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Abstract—We study the problem of generating an approxi-
mately i.i.d. string at the output of a discrete memoryless channel
using a limited amount of randomness at its input in presenceof
causal noiseless feedback. Feedback does not decrease thechannel
resolution, the minimum entropy rate required to achieve an
accurate approximation of an i.i.d. output string. However, we
show that, at least over a binary symmetric channel, a signif-
icantly larger resolvability exponent (the exponential decay rate
of the divergence between the output distribution and product
measure), compared to the best known achievable resolvability
exponent in a system without feedback, is possible. We show that
by employing a variable-length resolvability scheme and using
an average number ofR coin-flips per channel use, theaverage
divergence between the distribution of the output sequence and
product measure decays exponentially fast in theaverage length
of output sequence with an exponent equal to [R − I(U ;V )]+

where I(U ;V ) is the mutual information developed across the
channel.

I. I NTRODUCTION

SupposePV |U : U → V is a discrete memoryless channel,
with input alphabetU and output alphabetV , and we wish
to generate an i.i.d. stringV1, V2, . . . distributed according to
PV at its output. The obvious solution is to use an i.i.d. string
U1, U2, . . . drawn from some distributionPU , that induces
PV at the output of the channel, at its input which requires
an entropy rate ofH(U) bits per channel use (and results in a
perfect i.i.d. output sequence). However, Wyner [1] observed
that, if we accept anapproximately i.i.d. sequence, a lower
entropy rate ofI(U ;V ) bits per channel use is sufficient
(and necessary). Indeed, he showed that if a random code
of block-lengthn and rateR > I(U ;V ) is sampled from
i.i.d. PU random coding ensemble from which a uniformly
chosen codeword is transmitted vian independent uses of the
channel, with very high probability over the choice of the
code, the normalized Kullback–Leibler divergence betweenthe
output distributionPV n and the product distributionPn

V (v
n) =

∏n
i=1 PV (vi), 1

nD(PV n‖Pn
V ) can be made arbitrarily small

by choosingn sufficiently large. The problem ofchannel
resolvability was later studied by Han and Verdú [2] and
Hayashi [3], replacing the measure of approximation quality
with total variation and unnormalized divergence, respectively.

Definition 1. A rateR is achievableover the channelPV |U :
U → V and with respect to (w.r.t.) the reference measurePV

if there exists a sequence of(n, k) codes, i.e., deterministic
encoding functionsEn : {0, 1}k → Un, of rate at mostR,

lim sup
n→∞

k

n
≤ R,

W k Un = E
n(W k) Pn

V |U
V n

PV n ≈ Pn
V

Un

Fig. 1. Channel Resolvability

such that, withUn = E
n(W k), W k uniformly distributed on

{0, 1}k, and V n being the output ofn independent uses of
PV |U with input Un, denoted hereafter asPn

V |U ,

lim
n→∞

D(PV n‖Pn
V ) = 0. (1)

Definition 2. The minimum of all achievable resolvability
rates over the channelPV |U w.r.t. the reference measurePV

is called theresolutionof the channelPV |U (w.r.t. to PV ).

Theorem 1 ([1]–[4]). The resolution of the channelPV |U :
U → V w.r.t. the reference measurePV equals:

min
PU :

∑
u
PU (u)PV |U (v|u)=PV (v)

I(U ;V ). (2)

Moreover, in [3]–[7] it has been shown that, in the above-
mentioned context, the divergence between the distribution of
a length-n block of channel output sequencePV n and product
distribution Pn

V decays exponentially fast inn and in [8]
the exact exponential decay rate of the ensemble-average of
D(PV n‖Pn

V ) as a function ofR is characterized.

Definition 3. A pair (R,E) is an achievableresolvability
rate–exponent pair over the channelPV |U : U → V w.r.t.
the reference measurePV if there exists a sequence of(n, k)
codesEn : {0, 1}k → Un of rate at mostR,

lim sup
n→∞

k

n
≤ R,

such that, withUn = E
n(W k), W k uniformly distributed over

{0, 1}k, andV n being the output ofPn
V |U to inputUn,

lim inf
n→∞

−
1

n
logD(PV n‖Pn

V ) ≥ E. (3)

Theorem 2 ([8]). Suppose the encoder in Fig. 1 is a code of
rate R constructed randomly by sampling from i.i.d.PU ran-
dom coding ensemble,{Un(wk) : wk ∈ {0, 1}k}, k = ⌊nR⌋,
and outputsEn(wk) = Un(wk). Then (whenW k is uniformly
distributed on{0, 1}k),

lim
n→∞

−
1

n
log
(

D(PV n‖Pn
V )
)

= min
QUV

{D(QUV ‖PUV ) + [R − f(QUV ‖PUV )]
+}, (4)
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n
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k, V i−1) Pn
V |U

V n

PV n ≈ Pn
V

Un

V i−1

Fig. 2. Channel Resolvability in Presence of Feedback

where,D(PV n‖Pn
V ) is the ensemble-average ofD(PV n‖Pn

V ),

f(QUV ‖PUV ) ,
∑

u,v

QUV (u, v) log
PV |U (v|u)

PV (v)
,

andPV (v) =
∑

u PU (u)PV |U (v|u).

