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Duality between Feature Selection
and Data Clustering

Chung Chan, Ali Al-Bashabsheh, Qiaoqiao Zhou and Tie Liu

Abstract—The feature-selection problem is formulated from
an information-theoretic perspective. We show that the prob-
lem can be efficiently solved by an extension of the recently
proposed info-clustering paradigm. This reveals the fundamental
duality between feature selection and data clustering, which is a
consequence of the more general duality between the principal
partition and the principal lattice of partitions in combin atorial
optimization.

I. I NTRODUCTION

Many problems in machine learning are, in essence, the
devising of a parametrized model that provides a good ap-
proximation to the functional dependency between a set of
input variables (features) and an output (dependent) variable.1

The model parameters are often determined/estimated usinga
training set of points, where each point is a pair consisting
of a sample (i.e., a configuration) of the input variables and
the corresponding output value. The set of features often
contains irrelevant features to the output variable, whichresults
in a high processing complexity and overfitting (due to the
limited size of the training set). The feature selection problem
is an attempt to resolve the above issues by selecting the
features that are most relevant to the output variable. This
of course raises the two questions of what is meant by
“relevant” and how can one determine such relevant features.
Shannon’s mutual information [2] was considered in [3] for
the feature selection problem. It was also recognized that
such a natural formulation [3, FRn–k] is impractical without
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1Depending on the context, the input variables are some timesreferred to
as features in the machine learning literature and independent variables or
regressors in regression analysis. In this work, we will refrain from the use of
the term “independent variables” in the context of regression and reserve the
term to refer to statistical independence between a set of random variables.

further relaxation, owing to the high computational and sample
complexity in estimating the mutual information for a largeset
of features from data. Hence, subsequent information-theoretic
approaches such as [4] have been focusing on finding good
heuristics to solve the problem approximately.

Another prominent problem in machine learning is the
clustering problem. In a broad sense, this is the problem of
dividing a set of objects into groups such that elements in the
same group are similar/relevant to each other and elements
from different groups are dissimilar/irrelevant to each other.
Given a mathematically justifiable notion of similarity/rele-
vance for clustering (see [5] for details), then one may, at least
intuitively, provide a satisfying answer to the two questions
above. Namely, one can treat the features and the dependent
variable as the objects in hand, identify the cluster that contains
the dependent variable, and declare the remaining elements
in the same cluster as the most relevant features. While in
general this remains an intuition that may lack mathematical
rigor, in the special case when the features are statistically
independent, we prove a duality theorem between the feature
selection and data clustering problems that will provide a
precise mathematical explanation of the intuition above.

The underlying pinnings to the feature selection and data
clustering duality in this work are two mathematical structures
called the principal partition (PP) (see, e.g., [6] for an overview
of related works to the PP) and the principal lattice of
partitions (PLP) [7] of a submodular function. Both the PP
and PLP are polynomial-time computable, as will be pointed
out in place. The recognition of a link between the PLP (more
precisely, a subset of the PLP) and the clustering problem
was made in [8], which led to an efficient algorithm that
provides a partial solution to the hardk-clustering problem.
The detailed connection was discussed in [5]. In [9] the PP
(more precisely, a subset of the PP) was linked to the size-
constrained submodular function minimization problem, which
led to an efficient algorithm that provides a partial solution to
the problem.

In this work, we connect the (entire) PP to the feature
selection problem (by showing that an element of the PP is
a solution to the feature selection problem) and connect the
(entire) PLP to the data clustering problem (by showing thatan
element of the PLP is a solution to the clustering problem).
When the features are independent, we prove a one-to-one
correspondence between the PP and PLP, thereby a duality
between the feature selection and the clustering problems.
(More precisely, the duality is between the solutions of the
two problems that are captured by the PP and PLP.)

We remark that the duality result can be extended to
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more general submodular function. The current duality can
be viewed as the special case when the entropy function is
taken to be the submodular function and the modularity is the
statistical independence among the features. The only other
duality we are aware of is in [10], which gave the fastest
algorithm at the time for the computation of the PP of a
graph. (By first computing the PLP of the graph and then
constructing the PP via this duality.) However, that result
cannot be put in the same category as the current result because
it considers the PLP and PP for different submodular functions
of a graph, namely, the graph cut function evaluated over
subsets of vertices and the rank function of the cycle matroid
of the graph evaluated over subsets of edges instead of the
vertices. The duality result appears to exploit the graphical
structure; there seems to be no natural extension of such result
beyond graphs.

II. M OTIVATION

As a motivation for the duality result, we will consider a
simple example involving two independent random variables
X1 and X2, and a third random variableY. For the feature
selection problem, letX1 and X2 be the features andY be
the dependent variable. One is interested in selecting subsets
of the features that are highly correlated with the dependent
variable. More precisely, featurei ∈ {1, 2} is the best feature
if it maximizes Shannon’s mutual information [11]:

max
i∈{1,2}

I(Y ∧ Xi).

As an illustration, assume the random variables are such that

Y = (X1,X2) with I(X1 ∧ X2) = 0 and

H(X1) = 2 > H(X2) = 1.

(2.1a)

(2.1b)

The first variableX1 is a better feature thanX2 as it shares
more mutual information with the dependent variableY.

