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Duality between Feature Selection
and Data Clustering

Chung Chan, Ali Al-Bashabsheh, Qiaogiao Zhou and Tie Liu

Abstract—The feature-selection problem is formulated from further relaxation, owing to the high computational and gkm
an information-theoretic perspective. We show that the prd-  complexity in estimating the mutual information for a lasgt
lem can be efficiently solved by an extension of the recently uf featyres from data. Hence, subsequent informationrétieo

proposed info-clustering paradigm. This reveals the fundeental . -
duality between feature selection and data clustering, wich is a approaches such ag][have been focusing on finding good

consequence of the more general duality between the princgp heuristics to solve the problem approximately.

partition and the principal lattice of partitions in combin atorial Another prominent problem in machine learning is the
optimization. clustering problem. In a broad sense, this is the problem of
dividing a set of objects into groups such that elementsén th
|. INTRODUCTION same group are similar/relevant to each other and elements

. . . . rom different groups are dissimilar/irrelevant to eachest
Many problems in machine learning are, in essence, t

devisi f trized del that i d en a mathematically justifiable notion of similarity&e
evising of a parametrized model that provides a good as,qq for clustering (seé&] for details), then one may, at least
proximation to the functional dependency between a set o) itively, provide a satisfying answer to the two questio
input variables (features) and an output (dependent) baria

Th del ften d ed/est d asi above. Namely, one can treat the features and the dependent
€ model parameters are often determined/estimated 8SING, japje as the objects in hand, identify the cluster thataios

training set of points, where each point is a pair consistinge dependent variable, and declare the remaining elements
the same cluster as the most relevant features. While in

contains irrelevant features to the output variable, whisults rigor, in the special case when the features are statistical

i_n a high processing_ gomplexity and overfitting (due to thﬁ‘ldependent, we prove a duality theorem between the feature
limited size of the training set). The feature selectiongbem

: . ) election and data clustering problems that will provide a
is an attempt to resolve the above issues by selecting IB}%

foat that t rel t 1o th tout ble. T cise mathematical explanation of the intuition above.
ceatures that are most relevant 1o the output varable. ThiSpye underlying pinnings to the feature selection and data
of course raises the two questions of what is meant

. lll.Yustering duality in this work are two mathematical strues
“relevant” and how can one determine such relevant featur

. . . ; Balled the principal partition (PP) (see, e.@§],fpor an overview
Shannon's mutual informatior?] was considered ing for - o¢ rejated works to the PP) and the principal lattice of

the feature selection problem. It was also r_ecogr_1ized tr}?‘zirtitions (PLP) T] of a submodular function. Both the PP

such a natural formulatiorB][ FRn—k] is impractical without and PLP are polynomial-time computable, as will be pointed
Preliminary work has been submitted ti.[ out in place. The recognition of a link between the PLP (more
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more general submodular function. The current duality cawith Y, X; and X, satisfying ¢.1). Then, forB C {0, 1,2}
be viewed as the special case when the entropy functionwigh |B| > 2, the MMI can be calculated to be
taken to be the submodular function and the modularity is the

statistical independence among the features. The onlyr othe 0 B ={1,2}
duality we are aware of is in1[], which gave the fastest I(Zg) =< H(Z;) B=1{0,1} (2.3
algorithm at the time for the computation of the PP of a H(Z,) B e {{0,1,2},{0,2}}.

graph. (By first computing the PLP of the graph and then

constructing the PP via this duality.) However, that resuftor instance,I(Z; ;) = H(Xz) becauseX; is the infor-
cannot be put in the same category as the current result secdnation shared among all;’s. In particular, [(Z 23) = 0

it considers the PLP and PP for different submodular funstiobecaus&Z; = X; andZ, = X, are independent.(Z;o 1) =

of a graph, namely, the graph cut function evaluated ovétZo A Z1) = H(X;) becauseX; is the information shared
subsets of vertices and the rank function of the cycle matrdpetweenZ, and Z,. Similarly, I(Z01,2y) = 1(Zo N Z2) =

of the graph evaluated over subsets of edges instead of f€X2). The fact that/(Zo 1 2y) = H(X2), however, requires
vertices. The duality result appears to exploit the gragihic@ more detailed understanding of the MMI. A concrete op-

structure; there seems to be no natural extension of suah regrational meaning1Z] is through the secret key agreement
beyond graphs. problem, thatl(Zy,,2;) is the maximum rate of secret key

that can be agreed upon mutually among three users who
observe privately the discrete memoryless sourégs Z;
Il. MOTIVATION and Z, respectively. An alternative mathematically appealing

interpretation is the residual independence relation 1§, |
As a motivation for the duality result, we will consider arheorem 5.1];y = H(X,) satisfies

simple example involving two independent random variables
X; and Xs, and a third random variabl¥. For the feature
selection problem, leX; and X, be the features and be [H(Z10..2y) =] = Z [H(Zi) =],

the dependent variable. One is interested in selectingessibs =0

of the features that are highly correlated with the dependewhich is called the RIR because the total randomness on the
variable. More precisely, featurec {1,2} is the best feature L.H.S. after removingy is equal to the sum of the individual

