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Abstract—We propose an interdependent random geometric graph (RGG) model for interdependent networks. Based on this model,

we study the robustness of two interdependent spatially embedded networks where interdependence exists between geographically

nearby nodes in the two networks. We study the emergence of the giant mutual component in two interdependent RGGs as node

densities increase, and define the percolation threshold as a pair of node densities above which the giant mutual component first

appears. In contrast to the case for a single RGG, where the percolation threshold is a unique scalar for a given connection distance,

for two interdependent RGGs, multiple pairs of percolation thresholds may exist, given that a smaller node density in one RGG may

increase the minimum node density in the other RGG in order for a giant mutual component to exist. We derive analytical upper bounds

on the percolation thresholds of two interdependent RGGs by discretization, and obtain 99% confidence intervals for the percolation

thresholds by simulation. Based on these results, we derive conditions for the interdependent RGGs to be robust under random failures

and geographical attacks.

Index Terms—Interdependent networks, percolation, random geometric graph (RGG), robustness.

✦

1 INTRODUCTION

Cyber-physical systems such as smart power grids and
smart transportation networks are being deployed towards
the design of smart cities. The integration of communica-
tion networks and physical networks facilitates network
operation and control. In these integrated networks, one
network depends on another for information, power, or
other supplies in order to properly operate, leading to in-
terdependence. For example, in smart grids, communication
networks rely on the electric power from power grids, and
simultaneously control power generators [1], [2]. Failures
in one network may cascade to another network, which
potentially make the interdependent networks vulnerable.

Cascading failures in interdependent networks have
been extensively studied in the statistical physics literature
since the seminal work in [3], where each of the two interde-
pendent networks is modeled as a random graph. A node
is functional if both itself and its interdependent node are
in the giant components of their respective random graphs.
After initial node failures in the first graph, their interde-
pendent nodes in the second graph fail. Thus, a connected
component in the second graph may become disconnected,
and the failures of the disconnected nodes cascade back to
(their interdependent) nodes in the first graph. As a result
of the cascading failures, removing a small fraction of nodes
in the first random graph destroys the giant components of
both graphs.

To model spatially embedded networks, an interdepen-
dent lattice model was studied in [4]. Under this model,
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geographical attacks may cause significantly more severe
cascading failures than random attacks. Removing nodes in
a finite region (i.e., a zero fraction of nodes) may destroy the
infinite clusters in both lattices [5].

If every node in one network is interdependent with
multiple nodes in the other network, and a node is content
to have at least one interdependent node, failures are less
likely to cascade [6], [7]. Although the one-to-multiple inter-
dependence exists in real-world spatially embedded inter-
dependent networks (e.g., a control center can be supported
by the electric power generated by more than one power
generator), it has not been previously studied using spatial
graph models.

We use a random geometric graph (RGG) to model each
of the two interdependent networks. RGG has been widely
used to model communication networks [8]. For example,
in a wireless network where the communication distance
is limited by the signal to noise ratio requirement, under
fixed transmission power, two users can communicate if
and only if they are within a given distance. Percolation
theory for RGG has been applied to study information flow
in wireless networks and the robustness of networks under
failures [9], [10]. In this paper, we extend percolation theory
to interdependent RGGs.

The two RGGs representing two interdependent net-
works are allowed to have different connection distances
and node densities, which can represent two networks that
have different average link lengths and scales. These net-
work properties were not captured by the lattice model in
the previous literature. Moreover, the interdependent RGG
model is able to capture the one-to-multiple interdepen-
dence in spatially embedded networks, and provides a more
versatile framework for studying interdependent networks.

Robustness is a key design objective for interdependent
networks. We study the conditions under which a positive
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fraction of nodes are functional in interdependent RGGs
as the number of nodes approaches infinity. In this case,
the interdependent RGGs percolate. Consistent with previous
research [3], [4], [6], the robustness of interdependent RGGs
under failures is measured by whether percolation exists
after failures. To the best of our knowledge, our paper is
the first to study the percolation of interdependent spatial
network models using a mathematically rigorous approach.

The main contributions of this paper are as follows.

1) We propose an interdependent RGG model for two
interdependent networks, which captures the differ-
ences in the scales of the two networks as well as the
one-to-multiple interdependence in spatially embedded
networks.

2) We derive the first analytical upper bounds on the per-
colation thresholds of the interdependent RGGs, above
which a positive fraction of nodes are functional.

3) We obtain 99% confidence intervals for the percolation
thresholds, by mapping the percolation of interdepen-
dent RGGs to the percolation of a square lattice where
the probability that a bond in the square lattice is open
is evaluated by simulation.

4) We characterize sufficient conditions for the interde-
pendent RGGs to percolate under random failures and
geographical attacks. In particular, if the node densities
are above any upper bound on the percolation thresh-
old obtained in this paper, the interdependent RGGs
remain percolated after a geographical attack. This is in
contrast with the cascading failures after a geographical
attack, observed in the interdependent lattice model
with one-to-one interdependence [5].

5) We extend our techniques to study models with more
general interdependence requirement (e.g., a node in
one network requires more than one supply node from
the other network).

The rest of the paper is organized as follows. We state the
model and preliminaries in Section 2. We derive analytical
upper bounds on percolation thresholds in Section 3, and
obtain confidence intervals for percolation thresholds in Sec-
tion 4. In Section 5, we study the robustness of interdepen-
dent RGGs under random failures and geographical attacks.
In Section 6, we extend the techniques to study graphs
with more general interdependence. Section 7 concludes the
paper.

2 MODEL

2.1 Preliminaries on RGG and percolation

An RGG in a two-dimensional square consists of nodes
generated by a Poisson point process and links connect-
ing nodes within a given connection distance [11]. Let
G(λ, d, a2) denote an RGG with node density λ and con-
nection distance d in an a × a square. The studies on RGG
focus on the regime where the expected number of nodes
n = λa2 is large. We first present some preliminaries which
are useful for developing our model. The giant component of
an RGG is a connected component that contains Θ(n) nodes.
A node belongs to the giant component with a positive
probability Θ(n)/n if the giant component exists. For a
given connection distance, the percolation threshold is a node

density above which a node belongs to the giant component
with a positive probability (i.e., a giant component exists)
and below which the probability is zero (i.e., no giant com-
ponent exists). By scaling, if the percolation threshold is λ∗

under connection distance d, then the percolation threshold
is λ∗c2 under connection distance d/c. Therefore, without
loss of generality, in this paper, we study the percolation
thresholds represented by node densities, for given connec-
tion distances.

The RGG is closely related to the Poisson boolean model
[12], where nodes are generated by a Poisson point process
on an infinite plane. Let G(λ, d) denote a Poisson boolean
model with node density λ and connection distance d.
The difference between G(λ, d) and G(λ, d, a2) is that the
number of nodes in G(λ, d) is infinite while the expected
number of nodes in G(λ, d, a2) is large but finite. The
Poisson boolean model can be viewed as a limit of the RGG
as the number of nodes approaches infinity. The percolation
threshold of G(λ, d) under a given d is defined as the
node density above which a node belongs to the infinite
component with a positive probability and below which the
probability is zero. It has been shown that a node belongs
to the infinite component with a positive probability if and
only if an infinite component exists, and thus the percolation
of G(λ, d) can be equivalently defined as the existence of the
infinite component [12]. Moreover, the percolation threshold
of G(λ, d) is identical with the percolation threshold of
G(λ, d, a2) [11], [13].

2.2 Interdependent RGGs

Two interdependent networks are modeled by two RGGs
G1(λ1, d1, a

2) and G2(λ2, d2, a
2) on the same a × a square.

A node in one graph is interdependent with all the nodes
in the other graph within the interdependent distance ddep.
See Fig. 1 for an illustration. Nodes in one graph are supply
nodes for nodes in the other graph within ddep. The physical
interpretation of supply can be either electric power or
information that is essential for proper operation. A node
can receive supply from nearby nodes within the inter-
dependent distance. Larger interdependent distance leads
to more robust interdependent networks. The geographical
nature of interdependence is observed in physical networks
[1], [4].

Fig. 1. Two interdependent RGGs with interdependent distance ddep.

Most analysis in this paper is given in the context
of two interdependent Poisson boolean models GIntDep =
(G1(λ1, d1), G2(λ2, d2), ddep), which is the limit of two in-
terdependent RGGs as the numbers of nodes in both graphs
approach infinity.
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We define a mutual component and an infinite mutual
component in GIntDep, in the same way as one defines a
connected component and an infinite component in G(λ, d).

Definition 1. Let V 0
i denote nodes in a connected component in

Gi(λi, di), ∀i ∈ {1, 2}. If each node in Vi ⊆ V 0
i has at least one

supply node in Vj ⊆ V 0
j within ddep, ∀i, j ∈ {1, 2}, i 6= j, then

nodes V1 and V2 form a mutual component of GIntDep.

If, in addition, Vi contains an infinite number of nodes, ∀i ∈
{1, 2}, then V1 and V2 form an infinite mutual component.