For the data clustering problem, we consider the info-
clustering paradigm in [5] which clusters a set of random
variables according to their multivariate mutual information
(MMI). As an example, letZ0, Z1 andZ2 be the three random
variables we want to cluster. Given a thresholdγ ∈ R, a cluster
is a subset

B ⊆ {0, 1, 2} : |B| > 1, I(ZB) > γ, ∀B′ ) B, I(ZB′) ≤ γ,

where I(ZB) is the multivariate mutual information (MMI)
defined in [12] (to be introduced in (3.2)). In other words, a
cluster is an inclusion-wise maximal subset of consisting of at
least two random variables with strictly more thanγ amount
of mutual information. In the above, the MMI measures the
mutual information among multiple random variables and may
be viewed as an extension of Shannon’s mutual information
from the bivariate to the multivariate case.

For simplicity, consider the example

Z0 = Y,Z1 = X1 andZ2 = X2, (2.2)

with Y, X1 andX2 satisfying (2.1). Then, forB ⊆ {0, 1, 2}
with |B| ≥ 2, the MMI can be calculated to be

I(ZB) =







0 B = {1, 2}

H(Z1) B = {0, 1}

H(Z2) B ∈ {{0, 1, 2}, {0, 2}}.

(2.3)

For instance,I(Z{0,2}) = H(X2) becauseX2 is the infor-
mation shared among allZi’s. In particular,I(Z{1,2}) = 0
becauseZ1 = X1 andZ2 = X2 are independent.I(Z{0,1}) =
I(Z0 ∧ Z1) = H(X1) becauseX1 is the information shared
betweenZ0 and Z1. Similarly, I(Z{0,1,2}) = I(Z0 ∧ Z2) =
H(X2). The fact thatI(Z{0,1,2}) = H(X2), however, requires
a more detailed understanding of the MMI. A concrete op-
erational meaning [12] is through the secret key agreement
problem, thatI(Z{0,1,2}) is the maximum rate of secret key
that can be agreed upon mutually among three users who
observe privately the discrete memoryless sourcesZ0, Z1

andZ2 respectively. An alternative mathematically appealing
interpretation is the residual independence relation in [12,
Theorem 5.1]:γ = H(X2) satisfies

[
H(Z{0,1,2})− γ

]
=

2∑

i=0

[H(Zi)− γ] ,

which is called the RIR because the total randomness on the
L.H.S. after removingγ is equal to the sum of the individual
randomness of each random variable on the R.H.S. after
removing γ. The equality can be taken to mean that there
is no overlapping (mutual information) left in the residual
randomness after removingγ, and soγ reflects the amount
of information mutual to the three random variables. A figure
illustrating this can be found in [5, Section III–A], which can
be viewed as a natural extension of the well-known Venn-
diagram interpretation of Shannon’s mutual information [13].

Based on (2.3), for γ < H(X2), the entire set{0, 1, 2} of
random variables is a cluster because it is trivially maximal
and it satisfies the required threshold constraint by (2.1), i.e.,

I(Z{0,1,2}) = H(X2) > γ.

By the same reasoning, whenH(X2) ≤ γ < H(X1), the set
{0, 1} is a cluster. Note that even though{0, 2} satisfies the
threshold constraint forγ < H(X2), it is not considered as
a cluster because it is not maximal. More importantly, if the
set {0, 2} were a cluster, then it would be inconsistent with
the cluster{0, 1} which can be taken to assert thatZ0 shares
more information withZ1 (the element in the same cluster)
than withZ2 (the element outside the cluster).

The duality between feature selection and data clustering
is simply that:as the thresholdγ increases, the dependent
variable clusters with a smaller set of more relevant features.
In the current example, withγ large enough, i.e., exceeding
H(X2), the better featureX1 is identified by the cluster{0, 1},
which groups the dependent variableZ0 = Y with the feature
Z1 = X1. In this work, we extend the duality result to the
case allowing any number of independent random variables (as
features) and any correlation between the dependent variable
and features.
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ĥγ(V )

γ

hγ [{{0, 2}, {1}}] =

H(X{1,2}) + H(X1) − 2γ

hγ [{{0}, {1, 2}}] =

2H(X{1,2}) − 2γ

H(X1)H(X2)

hγ [{{0, 1, 2}}] = H(X{1,2}) − γ

hγ [{{0, 1}, {2}}] = H(X{1,2}) + H(X2) − 2γ

hγ [{{0}, {1}, {2}}] = 2H(X{1,2}) − 3γ

(a) ĥγ(V ) vs γ in (3.6) for (2.2).

f∗(γ)

γ

fγ({2}) = H(X2) − γ

H(X1)H(X2)

fγ({1, 2}) = H(X{1,2}) − 2γ

fγ({1}) = H(X1) − γ

fγ(∅) = 0

(b) f∗(γ) vs γ in (4.3) for (2.1).

Fig. 1: Plots of (3.6) and (4.3) for the example (2.1) and (2.2) under the mapping (5.1).