2

if it maximizes Shannon’s mutual information J: randomness of each random variable on the R.H.S. after
removing~. The equality can be taken to mean that there
l_g{l%}f(YAXi)- is no overlapping (mutual information) left in the residual

randomness after removing and so~y reflects the amount
As an illustration, assume the random variables are suc¢h thef information mutual to the three random variables. A figure
illustrating this can be found ir5[ Section IlI-A], which can
Y = (X1,Xs) with I(X; A X3) =0 and (2.19) ge viewe_d as a nfflturallc (;);]tension of trt1e l\/\(e:cl-knO\;\{gﬁ]\ienn-
iagram interpretation of Shannon’s mutual informati
) =2>H(X) =1 (2.10) Bgased on 2?3), for v < H(X2), the entire se{0, 1,2} of
The first variableX, is a better feature thak, as it shares random variables is a cluster because it is trivially maxima
more mutual information with the dependent varialle and it satisfies the required threshold constrainty)(i.e.,

For .the data .clust_erlng p.roblem, we consider the info- [(Zo1.2y) = H(Xa) > 7.
clustering paradigm in5 which clusters a set of random
variables according to their multivariate mutual inforioat By the same reasoning, whei(X,) < v < H(X;), the set
(MMI). As an example, leZo, Z, andZ, be the three random {0, 1} is a cluster. Note that even thoudh, 2} satisfies the
variables we want to cluster. Given a threshgld R, a cluster threshold constraint fory < H(Xz), it is not considered as
is a subset a cluster because it is not maximal. More importantly, if the
set{0,2} were a cluster, then it would be inconsistent with
BC{0,1,2}:|B|>1,1(Zp) > v,YB' 2 B,1(Zp') <~, the cluster{0,1} which can be taken to assert that shares
more information withZ; (the element in the same cluster)
where I(Zp) is the multivariate mutual information (MMI) than withZ, (the element outside the cluster).
defined in [L7] (to be introduced in%.2)). In other words, a  The duality between feature selection and data clustering
cluster is an inclusion-wise maximal subset of COI’]SIStIﬁgtO is S|mp|y that: as the thresho'd-y increases' the dependent
least two random variables with strictly more tharamount yariable clusters with a smaller set of more relevant feasur
of mutual information. In the above, the MMI measures thg the current example, with large enough, i.e., exceeding
mutual information among multiple random variables and MY (X,), the better featurX; is identified by the clustefo, 1},
be viewed as an extension of Shannon’s mutual informatiQghich groups the dependent variafflg = Y with the feature
from th? bl\{arlate to t.he multivariate case. Z, = X;. In this work, we extend the duality result to the
For simplicity, consider the example case allowing any number of independent random variabges (a
features) and any correlation between the dependent lariab
Zo=Y,Z1 =Xy andZy = Xo, (2.2 and features.
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hy[{{0,1,2}}] = H(X{1,23)
f~({1,2}) = H(X{1,23) — 27

h‘v[{{ovl}v{Q}}]:H<X{1,2}>+ 2 N f ({2}]7//(><_,)7ﬂ \h
< \i({u) =H(X1) -~
H(X2) HX)\ \ v AN . N
ho[{{0}, {1}, {2} = 2H(X1,2) =3y H(X2) H(X1) £, (0)=0
(@) h+ (V) vs v in (3.6) for (2.2). (b) f*(v) vs in (4.3 for (2.1).

Fig. 1: Plots of 8.6) and @.3) for the example4.1) and @.2) under the mappings(1).

