑

i=1

(
〈〈Θ, X(i)〉〉

)2
≥ 1

3
|||Θ|||2F for all Θ in A

where

A =

{
Θ ∈ R

d1×d2 | ‖Θ‖∞ ≤ r3, |||Θ|||2F ≥ 128α

√
d log d

n
|||Θ|||nuc and ∀j ∈ [d1] we have

d2∑

k=1

Θj,k = 0

}

Another key element for establishing the error is the following upper-bound on the operator norm
of a random matrix.

Lemma 2. Consider the sampling model described above. Then for i.i.d. (ξi, X
(i)), where |ξi| ≤ γ

and E[ξi|X(i)] = 0 we have that

P

(
||| 1
n

n∑

i=1

ξiX
(i)|||2 > 8γ

√
d log d

n

)
≤ 2

d2
,

We these two ingredients in hand we may now prove the main result. The steps are a slight
modification of the ones taken for standard matrix completion [20]. By the optimality of Θ̂ we have

Ln(Θ̂) + λ|||Θ̂|||nuc ≤ Ln(Θ∗) + λ|||Θ∗|||nuc

Let ∆ = Θ̂−Θ∗, then

Ln(Θ̂)− Ln(Θ∗)− 〈〈∇Ln(Θ∗), ∆〉〉 ≤ −〈〈∇Ln(Θ∗), ∆〉〉+ λ
(
|||Θ∗|||nuc − |||Θ̂|||nuc

)

6



By Taylor expansion, the left hand side is lower bounded by

Ln(Θ̂)− Ln(Θ∗)− 〈〈∇Ln(Θ∗), ∆〉〉 ≥ ψ (2α)
1

2n

n∑

i=1

(
〈〈Θ, X(i)〉〉

)2

Hölder’s inequality between the nuclear norm and operator norm yields

−〈〈∇Ln(Θ∗), ∆〉〉 ≤ |||∇Ln(Θ∗)|||2|||∆|||nuc

By the triangle inequality |||Θ∗|||nuc − |||Θ̂|||nuc ≤ |||∆|||nuc. If we choose λ > 2|||∇Ln(Θ∗)|||2, we have

Ln(Θ̂)− Ln(Θ∗)− 〈〈∇Ln(Θ∗), ∆〉〉 ≤ 2λ|||∆|||nuc

Now, the random matrix ∇Ln(Θ∗) = 1
n

∑n
i=1

(
exp(〈〈X(i), ∆〉〉)

1+exp(〈〈X(i), ∆〉〉) − yi

)
X(i) and satisfies the conditions

of Lemma 2 with γ = 2, so we can take λ = 32
√

d log d
n

From Lemma 1 of Negahban and Wainwright [20], ∆ can be decomposed into ∆′ +∆′′, where ∆′

has rank less than 2r and ∆′′ satisfies

|||∆′′|||nuc ≤ 3|||∆′|||nuc + 4

min{d1,d2}∑

j=r+1

σj(Θ
∗)

Then by the triangle inequality and |||∆′|||nuc ≤
√
2r|||∆′|||F

|||∆|||nuc ≤ 4|||∆′|||nuc + 4

min{d1,d2}∑

j=r+1

σj(Θ
∗) ≤ 4

√
2r|||∆|||F + 4

min{d1,d2}∑

j=r+1

σj(Θ
∗) (5)

Now depending on whether ∆ belongs to set A, we split into two cases.

Case 1: When ∆ /∈ A, |||∆|||2F ≤ 128α|||∆|||nuc
√

d log d
n . From Equation (5), we get

|||∆|||F ≤ αmax




1024

√
rd log d

n
,


512

√
rd log d

n

min{d1,d2}∑

j=r+1

σj(Θ
∗)




1/2




Case 2: Otherwise, from Lemma 1, with probability greater than 1 − 2d−218 , Ln(Θ̂) − Ln(Θ∗) −
〈〈∇Ln(Θ∗), ∆〉〉 ≥ ψ(2α)

3 |||∆|||2F . Therefore, the above equations yield

|||∆|||2F ≤ 192

ψ(2α)

√
2rd log d

n
|||∆|||nuc.

Now, performing similar calculations as above we have

|||∆|||F ≤ 1

ψ(2α)
max




1024

√
rd log d

n
,


512

√
rd log d

n

min{d1,d2}∑

j=r+1

σj(Θ
∗)




1/2



.

Combining the two displays above yields the desired result.