III. I NFO-CLUSTERING FORMULATION

In this section, we first introduce the general info-clustering
formulation in [5] and then extend it slightly for the desired
duality result. The framework considers any number of random
variables with any joint distribution. More precisely, letZV :=
(Zi | i ∈ V ) be a finite vector of random variables to be
clustered, and letΠ(V ) be the collection of partitions ofV
into non-empty disjoint sets. The set of clusters at a real-valued
thresholdγ ∈ R is defined in [5, Definition 2.1] as

Cγ(ZV ) := {B ⊆ V | |B| > 1, I(ZB) > γ,

6 ∃B′ ) B, I(ZB′) > γ},

(3.1a)

(3.1b)

whereI(ZB) is the MMI defined as [12]

I(ZB) := min
P∈Π(B):
|P|>1

1

|P| − 1
D

(

PZV

∥
∥
∥
∥
∥

∏

C∈P

PZC

)

︸ ︷︷ ︸

=
∑

C∈P H(ZC)−H(ZB)

. (3.2)

In the bivariate case whenV = {1, 2}, the MMI reduces
to Shannon’s mutual informationI(Z1 ∧ Z2) with P =
{{1}, {2}}. The MMI naturally extends Shannon’s mutual
information to the multivariate case, with concrete operational
meanings in secret key agreement and undirected network
coding [12, 14, 15]. In the above, (3.1a) is the threshold
constraint that requires the random variables in a cluster to
share at leastγ amount of information, while the non-existence
condition in (3.1b) requires the cluster to be inclusion-wise
maximal.

It was shown in [5] that the clustering solution of (3.1) is
given by a mathematical structure called the principal lattice
of partitions (PLP) introduced by [16]. More precisely, we say
that a set functionh : 2V → R is submodular [17] if for all
B1, B2 ⊆ V ,

h(B1) + h(B2) ≥ h(B1 ∪B2) + h(B1 ∩B2). (3.3)

The functionh is said to be supermodular if the inequality
above is reversed, and modular if equality holds. It followsthat

−h is supermodular iffh is submodular, whileh is modular iff
it is both submodular and supermodular. The entropy function

h(B) := H(ZB) for B ⊆ V, (3.4)

for instance, is known to be submodular [18], and so is the
residual entropy function [12]

hγ(B) := h(B)− γ. (3.5)

More generally, a constant function is modular and the sum
of submodular functions is submodular. For the submodular
functionhγ , the Dilworth truncation [17] (evaluated atV ) is

ĥγ(V ) := min
P∈Π(V )

∑

C∈P

hγ(C)
︷ ︸︸ ︷

[H(ZC)− γ]

︸ ︷︷ ︸

hγ [P]:=

, (3.6)

the optimal partitions to which for different values ofγ ∈ R

is called the PLP [16]. As an illustration, Fig.1a shows a
plot of ĥγ(V ) againstγ for the example in (2.2). For γ ≤
H(X2) = 1, the trivial partition{{0, 1, 2}} is optimal, i.e.,
ĥγ(V ) = hγ [{{0, 1, 2}}]. For γ ∈ [H(X2), H(X1)] = [1, 2],
the partition{{0, 1}, {2}} is optimal. Forγ ≥ H(X1) = 2,
the partition{{0}, {1}, {2}} into singletons is optimal.

More generally, for any submodular functionh, the set of
optimal partitions to (3.6) for any γ forms a lattice called
the Dilworth truncation lattice, and the sequence of Dilworth
truncation lattices forms a larger lattice which is referred to as
the PLP [16]. The lattice structure is respective to the partial
order on partitions, denoted asP � P ′, meaning that

∀C ∈ P , ∃C′ ∈ P ′ such thatC ⊆ C′. (3.7)

In other words,P ′ is no smaller thanP means thatP ′ is no
finer thanP . We use≺ to denote the strict inequality when
P 6= P ′. For instance, the optimal partitions in Fig.1a form
a chain, which is a special kind of lattice:

{{0, 1, 2}} ≻ {{0, 1}, {2}} ≻ {{0}, {1}, {2}}.

The PLP turns out to be strongly polynomial-time solvable [8,
16], and it resolves the clustering problem in hand:



4

Proposition 3.1 ([5, Corollary 3.1]) For any thresholdγ ∈
R, the clusters ofCγ (3.1) are the non-singleton elements of
the finest optimal partition of(3.6) with respect to the partial
order (3.7). ✷

This can be observed in Fig.1a. For instance, forγ ∈
[H(X2), H(X1)], the partition{{0, 1}, {2}} is optimal and
its non-singleton element{0, 1} is a cluster (as mentioned
before).

By the above proposition, the clusters can be obtained from
the optimal partitions, or more precisely, the finest optimal
partitions to (3.6). In general, the finest optimal partitions form
a chain called the principal sequence of partitions (PSP), which
is a subset of the PLP [16].

The PSP, however, can be a proper subset of the PLP, and
the solutions in the PSP are not the only meaningful ones.
In particular, the partitions in the PLP but not the PSP will
be argued to enrich the solutions of the data clustering and
feature selection problems. In the following, we first extend
the clustering formulation of [5] to include the entire PLP as
solutions:

Definition 3.1 For a thresholdγ ∈ R, the extended set of
clusters is defined as

Cγ(ZV ) := {B ⊆ V | |B| > 1, I(ZB) ≥ γ,

6 ∃B′ ⊆ V, ∅ 6= B ∩B′ 6= B′

︸ ︷︷ ︸

or equiv.B 6⊇B′

, I(ZB′) > γ},

(3.8a)

(3.8b)

whereI(ZB) is as defined in (3.2). ✷

The following result shows that the extended set of clusters
maps to the entire PLP as desired.

