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major role in the modernization of the power grid. Micro- .
grids are small-scale local power grids which are, typy;a"mterdependency between MGOs and predict the outcomes of
composed of renewable generation units, storage devinds,
energy consumers J[1]. MGs are managed by various
operators (MGOs) and can operate in either connected
islanded modes, and are expected to bring forth innovati
solutions for the smart grid by enhancing power managemesr(ffe
and providing energy reserves via storage.

in the energy management of the smart grid as investigate
by a number of recent works|[2]2[4]. However, more recentl
there has been considerable interest in using the stor
abilities of MGs to enhance the resilience of the smart gr
against emergency events such as natural disasters oitysecﬁ
breaches. In this regard, various academic, industriad, ah
federal reports[]5]£]7] have proposed leveraging the M
storage capacity to mitigate the effect of loss of genematic?
during emergencies by meeting the smart grid’s most ctitic
loads. Indeed, distributed storage and generation urits, #
integral constituents of MGs, have played an essential r
in preserving the operation of hospitals and police statiais
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Abstract—The proliferation of distributed generation and well as fire fighting and rescue services centers in many tecen

storage units is leading to the development of local, small- emergency situations in the United States [7]. For instance
scale distribution grids, known as microgrids (MGs). In this

paper, the problem of optimizing the energy trading decisios
of MG operators (MGOs) is studied using game theory. In the A “ :
formulated game, each MGO chooses the amount of energy that transmission of electricity to parts of Utah in 1995 and 2003
must be sold immediately or stored for future emergencies,igen as well as in the 2003 North American Northeast blackiout [7].
the prospective market prices which are influenced by other |n addition to the various reports ifn][5[2[7] that encourage
MGOs’ decisions. The problem is modeled using a Bayesian
game to account for the incomplete information that MGOs
have about each others’ levels of surplus. The proposed game ) ) : ~ ) -
explicitly accounts for each MGO’s subjective decision whe Power quality that might arise when a critical load is supgli
faced with the uncertainty of its opponents’ energy surplus by MG energy sources. However, there is a lack of works that
In particular, the so-called framing effect, from the framework  gnalyze the willingness and ability of MGOs to participate i
of prospect theory (PT), is used to account for each MGQO'’s
valuation of its gains and losses with respect to an individal
utility reference point. The reference point is typically different . . o
for each individual and originates from its past experience and UNits across MGs, the power companies must offer significant
future aspirations. A closed-form expression for the Baydan financial incentives for the MGOs to keep a portion of their
Nash equilibrium is derived for the standard game formulation. energy surplus in storage for potential emergency use. The
Under PT, a best response algorithm is proposed to find the
equilibrium. Simulation results show that, depending on tteir
individual reference points, MGOs can tend to store more oréss | s ] ) ”
energy under PT compared to classical game theory. In additin, it at the significantly higher emergency price, in the future
the impact of the reference point is found to be more promineb  Moreover, given the fact that the energy bought in case

as the emergency price set by the power company increases. of emergency is limited, competition will arise between the

this has been the case during natural disasters such as hurri
canes Katrina and Rita, and the wildfires which interrupled t

the use of MG storage to enhance grid resilience, other works
such as[[B] and]9] have also investigated the issues refated

covering the power grid’s critical loads.
To this end, in order to leverage the distributed storage

MGOs are hence faced with the choice of selling their excess
at the current market price, or storing it and potentialljirsg

|. INTRODUCTION different MGOs who seek to take advantage of the incentives
The emerging concept of microgrids (MGs) will play &ffered by the power company for emergency energy.
ging P g ( ) Pay In this regard, game theory [10] can be used to model the

eir competitive behavior. In fact, game-theoretic asaljas
Ng‘ieen a popular tool for understanding the interactions &etw
siprage owners in smart grid energy managemgnt [[2]-[4].
Ué)wever, these works do not investigate the aforementioned
narios in which storage is used for improving resilience
Moreover, these works typically rely on games with complete
&f rmation, which are not practical for smart grid sceoari
nother key drawback of existing game-theoretic analysis
Is the assumption that all players are rational and thus seek
f’emaximize their expected utilities in a similar objective
r?anner. In a real-life application however, as observechiy t
P(perimental studies in_[11] and[12], the behavior of indi-
iduals can deviate considerably from the rational pritesp

Indeed, the storage capability of MGs can be used to asé

G f conventional game theory. In this regard, the framework
f prospect theory(PT) [11] can be used to model the non-
%{ﬂional behavior of MGOs in the presence of uncertainthjsuc
s renewable energy sources|[13], and its impact on thayabili
(%MGS to meet the power grid’s critical load.