A mutual component can be viewed as an autonomous
system in the sense that nodes in a mutual component
have supply nodes in the same mutual component, and
in each graph, nodes that belong to a mutual component
are connected regardless of the existence of nodes outside
the mutual component. Note that a node can receive supply
from any of its supply nodes in the same mutual component,
and thus is content if it has at least one supply node.
Nodes in an infinite mutual component are functional, since
they constitute two large connected interdependent net-
works and can perform a given network function (e.g., data
communication or power transmission to a large number
of clients). This definition of functional is consistent with
previous research on interdependent networks based on
random graph models [3].

For a fixed ddep, if an infinite mutual compo-
nent exists in GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep),
then an infinite mutual component exists in G′

IntDep =
(G1(λ

′
1, d1), G2(λ2, d2), ddep), where λ′

1 > λ1. This can be
explained by coupling G′

1 with G1 as follows. By removing
each node in G′

1 independently with probability 1− λ1/λ
′
1,

the density of the remaining nodes in G′
1 is λ1, and an infi-

nite mutual component exists in the interdependent graphs
that consist of G2 and the graph formed by the remaining
nodes in G′

1. Since adding nodes to a graph does not discon-
nect any mutual component, an infinite mutual component
exists in G′

IntDep = (G1(λ
′
1, d1), G2(λ2, d2), ddep). By the

same analysis, an infinite mutual component also exists in
G′′

IntDep = (G1(λ1, d1), G2(λ
′
2, d2), ddep), if λ′

2 > λ2.

We define a percolation threshold of GIntDep as follows.

Definition 2. A pair of node densities (λ∗
1, λ

∗
2) is a percolation

threshold of GIntDep, given connection distances d1, d2 and the
interdependent distance ddep, if an infinite mutual component
exists in GIntDep for λ1 > λ∗

1 and λ2 > λ∗
2, and no infinite

mutual component exists otherwise.

For fixed d1, d2 and ddep, there may exist multiple perco-
lation thresholds. We show that, in most cases, the larger the
node density is in one graph, the smaller the required node
density is in the other graph in order for the infinite mutual
component to exist. This is in contrast with the situation for
a single graph G(λ, d) where there is a unique percolation
threshold λ∗ for a fixed d.

There is a non-trivial phase transition in GIntDep. If λi

is smaller than the percolation threshold of a single graph
Gi(λi, di), there is no infinite component in Gi(λi, di), and
therefore there is no infinite mutual component in GIntDep.
Thus, λ∗

i > 0, ∀i ∈ {1, 2}. As we will see in the next section,
there exist percolation thresholds λ∗

i < ∞, ∀i ∈ {1, 2},
which concludes the non-trivial phase transition.

Given that the conditions for the percolation of a ran-
dom geometric graph Gi(λi, di, a

2) and a Poisson boolean
model Gi(λi, di) are the same, the above definitions can
be naturally extended to interdependent RGGs. Consider
nodes V1 ⊆ G1(λ1, d1, a

2) and V2 ⊆ G2(λ2, d2, a
2) that

form a mutual component. If Vi contains Θ(ni) nodes,
where ni = λia

2, ∀i ∈ {1, 2}, then V1 and V2 form a giant
mutual component in interdependent RGGs. The percolation
of interdependent RGGs is defined as the existence of a giant
mutual component. In the rest of the paper, we sometimes
use Gi to denote both Gi(λi, di, a

2) and Gi(λi, di). The
model that it refers to will be clear from the context.

2.3 Related work

In the interdependent networks literature, the model
which is closest to ours is the interdependent lattice model,
first proposed in [14] and further studied in [4], [5]. In the
lattice model, nodes in a network are represented by the
open sites (nodes) of a square lattice, where every site is
open independently with probability p. Network links are
represented by the bonds (edges) between adjacent open
sites. Every node in one lattice is interdependent with one
randomly chosen node within distance rd in the other
lattice. The distance rd indicates the geographical proximity
of the interdependence. The percolation threshold of the
interdependent lattice model is characterized as a function
of rd, assuming the same p in both lattices [14]. Percolation
of the model where some nodes do not need to have supply
nodes was studied in [4]. The analysis relies on quantities
estimated by simulation and extrapolation, such as the frac-
tion of nodes in the infinite component of a lattice for any
fixed p, which cannot be computed rigorously. In contrast,
we study the percolation of the interdependent RGG model
using a mathematically rigorous approach.

The percolation of a single RGG (or a Poisson boolean
model) has been studied in the previous literature [12], [15],
[16]. The techniques employed therein involves inferring the
percolation of the continuous model from the percolation
of a discrete lattice model. The key is obtaining a lattice
whose percolation condition is known and is related to
the percolation of the original model, by discretization. The
study of the percolation conditions of discrete lattice models
can be found in [17], [18]. We extend the previous techniques
to discretize GIntDep, and obtain bounds on the percolation
thresholds.

3 ANALYTICAL UPPER BOUNDS ON PERCOLATION

THRESHOLDS

In this section, we study sufficient conditions for the
percolation of GIntDep. We provide closed-form formu-
las for (λ1, λ2), which depend on d1, d2, ddep, such that
there exists an infinite mutual component in GIntDep =
(G1(λ1, d1), G2(λ2, d2), ddep). The formulas provide guide-
lines for node densities in deploying physical interdepen-
dent networks, in order for a large number of nodes to be
connected.

In GIntDep, nodes in the infinite mutual component are
viewed as functional while all the other nodes are not. Thus,
a node is functional only if it is in the infinite component of
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its own graph, and it depends on at least one node in the
infinite component of the other graph. For any node b1 in
G1, although the number of nodes in G2 within the interde-
pendent distance from b1 follows a Poisson distribution, the
number of functional nodes is hard to calculate, since the
probability that a node in G2 is in the infinite component
is unknown. Moreover, the nodes in the infinite component
of G2 are clustered, and thus the thinning of the nodes in
G1 due to a lack of supply nodes in G2 is inhomogeneous.
To overcome these difficulties, we consider the percolation
of two graphs jointly, instead of studying the percolation
of one graph with reduced node density due to a lack of
supply nodes.

We now give an overview of our approach. We develop
mapping techniques (discretizations) to characterize the per-
colation of GIntDep by the percolation of a discrete model.
Mappings from a model whose percolation threshold is
unknown to a model with known percolation threshold are
commonly employed in the study of continuum percolation.
For example, one can study the percolation threshold of
the Poisson boolean model G(λ, d) by mapping it to a
triangle lattice and relating the state of a site in the triangle
lattice to the point process of G(λ, d). By the mapping, the
percolation of the triangle lattice implies the percolation of
G(λ, d). Consequently, an upper bound on the percolation
threshold of G(λ, d) is given by λ for which the triangle
lattice percolates, a known quantity [12], [15]. In general,
more than one mapping can be applied, and the key is to
find a mapping that gives a good (smaller) upper bound.
Following this idea, we propose different mappings that fit
different conditions to obtain upper bounds on the percola-
tion thresholds of GIntDep.

In the rest of this section, we first study an example,
in which the connection distances of the two graphs are
the same, to understand the tradeoff between the two node
densities in order for GIntDep to percolate. We then develop
two upper bounds on the percolation thresholds. The first
bound is tighter when the ratio of the two connection
distances is small, and is obtained by mapping GIntDep to
a square lattice with independent bond open probabilities.
The second bound is tighter when the ratio of the two
connection distances is large, and is obtained by mapping
GIntDep to a square lattice with correlated bond open proba-
bilities.

3.1 A motivating example

To see the impact of varying the node density in one
graph on the minimum node density in the other graph in
order for GIntDep to percolate, consider an example where
d1 = d2 = 2ddep. We apply a mapping similar to what is
used to obtain an upper bound on the percolation threshold
of G(λ, d) in [15], to obtain upper bounds on the percolation
thresholds of GIntDep.

Consider a triangle lattice where each site is surrounded
by a cell. The lattice bond length is determined such that any
two points in adjacent cells have distance smaller than 2r,
where 2r = d1. The boundary of the cell consists of arcs of
radius r centered at the middle of the bonds in the triangle
lattice. See Fig. 2 for an illustration. The area of the cell is
A = 0.8227r2. A site in the triangle lattice is either open or

closed. If the probability that a site is open is strictly larger
than 1/2, open sites form an infinite component, and the
triangle lattice percolates [15].

Fig. 2. A cell that contains a site in a triangle lattice.

To study the percolation of GIntDep, we declare a site in
the triangle lattice to be open if there is at least one node
in its cell from G1 and at least one node in its cell from G2.
If the triangle lattice percolates, then GIntDep also percolates.
To see this, consider two adjacent open sites in the triangle
lattice. Nodes from Gi in the two adjacent cells that contain
the two open sites are connected, because they are within
distance di = 2r (∀i ∈ {1, 2}). If the open sites in the triangle
lattice form an infinite component, then nodes from Gi in
the corresponding cells form an infinite component Vi (∀i ∈
{1, 2}). Moreover, given that any pair of nodes in a cell are
within distance r ≤ ddep, each node in Vi has at least one
supply node in Vj within the same cell (∀i, j ∈ {1, 2}, i 6= j).

Since 1 − e−λiA is the probability that there is at least
one node in the cell from Gi and the point processes in G1

and G2 are independent, an upper bound on the percolation
thresholds of GIntDep is given by (λ1, λ2) satisfying

(1− e−λ1A)(1− e−λ2A) = 1/2.