6.2 Proof of Lemma 1

We use a peeling argument [27] as in Lemma 3 of [21] to prove Lemma 1. Before that, we first present
the following lemma.
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Lemma 3. Define the set

B(D) =

{
Θ ∈ R

d1×d2 | ‖Θ‖∞ ≤ r3, |||Θ|||F ≤ D, |||Θ|||nuc ≤
D2

128α

√
n

d log d

}

and

M(D) = sup
Θ∈B(D)

(
− 1

n

n∑

i=1

(
〈〈Θ, X(i)〉〉

)2
+ 2|||Θ|||2F

)

Then

P

{
M(D) ≥ 3

2
D2

}
≤ exp{− nD4

128α4
}

Since for any Θ ∈ A,

|||Θ|||2F ≥ 128α

√
d log d

n
|||Θ|||nuc ≥ 128α

√
d log d

n
|||Θ|||F

then we have |||Θ|||F ≥ 128α
√

d log d
n := µ. Consider the sets

Sℓ =
{
Θ ∈ R

d1×d2 | ‖Θ‖∞ ≤ r3, β
ℓ−1µ ≤ |||Θ|||F ≤ βℓµ, |||Θ|||nuc ≤

D2

128α

√
n

d log d

}

where β =
√

10
9 and ℓ = 1, 2, 3 · · · .

Suppose there exists Θ ∈ A such that 1
n

∑n
i=1

(
〈〈Θ, X(i)〉〉

)2
< 1

3 |||Θ|||2F . Since A ⊆ ⋃∞
ℓ=1 Sℓ ⊆⋃∞

ℓ=1 B(βℓµ), there is some ℓ such that Θ ∈ B(βℓµ) and

− 1

n

n∑

i=1

(
〈〈Θ, X(i)〉〉

)2
+ 2|||Θ|||2F >

5

3
|||Θ|||2F ≥ 5

3
β2ℓ−2µ2 =

3

2
(βℓµ)2

Then by union bound, we have

P

{
∃ Θ ∈ A, 1

n

n∑

i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3
|||Θ|||2F

}

≤
∞∑

ℓ=1

P

{
M(βℓµ) >

3

2
(βℓµ)2

}

≤
∞∑

ℓ=1

exp{−n(β
ℓµ)4

128α4
}

≤
∞∑

ℓ=1

exp{−4ℓ(β − 1)nµ4

128α4
}

≤ 2 exp{−4(β − 1)nµ4

128α4
}

≤ 2 exp{−218 log d}

where the second inequality is Lemma 3, the third inequality is βℓ ≥ ℓ(β − 1) and we use the fact
that n < d2 log d for the last inequality.

6.3 Proof of Lemma 3

Define

Z =:
1

d1d2
M(D) = sup

Θ∈B(D)

1

n

n∑

i=1

[
E

(
Θk(i)l(i) −Θk(i)j(i)

)2
−
(
Θk(i)l(i) −Θk(i)j(i)

)2]
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Our goal will be to first show that Z concentrates around its mean and then upper bound the
expectation. We prove the concentration results via the bounded differences inequality [14]; since Z is
a symmetric function of its arguments, it suffices to establish the bounded differences property with
respect to the first coordinate. Suppose we have two samples of (k(i), l(i), j(i))ni=1 that only differ at
the first coordinate.

Z − Z ′ ≤ sup
Θ∈B(D)

[
1

n

n∑

i=1

(Θk′(i)l′(i) −Θk′(i)j′(i)

)2
− 1

n

n∑

i=1

(
Θk(i)l(i) −Θk(i)j(i)

)2
]

= sup
Θ∈B(D)

1

n

((
Θk′(1)l′(1) −Θk′(1)j′(1)

)2
−
(
Θk(1)l(1) −Θk(1)j(1)

)2
)

≤ 4r23
n

Then by the bounded differences inequality, we have

P{Z − EZ ≥ t} ≤ exp{− nt2

32r43
} (6)

In order to upper bound EZ, we use a standard symmetrization argument.