The main contribution of this paper is to propose a new

) _ ; : — framework for analyzing the storage strategy of MGOs in
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MGOs to account for the incomplete information of eachmount of energy surplus),,, an MGOn has the option of
MGO regarding the excess of energy of its opponents. &elling this stored energy to the grid at the corresponditejlr
this game, each MGO must choose a portion of its MGjsrice, p, or saving it for later use in case of emergency, for
energy excess to store so as to maximize a utility functieamproved resilience. In this regard, each MGO will choose
that captures the tradeoff between selling at the curreriteha a portion «,, € [0,1] of its MG’s @,, to store and will
price and potentially selling in the future at a significgntlconsequently sell the rest. In case of emergency or blackout
higher emergency energy price. In contrast to conventiorthe power company will purchase the stored energy to cover
game theory, we develop a prospect-theoretic framewortk tleacertain required critical load., until normal power supply
models the behavior of MGOs when faced with the unceis restored.
tainty of their opponents’ stored energy, which stems from In order to increase the resilience of the power grid against
the presence of intermittent renewable energy sources.emergency events, the power company will encourage the
particular, we account for each MGO'’s valuation of its gain®IGOs to store part of their MGs’ excess by offering a price
and losses with respect to its own individual utility evdloa p. per unit of stored energy purchased in case of emergency.
perspective, as captured via the PT framing effeci [11] Biypically, p. must be significantly larger thamto incentivize
a utility reference point. This reference point represemtsthe MGOs to store the excess. If the total stored energy
utility that an individual MGO anticipates and it originate exceeds the needekl., the power company will no longer
from previous experiences and future aspirations of profifsurchase the entire energy stored by each MG.
which can differ in between MGOS$112]. Let @« and@ be the vectors that represent, respectively, the
For this proposed game, we derive the closed-form estorage strategy and the available energy surpluses diall t
pression for the Bayesian Nash equilibrium (BNE) for th#1GOs in the setN. In this respect, whem™Q > L., the
classical game-theoretic scenario and interpret thidibguim  power company will purchase, from each MG an amount
under different conditions. For the PT case, we proposeofienergyD,, given by:
best response algorithm that allows the MGOs to reach a
BNE in a decentralized fashion. Simulation results hidtlig D, = <anQn - Q)
the difference in MGO behavior between the fully rational N )
case of classical game theory (CGT) and the prospect-ttilezor(‘-’}"h‘:’re(q)Jr = max0,¢). aTQ — L. is the amount by which
scenario. Indeed, for certain reference points, MGOs cnhoége total stored energy exceeds the requitedLet ¢ t_)e the
to store more energy under PT compared to CGT, Whifé(pected probe_lb|llty of an emergency event occurring. Then
the case is reversed for other reference points where MGEREN MGOn will choose its optimal storage strategy, to
noticeably reduce their MGs’ stored energy. In additiorg gPptimize the following utility function: .
impact of the reference point is found to be more prominenty; (o, @) — P (Qn = anQn) + 0pcan@n, if aTQ < Le,
as the emergency price increases. The power company must p(Qn —anQn) +0pcDn,  otherwise.
therefore quantify the subjective behavior of the MGOs befo (2)
choosing the optimal emergency energy price, in order ta mee Note that, wherfp. < p, the MGOs will have no incentive
the critical load at minimal cost. to store their MGs' excess and, hence, they will sell all the
The rest of this paper is organized as follows. Section @vailable surplus at the current market price. Thus, haftgn
presents the system model and provides the Bayesian gakgerestrict our analysis to the cage. > p. As seen from[(R),
formulation. In Section 11, we present the game solutiodem the driving factor in determining an MGO's optimal strategy
classical game theoretic analysis, while we present ini@ectthe total energy stored by its opponents. In factpds) — L.
IV the game solution under prospect theoretic analysis. itcreases, so will the amount of stored energy which will not

Section V, we present and interpret our simulation resulf3® boughtin case of emergency. Indeed, the MGO could have
and finally conclusions are drawn in Section VI. instead sold that energy at the current market price and made

a profit. Given this trade-off between selling at the current

Il. SYSTEM MODEL AND BAYESIAN GAME FORMULATION  market price and storing the excess for a potentially higher

Consider a large-scale smart grid managed by a powspfit in case of emergency, each MGO aims at maximizing
company that integrates a saf of N microgrids, each of its utility function by choosing the optimal storage stmptev,,,
which is managed by an MG operator. Microgrids are smallvhile also accounting for the actions of its opposing MGs.
scale distribution grids which typically include renewabl Each MGO is typically fully aware of the presence of all
generation units, storage devices, and energy consuneak. EN MGs in the power grid and knows the size of their storage
MG operator manages all energy trades conducted by its odevices. In addition, each MGO knows the exact amount of
MG. Each MGn € N, managed by its MGQ:, includes energy excess available to its own MG. However, an MGO
a storage unit with capacity),, max Which can be used to cannot determine the energy excess of other MGs. In fact,
store the excess of energy produced. Given the intermitt@fittaining such information is not possible especially give
nature of renewable energy sources, each MG’s energy surghe intermittent renewable energy sources and the timgngr
Qn € [0,Qn.mad is unknown beforehand and will vary ovemature of energy consumption. Each MGO thus assumes the
time. A positive@,, indicates that an MG has extra energgxcess of energy),, of other MGs to be a random variable
while @,, = 0 indicates that no surplus is available. Given athat follows a certain probability distribution functigh (Q,)

aTQ_Lc>+



over [0, Qm.mad Wherem € N\ {n}. We refer toQ,, as Definition 2. A strategy profilex* is said to be gure strategy
the type of MGO n and, to f,,(Q.,), as MGOn’s belief of Bayesian Nash equilibriurif every MGO’s strategy is a best
another MGOm's type. In fact, when MGOn chooses a response to the other MGOs’ strategies, i.e.