Remark.The achievability of the exponent (4) was shown in
[5]–[7] and its exactness is established in [8]. To the extent
of our knowledge, the exponent of (4) is the best achievable
resolvability exponent reported so far in the literature.

In this paper we consider the problem of channel resolv-
ability in presence of causal feedback, namely, when the
encoder gets to know the past received symbolsV i−1 before
transmitting theith symbolUi and, hence, have the opportunity
of deciding about the value ofUi based on the past behavior
of the channel (see Fig. 2).

Channel resolvability is, in a sense, the countrpart of chan-
nel coding. For channel coding, it is well-known that feedback
does not increase the channel capacity [9, Exercise 4.6].
Likewise, feedback does not reduce the channel resolution (see
Theorem 3). On the other hand, Burnashev [10] showed that, in
presence of feedback (and using variable-length codes) higher
error exponents are achievable. Thus, it is natural to ponder if
the same holds for channel resolvability?

In this work, we give an affirmative answer to the above, at
least when the channelPV |U : U → V is a binary symmetric
channel (BSC) and the reference measurePV is uniform on
{0, 1}. We show that in presence of causal feedback and using
variable-length resolvability codes the straight-line exponent
[R− I(U ;V )]+ is achievable (see Theorem 4).

II. PRELIMINARIES

A. Notation

We use uppercase letters (likeU ) to denote a random
variable and the corresponding lowercase version (u) for a
realization of that random variable. The same convention
applies to the sequences, i.e.,un = (u1, . . . , un) denotes a
realization of the random sequenceUn = (U1, . . . , Un). If S
is a finite set,|S| denotes its cardinality. Given an alphabetA,
A∗ denotes the set of all strings over symbols inA. Given a
pair of real numbersa < b, [[a : b]] , [a, b]∩N denotes the set
of integers betweena andb. For a ∈ R, [a]+ , max{a, 0}.

Binary divergenced2(·‖·), binary entropy functionh2(·),
and binary capacity functionc2(·) are defined, respectively as

d2(p‖q) , p log
p

q
+ (1− p) log

1− p

1− q
, (5)

h2(p) , p log
1

p
+ (1− p) log

1

1− p
, and (6)

c2(p) , 1− h2(p). (7)

Finally, wH(u
n) denotes the Hamming weight of the binary

sequenceun and dH(u
n, vn) = wH(u

n ⊕ vn) denotes the
Hamming distance between two sequencesun andvn.

B. Resolvability with Variable-Length Codes

The classical channel resolvability problem is defined based
on block codes. Namely, the aim is to make the distribution of
a length-n block of the outputPV n close to i.i.d.Pn

V using a
(n, k) block code of rate at mostR andk ≤ nR coin-flips at
the encoder. It is useful extend this notion to variable-length
codes. Specifically, the encoder is confined to use onlyk coin-
flips but is allowed to use the channel a variable number of
times based on a stopping rule.

Definition 4. A (∗, k) variable-length resolvability code(or
in short a(∗, k) resolvability code), in presence of feedback,
over the input and output alphabets(U ,V) is defined via a
collection of deterministic encoding functions

E
(k)
n : {0, 1}k × Vn−1 → U ∪ {S}, n ∈ N, (8)

where S 6∈ U is a special symbol indicating the “end of
transmission.” Namely, given the input wordwk and the past
channel output symbolsV n−1, the encoding functionE(k)

n

decides to either feed the channel with an input symbol in
U or stop the encoding (by outputtingS).

Given a(∗, k) resolvability code, a(∗, k) feedback resolv-
ability encodermaps the input wordwk into a channel input
sequenceU1, U2, . . . as follows:

1: n← 1;
2: while E

(k)
n (wk, V n−1) 6= S do

3: Un ← E
(k)
n (wk, V n−1);

4: TransmitUn via the channelPV |U : U → V ;
5: n← n+ 1;
6: end while

Remark.A (n, k) block resolvability code is a special case of
a (∗, k) variable-length resolvability code.

Obviously, when a variable-length feedback resolvability
encoder is employed, thestopping timeof the encoder (and
hence the length of the channel output corresponding to a
single run of the encoder) will be a random variable, which we
denote byNk, that depends both on the channel randomness
and the randomness of the input wordW k. We measure the
performance of the system by the expected output divergence

Dk ,
∑

n

D(PV n|Nk=n‖P
n
V ) Pr{Nk = n} (9)

and the expected number of channel uses,E[Nk]. Indeed, by
the law of large numbers, when the resolvability scheme is
run a large number of times (each corresponding to a block
of channel output), the output sequence will have an average
length ofE[Nk] symbols per block and the divergence between
distribution of the output string and the product distribution
normalized by the number of blocks will be close toDk. We
can, hence, extend Definitions 1 and 3 as:



c2(p)

R

The exponent of (4)

Es.l.(p,R) (13)