Theorem 3.1 The clusters inCγ(ZV ) are the non-singleton
elements of the optimal partition of(3.6). ✷

PROOF See AppendixA. �

The difference between the two formulations is the non-
existence condition in (3.8b), which can be viewed as a re-
laxation of the inclusion-wise maximality constraint in (3.1b).
More precisely, with Proposition3.1, it follows thatCγ(ZV ) ⊆
Cγ(ZV ). However, the extended set of clusters may be strictly
larger: The non-existence condition (3.8b) forbids a setB′

with at least one element inB and one element outsideB
(i.e, B bisectsB′) while having a mutual information strictly
larger thanγ; it potentially allowsC1, C2 ∈ Cγ(ZV ) such that
I(ZC1

) = I(ZC2
) = γ but C2 ) C1. This allowed scenario is

excluded in (3.1) even if the threshold constraint is changed to
non-strict inequality.2 For instance, consider the example (2.2)
with (2.1a) and

H(X1) = H(X2) = 1 (3.9)

instead of (2.1b). Then, asγ increases to1, the setCγ(ZV )
of clusters changes from{{0, 1, 2}} to the empty set∅, i.e.,
we have C1(Z{0,1,2}) = ∅, which can be seen by noting
that for γ = 1, the finest optimal partition is the partition
into singletons. In contrast, one can show that asγ increases

2A non-strict inequality for (3.1) will only shift the clustering solution very
slightly, i.e.,Cγ(ZV ) will be changed to the one-sided limitlimγ′↑0 Cγ′ (ZV ).

to 1, the extended setC1(Z{0,1,2}) of clusters changes from
{{0, 1, 2}} to further include the sets{0, 1} and {0, 2},
i.e., we haveC1(Z{0,1,2}) = {{0, 1, 2}, {0, 1}, {0, 2}}. More
generally, the additional clusters in the extended set can be
characterized as follows:

Corollary 3.1 For anyγ ∈ R, we haveB ∈ Cγ(ZV )\Cγ(ZV )
iff |B| > 1, I(ZB) = γ and

B ∩B′ = ∅ or B′ ⊆ B, (3.10)

for all B′ ∈ Cγ(ZV ) (or simply withI(ZB′) > γ). ✷

PROOF See AppendixA. �

(3.10) means that a clusterB ∈ Cγ(ZV )\Cγ(ZV ) is consistent
with the clusters inCγ(ZV ) in the sense that such a cluster
B with γ amount of mutual information does not break apart
any clusterB′ ∈ Cγ(ZV ) that has a strictly larger amount of
mutual information thanγ.

As an illustration, the earlier example is both a Bayesian
tree network and a tree PIN model with a more structured
(graphical) clustering solution described in [5, Section IV].
Roughly speaking, the network can be regarded as the tree
(chain)1−0−2 with equal-weight edges. The extended set of
clusters returns all the subtrees, namely0−1 and0−2, as the
clusters atγ = 1, in addition to the trivial cluster consisting of
all the nodes. It can be seen that the extended set of clusters
give more flexibility in the sense of finding a cluster of an
appropriate size for the application of interest.

That being said, if the application of interest demands a
smaller cluster than what are available at a given threshold,
there is no particular reason why one should not increase the
threshold to identify a cluster of the desired size. For the
earlier example, even though{0, 1} and{0, 2} are not in the
extended set of clusters forγ < 1, they may be considered if
a small cluster is desired.{1, 2} is not preferred because it is
not consistent with (breaks apart){0, 1}, {0, 2} and therefore
{0, 1, 2}, all of which have a strictly larger mutual information.

IV. FEATURE SELECTION FORMULATION

Let XU := (Xi | i ∈ U) be a finite vector of mutually
independent random variables referred to as the features,
andY be a random variable that depends onXU . The joint
distribution ofXU andY can be written as

PXUY = PY|XU

∏

i∈U

PXi
. (4.1)

For a non-negative integerk, if we are to selectk features as
the most relevant ones toY, then it is natural to choose the
set that maximizes the mutual information

max{I(Y ∧ XB) | B ⊆ U, |B| = k}. (4.2)

Such information-theoretic formulation for feature selection
first appeared in [3, FRn–k], and will be referred to as the size-
constrained formulation (since the size of the set of features
to be selected is fixed). Note that

I(Y ∧ XB) = H(XB)−H(XB|Y)

=
∑

i∈B

H(Xi)−H(XB |Y)
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by (4.1), which is supermodular inB becauseH(XB|Y) is
submodular and

∑

i∈B H(Xi) is modular inB.
Unfortunately, maximizing a supermodular function as

in (4.2) (or minimizing a submodular function) under a cardi-
nality constraint is NP-hard in general as it generalizes [7,
Section 10.4.4][9] the densek-subgraph problem, e.g., see
[19]. Therefore, we consider a relaxation that can be solved
in strongly polynomial time: Given a thresholdγ ∈ R, the
preferred sets of features achieve the objective

f∗(γ) := max
B⊆U

f(B):=
︷ ︸︸ ︷

I(Y ∧ XB)−γ|B|
︸ ︷︷ ︸

fγ(B):=

. (4.3)

Intuitively, for γ > 0, the second term−γ|B| is a penalty
in favor of a smaller set of features. The closely related
expressionf∗(γ) + γk is the well-known Lagrangian dual of
(4.2), which can serve as an upper bound of (4.2). The optimal
solutions of (4.2) is related to those of the Lagrangian dual
(and therefore (4.3)) as follows:

Proposition 4.1 If B∗ is optimal to (4.3) for someγ, then
it is also optimal to (4.2) with k = |B∗|. (This holds
even for dependent features, i.e., without the independence
assumption(4.1).) ✷

PROOF Suppose to the contrary that there existsB′ with
|B′| = |B∗| but I(XB′ ∧ Y) > I(XB∗ ∧ Y), then fγ(B

′) >

fγ(B
∗), contradicting the optimality ofB∗. �

As an illustration, Fig.1b is a plot of f∗(γ) againstγ
for the example in (2.1). For γ ≤ H(X2), the entire set
{1, 2} of features is the optimal solution to (4.3) achieving the
maximum value offγ({1, 2}). It is also the optimal solution
to (4.2) for k = 2. For γ ∈ [H(X2), H(X1)], the set{1} is
optimal to (4.3) and it is also the optimal solution to (4.2) for
k = 1. For γ ≥ H(X1), the empty set∅ is optimal to (4.3)
and trivially optimal to (4.2) for k = 0.

The reason we regard (4.3) as a relaxation of (4.2) because
the converse of Proposition4.1 does not hold in general, i.e.,
it is possible to find an example where an optimal solution
to (4.2) for some integerk is not optimal to (4.3) for any γ.
Such an example is given in AppendixB.

For a general supermodular functionf , the set of optimal
solutions to (4.3) for different values ofγ forms a finite
distributive lattice with respect to set inclusion [20]. By
Birkhoff’s representation theorem, the lattice can be charac-
terized using a partial order over the elements of a partition of
V . This structure was shown to be polynomial-time solvable
structure and is called the principal partition (PP). For the
detailed definition and historical development of the concept,
we refer the readers to [6, 20, 21].3 In particular, the optimal
solutions in Fig.1b form a chain, which is a special kind of
lattice:

{0, 1, 2} ⊇ {0, 1} ⊇ ∅.

3In the literature, the term PP is used to refer to both the distributive lattice
and the induced (equivalent) structure consisting of a partial order defined over
a partition of the ground set (hence the term PP). In this work, we follow this
convention to use the term PP to refer to the distributive lattice.

There is a closely related relaxation in [9, (2)] of the general
size-constrained submodular function minimization problem.4

Our relaxation (4.3) is simpler. It appeared as an intermediate
step [9, (3)] that contains all the solutions of [9, (2)] (with
the non-negative submodular function therein chosen to be
B 7→ H(XB |Y)). Another difference is that we consider
the entire PP as solutions to the feature selection problem
while [9] restricts only to the inclusion-wise maximal and
minimal subsets to the general size-constrained optimization.
As a result, our formulation can give more optimal solutions
to (4.2) that are also meaningful. For example, consider (2.1)
but with (2.1b) replaced by (3.9) H(X1) = H(X2) = 1. In
this case, the featuresX1 andX2 are equally good as each of
them contains the same amount (1 bit) of mutual information
with Y. It can be shown that, forγ = 1, both{1} and{2} are
optimal solutions to (4.3) (in addition to the optimal solutions
∅ and{1, 2}). Thus, fork = 1, both{1} and{2} are solutions
to (4.2) as desired. However, the relaxation in [9] considers
only the minimal solution∅ and maximal solution{1, 2} to
(4.3), which therefore fails to give any solution to (4.2) for
k = 1.

V. THE DUALITY

The solutions to the data clustering and feature selection
problems can be related by the following mapping:

V = {0} ∪ U and Zi =

{

Y i = 0

Xi i ∈ U,
(5.1)

whereXU satisfies (4.1), and we assume0 6∈ U without loss
of generality.

Theorem 5.1 Under the mapping(5.1), we have for allγ ∈ R

andB ⊆ U that B is an optimal solution to(4.3) iff {0}∪B

is an element of an optimal partition to(3.6). ✷

In other words,the dependent variableZ0 = Y is clustered
with the setB of selected featuresZB = XB . The duality can
be observed from Fig.1 for the example in (2.1) using the
mapping (2.2), which agrees with (5.1). For γ ≤ H(X2), the
set {1, 2} is optimal in Fig. 1b, and its union{0} ∪ {1, 2}
with {0} is contained by the optimal partition{{0, 1, 2}} in
Fig. 1a. For γ ∈ [H(X2), H(X1)], the optimal subset{1}
in Fig. 1b union {0} is contained by the optimal partition
{{0, 1}, {2}} in Fig. 1a. Finally, for γ ≥ H(X1), the optimal
partition{{0}, {1}, {2}} in Fig. 1acontains{0}∪∅, which is
trivially the union of{0} and the optimal subset∅ in Fig. 1b.

As another example, consider (2.2) again but with (2.1a)
and (3.9), i.e., the case when both featuresX1 and X2 are
equally good. Forγ = 1, every subset of{1, 2} is optimal
to (4.3). In particular, the solutions{1} and {2} correspond
to the partitions{{0, 1}, {2}} and {{1}, {0, 2}}, which are
optimal to (3.6). This is in alignment with Theorem5.1.
Note that neither of these optimal partitions is the finest
optimal partition, i.e., the partition{{0}, {1}, {2}}, and so
Proposition3.1 dictates that neither{0, 1} nor {0, 2} is a

4The idea of the relaxation has appeared in [7, Section 10.4.4], but instead
of the size-constrained optimization problem (4.2), a closely-related density
problem was considered.
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cluster according to (3.1). Nevertheless, the duality result
here is more general and the discrepancy is resolved via the
extended clustering formulation in (3.8), where as mentioned
earlier, the sets{0, 1} and{0, 2} are indeed in the collection
of extended clustering solutions.