certain storage strategy,, it is uncertain of the profit it will al €rpla*,))Vn e N. (5)

gain. This uncertainty stems from its incomplete informati | the proposed game, at the BNE, no M@Qcan increase
regarding the type of its opponents, originating from thgs expected utility by unilaterally deviating from its stge
intermittent renewable energy and the time-varying natusgrategyo’ .
of energy consumption, as well as from randomness of anin what follows, we will derive closed-form expressions of
emergency event. N _ o . the BNEs for the case in which two MGs are located in the
Given the competition over the financial incentives offeregroximity of the critical load. In fact, power supply to the
by the power company for emergency energy, the MGOgitical load from distant MGs might not be feasible due to
actions and utility are highly interdependent thus moih@t transmission barriers and significant power losses. As,such
a game-theoretic approach [10]. In addition, given the ifgven these limitations and the scale of a given microgh, t

complete information of the opponents’ excess of energy thahalysis for two MGs will be quite representative.
directly affects the MGOs’ utility, each MGO will maximize

its expected utility given its own beliefg,(Q,,). MGO n’s I1l. TWO-PLAYER GAME SOLUTION UNDER CLASSICAL
expected utility,E,, (a, Q.,), will therefore be given by GAME THEORY ANALYSIS
En(0,Qn) =Eq  [Un(a, Q)] (3) For the case in which two MGS\ = 2) are capable of

. supplying the critical load, the expected utility of MGOD
where @ _,, is the vector that represents the energy exceggen its belief of MGO2’s type can be written as

of all MGs in the setN \ {n}. The strategic interactions Q2.max

between the various MGOs under incomplete information can Ei(a, Q1) = / Ur(e, Q) f1(Q2)dQ2, (6)

be modeled using Bayesian game models [10]. 0

A. Bayesian game formulation Wherzea = a1 az] and@Q = [Q1 Q-]. For the two-MG case,
ave

We formulate_ a static noncopperative Bayesign gadme [1\8 Q1 (1 — a1) + 0pearQy if ap < Lezga@
between the different MGOs in the séf. In this game, Ui(a,Q)= - 2
o - . ) pQ1 (1 —a1) + 0pc.Dy otherwise.
each MGO seeks to maximize its expected utility given its )

beliefs of its opponents’ energy excess by choosing itswaiti Next, we assume that neither of the MGs owns a large enough
storage strategy. Since the decisions on the portion oggnestorage device to fully supply the critical load on its own.
to store are coupled, as captured by (2), we adopt a ganigwer this assumptior’); will be given by
theoretic approach. Formally, we define a strategic game .
= : {N7 {-An}ne./\fv {7:1}716/\/7 {}Tn}nej\/v {Un}nEN} Wher.e Dy = a1Q1 — 5 (OélQl +a2Q2 — LC) : ®)
N'is the set of aII_MGOs,An is the "?‘C“O“ space which In order to find the solution of the proposed game, we first
represents the possible storage strategies of each player . :
. i derive the best response strategy of each player which vme the
is the set of types of MGOs that represent the possible enerqy .

. . . e to compute the different BNEs.
surplus for each their MGSF,, is the set of beliefs of player Derivati f the best
n represented by the probability distributions of each of ié' erivation of the best response _ _
opponents’ types, andl;, is the utility function of playern ~ The best response strategy of each MGO is characterized
defined in [(2). In order to find the solution of the proposedext. In fact, we present the following propositions that
game, we first define the two key conceptsbeft response analyze MGOL'’s best response for different values @f.

strategyand Bayesian Nash equilibrium Proposition 1. The best response of MG, for a, &

Definition 1. The set ofbest response strategiesan MGO |0, LQ;mcil} is given byri(az) = 1. MGO 1 thus maximizes
n € N to the strategy profilex_,,, r(a_,), is defined as its expected utility by storing its MG’s entire energy exces
i ) Proof: For a, < £Zc=91 the total stored energy is below
rn(a—n)={a; € An|Eq_, [Un(an, a—n, Q)] > the critical load for all types of MGQ and all strategies
Ean [Un(anaa—an)] Vo, € -An}a (4) of MGO 1 since OéQQQJnaX + Ql < L. Thus, MGO 1’s
wherea_,, is the vector that represents the storage strategﬁﬁls t reijp(_)nse IS t? store its en;uref e?e;gyl/ﬁexcess Wﬁ'Ch IS
of all MGOs in the set\' \ {n}. y sold in case of emergency. In fact, he (o, Q1) =
Ui(a,Q) = p(Q1 — a1Q1) + 0p.a1 Q1 since Uy (a, Q) is
In other words, when the strategies of the opponents anelependent of), for this case, as seen il (7 (o, Q1) is
fixed to a_,,, any best response strategy would maximizelearly an increasing function, given thatf > p, which is
playern’s expected utility, given its beliefs,, of its oppo- maximized at its upper boundary = 1). Thusr;(as) =1
nents’ types. In our analysis, we assume that an MGO’s beligf ., ¢ LO’ Le=Qu | -
£,(Q.) over its opponent’s energy surplus follows a uniforrProposition 22 best response of MGO, for ar €
distribution over the domaifD, Q. may. We next define the Léz;,gi’ 1}, is given by
concept of a pure strategy Bayesian Nash equilibrium. ’