If λi is large, the percolation threshold λ∗
j approaches the

threshold of a single graph Gj . Intuitively, if λj is above the
percolation threshold of Gj , disks of radius dj/2 centered at
nodes in Gj form a connected infinite-size region. Since λi

is large, nodes in Gi in this region are connected and form
an infinite component. Moreover, since ddep = dj/2, all the
nodes in this region have supply nodes, and they form an
infinite mutual component.

The above upper bounds on percolation thresholds are
still valid if ddep > di/2, because each node can depend
on a larger set of nodes by increasing ddep and it is easier
for GIntDep to percolate under the same node densities and
connection distances. However, if ddep < di/2, the bond
length of the triangle lattice should be adjusted to r = ddep

in order for any pair of nodes in a cell to be within ddep.
The percolation threshold curve (λ1, λ2) would shift up-
ward. Intuitively, if ddep decreases, the node density in one
network should increase to provide enough supply for the
other network.

3.2 Small ratio d2/d1

Given GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep), without
loss of generality we assume that d1 ≤ d2. Moreover, we
assume that ddep ≥ max(d1/2, d2/2) = d2/2 (see the remark
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at the end of the section for comments on this assumption).
Let c = ⌊d2/d1⌋ = max{c : d2/d1 ≥ c, c ∈ N}. For small
c, we study the percolation of GIntDep by mapping it to an
independent bond percolation of a square lattice, and prove
the following result.

Theorem 1. If (λ1, λ2) satisfies

(1− e−λ1d
2

1
/8)c(1− e−λ2c

2d2

1
/8) > 1/2,

then GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep) percolates, where
c = ⌊d2/d1⌋, d1 ≤ d2, and ddep ≥ d2/2.

Theorem 1 provides a sufficient condition for the per-
colation of GIntDep. For node densities that satisfy the in-
equality, an infinite mutual component exists in GIntDep. For
the deployment of interdependent networks, if the node
densities in the two networks are sufficiently large (char-
acterized by Theorem 1), then a large number of nodes in
the interdependent networks are functional.

Proof of Theorem 1. We first construct a square lattice as fol-
lows. Partition the plane into small squares of side length
s = d1/2

√
2. A large square consists of c × c small squares

and has side length cs. The diagonals of the large squares
form the bonds of a square lattice L, illustrated by the thick
line segments in Fig. 3.

The state of a bond in L is determined by the point
process of GIntDep in the large square that contains the bond.
A bond (v1, v2) is open if the following conditions are both
satisfied.

1) There is at least one node from G1 in each of the two
small squares that contain the ends (v1 and v2) of the
bond, and they are connected through nodes from G1,
all within the large square of side length cs.

2) There is at least one node from G2 in the large square
that contains the bond.

Fig. 3. Mapping to a square lattice for c = 3.

The first condition is satisfied if there exists a sequence of
adjacent small squares, each of which contains at least one
node in G1, from the small square that contains v1 to the
small square that contains v2. (Each small square is adjacent
to its eight immediate neighbors.) In the example of Fig. 3,
these sequences include 3-5-7, 3-2-4-7, and 3-6-8-7.

To obtain a closed-form formula, instead of computing
the exact probability, we compute a lower bound on the

probability that the first condition is satisfied. The proba-
bility is lower bounded by the probability that the c small
squares that intersect the bond each contain at least one
node from G1, given by

p1 ≥ (1 − e−λ1d
2

1
/8)c.

The probability that the second condition is satisfied is

p2 = 1− e−λ2c
2d2

1
/8.

Given that the two Poisson point processes in G1 and G2

are independent, the probability that a bond is open is p1p2.
It remains to prove that the percolation of L implies the

percolation of GIntDep. Consider two adjacent open bonds
(v1, v2), (v2, v3) in L. Let S1 and S2 denote the two adjacent
large squares of side length cs that contain the two open
bonds. Let S′

1 and S′
2 denote two adjacent small squares of

side length s that contains v2, within S1 and S2, respectively.
See Fig. 3 for an illustration. Since (v1, v2), (v2, v3) are open,
under the second condition, nodes of G2 exist in S1 and S2

and they are connected, because they are within distance
2
√
2cs ≤ d2. Under the first condition, nodes of G1 form a

connected path from the small square (within S1, marked as
7 in Fig. 3) containing v1 to S′

1, and another path from the
small square (within S2) containing v3 to S′

2. Moreover, the
two paths are joined, because any pair of nodes in S′

1 and S′
2

are within distance 2
√
2s = d1. Given that any pair of nodes

within a large square have distance at most
√
2cs ≤ d2/2 ≤

ddep, all the nodes have at least one supply node inside the
large square that contains an open bond. To conclude, if the
open bonds in L form an infinite component, then the nodes
in GIntDep form an infinite mutual component.

The event that a bond is open depends on the point
processes in the large square that contains the bond, and
is independent of whether any other bonds are open. As
long as the probability that a bond is open, p1p2, is larger
than 1/2, which is the threshold for independent bond
percolation in a square lattice [18], GIntDep percolates.

The bound can be made tighter for any given c =
⌊d2/d1⌋, by computing more precisely the probability that
the first condition is satisfied. We provide an example to
illustrate the computation of an improved upper bound.

Example: Consider an example where d1 = 1, d2 =
2ddep = 3. The probability that there is at least one

node from G2 in the large square of side length 3/2
√
2 is

p2 = 1− e−9λ2/8.
The probability that a small square of side length 1/2

√
2

contains at least one node from G1 is ps = 1 − e−λ1/8. The
probability that the first condition is satisfied is

p1 = p3s + (1 − ps)p
4
s + (1− ps)p

4
s − (1− ps)p

6
s, (1)

obtained by considering all the sequences of adjacent small
squares. For node densities (λ1, λ2) that satisfy p1p2 > 1/2,
GIntDep percolates. Since p1 computed by Eq. (1) is larger
than p3s for any fixed ps, the bound on λ2 is smaller for any
fixed λ1.

3.3 Large ratio d2/d1

In the mapping from GIntDep to the square lattice L, the
condition for a bond to be open becomes overly restrictive as
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d2/d1 increases. A path crossing the two large squares that
contain two adjacent bonds does not have to cross the small
squares that contain the common end of the two bonds. In
the following theorem, we give another upper bound on
the percolation threshold of GIntDep. This result provides an
alternative sufficient condition for the existence of an infinite
mutual component in GIntDep. This upper bound is tighter
than the bound in Theorem 1 for larger values of d2/d1.

Theorem 2. If (λ1, λ2) satisfies
[

1−
4

3
(m+1)em log 3(1−p)

][

1−
4

3
(2m+1)em log 3(1−p)

]

p
′

> 0.8639,

then GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep) percolates,

where p = 1 − e−λ1d
2

1
/8, p′ = 1 − e−2D2λ2 , D =

min(d2/
√
10, ddep/

√
5),m = ⌊2D/d1⌋, d1 ≤ d2, and ddep ≥

d2/2.

This upper bound is obtained by mapping GIntDep to a
dependent bond percolation model LD. The mapping from
the Poisson boolean model G(λ, d) to LD was first proposed
in [16] to study the percolation threshold of G(λ, d), and
later applied to the study of a random geometric graph
under non-uniform node removals [10]. We briefly describe
the method in the previous literature that uses LD to study
the percolation of G(λ, d), and then prove Theorem 2 based
on a similar method.

3.3.1 1-dependent bond percolation model LD

In the standard bond percolation model on a square
lattice L, the event that a bond is open is independent of
the event that any other bond is open. If in a square lattice
LD, the event that a bond is open may depend on the event
that its adjacent bond is open, but is independent of the
event that any non-adjacent bond is open, then LD is a
1-dependent bond percolation model on a square lattice. With
the additional restriction that each bond is open with an
identical probability, an upper bound on the percolation
threshold of LD is 0.8639 [16].

The 1-dependent bond percolation model LD can be
used to study the percolation of G′ where the points are
generated by homogeneous Poisson point processes. To
construct a mapping from G′ to LD, consider two adjacent
D×D squares S1 and S2 and let R be the rectangle formed
by the two squares. A bond (v1, v2) that connects the centers
of S1 and S2 is associated with R. Figure 4 illustrates the
square lattice formed by the bonds, represented by thick
line segments.

Lemma 3. Let the state of a bond (v1, v2) be determined by
the homogeneous Poisson point processes of G′ inside R, and the
conditions for a bond to be open be identical for all bonds. Then
the bonds form a 1-dependent bond percolation model LD with
identical bond open probabilities.

Proof. The event that a bond is open is not independent of
the event that its adjacent bond is open, since the two events
both depend on the point process in an overlapping square.
However, the event that a bond is open is independent of
the event that any non-adjacent bond is open, since their
associated rectangles do not overlap and the point processes
in the two rectangles are independent.

Fig. 4. Square lattice LD formed by the bonds (vi, vj).

Moreover, a Poisson point process is invariant under
translation and rotation. Given that the points in G′ are
generated by homogeneous Poisson point processes and
the conditions for a bond to be open are identical, the
probability that a bond is open is identical for all bonds.