EZ = E sup
Θ∈B(D)

1

n

n∑

i=1

[
E

(
Θa(i)l(i) −Θa(i)j(i)

)2
−
(
Θa(i)l(i) −Θa(i)j(i)

)2]

≤ E sup
Θ∈B(D)

2

n

n∑

i=1

εi

(
Θa(i)l(i) −Θa(i)j(i)

)2

= E sup
Θ∈B(D)

2

n

n∑

i=1

εi〈〈ek(i)(el(i) − ej(i))
T , Θ〉〉2

where εi are i.i.d. Rademacher random variables. Since |Θa(i)l(i) − Θa(i)j(i)| ≤ 2r3, we have by the
Ledoux-Talagrand contraction inequality that

E sup
Θ∈B(D)

1

n

n∑

i=1

εi〈〈ek(i)(el(i) − ej(i))
T , Θ〉〉2 ≤ 4r3E sup

Θ∈B(D)

1

n

n∑

i=1

εi〈〈ek(i)(el(i) − ej(i))
T , Θ〉〉

By an application of Hölder’s inequality we have that

|
n∑

i=1

εi〈〈ek(i)(el(i) − ej(i))
T , Θ〉〉| ≤ |||

n∑

i=1

εiek(i)(el(i) − ej(i))
T |||2|||Θ|||nuc (7)

Let Wi := εiek(i)(el(i) − ej(i))
T . Wi is a zero-mean random matrix, and since

E[WiW
T
i ] = E[ek(i)(el(i) − ej(i))

T (el(i) − ej(i))e
T
k(i)] = (2− 2

d2
)
1

d1
Id1×d1

and

E[WT
i Wi] = E[(el(i) − ej(i))e

T
k(i)ek(i)(el(i) − ej(i))

T ] =
2

d2
Id2×d2 −

2

d22
11T

we have

σ2
i = max{|||E[WT

i Wi]|||2, |||E[WiW
T
i ]|||2} ≤ max{ 2

d2
, (2− 2

d2
)
1

d1
} ≤ 2

min{d1, d2}

Notice |||Wi|||2 ≤ 2, thus, Lemma 4 yields the tail bound

P

[
||| 1
n

n∑

i=1

εiek(i)(el(i) − ej(i))
T |||2 ≥ t

]
≤ d1d2 max{exp(−nt

2min{d1, d2}
8

), exp(−nt
4
)} (8)
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Set t =
√

16 log d1d2
nmin{d1,d2} , we obtain with probability greater that 1− 1

d1d2
,

||| 1
n

n∑

i=1

εiek(i)(el(i) − ej(i))
T |||2 ≤

√
16 log d1d2
nmin{d1, d2}

By the triangle inequality, ||| 1n
∑n

i=1 εiek(i)(el(i) − ej(i))
T |||2 ≤ |||εiek(i)(el(i) − ej(i))

T |||2 ≤ 2 and the fact
n ≤ d2 log d

E||| 1
n

n∑

i=1

εiek(i)(el(i) − ej(i))
T |||2 ≤

√
16 log d1d2
nmin{d1, d2}

+
2

d1d2
≤ 8

√
log d1d2

nmin{d1, d2}
(9)

Putting those bounds together we have

E sup
Θ∈B(D)

1

n

n∑

i=1

εi

(
Θa(i)l(i) −Θa(i)j(i)

)2
≤ sup

Θ∈B(D)

32r3|||Θ|||nuc

√
log d1d2

nmin{d1, d2}
≤ D2

d1d2

Plug it into (6) and set t = D2

2d1d2
, we get the result.

6.4 Ahlswede-Winter Matrix Bound

As in previous work [21] we also use a version of the Ahlswede-Winter concentration bound. We use
a version due to Tropp [26].

Lemma 4 (Theorem 1.6 [26]). Let Wi be independent d1 × d2 zero-mean random matrices such that
|||Wi|||2 ≤M , and define

σ2
i := max{|||E[WT

i Wi]|||2, |||E[WiW
T
i ]|||2}

as well as σ2 :=
∑n

i=1 σ
2
i . We have

P

[
|||

n∑

i=1

Wi|||2 ≥ t
]
≤ (d1 + d2)max{exp(− t2

4σ2
), exp(− t

2M
)} (10)

7 Discussion

In this paper we presented a theoretical justification for a ranking based collaborative filtering approach
based on pairwise comparisons in contrast to other results that rely on knowing the underlying ratings.
We provided the first convergence bounds for recovering the underlying user preferences of items and
showed that those bounds are analogous to the ones originally developed for rating based matrix
completion. The analysis here can also be extended do other observation models, for example to the
“one-bit” matrix completion setting as well. However, that extension does not provide any additional
insights beyond the analysis presented here. There remain a number of extensions for these methods
including adaptive and active recommendations, skewed sampling distributions on the items, as well
as different choice models. We leave such extensions for future work.
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