Fig. 3. Comparison of the exponents

Definition 5. R is an achievableresolvability rate over the
channelPV |U : U → V w.r.t. the reference measurePV if there
exists a sequence of(∗, k) resolvability codes (cf. Definition 4)
such that, whenW k is uniformly distributed on{0, 1}k,

lim sup
k→∞

k

E[Nk]
≤ R, (10)

and, withDk defined as in (9),

lim
k→∞

Dk = 0. (11)

Definition 6. A pair (R,E) is an achievableresolvability
rate–exponent pair over the channelPV |U : U → V w.r.t.
the reference measurePV if there exists a sequence of(∗, k)
resolvability codes (see Definition 4) such that, whenW k is
uniformly distributed on{0, 1}k,

lim sup
k→∞

k

E[Nk]
≤ R, (12)

and, withDk defined as in (9),

lim inf
k→∞

−
logDk

E[Nk]
≥ E. (13)

III. R ESULTS

Theorem 3. Employing variable-length resolvability codes (in
presence of feedback) does not reduce the channel resolution.

Theorem 4. In presence of feedback, the exponent

Es.l.(p,R) = [R− c2(p)]
+ (14)

is achievable via a sequence of variable-length resolvability
codes over a BSC with crossover probabilityp with respect to
the uniform reference measurePV (0) = PV (1) =

1
2 .

Remark.The straight-line exponent of (14) is larger than the
exponent of (4) as the objective function of (4) equals[R −
I(U ;V )]+ at QUV = PUV (see Fig. 3).

IV. PROOFS

A. Proof of Theorem 3

We prove the converse underweakresolvable criteria which
implies that under strong resolvability criteria, (11). Accord-
ingly, assume we have a sequence of(k, ∗) codes satisfying

lim sup
k→∞

Dk

E[Nk]
= 0. (15)

Let U∞ and V ∞ denote the infinite channel input and
output sequences withUm = S andVm = ∅ /∈ V if the trans-
mission stops before timem. Let alsoχm , 1{Nk ≥ m}.
Therefore,

k = H(W k) ≥ I(W k, V ∞) =
∑

m≥1

I(W k, Vm|V
m−1)

=
∑

m≥1

[H(Vm|V
m−1)−H(Vm|W

k, Vm−1)]

(a)
=
∑

m≥1

[H(Vm|V
m−1)−H(Vm|W

k, Vm−1, Um, χm)]

(b)
≥
∑

m≥1

[H(Vm|V
m−1, χm)−H(Vm|Um, χm)]. (16)

In the above, (a) follows sinceUm = E
(k)
m (W k, V m−1), and

χm = 1{Um 6= S} according to Definition 4 and (b) since
conditioning reduces the entropy. Now, observe that

H(Vm|V
m−1, χm) = H(Vm|V

m−1, Nk ≥ m) Pr{Nk ≥ m}

since{Nk < m} impliesVm = ∅. Let

β(δ) ,
√

2 ln(2)δ log
|V|

√

2 ln(2)δ
. (17)

The uniform continuity of entropy [11, Lemma 2.7] together
with Pinsker’s inequality and Jensen’s inequality imply

|H(Vm|V
m−1, Nk ≥ m)−H(V )|

≤ β
(

D(PVm|V m−1,Nk≥m‖PV |PV m−1|Nk≥m)
)

(18)

Consequently,
∑

m≥1

H(Vm|V
m−1, χm)

=
∑

m≥1

H(Vm|V
m−1, Nk ≥ m) Pr{Nk ≥ m}

≥ H(V )
∑

m≥1

Pr{Nk ≥ m} −
∑

m≥1

[

Pr{Nk ≥ m}

· β
(

D(PVm|V m−1,Nk≥m‖PV |PV m−1|Nk≥m)
)]

= H(V )E[Nk]−
∑

m≥1

[

Pr{Nk ≥ m}

· β
(

D(PVm|V m−1,Nk≥m‖PV |PV m−1|Nk≥m)
)]

(∗)

≥ E[Nk]

[

H(V )− β

(

∑

m≥1

Pr{Nk ≥ m}

E[Nk]

·D(PVm|V m−1,Nk≥m‖PV |PV m−1|Nk≥m)

)]

, (19)

where(∗) follows by concavity ofβ. On the other hand, the
convexity of divergence implies

Pr{Nk ≥ m}D(PVm|V m−1,Nk≥m‖PV |PV m−1|Nk≥m)

≤
∑

n≥m

D(PVm|V m−1,Nk=n‖PV |PV m−1|Nk=n) Pr{Nk = n}.



Therefore,
∑

m≥1

Pr{Nk ≥ m}D(PVm|V m−1,Nk≥m‖PV |PV m−1|Nk≥m)

≤
∑

m≥1,
n≥m

D(PVm|V m−1,Nk=n‖PV |PV m−1|Nk=n) Pr{Nk = n}

=
∑

n≥1

Pr{Nk = n}

·
n
∑

m=1

D(PVm|V m−1,Nk=n‖PV |PV m−1|Nk=n)

(∗)
=
∑

n≥1

D(PV n|Nk=n‖P
n
V ) Pr{Nk = n}, (20)

where(∗) follows by the chain rule. Using (20) in (19) together
with the fact thatβ is an increasing function, we conclude that

∑

m≥1

H(Vm|V
m−1, χm) ≥ E[Nk]

[

H(V )−β
(

Dk

E[Nk]

)]

(21)

Similarly, we have

H(Vm|Um, χm) = H(Vm|Um, Nk ≥ m) Pr{Nk ≥ m}.