I1l. I NFO-CLUSTERING FORMULATION —h is supermodular iffs is submodular, whilé is modular iff

. . o . . it is both submodular and supermodular. The entropy functio
In this section, we first introduce the general info-clusigr

formulation in ] and then extend it slightly for the desired h(B):= H(Zg) for BCYV, (3.9
duality result. The framework considers any number of raumdo]c . i K b bmodul d is th
variables with any joint distribution. More precisely, &t := or instance, is known to be submodulad], and so is the

(Z; | i € V) be a finite vector of random variables to béesmual entropy functionip]

clustered, and lefI(V') be the collection of partitions oV’ h~(B) := h(B) — . (3.9
into non-empty disjoint sets. The set of clusters at a rahlad o
thresholdy € R is defined in f, Definition 2.1] as More generally, a constant function is modular and the sum
of submodular functions is submodular. For the submodular
C,/(Zv):={BCV ||B|>1,1(Zp) > v, (3.19 functionh,, the Dilworth truncation 17] (evaluated at’) is
/HB/ 2 B,I(ZB/) > ’7}, (31b) A . h~(C)
whereI(Zg) is the MMI defined as17] hy(V) = pgﬁ?‘/)cw [H(Ze) =1, 39

H ch> . (32 hoy[P):=

cep the optimal partitions to which for different values ofc R
is called the PLP 16]. As an illustration, Fig.1la shows a
plot of i, (V') againsty for the example in4.2). For vy <

In the bivariate case wheli = {1,2}, the MMI reduces H(X2) = 1, the trivial partition {{0,1,2}} is optimal, i.e.,
to Shannon’s mutual informatiod(Z, A Zo) with P = (V) = hy[{{0,1,2}}]. Fory € [H(X2), H(X1)] = [1,2],
{{1},{2}}. The MMI naturally extends Shannon’s mutuai® Partition{{0,1}, {2}} is optimal. Fory > H(X,) = 2,
information to the multivariate casevith concrete operational the partition{{0}, {1}, {2}} into singletons is optimal.
meanings in secret key agreement and undirected networlore generally, for any submodular functidn the set of
coding [L2, 14, 15. In the above, §.19 is the threshold optlmgl partitions tq 3.9 fpr any v forms a lattice cqlled
constraint that requires the random variables in a cluster tthe Dilworth truncation lattice, and the sequence of Diltior

share at least amount of information, while the non-existencfuncation lattices forms a larger lattice which is reférte as
condition in (3.10) requires the cluster to be inclusion-wisehe PLP [L€]. The lattice structure is respective to the partial
maximal. order on partitions, denoted & =< P’, meaning that

It was shown in ] that the clustering solution of3(1) is VO ¢ P.3¢" ¢ P’ such thatC C C'. 3.7
given by a mathematical structure called the principaldatt ’ -

of partitions (PLP) introduced byif]. More precisely, we say !N other words,P” is no smaller tharP means tha?’ is no
that a set functiorh : 2V — R is submodular {7] if for all finer thanP. We use< to denote the strict inequality when

1
I1(Zp) := in ——D| P
(8) = b TP =1 (
[PI>1

=>"cep H(Zc)—H(ZB)

By,B,CV, P # P’. For instance, the optimal partitions in Fifja form
B a chain, which is a special kind of lattice:
MBL) +h(Be) 2 h(BrU Bo) + h(Bi N Ba). (33 {0,1,2)} = {{0,1}, {21} = {{0}, {1}, {2}}.

The functionh is said to be supermodular if the inequalityThe PLP turns out to be strongly polynomial-time solvaldle [
above is reversed, and modular if equality holds. It follaheat 16|, and it resolves the clustering problem in hand:



Proposition 3.1 (5, Corollary 3.1]) For any thresholdy € to 1, the extended sef;(Z{o,12;) Of clusters changes from
R, the clusters ofc, (3.1) are the non-singleton elements of{0,1,2}} to further include the setq0,1} and {0,2},

the finest optimal partition of3.6) with respect to the partial i.e., we haveci(Z1,23) = {{0,1,2},{0,1},{0,2}}. More
order (3.7). o generally, the additional clusters in the extended set @n b

This can be observed in Figla For instance, fory € characterized as follows:

[H(X2), H(X1)], the partition {{0,1},{2}} is optimal and Corollary 3.1 Forany~ € R, we haveB € C(Zv)\ ¢, (Zv)
its non-singleton elemenf0, 1} is a cluster (as mentionediff |B| > 1, I(Zp) = v and

before).

By the above proposition, the clusters can be obtained from BNB' =0 or B CB, (3.10
the optimal partitions, or more precisely, the finest optimgor all B’ e ¢, (Zv) (or simply withI(Zg:) > 7). o
partitions to 8.6). In general, the finest optimal partitions form )

a chain called the principal sequence of partitions (PSRighy PROOF See Appendia. L
is a subset of the PLPL]. (3.10 means that a clustd® € ¢, (Zv)\ ¢, (Zv) is consistent