Lepef+(pe0—2p)azQa, 2 . .
() = { P i [—pg ez > L= energy might not be sold in case of emergency. Howeper,
17

[ ]a2 < Lc Ql is large enough compared foto satisfy the condition under
_ ) (9) which MGO 2 stores its MG’s entire excess.
Proof: The proof of this proposition is in Appendrx A ) 22 1 < Le=@ o andL. > Qimax+ Q2. The

u anaIyS|s of this condition is the same as condition b) with th
Given the previous propositions, an MGO's best responggder of the pIayers reversed.

strategy is thus summarized in the following theorem. d) 2p —1< LQ L and 2p 1< Le=@ 1 |nthis
Theorem 1. The best response strategy of MGOr (av2), is case both MGOs are aware that part of ‘their stored energy
given by might not be sold. Howevey,. is large enough compared to

1 if g < L= p to satisfy the conditions for which both MGOs store their

Lo ..o, MGSs’ entire excess.

ri(az) = or, fax>Gmcvand | 25 — 1) ax > Zmr, 2) Second BNE: the strategy profile

1, if 0y > L=l and | 25 — 1| ap < S=SL 1, “”C”(”Ca 2”)@1 max ) constitutes a BNE of the proposed

(10) game if any of the following two conditions are satisfied:

MGO 2's best response strategy(«y) is derived similarly

. . N N X > Lepef4(pc0—2p)Q1,max
and is the same a5 {]10) but with indiceand?2 interchanged. a) Le Q2,max+ Q1 and

Q2pc0
—1> =t Q2 |n this case, MGQ knows that given MGO
2 s storage strategy, the total stored energy is always b#lew
critical load. Meanwhile, MGQ is aware that, given MGO

B. Derivation and interpretation of the equilibria
1's strategy, the total stored energy might exceed the atitic
Given the MGOs' best response function nl(10), we Willy24 and part of its stored energy might not be sold in case

compute all possible BNEs for this game. We will then derlvgf emergency. MGQ will not store the entire excess given

and interpret the conditions needed for each BNE to exist. ‘that p, is not large enough compared fo

Theorem 2. The proposed MGO game admits four possible b) 2p 1 cPc9+(gc" 20)Q1max LQ Q.
Bayesian Nash equilibria for different conditions thatate 20 o, T
Y d Lo’ LopeOt(pe 0 20)Oimm g 26 — 1 > L= Here,

the MG parameters,),, and @, max With power grid  Q2ma
parametersp, p., 6, and L.. The strategy profilesa(;, ), both MGOs know tﬁat given their opponents strategy, part of

that constitute the four BNEs, are the following: their MG’s stored energy might not be sold. The emergency
1) First BNE: (1,1) price p. is large enough compared pao satisfy the condition

Lepct 0 —2 for which MGO 1 stores the entire excess, however, it is not
2) Second BNE] 1, ped + (p p)Ql,max)

Proof: The proof follows from Propositions 1 and 28

large enough for M@ to fully store its MG’s entire excess.

2p09
3) Third BNE: Leped + (p09_2p)Q2,max71 . 3) Third BNE: The interpretation of the third BNE is
lec.9 i similar to that of the second but with index 1 swapped with 2.

4) Fourth BNE: (aj4,a3,) is the strategy profile that
constitute the fourth BNE, where 4) Fourth BNE: The strategy profilgaj 4,5 ,), defined

—Lpd(Qapel — 2Q2.map + Qa.maxpeh) in Theorem 2, constitutes a BNE which is obtained by
ay 4= ' solving the set of equations; = «y,. andaj = as ., in the

4 202 — 4pp,. 202 _ 17 Pl T2 T A
9, maiQQpr:a)Eéglppjf 2Qmaxlppp+)Ql iﬁQ% case where the following condition is satisfied:

Qo4 =
s 4 202 _ 4 c 292
Q1,maQ2,max (4p* + p2 ppctd) — Q1Q2p? a)a§74[%—1}>(22@1 anda14[—p€—1}>Lle€f.
Proof' The strategy profiles of the BNEs are derived byJ ] .

as = ro(aj), for the different possible combinations of thé?PPONents strategy, part of their MG's stored energy might

best response strategies. m hot be sold. The emergency prige is not large enough
The conditions under which each BNE is defined are furthtr satisfy the conditions under which either MGO stores the
summarized and interpreted next. entire excess.