Before proving the theorem, we first specialize the cluster-
ing solution under the current mapping (5.1) by exploiting the
independence among the features (4.1). ForC ⊆ V , define the
C-block partition ofV as

PC := {C} ∪ {{i} | i ∈ V \ C}. (5.2)

Proposition 5.1 For γ > 0, any optimalP to (3.6) under
(5.1) must satisfyP = P{0}∪B (5.2) for someB ⊆ U . ✷

PROOF Suppose to the contrary that an optimalP to (3.6)
contains

C′ ∈ P : 0 6∈ C′, |C′| > 1.

Define another partition ofV as

P ′ = (P \ C′) ∪ {{i} | i ∈ C′}.

Then, the differencehγ [P ′]− hγ [P ] is
∑

i∈C′

H(Zi)−H(ZC′)

︸ ︷︷ ︸

=0 by (5.1) and (4.1).

−(|C′| − 1
︸ ︷︷ ︸

>0

) γ
︸︷︷︸

>0

< 0,

which contradicts the optimality ofP . �

PROOF (THEOREM 5.1) we will break down the proof into
three cases:

1) γ > 0: In this case, we relate (4.3) and (3.6) directly
by rewriting the terms in (4.3) using P{0}∪B (5.2) for
B ⊆ U .

|B| = |U | − |U \B|

= |U | − |P{0}∪B|+ 1

I(Y ∧ XB) = H(Y) + H(XB)
︸ ︷︷ ︸

∑

i∈B H(Xi) by (4.1).

− H(Y,XB
︸ ︷︷ ︸

Z{0}∪B by (5.1).

)

= H(Y) +
∑

i∈U

H(Xi)−
∑

C∈P{0}∪B

h(C).

Altogether, we have

I(Y ∧ XB)− γ|B| = t− hγ [P{0}∪B]

wheret := H(Y) +
∑

i∈U H(Xi) − (|U |+ 1)γ. Sincet
is independent ofB,

max
B⊆U

I(Y ∧ XB)− γ|B| = t− min
B⊆U

hγ [P{0}∪B].

Sinceγ > 0, by Proposition5.1 the minimization on the
R.H.S. above is the same as (3.6), which completes the
proof of this case.

2) γ < 0: By the submodularity of entropy (3.3), we have
for any disjointC1, C2 ⊆ V that

hγ(C1 ∪C2) ≤ hγ(C1) + hγ(C2)− hγ(∅)
︸ ︷︷ ︸

=−γ≤ hγ(C1) + hγ(C2)

for γ ≤ 0. This implies that the trivial partitionP = {V }
is an optimal partition to (3.6) for γ ≤ 0 because further
partitioningV will not decrease the sum in (3.6). In the
current caseγ < 0, the above inequality is strict, and so
further partitioningV will increase the sum, and so the
trivial partition is indeed the unique optimal solution.
Now, B = U is an optimal solution to (4.3) for γ ≤ 0
becauseI(Y∧XB) is non-decreasing inB. In the current
caseγ < 0 with strict inequality, the solution is also
unique because|B| is strictly increasing inB. Hence,
under the mapping (5.1), we have the desired conclusion
for the current case thatV = {0}∪U is contained by the
unique optimal partitionP = {V } of (3.6) while B = U

is the unique optimal solution to (4.3).
3) γ = 0: SupposeB is optimal to (4.3). SinceU is also

optimal, we have

I(Y ∧ XB) = I(Y ∧ XU ) (5.3)

which means that(Y,XB) is independent ofXU\B , or
equivalently, by (5.1),

h(V ) = h({0} ∪B) + h(U \B). (5.4)

This implies thatP = {{0} ∪B,U \B} is also optimal
for γ = 0 becauseh0 = h andP = {V } is an optimal
solution to (3.6) as argued in the previous case.
Conversely, suppose{0} ∪B is contained in an optimal
partitionP of (3.6) for γ = 0. Since the trivial partition
{V } is also optimal as argued in the previous case, we
have

h(V ) =
∑

C∈P

h(C) = h({0} ∪B) +
∑

C∈P:06∈C

h(C),

which implies (5.4) that(Y,XB) is independent ofXU\B ,
or equivalently (5.3). This completes the proof of the
current case becauseB = U is an optimal solution to
(4.3) for γ = 0 as argued in the previous case. �

The above proof of the duality result can be extended to
a more general submodular function instead of the entropy
function. Indeed, the proof of the important caseγ > 0 does
not even use submodularity. Nevertheless, the independence
assumption in (4.1) is essential in the proof. An example is
given in AppendixC to show that the duality can fail without
the independence assumption.

VI. CONCLUSION

In this work, we derived in a rigorous information-theoretic
sense an intuitive duality between data clustering and feature
selection. The intuition was that features that are clustered
with the dependent variable are its most relevant features.We
started by considering the info-clustering formulation in[5]
using the MMI proposed in [12], then extended the formulation
to give a more complete clustering solution that maps to the
entire PLP. We also formulated the feature selection problem
as a size-constrained submodular function optimization and
relaxed it to a form solvable in polynomial-time by computing
the PP. The general duality between the PLP and PP was
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derived, giving the desired duality between data clustering and
feature selection.