Now note thatPVm|Um,Nk≥m(v|u) = PV |U (v|u), therefore,
defining

γ(δ) , max
PU :D(PU◦PV |U‖PV )≤δ

H(V |U) (22)

(where we have used the shorthand notation(PU ◦PV |U)(v) ,
∑

u PU (u)PV |U (v|u)),

H(Vm|Um, Nk ≥ m) ≤ γ
(

D(PVm|Nk≥m‖PV )
)

. (23)

Noting thatγ is concave1,similar steps as (19) yield

∑

m≥1

H(Vm|Um, χm)

≤ E[Nk]γ

(

∑

m≥1

Pr{Nk ≥ m}

E[Nk]
D(PVm|Nk≥m‖PV )

)

. (24)

Once again, the convexity of divergence implies

Pr{Nk ≥ m}D(PVm|Nk≥m‖PV )

≤
∑

n≥m

D(PVm|Nk=n‖PV ) Pr{Nk = n},

and same steps as (20) show

∑

m≥1

Pr{Nk ≥ m}D(PVm|Nk≥m‖PV )

≤
∑

n≥1

(

n
∑

m=1

D(PVm|Nk=n‖PV )

)

Pr{Nk = n} (25)

1It can be verified that iff(x) : D → R is convex andl(x) : D → R

is a linear function ofx, (on some convex domainD) then the mapping
y 7→ maxx:f(x)≤y l(x) is concave iny.

Since

D(PV n|Nk=n‖P
n
V ) = D

(

PV n|Nk=n

∥

∥

∥

n
∏

m=1

PVm|Nk=n

)

+

n
∑

m=1

D(PVm|Nk=n‖PV ),

we can further upper-bound the term inside the parenthesis in
(25) byD(PV n|Nk=n‖P

n
V ) to conclude that

∑

m≥1

Pr{Nk ≥ m}D(PVm|Nk≥m‖PV ) ≤ Dk. (26)

Using (26) and the fact thatγ is increasing in (24) we get
∑

m≥1

H(Vm|Um, χm) ≤ E[Nk]γ
(

Dk

E[Nk]

)

. (27)

Finally, uniting (21) and (27) in (16) yields

k

E[Nk]
≥ H(V )− γ

(

Dk

E[Nk]

)

− β
(

Dk

E[Nk]

)

. (28)

Sincelimδ→0 β(δ) = 0 and, asH(V |U) is continuous inPU ,
limδ→0 γ(δ) = maxPU :PU◦PV |U=PV

H(V |U), (28) together
with the assumption (15) yield

lim inf
k→∞

k

E[Nk]
≥ min

PU :PU◦PV |U=PV

I(U ;V ).

B. Proof of Theorem 4

To prove Theorem 4, we propose the following sequence of
(∗, k) resolvability codes and show that the exponent of (14)
is achievable using this sequence of codes. Throughout the
proof, without essential loss of generality, we assumep < 1

2 .
Proposed Sequence of Codes:Fix α > 0. We define a

(∗, k) code for eachk as follows: The collection of encoding
functions (E(k)

n , n ∈ N) share a codebook of size2k and
infinite block-length indexed by length-k binary sequences,
Ck , {u∞(wk) : wk ∈ {0, 1}k} (to be specified later) and are
defined as

E
(k)
1 (wk) = u1(w

k), and (29a)

E
(k)
n+1(w

k, V n) =

{

S if k
n ≤ αc2(Q̂n),

un+1(w
k) otherwise,

(29b)

where

Q̂n ,
dH(u

n(wk), V n)

n

is the fraction of flipped bits in the time interval of[[1 : n]].
Namely, given the input wordwk, the encoder transmits the

corresponding codewordu∞(wk) bit-by-bit until the transmis-
sion ratek

n drops belowα times the empirical capacity of the
channel. Consequently, the stoppingNk is larger thank

α .

Lemma 1. For the proposed scheme,

lim
k→∞

k

E[Nk]
= αc2(p). (30)

Proof: Let Bn , 1{channel flips at timen}. Hence
nQ̂n =

∑n
j=1 Bj where(Bn, n ∈ N) are i.i.d.Bernoulli(p)



random variables. LetSn , nQ̂n − np, and observe that the
process(Sn, n ∈ N) is a martingale w.r.t. the natural filtering
(

Fn = σ(B1, . . . , Bn), n ∈ N
)

. The encoder stops at time

Nk = inf
{

n ≥
k

α
: c2
(

Q̂n

)

≥ α−1 k

n

}

. (31)

In terms ofSn the stopping condition is

k ≤ α ·Nkc2

(

p+
SNk

Nk

)

. (32)

It easily can be verified that∀p ∈ (0, 1), ∀ε ∈ (−p, 1− p),

c2(p) + εc′2(p) ≤ c2(p+ ε) ≤ c2(p) + c′2(p)ε+ c′′2(p)ε
2 (33)