Our previous analysis assumes that all MG operators are

1) First BNE: the strategy profile (1,1) constitutes a BNHuylly rational and their behavior can thus be modeled using
of the proposed game if any of the following four conditiong|assical game-theoretic analysis. However, this assompt
is satisfied: might not hold true in a real smart grid, given that the oper-

a) Le> Qamax+ Q1 and L. > Q1 max + Q2. Here, each ators of the MGs might have different subjective valuations
MGO is aware that the total stored energy is below the ctiticaf the payoffs gained from selling their energy surplus. tNex
load, regardless of the type and Strategy of its opponent. we will use the framework of prospect theofy [11] to model

b) L. > Qamax+ Q1 and p” 1< Q L@ 1 Here, the behavior of MGOs when faced with such uncertainty
MGO 1 knows that the total stored energy is always below thend subjectivity of profits, stemming from the presence of
critical load regardless of the type and strategy of its o@mb. renewable energy and the uncertainty it imposes on the wlum
On the other hand, MG®is aware that part of its MG'’s storedof energy surplus that other MGOs generate.



IV. PROSPECT THEORETIC ANALYSIS related to the type of the opponent. In fact, the MGO would get

In a classical noncooperative game, a player evaluates%ﬁnax'lrlnqm F;Lom for the (t:e:js.s n ;NE'Ch the pppfpner;ts type
objective expected utility. However, in practice, indivals IS small, 1.e. In€ opponent did not have a signiiicant energy

tend to subjectively perceive their utility when faced with- surplus. For the case in which the opponents iype is large, a

certainty [11]. In our model, an MGOQO's uncertainty origiesat 5|gn|f|c?nt part of an MGItS. stqreld energy V\./gll not beﬁsc;g n
from the presence of renewable energy and the uncertaint € of emergency, resutting in lower possible payolis tor |
e O, compared to smaller values af This concept is key

imposes on the volume of energy surplus that the oppos PT sis. ai that ff luated th h
MGOs generate. In fact, an MGO is uncertain of the portion gi our F1 analysis, given that payolls are evaluated throug
mparison to the reference point. Similarly to our analysi

its MG’s stored energy that will be sold in case of emergency, o .

which is directly related to the energy surplus availablé&go e CGT case, we will first derive the best response strategy

opponents. Since MGOs are humans, they will perceive tﬂgthe MGOs.

possible profits of energy trading, in terms of gains anddsss Proposition 3. The best response of MGDunder PT, for
This motivates the application of PT to account for thg, ¢ |0, Léz;nfil , is to store its entire energy excess, similarly

MGO'’s subje(_:t|V|ty v_vhlle choosing the optimal energy porti i the classica game theory analysis.

to store. PT is a widely used tool for understanding human

behavior when faced with uncertainty of alternatives. Im ou  Proof: As seen from Proposition 1, fer, € {0, ﬁ},

analysis, we will inspect the effect of the key notion ofitiil U/, («x, Q) is an increasing function over its domain. Given that

framing from prospect theory. Utility framing states that #e framing functionV/(-) is an increasing function as well,

utility is considered a gain if it is larger than the referencMGO 1's expected utility,Ey pr(c, Q1) = V (U7 (v, Q)), is

point, while it is perceived as a loss if it is smaller thantthahus maximized at jts upper boun =1.

reference point. We defing, as the reference point of a given Ve Next derive the e%))ecpedi U?'ﬁ{y%f VGO under A

MGO n. The choice ofR,, can be different between MGOsfor a2 € {%%ﬁja 1] MG 1's expected utility fora, €

as it reflects personal expectations of profit from selling th{LC—& 1| takes different values for, [O cha2Q2,max:|

energy surplus. In this regard, a certain prafitoriginating @2 max Le—osQ ’ @

from a particular energy trade, will be perceived diffetgnt anday € | =5, 1}3

by an MGO used to reaping larger profits as opposed to an - Lo—020

MGO that usually generates lower profits. In fact, an MG@roposition 4. For oy € [07 %W} and ay €

n Wlth historically h!gh profits Wo_uld have a high reference{Lé;ngxl : 1}, MGO 1's expected utility under PEpr 1 24, is

point, R,, > r, and will hence considerto be a loss, Whereas’giveh by

an MGOm with relatively low historical profits would have a

lower reference pointR,, < r and would hence considerto EpT124(c, Q1) = {

be a gain. Consequently, to model this subjective perceptio

o lossesand galns e need o reeine the uilty RO Gheot, .. — (@, -~ 0:0:) - 5. and 5 = s,

Proof: In Proposition 4, Equatiod (12) follows from the

fact that fora; < B, the original utility, U; 2, is below the

reference pointR; and is thus perceived as a loss. On the

where0 < 3~ < 1,0 < g+ <1 and\ > 1. other hand, it is considered as a gain far> B. ]

V() is the framing value function that is concave in gainF’roposition 5. For a, € [er%,max’ 1}
and convex in losses with a larger slope for losses than f r S o
gains [12]. In fact, PT studies show that the aggravation thes =, 1}, player 1's expected utility under PT is given by
an individual feels for losing a sum of money is greater than Epraiop(a, Q1) = 1) + I, (13)

the satisfaction associated with gaining the same ambdht [1 '