By properly setting the conditions for a bond to be open,
the percolation of LD can imply the percolation of G′. We
first look at an example in [18] that studies the percolation
of G(λ, d), and then extend the technique to study GIntDep.

Example [18]: Let a bond be open if a path in G(λ, d)
crosses1 R′ horizontally and another path in G(λ, d) crosses
S′
1 vertically, where R′ is a (2D − 2d)× (D − 2d) rectangle

that has the same center as R, and S′
1 is a (D−2d)×(D−2d)

square that has the same center as S1. The reason for con-
sidering R′ and S′

1 is that the existence of the two crossing
paths over R′ and S′

1 is determined by the point process
within R, while the existence of links within distance d from
the boundaries (and thus the crossings over R) may depend
on nodes outside R.

If two adjacent bonds are open, the paths in G(λ, d)
in the two rectangles are joined. To see this, note that in
Fig. 5, if the black and blue bonds (same direction) are both
open, the crossings 1 and 2 intersect. If the black and red
bonds (perpendicular) are both open, the crossings 1 and 3
intersect.

If the square lattice LD percolates, open bonds form an
infinite component. Paths in G(λ, d) across the rectangles
associated with the open bonds are connected and form
an infinite component. Therefore, a node density above
which LD percolates is an upper bound on the percolation
threshold of G(λ, d).

3.3.2 Proof of Theorem 2

We map GIntDep to LD by letting a bond in LD be open if
the following three conditions are satisfied in its associated
rectangle R = S1 ∪ S2. The size of the rectangle satisfies
D = min(d2/

√
10, ddep/

√
5) ≥ d2/2

√
5.

1) A path from G1 crosses R′ horizontally, where R′ is a
(2D − 2d1) × (D − 2d1) rectangle that has the same
center as R.

1. A path crosses a rectangle R′ = [x1, x2] × [y1, y2] horizontally if
the path consists of a sequence of connected nodes v1, v2, . . . , vn−1, vn,
and v2, . . . , vn−1 are in R′, x(v1) ≤ x1, x(vn) ≥ x2, y1 ≤

y(v1), y(vn) ≤ y2, where x(vi) is the x-coordinate of vi and y(vi) is
the y-coordinate of vi. A path crosses a rectangle vertically is defined
analogously.
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Fig. 5. Crossings over rectangles associated with two adjacent open
bonds are joined.

2) A path from G1 crosses S′
1 vertically, where S′

1 is a (D−
2d1)× (D− 2d1) square that has the same center as S1.

3) There is at least one node from G2 in R.

To see that the percolation of LD implies the percolation
of GIntDep, consider any two adjacent open bonds in LD. In
the two rectangles associated with the bonds, 1) paths from
G1 that cross one rectangle are joined with paths from G1

that cross the other rectangle; 2) at least two nodes from
G2, one in each rectangle, are connected by a link in G2,
because any two nodes in adjacent rectangles are within
distance

√
10D ≤ d2; 3) every node in Gi has at least one

supply node in Gj inside the rectangle (∀i, j ∈ {1, 2}, i 6= j),
in which the distance between two nodes is no larger than√
5D ≤ ddep.

If the probability p123 that a bond is open is above 0.8639,
then LD percolates and GIntDep also percolates. An upper
bound on the percolation threshold of GIntDep is a pair of
node densities (λ1, λ2) that yields p123 ≥ 0.8639. In the
remainder of the proof, we compute p123 as a function of
(λ1, λ2).

To determine the probability that the first and the sec-
ond conditions are satisfied, we consider a discrete square
lattice represented by Fig. 6. Bonds of length d1/2 form
a square lattice L′ in a finite md1 × md1/2 region, where
m = ⌊2D/d1⌋. Let a bond in L′ be open if there is at
least one node from G1 in the d1/2

√
2 × d1/2

√
2 square

that contains the bond (the small square that has dashed
boundaries in the figure), which occurs with probability

p = 1 − e−λ1d
2

1
/8. It is clear that if the open bonds form

a horizontal crossing2 over L′, then nodes in G1 form a
horizontal crossing path over R′.

Let px(km,m, p) denote the probability that there exists
a horizontal crossing over the km×m square lattice L′ given
that each bond is open independently with probability p. A
lower bound on px(km,m, p), Eq. (2), can be derived by a
standard technique in percolation theory (e.g., an extension
of Proposition 2 in [9]).

px(km,m, p) ≥ 1− 4

3
(km+ 1)em log 3(1−p). (2)

2. A horizontal crossing of open bonds over a rectangle R′ =
[x1, x2]× [y1, y2] consists of a sequence of adjacent open bonds in the
rectangle such that at least one bond has an endpoint with x-coordinate
x1 and at least one bond has an endpoint with x-coordinate x2. A
vertical crossing of open bonds is defined analogously.

Fig. 6. Mapping the crossing in G1 to the crossing in a square lattice L′.

The probability that the crossing exists is close to 1 if m is
large and p > 2/3.

Finally, the probability that the first condition is satis-
fied is p1 ≥ px(2m,m, p). The probability that the second
condition is satisfied is p2 ≥ px(m,m, p). Given that the
existence of the two crossings are positively correlated, by
the FKG inequality [18], the probability that both conditions
are satisfied is lower bounded by:

p12 ≥ p1p2 ≥ px(2m,m, p)px(m,m, p).

The probability that there is at least one node from G2 in

R (i.e., the third condition is satisfied) is p3 = 1 − e−2D2λ2 .
Given that the point processes in G1 and G2 are indepen-
dent, the probability that a bond is open is p123 = p12p3. As
long as p123 > 0.8639, GIntDep percolates. This completes the
proof.

3.3.3 An example of two RGGs with large d2/d1

We study two interdependent RGGs G1 and G2, which
have a finite number of nodes, in order to quantify d2/d1
as a function of the number of nodes in the graph. If d2 =
Ω(d1 logn1), and ddep ≥ d2/2, then m = Ω(logn1), where
n1 is the expected number of nodes in G1. As n1 approaches
infinity, the probability px(km,m, p) approaches 1 if p >
2/3, by Eq. 2.

Applying Theorem 2, by solving p = (1 − e−λ1d
2

1
/8) =

2/3, and p3 = 1 − e−2D2λ2 = 0.8639, we obtain an
upper bound on percolation threshold λ1 = 8.789/d21,
λ2 = 19.94/d22. The bounds suggest that if the ratio between
the connection distances of two RGGs is very large, the
node density in one RGG may not affect the minimum node
density in the other RGG in order for the giant mutual
component to exist in the interdependent RGGs.

We conjecture that as long as the node density of each
individual RGG is above the percolation threshold of the
single graph, then the interdependent RGGs percolate, if
d1 ≪ d2 and ddep = (1 + ǫ)d2/2 for ǫ > 0. This can be in-
tuitively explained as below. Let V 0

2 denote the nodes in the
giant component of a single graph G2 without considering
the interdependence. Disks of radius d2/2 centered at nodes
in V 0

2 are connected. Disks of radius ddep > d2/2 centered
at nodes in V 0

2 are also connected, and this region contains
nodes in G1 that have functional supply nodes. Each disk of
radius ddep is so large compared with d1, that the probability
that there is a crossing formed by connected nodes in
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G1 along any direction across the disk approaches one3.
Moreover, the disks of radius ddep have overlaps with width
and height at least ǫd2 ≫ d1, which are sufficiently large to
join the paths in G1 across two overlapping disks. Thus, a
giant component of G1 exists near the giant component of
G2. Nodes in the two components are interdependent and
form a giant mutual component.

3.4 Numerical results

We verify the bounds in Theorem 1 by simulating GIntDep

in a 10 × 10 square. Table 1 illustrates the fraction of
nodes from Gi that belong to the largest mutual component,
denoted by fi, (∀i ∈ {1, 2}). The fractions are averaged
over 5 instances of simulations for each combination of
(λ1, λ2, d1, d2, ddep) that satisfies the condition in Theorem
1. To verify the bounds in Theorem 2, we simulate GIntDep

in a 30 × 30 square (to simulate a sufficiently large G2

under small node densities). Table 2 illustrates the average
fraction of nodes in the largest mutual component, for
(λ1, λ2, d1, d2, ddep) given by Theorem 2. We observe that
most nodes in G1 and G2 belong to the largest mutual
component, which implies that GIntDep percolates.