The PSP, however, can be a proper subset of the PLP, afth the clusters inc,(Zy) in the sense that such a cluster
the solutions in the PSP are not the only meaningful ones.with v amount of mutual information does not break apart
In particular, the partitions in the PLP but not the PSP wiliny clusterB’ C,(Zy) that has a strictly larger amount of
be argued to enrich the solutions of the data clustering apflitual information thany.
feature selection problems. In the following, we first exten As an illustration, the earlier example is both a Bayesian
the clustering formulation off] to include the entire PLP astree network and a tree PIN model with a more structured
solutions: (graphical) clustering solution described if, [Section [V].
Definition 3.1 For a thresholdy € R, the extended set of RO“Q“'V speaking, the netwqu can be regarded as the tree
clusters is defined as (chain)1 —0— 2 with equal-weight edges. The extended set of

clusters returns all the subtrees, nantelyl and0 — 2, as the
Cy(Zv) :={BCV||B|>1,I(Zp) >, (3.89 clusters aty = 1, in addition to the trivial cluster consisting of
AB' CV,0# BNB # B I(Zp) >~} (3.8b all the nodes. It can be seen that the extended set of clusters
— give more flexibility in the sense of finding a cluster of an
appropriate size for the application of interest.
wherel(Zg) is as defined in3.2). o That being said, if the application of interest demands a
The following result shows that the extended set of cluster@12/ler cluster than what are available at a given threshold
maps to the entire PLP as desired. there is no pgrtlcu!ar reason why one shoqld not_ increase the
B threshold to identify a cluster of the desired size. For the
Theorem 3.1 The clusters inC,(Zy) are the non-singleton earlier example, even thoudl, 1} and{0,2} are not in the
elements of the optimal partition d.6). o extended set of clusters for< 1, they may be considered if
a small cluster is desired1, 2} is not preferred because it is
not consistent with (breaks apaft), 1}, {0,2} and therefore

The difference between the two formulations is the nomp 1,2}, all of which have a strictly larger mutual information.
existence condition in3(8b), which can be viewed as a re-

laxation of the inclusion-wise maximality constraint B.15). IV. FEATURE SELECTION FORMULATION
More precisely, with Propositio8.1, it follows that ¢, (Zy) C Let Xy == (X; | i € U) be a finite vector of mutually

C~(Zv). However, the extended set of clusters may be Sfricqbfdependent random variables referred to as the features,
larger: The non-existence conditioB.§0) forbids a setB’ 5,4V be a random variable that depends %n. The joint
with at least one element i and one element outsidB  gjistribution of X;; andY can be written as

(i.e, B bisectsB’) while having a mutual information strictly

larger thany; it potentially allowsC}, Cy € C,(Zy) such that Pxyy = Py, [ P 4.
I(Z¢,) = I(Z¢,) =~y but Cy 2 C4. This allowed scenario is €U

excluded in §.1) even if the threshold constraint is changed tBor a non-negative integdr, if we are to seleck features as
non-strict inequality. For instance, consider the exampled]  the most relevant ones 6, then it is natural to choose the
with (2.19 and set that maximizes the mutual information

H(X) = H(Xz) = 1 (3.9 max{I(Y AXg)| B CU,|B| = k}. 4.2)

instead of 2.10). Then, asy increases td, the setc,(Zy) Such information-theoretic formulation for feature séiee

of clusters changes frofi{0,1,2}} to the empty sef), i.e., firstappeareding, FRn—k], and will be referred to as the size-
we have ¢i(Zo1,2;) = 0, which can be seen by notingconstrained formulation (since the size of the set of festur

that for v = 1, the finest optimal partition is the partitionto be selected is fixed). Note that
into singletons. In contrast, one can show thatydacreases I(Y AXp) = H(Xg) — H(X5|Y)

or equiv. B2 B’

PROOF See Appendi. n

2A non-strict inequality for 8.1) will only shift the clustering solution very = Z H(X;)— H(Xg|Y)
slightly, i.e.,cy(Zy ) will be changed to the one-sided linitn.,/ 1o C,/ (Zv). icB