Using the upper bound of (33) in (32) we get

k ≤ αc2(p)Nk + αc′2(p)SNk
+ αc′′2 (p)

S2
Nk

Nk
. (34)

Taking the expectation of the right-hand-side of (34), noting
that E[SNk

] = E[S⌈k/α⌉] = 0 (because a stopped martingale
is also a martingale [12, Theorem 4, Chapter 7]), we get

k

E[Nk]
≤ αc2(p) + αc′′2(p)

E[S2
Nk

/Nk]

E[Nk]
. (35)

It remains to examine the growth rate of the last term in
(35). Had we replaced the stopping timeNk with a fixed time
n, the quantity of interest would have behaved like1

n (since
E[S2

n/n] is a constant). It turns out that for a stopping time
Nk, E[S2

Nk
/Nk] may not be a constant but will grow at most

logarithmically inNk: Lemma 2 (in the appendix) shows

E

[S2
Nk

Nk

]

≤ p(1− p)E[1 + ln(Nk)]. (36)

Consequently,

k

E[Nk]
≤ αc2(p) + αc′′2(p)p(1 − p)

E[1 + ln(Nk)]

E[Nk]
(a)
≤ αc2(p) + αc′′2(p)p(1 − p)

1 + ln(E[Nk])

E[Nk]
(b)
≤ αc2(p) + αc′′2(p)p(1 − p)

1 + ln(k/α)

k/α
, (37)

where (a) follows from Jensen’s inequality and (b) as1+ln(x)
x

is decreasing forx ≥ 1 andNk ≥
k
α . Consequently,

lim sup
k→∞

k

E[Nk]
≤ αc2(p). (38)

To lower-boundk/E[Nk], we note that∀n > 1, Q̂n =
n−1
n Q̂n−1+

1
nBn. Sincec2(·) is convex, at the stopping time,

c2(Q̂Nk
) ≤

Nk − 1

Nk
c2(Q̂Nk−1) +

1

Nk
c2(BNk

)

(∗)
< α−1Nk − 1

Nk
×

k

Nk − 1
+

1

Nk
= α−1 k

Nk
+

1

Nk
. (39)

n

nq∗
k
(n)

n− nq∗
k
(n)

k
α

k
α

nQ̂n

Nk

n
2

Fig. 4. Encoder’s Stopping Time

where(∗) follows from the stopping condition (31). Therefore,
substitutingQ̂Nk

=
SNk

Nk
+ p,

k > αNkc2

(

p+
SNk

Nk

)

− α

≥ αc2(p)Nk + αc′2(p)SNk
− α, (40)

where the second inequality (40) follows from the lower bound
of (33). Taking the expectation of the right-hand-side of (40)
(and using the fact thatE[SNk

] = 0 once again) we get,

k

E[Nk]
≥ αc2(p)−

α

E[Nk]
≥ αc2(p)−

α2

k
. (41)

where the second inequality follows sinceNk ≥ k/α. Thus,

lim inf
k→∞

k

E[Nk]
≥ αc2(p), (42)

which, together with (38) concludes the proof.
To complete the proof of Theorem 4, it remains to bound

the expected output divergenceDk (9) for an appropriate code.
Let c−1

2 (·) denote the inverse of the binary capacity function
c2(·) (cf. (7)) when its domain is restricted to[0, 12 ] and define
q⋆k : [[k/α : +∞]]→ [0, 1

2 ]:

q∗k(n) , c−1
2

(

α−1 k

n

)

. (43)

Let Bn , (B1, . . . , Bn) denote the flip pattern ofn indepen-
dent uses of the channel and

Bn ,
{

bn ∈ {0, 1}n : {Bn = bn} ⊂ {Nk = n}
}

(44)

denote the set of flip patterns that stop the encoder at time
Nk = n. Using the fact that the processnQ̂n = wH(B

n) is
an integer-valued process and the stopping condition (31) we
can conclude that (among other constraints)∀bn ∈ Bn, either
wH(b

n) = ⌊nq∗k(n)⌋ or n− wH(b
n) = ⌊nq∗k(n)⌋ (see Fig. 4).

Note that Bn can be empty for some values ofn ∈
[[k/α : +∞]].2 Obviously for suchns Pr{Nk = n} = 0 so

2For example, if for somen, ∃ℓ ∈ N such that⌊(n − ℓ)q∗
k
(n − ℓ)⌋ =

⌊nq∗
k
(n)⌋ then,Bn is empty because either the encoder stops at timen− ℓ

or, if not, it will stop at some timeNk > n, because

wH(Bn) ≥ wH(Bn−ℓ) > ⌊nq∗k(n)⌋

and similarlyn−wH(Bn) < n− ⌊nq∗
k
(n)⌋.



we shall not be concerned about them. Let

Nk , {n ∈ [[k/α : +∞]] : Pr{Nk = n} > 0}

be the support ofNk and assumen ∈ Nk.
PartitionBn = B1

n ∪ B
2
n where

B1
n , {bn ∈ Bn : wH(b

n) = ⌊nq∗k(n)⌋},

B2
n , {bn ∈ Bn : wH(b

n) = n− ⌊nq∗k(n)⌋}.