TABLE 1
Fraction of nodes in the largest mutual component under the condition

of Theorem 1

λ1 λ2 d1 d2 ddep f1 f2
15 1.54 1 3 1.5 1.00 1.00
20 0.92 1 3 1.5 0.99 1.00
25 0.75 1 3 1.5 0.98 1.00
15 2.39 1 2 1 0.99 1.00
20 1.80 1 2 1 1.00 1.00
25 1.58 1 2 1 0.97 1.00

TABLE 2
Fraction of nodes in the largest mutual component under the condition

of Theorem 2

λ1 λ2 d1 d2 ddep f1 f2
16 0.190 1 10 7.07 1.00 1.00
17 0.123 1 10 7.07 1.00 1.00
25 0.100 1 10 7.07 1.00 1.00
17 0.385 1 8 5.66 1.00 1.00
18 0.207 1 8 5.66 1.00 1.00
25 0.156 1 8 5.66 0.99 1.00

Remark: We have assumed that ddep ≥
max(d1/2, d2/2) = d2/2 throughout this section. To
see that this is a reasonable assumption, note that nodes
in G1 that have at least one functional supply node are
restricted in the region Rdep, where Rdep is the union of
disks with radius ddep centered at nodes in the infinite
component of G2. If Rdep is fragmented, it is not likely for
disks of radius d1/2 < d2/2 centered at random locations
within Rdep to overlap, and it is not likely that a functional

3. If nodes are generated by a Poisson point process with density
above the percolation threshold, the probability that there is a horizon-
tal path across a kl × l rectangle approaches one for any k as l → ∞

[12].

infinite component will exist in G1, unless the node density
in G1 is large. Therefore, the interdependent distance
ddep should be large enough so that Rdep is a connected
region, to avoid a large minimum node density in G1.
The region Rdep can be made larger by increasing either
λ2 or ddep. Setting ddep ≥ d2/2 avoids increasing λ2 high
above the percolation threshold of G2, in order for Rdep

to be connected. In Section 4, we develop a more general
approach that does not require this assumption.

4 CONFIDENCE INTERVALS FOR PERCOLATION

THRESHOLDS

In this section, we compute confidence intervals for
percolation thresholds. The confidence intervals provide
interval estimates for the percolation thresholds. If the node
densities in GIntDep are below the lower confidence bounds,
then there does not exist an infinite mutual component in
GIntDep with high confidence. On the other hand, if the node
densities are above the upper confidence bounds, then there
exists an infinite mutual component in GIntDep with high
confidence. Compared with the analytical upper bounds in
Section 3, the numerical upper confidence bounds are much
tighter. Moreover, the techniques in this section apply to
GIntDep with general d1, d2, ddep.

The mapping to compute confidence intervals is related
to the mapping from GIntDep to the 1-dependent bond per-
colation model LD in Section 3.3. Both mappings satisfy the
following properties: 1) the percolation of LD implies the
percolation of GIntDep; 2) the event that determines the state
of a bond depends only on the point process within its asso-
ciated rectangle, thus preserving the 1-dependent property.
The probability that the event occurs can be computed or
bounded analytically in the previous section. In contrast,
in this section, we consider events whose probabilities are
larger under the same point processes but can only be
evaluated by simulation. Since the events that we consider
in this section are more likely to occur under the same point
processes, the mappings yield tighter bounds.

Our mappings from GIntDep to LD extend the mappings
from G(λ, d) to LD proposed in [16]. For completeness, we
first briefly summarize the mappings in [16] that compute
upper and lower bounds on the percolation threshold of
G(λ, d).

Upper bound for G(λ, d) [16]: Recall Fig. 4. The event that
a bond (v1, v2) ∈ LD is open is determined by the point
process of G(λ, d) in the rectangle R = S1 ∪ S2, where S1

and S2 are squares. Let Vi denote the largest component
formed by the points of G(λ, d) in Si. If Vi is the unique
largest component in Si (∀i ∈ {1, 2}) and V1 and V2 are
connected, then the bond is open. Otherwise, the bond is
closed.

If LD percolates, open bonds form an infinite compo-
nent. As a result, the largest components in the squares that
intersect the open bonds are connected in G(λ, d) and they
form an infinite component. Therefore, a node density λ,
above which the probability that a bond is open is larger
than 0.8639, is an upper bound on the percolation threshold
of G(λ, d).

Lower bound for G(λ, d) [16]: Let the connection process
of G(λ, d) be the union of nodes and links in G(λ, d). Let
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the complement of the connection process be the union of
the empty space that does not intersect nodes or links. If
the complement of the connection process form a connected
infinite region, then all the connected components in G(λ, d)
have finite sizes and G(λ, d) does not percolate [16], [19].
Consider the complement of the connection process in rect-
angle R. Let a bond (in LD) associated with rectangle R be
open if the complement process forms a horizontal crossing4

over the rectangle R′ and a vertical crossing over the square
S′
1. Recall that rectangle R′ is the (2D − 2d) × (D − 2d)

rectangle that has the same center as R, and square S′
1 is the

(D − 2d)× (D − 2d) square that has the same center as S1,
the left square in R. For example, in Fig. 7, the two crossings
that do not intersect any nodes or links are plotted.

Fig. 7. The horizontal and vertical crossings from the complement of the
connection process over the rectangle.

If LD percolates, the complement process forms an infi-
nite region and G(λ, d) does not percolate. To conclude, a
node density, under which the probability that the comple-
ment process forms the two crossings is above 0.8639, is a
lower bound on the percolation threshold for G(λ, d).

4.1 Upper bounds for GIntDep

In G(λ, d), the largest connected component that con-
tains a node b can be computed efficiently by contracting the
links (or using a breadth-first-search) starting from b. Two
components are connected and form one component if there
exists two nodes within distance d, one in each component.
We next extend these notions to GIntDep.

Let G1 and G2 denote the two graphs in GIntDep. Let
b1 ∈ G1 and b2 ∈ G2 denote two nodes within the
interdependent distance ddep. Algorithm 1 computes the
largest mutual component M(b1, b2) that contains b1 and
b2. The correctness follows from the definition of mutual
component.

Two mutual components M = V1 ∪ V2 and M̂ = V̂1 ∪ V̂2

form one mutual component if and only if Vi and V̂i are
connected in Gi (∀i ∈ {1, 2}). The necessity of the condition
is obvious. To see that this condition is sufficient, note that
every node in the connected component formed by Vi and

V̂i has at least one supply node that belongs to the connected

component formed by Vj and V̂j (∀i, j ∈ {1, 2}, i 6= j). The

4. The complement of a connection process forms a horizontal cross-
ing over a rectangle if a curve in the rectangle touches the left and right
boundaries of the rectangle and the curve does not intersect any nodes
or links. The vertical crossing of the complement process is defined
analogously.

Algorithm 1 Computing the largest mutual component
that contains two specified nodes bi ∈ Gi within ddep

(∀i ∈ {1, 2}).
1) Find all the nodes V 0

i (bi) that are connected to bi (either
directly or through a sequence of links) in Gi (∀i ∈
{1, 2}).

2) Remove nodes in V 0
i (bi) that do not have any supply

nodes in V 0
j (bj) (∀i, j ∈ {1, 2}, i 6= j). Among the

remaining nodes, find the nodes V 1
i (bi) ⊆ V 0

i (bi) that
are connected to bi (∀i ∈ {1, 2}).

3) Repeat step 2 until V k+1
i (bi) = V k

i (bi) (∀i ∈ {1, 2}). Let
M(b1, b2) = V k

1 (b1) ∪ V k
2 (b2).

condition can be generalized naturally for more than two
mutual components to form one mutual component.

The method of obtaining an upper bound on the per-
colation threshold of G(λ, d) can be modified to obtain an
upper bound on the percolation threshold of GIntDep, by
declaring a bond to be open if the unique largest mutual
components in the two adjacent D×D squares S1 and S2 are
connected. However, computing the largest mutual compo-
nent of GIntDep in Si is not as straightforward as computing
the largest component of G(λ, d) in Si. In G(λ, d), a node
belongs to exactly one (maximal) connected component. All
the components can be obtained by contracting the links,
and the largest component can be obtained by comparing
the sizes of the components. However, in GIntDep, a node
may belong to multiple mutual components. For example,
let b1 and b2 be two isolated nodes in G1, and let b3 and b4
be two connected nodes in G2. If both b1 and b2 are within
the interdependent distance from b3 and b4, {b1, b3, b4} and
{b2, b3, b4} are two mutual components. An algorithm that
computes the largest mutual component of GIntDep in a
square 1) selects a pair of nodes, one from each graph, and
computes the largest mutual component that contains the
two nodes by Algorithm 1, and then 2) chooses the largest
mutual component over all pairs of nodes in the square
within the interdependent distance. Thus, it requires much
more computation than finding the largest component of
G(λ, d) in a square.

Instead of optimizing the algorithm and obtaining the
largest mutual component in square S, a mutual component
M greedy(S) can be computed by Algorithm 2. This algorithm
has good performance in finding a large mutual component
when the square size is large. In particular, if the square had
infinite size, this algorithm would find an infinite mutual
component if one exists.

Let a bond (v1, v2) in LD be open if the two components
M greedy(S1) and M greedy(S2) form one mutual component.
Since M greedy(Si) is unique in any square Si, a connected
component in LD implies that {M greedy(Si)} form one mu-
tual component in GIntDep, where Si are the squares that
intersect the open bonds in the connected component in LD.
If the probability that a bond is open is larger than 0.8639,
LD percolates and GIntDep also percolates.

An alternative condition for a bond to be open is that
nodes in M greedy(R) form a horizontal crossing over rectan-
gle R′ and a vertical crossing over square S′

1 in both graphs
(recall Fig. 5 and the condition for two mutual components
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Algorithm 2 An algorithm that greedily computes a mutual
component M greedy(S) in region S.

1) Find the largest connected component V 0
i (S) in Gi(S),

where Gi(S) consists of the nodes and links of Gi in
region S. If there is more than one largest connected
component, apply any deterministic tie-breaking rule
(e.g., choose the component that contains a nodes with
the smallest x-coordinate).