by (4.1), which is supermodular iB becauseH (Xg|Y) is There is a closely related relaxation & [2)] of the general
submodular ang _, . 5 H(X;) is modular inB. size-constrained submodular function minimization peofof
Unfortunately, maximizing a supermodular function a®ur relaxation 4.3) is simpler. It appeared as an intermediate
in (4.2) (or minimizing a submodular function) under a cardistep P, (3)] that contains all the solutions 08,[ (2)] (with
nality constraint is NP-hard in general as it generaliZzés [the non-negative submodular function therein chosen to be
Section 10.4.4]]] the densek-subgraph problem, e.g., seeB — H(Xgl|Y)). Another difference is that we consider
[19]. Therefore, we consider a relaxation that can be solvéfte entire PP as solutions to the feature selection problem
in strongly polynomial time: Given a threshold € R, the while [9] restricts only to the inclusion-wise maximal and
preferred sets of features achieve the objective minimal subsets to the general size-constrained optiinizat
$(B)= As a result, our formulation can give more optimal solutions
PRGN to (4.2 that are also meaningful. For example, considet)(
f () :=max I(Y AXp)—v|B]|. (4.9 but with 2.1 replaced by §.9) H(X;) = H(X3) = 1. In
P ————~— this case, the feature§, andX, are equally good as each of
them contains the same amount (1 bit) of mutual information
Intuitively, for v > 0, the second term-+|B| is a penalty with Y. It can be shown that, foy = 1, both {1} and{2} are
in favor of a smaller set of features. The closely relatesbtimal solutions to4.3) (in addition to the optimal solutions
expressionf*(vy) + vk is the well-known Lagrangian dual of ) and{1,2}). Thus, fork = 1, both{1} and{2} are solutions
(4.2), which can serve as an upper bound4®). The optimal to (4.2) as desired. However, the relaxation i fonsiders
solutions of ¢.2) is related to those of the Lagrangian duabnly the minimal solutior) and maximal solution{1,2} to
(and therefore4.3)) as follows: (4.3), which therefore fails to give any solution t@.p) for
=1.

f+(B):=

Proposition 4.1 If B* is optimal to (4.3) for some~, then
it is also optimal to (4.2) with & = |B*|. (This holds
even for dependent features, i.e., without the indeperedenc V. THEDUALITY

assumption(4.1).) 0 The solutions to the data clustering and feature selection

) ) problems can be related by the following mapping:
PROOF Suppose to the contrary that there exi€$ with

|B'| = |B*| but I(Xg: AY) > I(Xg- AY), then f,(B’) >
f~(B*), contradicting the optimality oB3*. n

Y =0
V={0JluU and Z; = 5.1
{0} {Xi ey 69

As an illustration, Fig.1b is a plot of f*(v) againsty \hereX, satisfies ¢.1), and we assum@ ¢ U without loss
for the example in 1.1). For v < H(Xz), the entire set of generality.

{1, 2} of features is the optimal solution td.Q) achieving the )
maximum value off,({1,2}). It is also the optimal solution Theorem 5.1 Under the mapping5.1), we have for ally € R

to (4.2 for k = 2. Forv € [H(X2), H(X1)], the set{1} is and B C U that B is an optimal solution tq4.3) iff {0} U B

optimal to ¢.3) and it is also the optimal solution t@.@) for 1S @n element of an optimal partition {.6). o
k = 1. Fory > H(X,), the empty se) is optimal to ¢.3 |n other wordsthe dependent variabl&, = Y is clustered
and trivially optimal to ¢.2) for & = 0. with the setB of selected feature®z = X . The duality can

The reason we regard ©) as a relaxation of4.2) because pe observed from Figl for the example in .1) using the
the converse of Propositioh 1 does not hold in general, i.e.,mapping 2.2), which agrees withg.1). For y < H(X5), the
it is possible to find an example where an optimal solutioget {1, 2} is optimal in Fig.1b, and its union{0} U {1,2}
to (4.2) for some integet is not optimal to ¢.3) for any~. with {0} is contained by the optimal partitiof{0,1,2}} in
Such an example is given in Appendix Fig. 1a Fory € [H(Xs), H(X1)], the optimal subse{1}

For a general supermodular functigin the set of optimal in Fig. 1b union {0} is contained by the optimal partition
solutions to ¢.3) for different values ofy forms a finite {{0,1},{2}} in Fig. 1a Finally, for v > H(X;), the optimal
distributive lattice with respect to set inclusio(]. By partition {{0}, {1}, {2}} in Fig. 1acontains{0} U{, which is
Birkhoff’s representation theorem, the lattice can be abar trivially the union of {0} and the optimal subsétin Fig. 1b.
terized using a partial order over the elements of a panto  As another example, conside?.) again but with 2.19
V. This structure was shown to be polynomial-time solvablgnd (3.9), i.e., the case when both featurs and X, are
structure and is called the principal partition (PP). Foe thequally good. Fory = 1, every subset of 1,2} is optimal
detailed definition and historical development of the cqtce to (4.3). In particular, the solutiong1} and {2} correspond
we refer the readers t®[ 20, 21].° In particular, the optimal to the partitions{{0, 1}, {2}} and {{1},{0,2}}, which are
solutions in Fig.1b form a chain, which is a special kind ofoptimal to (3.6). This is in alignment with Theorens.1.
lattice: Note that neither of these optimal partitions is the finest

{0,1,2} 2> {0,1} D 0. optimal partition, i.e., the partitiod{0}, {1}, {2}}, and so
Proposition3.1 dictates that neithef0,1} nor {0,2} is a

3In the literature, the term PP is used to refer to both theidigtve lattice
and the induced (equivalent) structure consisting of dgantder defined over ~ “4The idea of the relaxation has appearedinSection 10.4.4], but instead
a partition of the ground set (hence the term PP). In this yweekfollow this  of the size-constrained optimization problemZ), a closely-related density
convention to use the term PP to refer to the distributiveckat problem was considered.



cluster according to 3 1). Nevertheless, the duality result
here is more general and the discrepancy is resolved via the
extended clustering formulation ir3.¢), where as mentioned
earlier, the setg0, 1} and {0, 2} are indeed in the collection
of extended clustering solutions.