It can easily be verified that|B1
n| = |B

2
n| =

1
2 |Bn|. Indeed, the

symmetry of stopping thresholds aroundn2 (Fig. 4) implies
bn ∈ B1

n if and only if bn ⊕ 1
n ∈ B2

n (where1n denotes the
all-one vector of lengthn). Consequently,

Pr{Bn ∈ B1
n} =

1

2
|Bn|p

⌊nq∗k(n)⌋(1− p)n−⌊nq∗k(n)⌋, (45a)

Pr{Bn ∈ B2
n} =

1

2
|Bn|p

n−⌊nq∗k(n)⌋(1− p)⌊nq
∗
k(n)⌋. (45b)

Since0 ≤ p ≤ 1
2 , Pr{Bn ∈ B1

n} ≥ Pr{Bn ∈ B2
n}. Hence,

ρn ,
Pr{Bn ∈ B1

n}

Pr{Bn ∈ B1
n}+ Pr{Bn ∈ B2

n}
∈ [1/2 : 1].

Moreover, since{Nk = n} = {Bn ∈ Bn} = {Bn ∈ B1
n} ∪

{Bn ∈ B2
n} andB1

n andBn
2 are disjoint (by definition),

PV n|Nk=n(v
n) = ρn Pr{V

n = vn|Bn ∈ B1
n}

+ (1 − ρn) Pr{V
n = vn|Bn ∈ B2

n}. (46)

Given the specification of the encoder, we have,

Pr{V n = vn, Bn ∈ B1
n}

=
1

2k

∑

u∗∈Ck

Pr{V n = vn, Bn ∈ B1
n|U

n = un}

=
1

2k

∑

u∗∈Ck

∑

bn∈B1
n

Pr{V n = vn, Bn = bn|Un = un}

=
1

2k

∑

u∗∈Ck

∑

bn∈B1
n

1{vn = bn ⊕ un}Pr{Bn = bn}

(∗)
=

Pr{Bn ∈ B1
n}

|B1
n|

1

2k

∑

u∗∈Ck

∑

bn∈B1
n

1{vn = bn ⊕ un},

where (∗) follows since Pr{Bn = bn} only depends on
wH(b

n) and all bn ∈ Bn
1 have the same Hamming weight.

As a consequence,

Pr{V n = vn|Bn ∈ B1
n} =

1

|B1
n|2

k

∑

u∗∈Ck

1{un ⊕ vn ∈ B1
n}

=
1

|B1
n|2

k
Nk(v

n|B1
n) (47)

where for anyAn ⊆ {0, 1}n, we have defined

Nk(v
n|An) , |{w ∈ {0, 1}

k : un(wk)⊕ vn ∈ An}|. (48)

We, similarly, have

Pr{V n = vn|Bn ∈ B2
n} =

1

|B2
n|2

k
Nk(v

n|B2
n). (49)

At this point, we are ready to bound the output divergence
using the same method as in [7], [8]. SincePn

V (v
n) = 2−n,

combining (47) and (49), together with the fact that|B1
n| =

|B2
n| =

1
2 |Bn| in (46), we get

L(vn) ,
PV n|Nk=n(v

n)

Pn
V (v

n)

=
2n−k

1
2 |Bn|

[

ρnNk(v
n|B1

n) + (1− ρn)Nk(v
n|B2

n)
]

. (50)

We also recall that

D(PV n|Nk=n‖P
n
V ) =

∑

vn

Pn
V (v

n)L(vn) logL(vn). (51)

Assume the code shared by the encoding functions(E(k)
n , n ∈

N) is sampled from i.i.d. random coding ensemble, namely,
each codewordU∞(wk) is an infinite i.i.d. sequence of binary
digits where each symbol is equally likely to take either value
and the codewords are independent of each other. In this case,
{Nk(v

n|B1
n),Nk(v

n|B2
n)} forms a multinomial collection with

cluster size2k and (equal) success probabilities2−n 1
2 |Bn|.

Thus, it can immediately be verified thatL(vn) = 1 (where
A denotes the ensemble average ofA).

As shown in [7], sinceL(vn) = 1, andL(vn) ≤ 2n,

L(vn) logL(vn) ≤ min
{

n,
1

ln(2)
(L(vn)− 1)2

}

. (52)

SinceNk(v
n|B1

n) andNk(v
n|B2

n) are negatively correlated,

(L(vn)− 1)2 ≤ 2(ρ2n+(1−ρn)
2)
2−(k−n)

|Bn|
≤ 2

2−(k−n)

|Bn|
(53)

Using (53) in (52) and the linearity of the expectation together
with (51) we conclude that

D(PV n|Nk=n‖P
n
V ) ≤ min

{

n,
2

ln(2)

2−(k−n)

|Bn|

}

. (54)

SincePr{Nk = n} = Pr{Bn ∈ B1
n} + Pr{Bn ∈ B2

n} and
Pr{Bn ∈ B1

n} ≥ Pr{Bn ∈ B2
n} (cf. (45)),

Pr{Nk = n} ≤ 2Pr{Bn ∈ B1
n}

= 2|Bn|p
⌊nq∗k(n)⌋(1− p)n−⌊nq∗k(n)⌋. (55)