—A1 (R1 — U1,2a)ﬁ; if oy < B,

(12)
(U1,24 — Rl)’ﬂ1+ if a1 > B,

(Un(c, Q) — Rn)?" if Un(c, Q) > R,

V(Un (ayQ)) = {_An (Rn . U7L(017Q))67 if Un(OhQ) < Rn,
11

and ay €

which explains the introduction of the loss multiplier,. where
In addition, the framing principle states that an indivithia _MlLe —n@Q1) [Ri—Ura]" ifon < B,
sensitivity to marginal change in its utility diminishes ag I = 2Qmax2 (14)

Le —a1Q1 [

+
U1,1—R1]ﬁ1 if a1 > B,
062Qma>g2

move further away from the reference point, which explains
the introduction of the gain and loss exponefits and 3.

It is important to note that, as an MGO chooses to store a Uri=p(Q1 — a1Qq) + 0peci Q1 (15)
larger portiona of its MG’s energy, its potential payoffs will
now span a larger range of values. In other words, as an MGO My |(Ri = Umax2)®t *1 = (Ry — UA,Q)ﬁf“} if Oy,
stores more energy, it will now have the possibility to make i 541
higher expected profits by selling more in case of emergency. | Mo |(Ur2 = BT — (Uan — )™ } +
On the other hand, by storing more energy, the MGO risks’ M, [(Rl — Unax2)Pt 71 = (Ry — UT.,2)517+1] it Oy,
making less profit whenever its opponent has also stored a . sl
significant part of its own energy. These probable payofés ar My {(Umax2 — RPN (Upy — Ry } if Cs,

(16)



M —2 —2)\1
’ (57 + 1) pebas’ Gr T ) pbaa = ™ |
Umax2 = p(Q1 - OélQl) + %9pc (alQl + L. — Q2,max)y 208 |

Un2 = p(Q1 — 1 Q1) + 30pc (1 Q1 + L. — A), A = 7L°75;Q1 ,
and Uy = p(Q1 — ouQ1) + %9;& (1Q1 + Le — Q2,r). Q2,r is

given in [26).
ConditionC1, C3, and C5 are given by
Cl e S B7

C2: a1 > B and

Q1 (0pe —2p) a1 < OpeazQmax2 — Leped — 2pQ1 + 2Ry,
Cs:a1 > B and

Q1 (0pe —2p) a1 > OpeaaQmaxa — Lepel) — 2pQ1 + 2R;.
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MGO 2’s expected utility function is derived in a similal
manner as MGO 1's with indices 1 and 2 reversed.

Proof: The proof is given in Appendix C. |
Given the complex structure of each MGQO's expected utilit
function with framing, computing the closed-form expressi
of the best response strategy is difficult for the PT case.
particular, the analysis ofpr; 92, is quite challenging due
to the various forms that the function can take under diﬁereare still viewed as gains above the reference point_ As the

conditions as seen ifL(IL4) ard[16). Therefore, in order t fifeference point increases frofis to $11.5, the total stored
the BNE under PT, a best response algorithm is proposedenergy will decrease from arourz0 to 184 kWh, since

This iterative algorithm dictates that, in response to iSome of the potential payoffs of the current BNE will start
opponent's current strategy, each MGO sequentially ct®ogg be perceived as losses, as they cross the reference point.
its optimal storage strategy by numerically charactegzinGiven that losses have a larger weight under PT compared
from its action space, the action that maximizes its expectg) classical game theory, the expected utility of the curren
utility. In fact, given the closed-form expressions pradd strategy profile will significantly decrease, thus causihg t
in Propositions 3, 4, and 5, an MGO can easily COMPUENE to drift towards lower storage strategies. The MGOs will
its expected utility for each of its strategies. In this @=p exhibit risk averse behavior as they sell more of their epatg
upon convergence, this algorithm is guaranteed to reach g current risk-free retail market prigeIn fact, as previously
equilibrium [10]. In fact, at the point of convergence, eachentioned, by decreasing, the minimum potential payoffs
MGO is playing the strategy that maximizes its expectegte larger, compared to the larger valuesagfand are still
PT utility facing its opponents strategy. Hence, the MGOghove the reference point.
will reach a BNE from which none has any incentive t0 The described behavior is reversed in fe.5, 13] range
deviate since such deviation would not improve their exg@ectyhere the MGOs start exhibiting more risk seeking behavior,
payoff. Indeed, as observed in our simulations in Section Ve storing more energy, to reach a total stored energy of
the algorithm always converged to an equilibrium. kWh. In fact, the low risk strategies’ potential payoffs aw@v