Before proving the theorem, we first specialize the cluster-

for v < 0. This implies that the trivial partitio® = {V'}

is an optimal partition to3.6) for v < 0 because further
partitioning V' will not decrease the sum ir8(©). In the
current casey < 0, the above inequality is strict, and so
further partitioningl” will increase the sum, and so the
trivial partition is indeed the unique optimal solution.

ing solution under the current mapping ) by exploiting the
independence among the featurés). ForC' C V, define the
C-block partition of V' as

Pe = {CYU{{i}|ieV\C). (5.2

Proposition 5.1 For v > 0, any optimalP to (3.6) under
(5.1) must satisfyP = Pioyup (5.2 for someB C U. o

PROOF Suppose to the contrary that an optinfalto (3.6)
contains

C'eP:0gC|C'|>1.
Define another partition of” as
P =P\C)U{{i}|ieC}.
Then, the differencé.,[P’'] — hy[P] is

Y H(Zi) - H(Zer) ~(/C'| - 1)\7/ <0,

Y 7
ec >0 >0

=0 by (5.1) and @.1).

which contradicts the optimality oP. n

PROOF(THEOREM5.1) we will break down the proof into
three cases:

1) v > 0: In this case, we relate4(3) and (3.6) directly
by rewriting the terms in4.3) using P{oyup (5.2 for
BCU.

|B| = U] = U\ B
=[Ul = Proyusl +1

I(Y/\XB):H(Y)—F H(XB) — H(Y,XB)
——r ———
Yies HX:) by 4.1). Zgoyup by G.0).

=H(Y)+ > H(X;) -

icU

D

CGP{O}UB

h(C).

Altogether, we have
I(Y AXp) —v|B| =t — hy[Proyusl

wheret := H(Y) + >, H(X;) — (|U] + 1)v. Sincet
is independent o,

max I(Y A Xp) —7|B| =t — min h,[Projus].

Since~ > 0, by Propositiorb.1 the minimization on the
R.H.S. above is the same a5 6), which completes the
proof of this case.

2) v < 0: By the submodularity of entropy3(3), we have
for any disjointCy, Co C V that

hy(C1U C2) < hy(C1) + hy(C2) — Dy (D)
< hv(Cl)+hv(C2) e

=—7

Now, B = U is an optimal solution to4.3) for v < 0
becausd (Y AXp) is non-decreasing if3. In the current
casey < 0 with strict inequality, the solution is also
unique becauséB| is strictly increasing inB. Hence,
under the mappings(1), we have the desired conclusion
for the current case thaf = {0} UU is contained by the
unique optimal partitior? = {V'} of (3.6) while B =U

is the unique optimal solution tat(3).

~v = 0: SupposeB is optimal to @.3). SinceU is also
optimal, we have

3)

I(Y AXp) = I(Y AXy) (5.3

which means thatY, Xp) is independent oy 5, or
equivalently, by §.1),

h(V) = h({0} UB) + h(U \ B).

This implies thatP = {{0} U B,U \ B} is also optimal

for v = 0 becauséiy = h andP = {V} is an optimal
solution to @8.6) as argued in the previous case.
Conversely, supposf)} U B is contained in an optimal
partition P of (3.6) for v = 0. Since the trivial partition
{V'} is also optimal as argued in the previous case, we
have

h(V)

(5.4)

S hC)=h{0}uB)+ > h(C),

ceP CeP:0gC

which implies 6.4) that(Y, Xp) is independent oK\ g,
or equivalently 5.3). This completes the proof of the
current case because = U is an optimal solution to
(4.3) for vy = 0 as argued in the previous case. n

The above proof of the duality result can be extended to
a more general submodular function instead of the entropy
function. Indeed, the proof of the important cage- 0 does
not even use submodularity. Nevertheless, the indeperdenc
assumption in4.1) is essential in the proof. An example is
given in AppendixC to show that the duality can fail without
the independence assumption.