Multiplying the right-hand-sides of (54) and (55) we get

D(PV n|Nk=n‖P
n
V ) Pr{Nk = n}

≤ κ1 min
{

n|Bn|p
nq∗k(n)(1− p)n(1−q∗k(n)),

2−(k−n)pnq
∗
k(n)(1 − p)n(1−q∗k(n))

}

(a)
= κ12

nf2(q
∗
k(n)‖p) min

{

n|Bn|2
−n, 2−k

}

(b)
≤ κ12

nf2(q
∗
k(n)‖p) min

{

n2−nc2(q
∗
k(n)), 2−k

}

(c)
= κ12

nf2(q
∗
k(n)‖p) min

{

n2−k/α, 2−k
}

≤ κ12
−kmax{1,1/α}n2nf2(q

∗
k(n)‖p) (56)



whereκ1 = 4
ln(2)

p
1−p , in (a) we have defined

f2(q‖p) , 1 + q log(p) + (1− q) log(1 − p), (57)

(b) follows sinceBn is a subset of all binary sequences of
lengthn and Hamming weightnq∗k(n), and (c) by replacing
n = k

αc2(q∗k(n))
. Plugging (56) into (9) (noting that the stopping

rule is independent of the choice of the code) we get

Dk ≤ κ12
−kmax{1,1/α}

∑

n∈Nk

n2nf2(q
∗
k(n)‖p). (58)

Let

τk ,
log(1 − 1/k)− [1 + log(1− p)]

log(p)− log(1− p)
, (59)

so thatf2(τk‖p) = log(1 − 1/k). It is easy to verify thatτk
is a decreasing sequence andτk ∈ (p : 1/2). Let N 1

k , {n ∈
Nk : q∗k(n) < τk} andN 2

k , {n ∈ Nk : q∗k(n) ≥ τk}, and
split the summation in the right-hand-side of (58) as
∑

n∈Nk

n2nf(q
∗
k(n)‖p)

=
∑

n∈N 1
k

n2nf2(q
∗
k(n)‖p) +

∑

n∈N 2
k

n2nf2(q
∗
k(n)‖p) (60)

Sinceq∗k(n) is increasing inn,

∑

n∈N 2
k

n2nf2(q
∗
k‖p)

(a)
≤

∑

n≥ k
αc2(τk)

n2nf2(q
∗
k(n)‖p)

(b)
≤

∑

n≥ k
αc2(τk)

n2nf2(τk‖p) ≤
∞
∑

n=0

n2nf2(τk‖p)

(c)
=

2−f2(τk‖p)

(

2−f2(τk‖p) − 1
)2

(d)
= k(k − 1) (61)

where (a) follows since since we includedn 6∈ Nk in the
sum as well, (b) sincef2(q‖p) is decreasing inq, (c) since
f2(τk‖p) < 0 (thus the sum converges) and (d) by replacing
f2(τk‖p) = log(1− 1/k).

The first summation in (60) has (strictly) less than

k

α

1

c2(τk)
<

k

α

1

c2(τ∞)
, κ2(k)

terms where

τ∞ , lim
k→∞

τk =
log(1− p) + 1

log(1− p)− log(p)
.

Replacingn = k
αc2(q∗k(n))

, we see that each term in the first
summation of (60) is upper-bounded as

n2nf2(q
∗
k(n)‖p) ≤ κ2(k)2

k
f2(q∗

k
(n)‖p)

αc2(q∗
k
(n)) ≤ κ2(k)2

k/α (62)

with equality iff q∗k(n) = p. (This term is included in the
summation sinceτk > p.) Indeed, the last step follows since
f2(q‖p) = c2(q)− d2(q‖p). Consequently,

∑

n∈N 1
k

n2nf2(q
∗
k(n)‖p) ≤ κ2(k)

22k/α (63)

Combining (61) and (63) (noting that the right-hand-side of
(63) grows faster than that of (61)) shows that, for largek,

Dk ≤ 2κ1κ2(k)2
−k[max{1, 1

α
}− 1

α
] = κ3(k)2

−k [α−1]+

α , (64)

where we have definedκ3(k) , 2κ1κ2(k). Therefore, for at
least half of the codes,

Dk ≤ 2Dk ≤ 2κ3(k)2
−k [α−1]+

α . (65)

Since limk→∞
1
k log(κ3(k)) = 0, by picking any such good

code for eachk we will have a sequence of codes for which

lim inf
k→∞

− logDk

k
≥

[α− 1]+

α
. (66)

Equations (42) and (66) imply

lim inf
k→∞

− logDk

E[Nk]
= lim inf

k→∞

− logDk

k

k

E[Nk]
≥ [α− 1]+c2(p).

Settingα = R/c2(p) proves Theorem 4.

V. CONCLUSION AND DISCUSSION

We studied the problem of channel resolvability in pres-
ence of feedback. We showed that, while feedback does not
decrease the channel resolution, in presence of causal feedback
higherresolvability exponentscompared to the existing block
resolvability codes of [3]–[8] are achievable.