In the feature selection formulation, the cardinality of a
set of feature was considered as the model complexity of
selecting that set of feature. However, it may be desirable to
consider other cost functions, e.g., the entropy, which reflects
the actual amount of information in the set of feature. The
features may also be correlated in practice. It is an interesting,
but appears non-trivial, task to extend the current result to
incorporate other cost functions for the model complexity and
allow statistical dependency among the features.
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APPENDIX A
PROOF OFTHEOREM 3.1 AND COROLLARY 3.1

To prove Theorem3.1, we will make use of the following
property of property of the PLP:

Proposition A.1 ([16]) For P1,P2 ∈ Π(V ) such thatγ1 <

γ2 and hγi
[Pi] = ĥγi

(V ) for i ∈ {1, 2}, we have the partial
order P1 � P2 defined in(3.7). ✷

This follows from the more elaborate structure of the PLP
described in [5, Proposition 3.2 and 3.3], which in turn follows
from [16, Theorem 3.5 and 3.7]. The result is proved using the
submodularity of entropy; the rest of the proof of Theorem3.1
will not rely on the submodularity.

We first show that any elementB ∈ Cγ is a non-singleton
element of some optimal partition for (3.6).

• SupposeI(ZB) > γ. It can be seen that the non-existence
condition in (3.8b) implies the non-existence condition in
(3.1b), and so we haveB ∈ Cγ(ZV ). By Proposition3.1,
B is contained by the finest optimal partition for (3.6) as
desired.

• SupposeI(ZB) = γ instead. LetP∗ be the finest optimal
partition to (3.6). Then, for allC ∈ P∗ : |C| > 1, we
haveI(ZC) > γ by Proposition3.1, and so, by the non-
existence condition in (3.8b), we have

C ⊆ B for all C ∈ P∗ : B ∩ C 6= ∅.

(n.b., the above holds trivially for|C| = 1.) Let

P ′′ := {C ∈ P∗ | B ∩ C 6= ∅}

P := (P∗ \ P ′′) ∪ {B}.

It follows thatP ′′ ∈ Π(B) with |P ′′| > 1 andP ∈ Π(V ).
By (3.2),

γ = I(ZB) ≤

∑

C∈P′′ H(ZC)−H(ZB)

|P ′′| − 1
, (A.1)

which implies that

0 ≤ hγ [P
′′]− hγ(B)

= hγ [P
∗]− hγ [P ].

It follows that P is also optimal to (3.6) since P∗

is optimal. This completes the proof asB ∈ P by
construction.

We now show that any non-singleton elementB in any
optimal partitionP to (3.6) is a cluster inCγ(ZV ).

• We first argue thatI(ZB) ≥ γ as required in (3.8).
Suppose to the contrary thatI(ZB) < γ. Then, by (3.2),
there existsP ′′ ∈ Π(B) : |P ′′| > 1 that satisfies

γ > I(ZB) =

∑

C∈P′′ H(ZC)−H(ZB)

|P ′′| − 1
.

Let P∗ := P \ {B} ∪ P ′′ ∈ Π(V ). The above inequality
implies that

0 > hγ [P
′′]− hγ(B)

= hγ [P
∗]− hγ [P ],

which contradicts the optimality ofP .
• It remains to prove the non-existence condition in (3.8b).

Suppose to the contrary thatB′ ⊆ V exists with
∅ 6= B ∩ B′ 6= B′ and I(ZB′) > γ. In particular,
choose an inclusion-wise maximalB′, and anyγ′ from
the open interval∈ (γ, I(ZB′)) (which is non-empty by
assumption). We haveB′ ∈ Cγ′(ZV ) by (3.1) and the
maximality of B′. By Proposition3.1, B′ is contained
by some (finest) optimal partition, sayP ′, to (3.6). We
will argue thatP 6� P ′ (see (3.7)), which contradicts
the property of the PLP in PropositionA.1 as desired.
In particular,B′ ∈ P ′ is not contained byB because
B ∩B′ 6= B′ by assumption.B′ is not contained by any
C ∈ P\{B} becauseB∩B′ is non-empty by assumption,
andC does not intersect withB and therefore does not
containB ∩B′.

Next, we will prove Corollary3.1. To prove the “only if”
case, consider anyB ∈ Cγ(ZV )\Cγ(ZV ). By definition (3.8),
|B| > 1 and I(ZB) ≥ γ. If in the contrary thatI(ZB) 6= γ,
i.e., I(ZB) > γ, (3.8) would imply (3.1), contradictingB 6∈
Cγ(ZV ). For anyB′ ∈ Cγ(ZV ), we haveI(ZB′) > γ and so
the non-existence condition in (3.8b) implies (3.10) as desired.

To prove the “if” case, consider anyB satisfying the premise
and the finest optimal partitionP ′ to (3.6). Let

P ′′ := {C ∈ P ′ | B ∩ C 6= ∅}.