2) Remove nodes in V 0
i (S) that do not have supply nodes

in V 0
j (S) (∀i, j ∈ {1, 2}, i 6= j). Find the largest

connected component V 1
i (S) formed by the remaining

nodes in V 0
i (S) (∀i ∈ {1, 2}), and apply the same tie-

breaking rule.
3) Repeat step 2 until V k+1

i (S) = V k
i (S) (∀i ∈ {1, 2}). Let

M greedy(S) = V k
1 (S) ∪ V k

2 (S).

to form one mutual component). In order for the existence of
the two crossings to only depend on the point processes in
R, in the definition of the (2D− 2d)× (D− 2d) rectangle R′

and the (D−2d)×(D−2d) square S′
1, d = max(d1, d2)+ddep.

An upper bound on the percolation threshold can be
obtained by either approach. The smaller bound obtained
by the two approaches is a better upper bound on the
percolation threshold for GIntDep.

4.2 Lower bounds for GIntDep

In GIntDep, the connection process consists of nodes and
links in mutual components. To avoid the heavy compu-
tation of mutual components, we study another model
in which the connection process P̃i of Gi in the new
model dominates5 the connection process Pi of Gi in GIntDep

(∀i ∈ {1, 2}). As a consequence, the complement of the
connection process P̃ c

i of Gi in the new model is dominated
by P c

i (∀i ∈ {1, 2}). If P̃ c
i percolates, then P c

i percolates
and Pi does not percolate (i.e., all the components in Pi

have finite sizes). If either P1 or P2 does not percolate,
then GIntDep does not percolate. Thus, node densities under

which at least one of P̃ c
1 and P̃ c

2 percolates are lower bounds
on the percolation thresholds of GIntDep.

The new model can be viewed to have a relaxed supply
requirement. In this model, every node (as opposed to nodes
in the same mutual component) is viewed as a valid supply
node for nodes in the other graph. A node bi in Gi is
removed if and only if there is no node in Gj within the
interdependent distance ddep from bi (∀i, j ∈ {1, 2}, i 6= j).
After all such nodes are removed, the remaining nodes in
Gi are connected if their distances are within the connection
distance di. The computation of the connection process P̃i is
efficient and avoids the computation of mutual components
in GIntDep through multiple iterations.

The connection process P̃i in the new model dominates
Pi in the original model GIntDep. On the one hand, for any

realization, all the links in Pi are present in P̃i, because all
the nodes in a mutual component have supply nodes, and
links between these nodes are present in the new model

5. One connection process dominates another if the nodes and links
in the first process form a superset of the nodes and links in the second
process, for any realization of Gi.

as well. On the other hand, in the new model, nodes in
a connected component Ṽi in Gi may depend on nodes in
multiple components in Gj . In contrast, in GIntDep, the nodes

in Ṽi may be divided into several mutual components, and
links do not exist between two disjoint mutual components.

An algorithm that computes a lower bound on the
percolation threshold of GIntDep is as follows. First, com-

pute the connection process P̃i in the new model. Next, in
the 2D × D rectangle R, consider the complement of the
connection process P̃ c

i . Let pi denote the probability that
there is a horizontal crossing over R′ and a vertical crossing
over S′

1 in the complement process P̃ c
i , where R′ and S′

1

are the same as before. A lower bound on the percolation
threshold of GIntDep is given by node densities under which
max(p1, p2) ≥ 0.8639.

4.3 Confidence intervals

The probability that a bond is open can be represented
by an integral that depends on the point processes in the
rectangle R. However, direct calculation of the integral is
intractable; so instead the integral is evaluated by simula-
tion. In every trial of the simulation, nodes in G1 and G2

are randomly generated by the Poisson point processes with
densities λ1 and λ2, respectively. The events that a bond is
open are independent in different trials. Let the probability
that a bond is open be p given (λ1, λ2). The probability that
a bond is closed in k out of N trials follows a binomial
distribution. The interval [0.8639, 1] is a 99.5% confidence
interval [20] for p, given that N = 100 and k = 5. If k < 5,
p ∈ [0.8639, 1] with a higher confidence. This suggests that
if k ≤ 5, with 99.5% confidence, p ≥ 0.8639 and the
1-dependent bond percolation model LD percolates given
(λ1, λ2).

Based on this method, with 99.5% confidence, an upper
bound on the percolation threshold of GIntDep can be ob-
tained by declaring a bond to be open using the method
in Section 4.1, and a lower bound can be obtained by
declaring a bond to be open using the method in Section
4.2. For a fixed λ∗

2, a 99% confidence interval for λ∗
1 is

given by the interval between the upper and lower bounds.
Confidence intervals for different percolation thresholds can
be obtained by changing the value of λ∗

2 and repeating the
computation. We make a similar remark as in [16]. The
confidence intervals are rigorous, and the only uncertainty
is caused by the stochastic point processes in the 2D × D
rectangle. This is in contrast with the confidence intervals
obtained by estimating whether GIntDep percolates based
on extrapolating the observations of simulations in a finite
region (which is usually not very large because of limited
computational power).

4.4 Numerical results

The simulation-based confidence intervals are much
tighter than the analytical bounds. Given that d1 = d2 =
2ddep = 1, and λ∗

2 = 2, the upper and lower bounds on λ∗
1

are 2.25 and 1.80, respectively, both with 99.5% confidence.
In contrast, even if λ∗

2 →∞, the analytical upper bound on
λ∗
1 is no less than 3.372, which is the best available analytical

upper bound for a single G1 [15]. Confidence intervals for
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the percolation thresholds are plotted in Fig. 8, where the
intervals between bars are 99% confidence intervals.
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d1 = 1, d2 = 1, ddep = 0.5

d1 = 0.5, d2 = 1, ddep = 0.5

Fig. 8. The 99% confidence intervals for percolation thresholds of GIntDep

with different connection distances.

To verify the confidence intervals, we simulate GIntDep

within a 20× 20 square, for d1 = d2 = 2ddep = 1. Nodes in
the largest mutual component are colored black, while the
remaining nodes are colored blue. In Fig. 9, the node den-
sities are at the upper confidence bound (λ1 = 2.25, λ2 =
2.00), and there exists a mutual component that consists of
a large fraction of nodes. In Fig. 10, the node densities are at
the lower confidence bound (λ1 = 1.80, λ2 = 2.00), and the
size of the largest mutual component is small.

Fig. 9. The largest mutual component for λ1 = 2.25, λ2 = 2.00, d1 =
d2 = 2ddep = 1.

Fig. 10. The largest mutual component for λ1 = 1.80, λ2 = 2.00, d1 =
d2 = 2ddep = 1.

We next study the impact of interdependent distance
ddep on the percolation thresholds. Given d1, d2, λ

∗
2, a

smaller ddep leads to a higher λ∗
1, since the probability that a

node in G1 has at least one supply nodes from G2 decreases
for a smaller ddep. The effect is more significant when the
number of nodes in G2 is small. This is consistent with
Fig. 11, where the increase of λ∗

1 is more significant as ddep

decreases when λ∗
2 is small.

The confidence intervals confirm that the reduced node
density due to a lack of supply nodes is not sufficient to
characterize the percolation of one of the interdependent
graphs. The average density of nodes in G1 that have at

least one node within ddep in G2 is λ̃1 = λ1(1 − e−λ2πd
2

dep),

given that e−λ2πd
2

dep is the probability that there is no
node in G2 within a disk area πd2dep. If λ∗

2 = 1.8, with

99% confidence, λ∗
1 ∈ [2.03, 2.72] when ddep = 0.5, and

λ∗
1 ∈ [7.50, 11.20] when ddep = 0.25. We observe that the

ranges of λ̃∗
1 are different: λ̃∗

1 ∈ [1.54, 2.06] when ddep = 0.5,

and λ̃∗
1 ∈ [2.23, 3.33] when ddep = 0.25. Intuitively, nodes

in G1 that have at least one supply nodes are clustered
around the nodes in G2, smaller ddep leads to a more clus-
tered point process. The critical node density of a clustered
point process is not the same as the critical node density
of the homogeneous Poisson point process for percolation.
More detailed study on the percolation of a clustered point
process can be found in [21].

1 2 3 4 5 6 7 8 9
λ
∗

2

0

2

4

6

8

10

λ
∗ 1

d1 = 1, d2 = 1, ddep = 0.25

d1 = 1, d2 = 1, ddep = 0.5

Fig. 11. The 99% Confidence intervals for percolation thresholds of two
GIntDep with different interdependence distances.