V. SIMULATION RESULTS AND ANALYSIS fully perceived as losses causing a significant devaluatfon

For our simulations, we consider a smart grid with= 2  their expected utility values. The BNE will thus go towards
MGs capable of supplying power to one of the power gridisigher values okx with larger maximum payoffs, compared
critical loads which requires a total df. = 200 kwWh to to lower values ofa, which are partially still considered
remain operational until regular power supply is restol#d. as gains. Finally, when the reference point is ab&y8.5,
also assume the regular price per unit of energy tp be$0.1 most potential payoffs of most strategies are now perceived
per kwh. In addition, we také = 0.01, andp. = $11.6 per as losses and the effect of PT will diminish gradually, and
kWh unless stated otherwise. The exponetitsand 3~ are the total energy stored will reack02 kWh, identically to
taken to be both equal to 0.88 and the loss multiplier 2.25 classical game theory. It is important to note that the aaiti
unless stated otherwisg [12]. We simulate the system for tW@d energy requirements are 200 kWh, which is met with the
scenarios: CGT, and PT under utility framing. stored energy of the MGs under classical game theory but not

Fig. @ compares the effects of different MGO referendeecessarily under PT analysis. This highlights the needfior
points on the total energy stored for both CGT and PT analecurate behavioral analysis of the studied system.
ysis. In the classical game theory cage™ = 5~ = A = 1), Fig.[@ shows the effect of changing the emergency pice
an MGO'’s reference point is irrelevant given that losses awd the role of the reference point in an MGO's decision, for
gains are computed in an identical objective manner. For the= 4. For a price ofp. = $10.2 per kWh, the total energy
PT case, for a reference point bel8®; the BNE action profile stored does not vary with the reference point. In fact, the
is not significantly affected compared to the classical ganegpected future profits gained from storing energy are close
theory case, since most potential payoffs of the BNE actiotws the profits incurred by selling at the current market price

Total energy stored at NE (kWh)

8 10 12 14 16 18
Reference point ($)

Figure 2. Effect of emergency price on PT sensitivity to teference point.
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its maximum ofl. The rational MGO, will thus decrease its
MG's stored energy, given the storage strategy of its oppbne
Finally, as the reference point increases fréim.5 to $25,
the effect of utility framing will gradually decrease, arfuet
storage strategy of both MGOs will reach a valueOd$S.
Given the negligible effect of PT at the high reference point
of $25, both MGOs, rational and subjective, will have equal
strategies at equilibrium and thus similar behavioralgrat.
VI. CONCLUSION

In this paper, we have proposed a novel framework for
analyzing the storage strategy of micorgrid operators in an
attempt to enhance smart grid resilience. We have fornulilate
the problem as a Bayesian game between multiple MGOs,
who must choose the portion of their microgrids’ excess
to store, in order to maximize their expected profits. The
MGOs play a noncooperative game, which is shown to have
four Bayesian Nash equilibria for the two MG case, under
different conditions. Subsequently, we have used the novel
concept of utility framing from prospect theory to model the
behavior of MGOs when faced with the uncertainty of their

On the other hand, when the price is increaseg.te- $11 per

opponents’ energy surplus. Simulation results have fagidid

kWh, the total stored energy will vary with the referencentoi the impact of behavioral considerations on the overall gsec
by up to10% from its original value. In fact, storing energyof enhancing the resilience of a smart grid by exploiting
will now yield significantly higher expected future profitsgjstributed, microgrid energy storage.

compared to selling at the current market price. Thus, an
MGO's risk-seeking or risk-averse behavior is justifiedegiv [1]
the increasing uncertainty in profits. Similarly, when= $12
per kWh, the total stored energy would vary further with thed?l
changing reference point, by upt@% from its original value.

Fig. [@ shows the effect of the loss multiplier on the
emergency price. needed to cover the critical load for the
reference points of11.5 and $12.5. The effect of framing
is more prominent as the loss multiplier increases. In factél
the MGOs will exhibit more risk averse behavior for the
specified reference points asincreases, thus prompting the [5]
power company to increase the critical price in order to
cover the critical load. In fact, a& increases, so will the
valuation of the MGOs’ losses. To avoid the large lossed®!
the MGOs will decrease the energy stored by their MG
and will tend to sell more energy at the current risk fre
market price. This highlights the importance of behavioral
analysis in choosing the proper pricing mechanism in smalfg]
grid resilience planning.

Fig.[ illustrates the storage strategies at equilibriunttie
case in which one of the MGOs is fully rational, while the
second is subjective. The rational MGO will naturally haee ny;q,
reference point. Here, both MGs have the same size of storage
Qmax = 150 kWh and energy excess availalile= 120 kWh. [11]
As seen in Fig.}4, as the reference point of the subjective MG[Q]
increases fron$5 to $13, it will exhibit risk averse behavior
and decrease the portion of energy it stores, to reach a vélugi3)
0.625. This is similar to the analysis of Figl 1. To respond, the
rational MGO will hence increase the portion of energy slore
to reach its maximum ofl, given the lower stored energy
of its opponent. As the reference point increases i
to $14.5, the subjective MGO will exhibit more risk seeking

(3]

7]

El

behavior and increase the portion of energy stored to reg®fPected utility of MGO1, for oy € [07
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APPENDIXA
PROOF OFPROPOSITIONZ2