VI. CONCLUSION

In this work, we derived in a rigorous information-theoceti
sense an intuitive duality between data clustering andifeat
selection. The intuition was that features that are clester
with the dependent variable are its most relevant featies.
started by considering the info-clustering formulation[
using the MMI proposed in1[Z], then extended the formulation
to give a more complete clustering solution that maps to the
entire PLP. We also formulated the feature selection proble
as a size-constrained submodular function optimizatioth an
relaxed it to a form solvable in polynomial-time by compagtin
the PP. The general duality between the PLP and PP was



derived, giving the desired duality between data clustesind It follows that P is also optimal to §.6) since P*

feature selection. is optimal. This completes the proof a8 € P by
In the feature selection formulation, the cardinality of a  construction.

set of feature was considered as the model complexity of\we now show that any non-singleton elemégtin any

selecting that set of feature. However, it may be desirable ¢ptimal partition? to (3.6) is a cluster inC,(Zv).

consider other cost functions, e.g., the entropy, whictee&l | \we first argue that/(Zz) > ~ as required in .9).

the actual amount of information in the set of feature. The gyppose to the contrary thafZ ) < +. Then, by 8.2),

features may also be correlated in practice. It is an intiexgs there existsP” € TI(B) : [P”| > 1 that satisfies
but appears non-trivial, task to extend the current result t
incorporate other cost functions for the model complexitg a v>1(Zp) = 2 cepr H(Zc) — H(Zp)
allow statistical dependency among the features. P -1
Let P* := P\ {B} UP” e II(V). The above inequality
ACKNOWLEDGMENTS implies that

. . 0 > hy[P"] — hy(B)
The authors would like to thank their colleagues at the In- .
stitute of Network Coding (INC) for their insightful commisn =y [P] = hy [P,
and discussions. which contradicts the optimality dP.
« It remains to prove the non-existence condition3r8Q).
Suppose to the contrary thaB’ C V exists with
) # BN B # B and I(Zg/) > ~. In particular,
choose an inclusion-wise maxim&’, and anyy’ from

APPENDIXA
PROOF OFTHEOREM 3.1 AND COROLLARY 3.1

To prove Theorens.1, we will make use of the following the open intervak (v, I(Zp/)) (which is non-empty by
property of property of the PLP: assumption). We hav®’ € ¢,/(Zy) by (3.1) and the
Proposition A.1 ([16]) For Py, P, € II(V) such thaty, < maximality.of B By_ ProposiFiQnS.L B’ is contained
~2 and h.,[Pi] = h, (V) for i € {1,2}, we have the partial by some (finest) optimal partition, s&’, to (3.6). We
order P, = P, defined in(3.7). - will argue that? % P’ (see 8.7)), which contradicts

the property of the PLP in Propositioh.1 as desired.
This follows from the more elaborate structure of the PLP  |n particular, B’ € P’ is not contained byB because

described in $, PrOpOSition 3.2 and 33], which in turn follows BnNnB 7§ B’ by assumptionB/ is not contained by any
from [16, Theorem 3.5 and 3.7]. The resultis proved using the ¢ ¢ P\ {B} becausé3NB’ is non-empty by assumption,

submodularity of entropy; the rest of the proof of Theor&rh and C does not intersect witlB and therefore does not
will not rely on the submodularity. containBN B’.
We first show that any eleme® € C, is a non-singleton Next, we will prove Corollary3.1 To prove the “only if’

element of some optimal partition foB.©). case, consider anig € C.(Zy)\ ¢,(Zv). By definition €.9),

« Supposd (Zg) > . It can be seen that the non-existencgB| > 1 and I(Zg) > +. If in the contrary that/ (Zg) # 7,
condition in 8.80) implies the non-existence condition inj.e., I(Zg) > +, (3.8) would imply (3.1), contradictingB ¢
(3.1b), and so we havé3 € ¢,(Zv). By Proposition3.1, Cy(Zy). For anyB’ € ¢,(Zy), we havel(Zp/) > v and so
B is contained by the finest optimal partition fa*.¢) as the non-existence condition i8.gb) implies (3.10) as desired.
desired. To prove the “if” case, consider ary satisfying the premise

« Supposd (Zp) = v instead. LetP* be the finest optimal and the finest optimal partitioR®’ to (3.6). Let
partition to @.6). Then, for allC € P* : |C| > 1, we ” ,
havel(Zs) > ~ by Proposition3.1, and so, by the non- Pli={CeP [BNC#0}.
existence condition in38h), we have P" € II(B) because, by Propositiod.1, the non-singleton