5 ROBUSTNESS OF INTERDEPENDENT RGGS UN-

DER RANDOM AND GEOGRAPHICAL FAILURES

Removing nodes independently at random with the
same probability in one graph is equivalent to reducing
the node density of the Poisson point process. To study
the robustness of GIntDep under random failures, the first
step is to obtain the upper and lower bounds on percolation
thresholds. With the bounds, we can determine which graph
is able to resist more random node removals, by comparing
the gap between the node density λi and the percolation
threshold λ∗

i given λj (i, j ∈ {1, 2}, i 6= j). The graph
that can resist a smaller fraction of node removals is the
bottleneck for the robustness of GIntDep. Moreover, we are
able to compute the maximum fraction of nodes that can
be randomly removed from two graphs while guaranteeing
GIntDep to be percolated.
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We next show that GIntDep still percolates after a geo-
graphical attack that removes nodes in a finite connected
region, if the node densities of the two graphs before the
attack are above any upper bound on the percolation thresh-
olds obtained in this paper (either analytical or simulation-
based). Recall that we obtained upper bounds on the per-
colation thresholds of GIntDep by mapping the percolation
of GIntDep to either the independent bond percolation on a
square lattice L or the 1-dependent bond percolation on a
square lattice LD. Under both mappings, the event that a
bond e is open is entirely determined by the point processes
in a finite region Re that contains the bond. After removing
nodes of GIntDep in a connected finite geographical region,
the state of a bond e may change from open to closed only
if Re intersects the attack region. Let Rf be the union of
Re that intersects the attack region. The region Rf is also a
connected finite region. As long as L or LD still percolates
after setting bonds in Rf to be closed, GIntDep percolates.

Results from the percolation theory indeed indicate that
setting all the bonds in a finite region Rf to be closed does
not affect the percolation of L or LD. For any percolated
L, the probability that there exists a horizontal crossing of
open bonds over a kl × l rectangle approaches 1 for any
integer k > 1, as l → ∞ (Lemma 8 on Page 64 of [18]). The
percolation of L (after setting all bonds in Rf to be closed)
is justified by the fact that the connected open bonds across
rectangles form a square annulus that does not intersect Rf

(shown in Fig. 12), which is a standard approach to prove
the percolation of L [18]. Moreover, the percolation of LD

after all bonds in Rf are set closed can be proved in the same
approach, by noting that the probability that open bonds of
LD form a horizontal crossing over a rectangle approaches
1 as the rectangle size increases to infinity [16].

If the kl × l rectangle is large but finite, the probability
that a horizontal crossing formed by open bonds exists is
close to 1 if L or LD percolates. Therefore, the same analysis
demonstrates the robustness of two finite interdependent
RGGs under a geographical attack that removes the nodes
in a disk region of size βa2, where 0 < β < 1.

Fig. 12. Open bonds form a connected path across rectangles around
Rf .

The robustness of interdependent RGGs under geo-
graphical failures is illustrated in Fig. 13. Nodes and links
in the giant mutual component are colored black. The
interdependent RGGs still percolate after all the nodes in
a disk region are removed. This is in contrast with the
cascading failures observed in [5] in the interdependent
lattice model after an initial disk attack. One reason may
be that every node can have more than one supply node

in our model, while every node has only one supply node
in [5]. The multiple localized interdependence helps the
interdependent RGGs to resist geographical attacks.
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Fig. 13. Interdependent RGGs with the same connection distance d1 =
d2 = 1 and ddep = 0.5.

6 EXTENSIONS TO MORE GENERAL INTERDEPEN-

DENCE

In the previous sections, we studied a model where
every node in Gi is content to have at least one supply node
in Gj in the same mutual component (∀i, j ∈ {1, 2}, i 6= j).
The techniques can be extended to study models where
every node in Gi must have at least Kj supply nodes from
Gj to receive enough supply, where Kj can be either a
constant or a random variable (∀i, j ∈ {1, 2}, i 6= j). We
briefly discuss the extensions to models with more general
supply requirement using the example in Section 3.1, where
d1 = d2 = 2ddep.

6.1 Deterministic supply requirement

The extension is straightforward if Ki is a constant,
∀i ∈ {1, 2}. By the same discretization technique, the state
of a site in the triangle lattice is determined by the point
processes in a cell of area A (recall Fig. 2). Declare a site to
be open if there are at least Ki nodes from Gi in the cell that
contains the site (∀i, j ∈ {1, 2}, i 6= j). For each open site,
every node from Gi in the cell has at least Kj supply nodes
from Gj in the same cell, satisfying the supply requirement.
Following the same analysis as that in Section 3.1, the
percolation of the triangle lattice implies the percolation of
GIntDep.

For a Poisson point process of density λj , the probability
that there are at least Kj nodes in a cell of area A is 1 −
∑Kj−1

l=0 (λjA)
le−λjA/l!. An upper bound on the percolation

thresholds is given by (λ1, λ2) that satisfies:
[

1−
K1−1
∑

l=0

(λ1A)
le−λ1A

l!

][

1−
K2−1
∑

l=0

(λ2A)
le−λ2A

l!

]

=
1

2
.

6.2 Random supply requirement

Some extra work is necessary if Ki is a random vari-
able, ∃i ∈ {1, 2}. For simplicity, we first consider the case
where K1 ≥ 1 is a constant and K2 is a discrete random
variable with a cumulative distribution function FK2

(x),
x ∈ N. Furthermore, we assume that the number of supply
nodes needed by every node in G1 is independent. After
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the discretization, a site in the triangle lattice is open if
the following two conditions are satisfied for at least one
integer-valued k2 ≥ 1.

1) There are exactly k2 nodes from G2 in the cell.
2) There are at least K1 nodes from G1 in the cell, each of

which needs no more than k2 supply nodes.

If both conditions are satisfied, at least K1 nodes from G1

and the k2 nodes from G2 each have enough supply. It is
easy to see that the percolation of the triangle lattice still
implies the percolation of GIntDep.

Next we compute the probability that the two conditions
are satisfied. The probability that there are k2 nodes from G2

in the cell is:

Pr(N2 = k2) = (λ2A)
k2e−λ2A/k2!.

The probability that there are l nodes from G1 in the cell is:

Pr(N1 = l) = (λ1A)
le−λ1A/l!.

The probability that a node in G1 needs no more than k2
supply nodes is FK2

(k2). Since the number of supply nodes
needed by every node in G1 is independent, the probability
that at least K1 out of the l nodes in G1 each need no more
than k2 supply nodes is:

Pr(K
(K1)
2 ≤ k2|N1 = l) =

l
∑

t=K1

(

l

t

)

[FK2
(k2)]

t[1− FK2
(k2)]

l−t,

for K1 ≤ l, and Pr(K
(K1)
2 ≤ k2|N1 = l) = 0 for K1 > l. By

the law of total probability, for a given k2, the probability
that there exist at least K1 nodes from G1 in the cell that
each need no more than k2 supply nodes is:

Pr(K
(K1)
2 ≤ k2) =

∑

l≥K1

Pr(N1 = l) Pr(K
(K1)
2 ≤ k2|N1 = l).

Since the events that there are exactly k2 nodes from G2

in the cell are mutually exclusive for distinct values of k2,
using the law of total probability again, the probability that
both conditions are satisfied is:

p12 =
∑

k2≥1

Pr(N2 = k2) Pr(K
(K1)
2 ≤ k2).

Any (λ1, λ2) that satisfies p12 ≥ 1/2 is an upper bound on
the percolation threshold of GIntDep.

Finally, we consider the case where both K1 and K2 are
discrete random variables. Suppose that Ni nodes from Gi

are in the cell of area A. If there exist integers k∗i ≤ Ni, such
that at least k∗i nodes from Gi each need no more than k∗j
supply nodes, then the k∗i nodes from Gi all have enough
supply (∀i, j ∈ {1, 2}, i 6= j). However, it is difficult to
obtain a clean formula of the probability that (k∗1 , k

∗
2) exists

(to satisfy the condition). The events that (k∗1 , k
∗
2) exists are

not mutually exclusive for distinct values of k∗1 and k∗2 .
While it is possible to compute this probability using the
inclusion-exclusion formula, the computation is expensive,
since the number of choices of (k∗1 , k

∗
2) can be large and

each term in the inclusion-exclusion formula requires the
computation of order statistics.

A practical approach to estimate the probability that
nodes have enough supply is by simulation. In each trial

of the simulation, Ni nodes are randomly generated in area
A, where Ni follows a Poisson distribution of rate λiA
(∀i ∈ {1, 2}). Then, each of the Ni nodes is tagged with
a realization of the random variable Kj , which indicates the
number of required supply nodes (∀i, j ∈ {1, 2}, i 6= j). Let
I indicate whether there exist (k∗1 , k

∗
2) such that at least k∗i

nodes among the Ni nodes all have tags no more than k∗j
(∀i, j ∈ {1, 2}, i 6= j). The value of I can be computed by
Algorithm 3.

Algorithm 3 An algorithm that determines whether nodes
have enough supply.