For the proof of Propositior2, first, we analyze the

Lc—(¥2Q2,max

0 } and



; 2 Lc—Qy
a) Fora; € |0, % , the total energy stored oy = arr, i [p_% - }0‘2 = ,Q ’
is below the critical loadL. for all possible types of MGO " 1, if {— 1} 2 < Léz nfjj
2. Here, MGO1’s expected utility is given by ’
We first note thatE) 5, = FEi9 for ap = m
E12a(0, Q1) = p(Q1 — a1Q1) + 0pea1 Q1. which is the maximizer of; »,. However, as prewously dis-

cussed,F; o, cannot be maximized a{tw Thus, the

maximizer of MGO1’s expected utility, fora2 € [ Eo Ty n(ixl , 1},

E o, is a strictly increasing function given thép. > p,
hence, it is maximized at its upper boundasy,, =

Fetadane, belongs to the domai %W,l}. In other words,
b) Fora, € %W 1{, given MGOZ2's strategy, the 71 (az) = af ,, for as € [£2=%1 1
total energy stored is above the critical load for certajmety APPENDIXB

of MGO 2. MGO g’s expected utility is given by

PROOF OFPROPOSITIONS
By (0, Q1) = /O Us (e, Q) £(Q2)dQo

Player 1's expected utility under PT, for, € {ﬁ, 1},

Q2,max — @22 max i I
+/ Ui(e, Q)f(Q2)dQ2, (20) anda; € [7]“ Q]Q : ,1}, is given by
A

A4 1
with A = *0‘1"?1 which follows from (5). Under this EPT,l,zb(a,Ql):/O o —a1Q1) + 0pea1Q1) dQ2+
assumpt|onj1(Q2) = 1/Q2,max Over its domain and; o Qamax 1 1
is now given by /A Qomer (le (=) + 30 (01 Qr = 02Q2 + LC)) sz'(zs)
1 A
Brop(e, Q) = Qz’ma\x/0 [P (Q1 = a1Q1) + 0pca1 Q1] dQa+ We denote byl; the first integral in@5), and by I, the
1 Q2,max 1 second. As previously mentioned, PT states that a utility
o max/ [ (@1 —@1Q1) + 50pc (1Q1 — @2Q2 + Le )} dQo. is perceived in terms of gains and losses with respect to
By taking the second derivative df {21) with respect %0 thibie reference point. Next, we analyze the possible values
decision variabley;, we get of both integrals/; (first integral) and/, (second integral)
) in 29) from that perspective. The original utility iy,
OE1 21 _ 1pc0 _ Uri = p(Q1—a1Q1) + Opcar@Qq, is only a function ofa;
0?0 202Qmax2 and is independent d@». Equation[[I#) follows from the fact

The function is strictly concave given that its second deive that fora; < B, Uy 1 is below the reference poirt; and is
is strictly negative. The optimal solution is, hence, obéai thus perceived as a loss. On the other hand, it is considered
by the necessary and sufficient optimality condition givgn bas a gain for, > B.
OF1 o We then assess the possible values Igf The orig-
dar 0. (22) |1nal utility function in I, U, = p(Q1—a1Q) +
50pc (1Q1 — a2Q2 + L) is considered a loss given that

(22) has a unique solution which is given by

1
p(Q1—01Q1) + =0pc (1Q1 — a2Q2 + L) < Ry,
cpco + (Pc9 2/))062@2 max 2

Hr = Q1p.0 which can be rewritten aQs,» < Q2 with @2, given by
Given thatE o, is a strictly concave function and that ) .
is restricted to [% , 1}, a7 o, Will be Q2. = P P (Qr —01Q1) + 50pc (@1 + Le) — B
(26)
Lemoalamac - if g, < LemozQame Given that MGOL'’s expected utility is taken over MG®s
ol op = anp, if o € [LC’“Q;?M“ 1] . (23) type @2), we next analyzd- for different values ofY,. (16)
1, it arp > 1. follows from the fact thatl, is a loss integral foQs , < A.

In fact, o, is the optimal solution foi, o, if it belongs Given that the lower bound of; is larger thanA, then the
to the feasible region of’; 5,. On the other hand, ify; , is entire range ofY, values is as well. The conditioR, , < A
larger than the upper bound, théh o, is a strictly increasing can be rewritten a€’;. On the other handj, is a gain integral
function over the feasibility set and is maximized at its epp for Q2. > Q2.max Which can be rewritten a€’. Finally, for
bounda; 2 _Ll Finally, if a; .- is smaller than the domain’s 4 Q.2 < Qa.max I is split into two parts: a gain mtegral
lower boundZe=92Qz2mex thep E1 9 is a strictly decreasing on A, 2.} and a loss integral ofQrer, Q2.may- A < Q2.
function over thec%easmlhty set and is maximized at its éow (Q2,max Can be rewritten ag’;. (I4) and [(Ib) are obtamed by
bound. However, the conditiof, , < L_QQ;IQ”” cannot be evaluating the integralg, and I, for the described cases.
satisfied forp.0 > p, and thusw cannot be the
maximizer of £ o,. We can thus rewrltd]}3) as
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