Our results are the analogue of establishing the achievability
of the error exponent[I(U ;V )−R]+ in presence of feedback
(cf. [13, Section 2.1]) for channel coding. (Burnashev’s ex-
ponent [10] is also a straight line but with a steeper slope.)
However, since, to the best of our knowledge, no non-trivial
upper bounds on the highest achievable resolvability exponent
at a specific rateR (i.e., an equivalent of sphere-packing
exponent for channel coding) is known, it is unclear whether
the improvement we demonstrated in this work is exclusively
due to the presence of feedback or there might exist a
resolvability scheme that achieves the straight-line exponent of
(14) without the need for feedback. Nevertheless, the results
of [8] show that an average i.i.d. random code cannot achieve
a better resolvability exponent than (4). Thus, at least forthe
i.i.d. random coding ensemble, the gains in the exponent are
due to the presence of feedback.

Moreover, for the channel coding problem, Dobrushin [14]
and Haroutunian [15] upper-bounded the best attainable error
exponent in presence of feedback using block codes (This up-
per bound equals the sphere-packing exponent for symmetric
channels [14] but is larger than that, for asymmetric ones [11,
Exercise 10.36].) Those results imply that employing variable-
length error correcting codes is necessary to achieve the
higher exponents of [10]. Another important subject for future
research is to study the achievable resolvability exponents
using block resolvability codes in presence of feedback.
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APPENDIX

Lemma 2. Let (ξn, n ∈ N) be i.i.d. zero-mean random
variables and

Sn ,

n
∑

i=1

ξn, n ∈ N.

Then the process(Sn, n ∈ N) is a martingale with respect to
the natural filtering

(

Fn = σ(ξ1, . . . , ξn), n ∈ N
)

and, if N
is a stopping time,

E

[S2
N

N

]

≤ var(ξ1)E[1 + ln(N)]. (67)

Proof: That (Sn, n ∈ N) is a martingale is trivial. We
shall only prove (67). Let

Nm , min{N,m}, ∀m ∈ N.

It is clear that∀m ∈ N, Nm ∈ [[1 : m]] almost surely andNm

is a stopping time. The latter can be verified by noting that

{Nm = n} =

{

{N = n} if n < m,

{N ≥ m} if n = m.
(68)

Thus for n < m, {Nm = n} = {N = n} ∈ Fn by the
hypothesis thatN is a stopping time, and forn = m,

{Nm = m} = {N ≥ m} =
m−1
⋂

j=1

{N 6= j} ∈ Fm−1, (69)

andFm−1 ⊆ Fm (hence{Nm = n} ∈ Fm). Finally N1 = 1
almost surely, hence,

E

[

S2
N1

N1

]

= var(ξ1). (70)

We now have

E

[

S2
Nm

Nm

]

− E

[

S2
Nm−1

Nm−1

]

= E

[(

S2
m

m
−

S2
m−1

m− 1

)

1{N ≥ m}

]

= E

[

(m− 1)
(

ξ2m + 2ξmSm−1

)

− S2
m−1

(m− 1)m
1{N ≥ m}

]

≤
1

m

(

E[ξ2m 1{N ≥ m}] + 2E[ξmSm−1 1{N ≥ m}]
)

(∗)
=

1

m
var(ξm) Pr{N ≥ m}. (71)

In the above(∗) follows since, as shown in (69),{N ≥ m} ∈
Fm−1 thus1{N ≥ m} is independent ofξm.

Using (71) repeatedly together with the fact that∀n ∈
N : var(ξn) = var(ξ1), we get

E

[

S2
Nm

Nm

]

≤ E

[

S2
N1

N1

]

+ var(ξ1)

m
∑

ℓ=2

Pr{N ≥ ℓ}

ℓ

(∗)
= var(ξ1)

m
∑

ℓ=1

Pr{N ≥ ℓ}

ℓ

≤ var(ξ1)
∑

ℓ≥1

Pr{N ≥ ℓ}

ℓ
. (72)

where(∗) follows from (70) and the fact thatN ≥ 1 almost
surely. We finally have

∑

ℓ≥1

Pr{N ≥ ℓ}

ℓ
=
∑

n≥1

Pr{N = n}
n
∑

ℓ=1

1

ℓ

≤
∑

n≥1

Pr{N = n}(1 + ln(n)) = E[1 + ln(N)]. (73)

Using the above in (72) yields

E

[

S2
Nm

Nm

]

≤ E[1 + ln(N)], ∀m ∈ N. (74)

Now, sincelimm→∞ Nn = N with probability1

E

[S2
N

N

]

= E

[

lim
m→∞

S2
Nm

Nm

]

= E

[

lim inf
m→∞

S2
Nm

Nm

]

(a)
≤ lim inf

m→∞
E

[

S2
Nm

Nm

]

(b)
≤ E[1 + ln(N)]. (75)

where in the above (a) follows from Fatou’s lemma (applied to

the sequence of non-negative random variables
S2
Nm

Nm
, m ∈ N)

and (b) from (74).
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