Initialization:
Sort the Ni realizations of the random variable Kj in the

ascending order. Let K
(t)
j , t = 1, . . . , Ni be the sorted list

(∀i, j ∈ {1, 2}, i 6= j). Let t1 = t2 = 1.
Main loop:

while I is not determined do
t′1 ← K

(t2)
1 , t′2 ← K

(t1)
2 .

if t′1 ≤ t1 and t′2 ≤ t2 then
I ← 1.

end if
if t′1 > N1 or t′2 > N2 then

I ← 0.
end if
t1 ← max(t1, t

′
1), t2 ← max(t2, t

′
2).

end while

We now prove the correctness of Algorithm 3. For easy
presentation, the Ni nodes are referred to as nodes in Gi

(∀i ∈ {1, 2}). Initially, among the nodes in Gi, the algorithm
chooses one node that needs the smallest number of supply

nodes. To support this node, at least t′j = K
(1)
j nodes need

to be in Gj . If t′1 ≤ 1 and t′2 ≤ 1, one node from G1 and
one node from G2 suffice to support each other. Otherwise,
if t′j > 1, at least t′j nodes need to be in Gj . The t′j nodes

must be supported by K
(t′j)

i nodes from Gi. If K
(t′j)

i is larger
than the total number of nodes in Gi, then there are not

enough supporting nodes in Gi and I = 0. If K
(t′

2
)

1 ≤ t′1
and K

(t′
1
)

2 ≤ t′2, then t′1 nodes from G1 support t′2 nodes
from G2, and vise versa. Note that t′1 and t′2 never decrease
in the iterations, and at least one of them strictly increases
in an iteration where I is not determined. If there exists at
least one pair (k∗1 , k

∗
2), the algorithm terminates with I = 1

at the smallest pair for both coordinates, which can be easily
shown by contradiction. If no such pair (k∗1 , k

∗
2) exists, the

algorithm terminates with I = 0.
Given (λ1, λ2), by repeating a sufficiently large number

of trials, the probability that I = 1 can be estimated within a
small multiplicative error with high confidence using Monte
Carlo simulation. As long as this probability is at least 1/2,
GIntDep percolates with high confidence.

7 CONCLUSION

We developed an interdependent RGG model for in-
terdependent spatially embedded networks. We obtained
analytical upper bounds and confidence intervals for the
percolation thresholds. The percolation thresholds of two
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interdependent RGGs form a curve, which shows the trade-
off between the two node densities in order for the inter-
dependent RGGs to percolate. The curve can be used to
study the robustness of interdependent RGGs to random
failures. Moreover, if the node densities are above any upper
bound on the percolation thresholds obtained in this paper,
then the interdependent RGGs remain percolated after a
geographical attack. Finally, we extended the techniques to
models with more general interdependence. The study of
percolation thresholds in this paper can be used to design
robust interdependent networks.
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[7] O. Yağan, D. Qian, J. Zhang, and D. Cochran, “Optimal allocation
of interconnecting links in cyber-physical systems: Interdepen-
dence, cascading failures, and robustness,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 9, pp. 1708–1720, 2012.

[8] M. Franceschetti and R. Meester, Random networks for communi-
cation: from statistical physics to information systems. Cambridge
University Press, 2008, vol. 24.

[9] M. Franceschetti, O. Dousse, D. Tse, and P. Thiran, “Closing the
gap in the capacity of wireless networks via percolation theory,”
IEEE Trans. Inform. Theory, vol. 53, no. 3, pp. 1009–1018, March
2007.

[10] Z. Kong and E. M. Yeh, “Resilience to degree-dependent and
cascading node failures in random geometric networks,” IEEE
Trans. Inform. Theory, vol. 56, no. 11, pp. 5533–5546, 2010.

[11] M. Penrose, Random geometric graphs. Oxford Univ. Press, 2003.
[12] R. Meester and R. Roy, Continuum percolation. Cambridge Univ.

Press, 1996.
[13] P. Balister, A. Sarkar, and B. Bollobás, “Percolation, connectivity,

coverage and colouring of random geometric graphs,” in Handbook
of Large-Scale Random Networks. Springer, 2008, pp. 117–142.

[14] W. Li, A. Bashan, S. V. Buldyrev, H. E. Stanley, and S. Havlin, “Cas-
cading failures in interdependent lattice networks: The critical role
of the length of dependency links,” Physical review letters, vol. 108,
no. 22, p. 228702, 2012.

[15] P. Hall, “On continuum percolation,” The Annals of Probability, pp.
1250–1266, 1985.

[16] P. Balister, B. Bollobás, and M. Walters, “Continuum percolation
with steps in the square or the disc,” Random Structures and
Algorithms, vol. 26, no. 4, pp. 392–403, 2005.

[17] G. R. Grimmett, Percolation. Springer-Verlag Berlin Heidelberg,
1999.

[18] B. Bollobás and O. Riordan, Percolation. Cambridge Univ. Press,
2006.

[19] R. Roy, “The Russo-Seymour-Welsh theorem and the equality of
critical densities and the “dual” critical densities for continuum
percolation on R2 ,” The Annals of Probability, pp. 1563–1575, 1990.

[20] G. Casella and R. L. Berger, Statistical inference. Duxbury Pacific
Grove, CA, 2002, vol. 2.

[21] B. Błaszczyszyn and D. Yogeshwaran, “On comparison of cluster-
ing properties of point processes,” Advances in Applied Probability,
vol. 46, no. 1, pp. 1–20, 2014.

Jianan Zhang received his B.E. degree in Elec-
tronic Engineering from Tsinghua University,
Beijing, China, in 2012, and M.S. degree from
Massachusetts Institute of Technology, Cam-
bridge, MA, USA, in 2014. He is currently pursu-
ing the Ph.D. degree at the Laboratory for Infor-
mation and Decision Systems, Massachusetts
Institute of Technology. His research interests
include network robustness, optimization and in-
terdependent networks.

Edmund M. Yeh (SM’12) received his B.S.
in Electrical Engineering with Distinction and
Phi Beta Kappa from Stanford University in
1994. He then studied at Cambridge University
on the Winston Churchill Scholarship, obtaining
his M.Phil in Engineering in 1995. He received
his Ph.D. in Electrical Engineering and Computer
Science from MIT in 2001. He is currently Pro-
fessor of Electrical and Computer Engineering
at Northeastern University. He was previously
Assistant and Associate Professor of Electrical

Engineering, Computer Science, and Statistics at Yale University. Pro-
fessor Yeh has held visiting positions at MIT, Stanford, Princeton, Uni-
versity of California at Berkeley, New York University, Swiss Federal
Institute of Technology Lausanne (EPFL), and Technical University of
Munich. He has been on the technical staff at the Mathematical Sci-
ences Research Center, Bell Laboratories, Lucent Technologies, Sig-
nal Processing Research Department, AT&T Bell Laboratories, and
Space and Communications Group, Hughes Electronics Corporation.
Professor Yeh is the recipient of the Alexander von Humboldt Research
Fellowship, the Army Research Office Young Investigator Award, the
Winston Churchill Scholarship, the National Science Foundation and
Office of Naval Research Graduate Fellowships, the Barry M. Goldwater
Scholarship, the Frederick Emmons Terman Engineering Scholastic
Award, and the President’s Award for Academic Excellence (Stanford
University). He received Best Paper Awards at the ACM Conference on
Information Centric Networking, Berlin, September 2017, at the IEEE In-
ternational Conference on Communications (ICC), London, June 2015,
and at the IEEE International Conference on Ubiquitous and Future
Networks (ICUFN), Phuket, July 2012.

Eytan Modiano received his B.S. degree in
Electrical Engineering and Computer Science
from the University of Connecticut at Storrs in
1986 and his M.S. and PhD degrees, both in
Electrical Engineering, from the University of
Maryland, College Park, MD, in 1989 and 1992
respectively. He was a Naval Research Labo-
ratory Fellow between 1987 and 1992 and a
National Research Council Post Doctoral Fellow
during 1992-1993. Between 1993 and 1999 he
was with MIT Lincoln Laboratory. Since 1999 he

has been on the faculty at MIT, where he is a Professor and Associate
Department Head in the Department of Aeronautics and Astronautics,
and Associate Director of the Laboratory for Information and Decision
Systems (LIDS).

His research is on communication networks and protocols with em-
phasis on satellite, wireless, and optical networks. He is the co-recipient
of the MobiHoc 2016 best paper award, the Wiopt 2013 best paper
award, and the Sigmetrics 2006 Best paper award. He is the Editor-in-
Chief for IEEE/ACM Transactions on Networking, and served as Asso-
ciate Editor for IEEE Transactions on Information Theory and IEEE/ACM
Transactions on Networking. He was the Technical Program co-chair for
IEEE Wiopt 2006, IEEE Infocom 2007, ACM MobiHoc 2007, and DRCN
2015. He is a Fellow of the IEEE and an Associate Fellow of the AIAA,
and served on the IEEE Fellows committee.


	1 Introduction
	2 Model
	2.1 Preliminaries on RGG and percolation
	2.2 Interdependent RGGs
	2.3 Related work

	3 Analytical upper bounds on percolation thresholds
	3.1 A motivating example
	3.2 Small ratio d2/d1
	3.3 Large ratio d2/d1
	3.3.1 1-dependent bond percolation model LD
	3.3.2 Proof of Theorem ??
	3.3.3 An example of two RGGs with large d2/d1

	3.4 Numerical results

	4 Confidence intervals for percolation thresholds
	4.1 Upper bounds for GIntDep
	4.2 Lower bounds for GIntDep
	4.3 Confidence intervals
	4.4 Numerical results

	5 Robustness of interdependent RGGs under random and geographical failures
	6 Extensions to more general interdependence
	6.1 Deterministic supply requirement
	6.2 Random supply requirement

	7 Conclusion
	References
	Biographies
	Jianan Zhang
	Edmund M. Yeh
	Eytan Modiano