P ′′ ∈ Π(B) because, by Proposition3.1, the non-singleton
elements inP ′′ are clusters inCγ(ZV ), and so they are subsets
of B by (3.10). Thus,P := P ′ \ P ′′ ∪ {B} is in Π(V ) and

hγ [P
′]− hγ [P ] = hγ [P

′′]− hγ(B)
(*)
≥ 0,

which will complete the proof as this implies thatP is an
optimal partition of (3.6) containingB, and soB ∈ Cγ(ZV )
by Theorem3.1. (B 6∈ Cγ(ZV ) becauseI(ZB) = γ as argued
before.) To explain the last inequality (*), consider the non-
trivial case|P ′′| > 1 (because, otherwise,P ′′ = {B} implies
equality for (*)). By assumption,

γ = I(ZB) ≤

∑

C∈P′′ H(ZC)−H(ZB)

|P ′′| − 1
,

where the last inequality is becauseP ′′ is a feasible solution
to (3.2). Rearranging the terms give (*) as desired.
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f∗(γ)

γ
fγ(

B0

︷︸︸︷

∅ ) = 0

fγ(

B1

︷︸︸︷

{1}) = 1 − γ

fγ(

B2

︷ ︸︸ ︷

{1, 2, 3}) = 2 − 3γ

fγ(

B3

︷ ︸︸ ︷

{1, 2, 3, 4}) = 2 + ǫ − 4γ

fγ({1, 4}) = 1 + ǫ − 2γ

(ǫ, 1)

( 1

2
, 1

2
)

(1, 0)

B3

B2

B3

B0

Fig. 2: The plot off∗(γ) vs γ for (B.1).

APPENDIX B
COUNTER-EXAMPLE FOR THE CONVERSE OF

PROPOSITION4.1

Let U := {1, 2, 3, 4} and

Y := (W1,W2 ⊕W3 ⊕W4,W5)

X1 := (W1,W2),X2 := W3,X3 := W4,X4 := W5

(B.1)

whereWi’s are independent random bits withH(Wi) = 1 for
i ≤ 4 andH(W5) = ǫ := 1

3 , and⊕ is the XOR operator.
Fig. 2 shows the plot off∗(γ) againstγ and also the plots

of fγ(B) for the following subsetsB:

• Among all the subsetsB ⊆ U of size|B| = 1, the choice
B = {1} maximizes the mutual informationI(Y ∧ XB)
to H(W1) = 1: I(Y ∧ Xi) is 0 for 2 ≤ i ≤ 3, and it is
ǫ < 1 for i = 4.

• Among all the subsets of size2, the choiceB = {1, 4}
maximizes the mutual information toH(W1,W5) = 1+ǫ:
all the other mutual information are no larger than1.

• Among all the subsets of size3, the choiceB = {1, 2, 3}
maximizes the mutual information toH(W1,W2+W3+
W4) = 2: all the other mutual information are no larger
thanH(W1,W5) = 1 + ǫ < 2.

• The only subsetU of size4 achieves a mutual information
of H(Y) = 2 + ǫ.

It follows that B = {1, 4} is the unique optimal solution
to (4.2) for k = 2. In Fig. 2, it can be seen that the curve
fγ({1, 4}) does not touchf∗(γ), and soB = {1, 4} is not an
optimal solution to (4.3) for any γ as desired.

APPENDIX C
EXAMPLE WHERE DUALITY FAILS FOR DEPENDENT

FEATURES

Let U := {1, 2, 3} and

Y := (W1,W2,W3)

X1 := W1,X2 := (W2,W4),X3 := (W3,W4)
(C.1)

whereWi’s are independent random bits withH(W1) = 1 +
ǫ > H(Wi) = 1 for i ≥ 2 and someǫ ∈ (0, 0.5). Note
that the independence assumption4.1 does not hold because
I(X2 ∧ X3) = 1.

Note that{1, 2} and {1, 3} are optimal solutions to (4.2)
for k = 2 but {2, 3} is not, because

I(Y ∧ X{1,2}) = H(W{1,2}) = 2 + ǫ and

I(Y ∧ X{1,3}) = H(W{1,3}) = 2 + ǫ but

I(Y ∧ X{2,3}) = H(W{2,3}) = 2 < 2 + ǫ.

By Proposition4.1, {2, 3} cannot be optimal to (4.3) for any
value ofγ either, while it can be shown that{1, 2} and{1, 3}
are optimal solutions to (4.3) for γ = 1 (in addition to the
solution{1} and{1, 2, 3}).

Under the mapping (5.1), we have

I(Z{0,1,2}) = I(Y,X1 ∧ X2) = H(W2) = 1

I(Z{0,1,3}) = I(Y,X1 ∧ X3) = H(W3) = 1

I(Z{0,2,3}) =
H(Y)+H(X2)+H(X3)−H(Y,X2,X3)

2

= H(W2)+H(W3)+H(W4)
2 = 1.5 > 1.

It follows that neither{0} ∪ {1, 2} nor {0} ∪ {1, 3} is in
Cγ for any γ ∈ R because they fail to satisfy (3.8b) (with
B′ = {0, 2, 3}) for γ ≥ 1 and (3.8a) for γ < 1. This shows
that the “only if” statement of the duality result in Theorem5.1
can fail when (4.1) does not hold. Furthermore, it can be shown
that{0}∪{2, 3} is a cluster inCγ(ZV ) (and thereforeCγ(ZV ))
for γ ∈ [1, 1.5). Hence, the “if” statement of Theorem5.1also
fails to hold for this example.
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