. elements irP” are clusters i, (Zy ), and so they are subsets
CcBioral CeP :BNC#0. of B by (3.10. Thus,P := P'\ P U {B} is in I1(V) and
(n.b., the above holds trivially fojC| = 1.) Let ®
,P// o {C c P* | BN C 7& (Z)} hV[IP/] - hV[IP] = hV[IPN] - h’Y(B) ZO’
T .y which will complete the proof as this implies th@ is an
P = (P"\P")U{B}. optimal partition of 8.6) containingB, and soB € C,(Zv)
It follows thatP” € II(B) with |P”| > 1 andP e II(V). by Theorem3.1 (B ¢ C,(Zv) becausd (Zp) = v as argued
By (3.2 before.) To explain the last inequality (*), consider thenno
v 52 trivial case|P”| > 1 (b therwis®” = {B} impli
rivial case > ecause, otherwis®” = implies
> cepr H(Zo) — H(Z5) (A.1) equality for (*)). By assumption,

v=1(Zp) < P—1 ;
o —I(Zp) < > cepr H(Zc) — H(Zp)
which implies that v B) = P -1 )
0 < hy[P"] = hy(B) where the last inequality is becau®¥ is a feasible solution

= hy[P*] — h,[P]. to (3.2). Rearranging the terms give (*) as desired.
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Fig. 2: The plot of f*(~y) vs ~ for (B.1).

APPENDIXB
COUNTER-EXAMPLE FOR THE CONVERSE OF
PrROPOSITION4.1

Let U :={1,2,3,4} and

Y := (W1, Ws @ W3 & Wy, W5)

(B.2)
Xl = (Wl,Wg),XQ = W3,X3 = W4,X4 = W5

whereW,’s are independent random bits with(W;) = 1 for

i <4 andH(Ws) = e := 1, and® is the XOR operator.
Fig. 2 shows the plot off*() againsty and also the plots

of f,(B) for the following subset$B:

« Among all the subset® C U of size|B| = 1, the choice
B = {1} maximizes the mutual informatiofi(Y A Xp)
to HW;) =1: I(YAX;)is0for2 <¢<3,and itis
e<1lfori=4.

« Among all the subsets of siz& the choiceB = {1,4}
maximizes the mutual information (W1, Ws) = 1+e¢:
all the other mutual information are no larger than

« Among all the subsets of sizg the choiceB = {1, 2,3}
maximizes the mutual information t& (W, Wy + W3 +

W,) = 2: all the other mutual information are no larger

than H(W;,W5) =1+ ¢ < 2.

« The only subsel/ of size4 achieves a mutual information (6]

of HY)=2+e.

It follows that B = {1,4} is the unique optimal solution
to (4.2) for k = 2. In Fig. 2, it can be seen that the curve |

f+({1,4}) does not touchf*(y), and soB = {1,4} is not an
optimal solution to 4.3) for anyy as desired.

APPENDIXC
EXAMPLE WHERE DUALITY FAILS FOR DEPENDENT
FEATURES

Let U :={1,2,3} and

Y = (W17W27W3)

C.1
X1 =Wy, Xg := (Wa, Wy), X3 := (W3, Wy) (1)

whereW;’s are independent random bits wifti(\W;) =1 +
e > HW,;) = 1 for i > 2 and somee € (0,0.5). Note

that the independence assumptibi does not hold because(;s

I(Xg/\X3) =1.

Note that{1,2} and {1,3} are optimal solutions to4(2)
for k =2 but {2,3} is not, because

I(Y /\X{laQ}) = H(W{LQ}) = 2 + € and
I(Y AN X{I,S}) = H(W{lyg}) =2+¢ but
I(Y AN X{Q_’g}) = H(W{ng}) =2<2+4e

By Proposition4.1, {2,3} cannot be optimal to4(3) for any
value of either, while it can be shown that, 2} and{1, 3}
are optimal solutions to4(3) for v = 1 (in addition to the
solution{1} and{1, 2, 3}).

Under the mapping5(1), we have

I(Zioa,2y) = I(Y, X1 AXg) = H(Ws) =1

I(Zioa,3y) = I(Y, X1 AX3) = H(W3) =1
H(Y)+H(X2)+H(X3)—H(Y,X2,X3)
2

I(Z2,3y) =
_ H(W2)+H(\2N3)+H(W4) —15>1.

It follows that neither{0} U {1,2} nor {0} U {1,3} is in

C, for any v € R because they fail to satisfy3(8hb) (with

B’ ={0,2,3}) for vy > 1 and @.89 for v < 1. This shows
that the “only if” statement of the duality result in Theorém
can fail when ¢.1) does not hold. Furthermore, it can be shown
that{0}U{2, 3} is a cluster inc,(Zy) (and thereforec, (Zv/))
for v € [1,1.5). Hence, the “if” statement of Theorefl also
fails to hold for this example.
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