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Abstract

Group testing is the process of pooling arbitrary subsets from a set of n items so as to
identify, with a minimal number of tests, a “small” subset of d defective items. In “classical”
non-adaptive group testing, it is known that when d is substantially smaller than n, Θ(d log(n))
tests are both information-theoretically necessary and sufficient to guarantee recovery with high
probability. Group testing schemes in the literature meeting this bound require most items to
be tested Ω(log(n)) times, and most tests to incorporate Ω(n/d) items.

Motivated by physical considerations, we study group testing models in which the testing
procedure is constrained to be “sparse”. Specifically, we consider (separately) scenarios in which
(a) items are finitely divisible and hence may participate in at most γ ∈ o(log(n)) tests; or (b)
tests are size-constrained to pool no more than ρ ∈ o(n/d)items per test. For both scenarios we
provide information-theoretic lower bounds on the number of tests required to guarantee high
probability recovery. In particular, one of our main results shows that γ-finite divisibility of items
forces any non-adaptive group testing algorithm with probability of recovery error at most ǫ to
perform at least γd(n/d)(1−5ǫ)/γ tests. Analogously, for ρ-sized constrained tests, we show an
information-theoretic lower bound of Ω(n/ρ) tests – hence in both settings the number of tests
required grow dramatically (relative to the classical setting) as a function of n. In both scenarios
we provide both randomized constructions (under both ǫ-error and zero-error reconstruction
guarantees) and explicit constructions of designs with computationally efficient reconstruction
algorithms that require a number of tests that are optimal up to constant or small polynomial
factors in some regimes of n, d, γ and ρ. The randomized design/reconstruction algorithm in
the ρ-sized test scenario is universal – independent of the value of d, as long as ρ ∈ o(n/d). We
also investigate the effect of unreliability/noise in test outcomes.

1 Introduction

The problem of group testing deals with identifying a relatively small number of “defective” items
among a large population via non-linear “grouped” tests. The model was introduced by Dorfman [1]
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in 1943, motivated by the task of identifying syphilitic individuals among military inductees during
World War II. Individual blood tests for syphilis were expensive, so the idea was to pool and test
multiple blood samples simultaneously. It was desirable to minimize the number of tests, while
correctly identifying the disease status of every individual.

This paper studies group testing with two potential types of constraints on the group-testing
procedure. First, we consider a model wherein each item can be tested a limited number γ of times
(e.g. due to a limited amount of blood that can be taken from an individual). Second, we consider
a model wherein each test can be a pool of at most a certain number ρ of items (e.g. equipment
limitations may impose a maximum on the number of objects that can be simultaneously tested).

Our primary technical contribution in this work is to demonstrate that even relatively mild
constraints on γ or ρ can dramatically change the nature of the group-testing problem. In contrast
to the classical (unconstrained) group-testing literature, where Θ(d log(n)) tests are necessary and
sufficient for high probability recovery, in our (γ- or ρ- constrained) setting the necessary number
of tests required may be as much as an exponential factor (in n) larger (polynomial in n rather
than logarithmic in n)! We also present a suite of algorithms (in a variety of problem settings) that
meet these information-theoretic bounds up to constant or small polynomial (in d or n) factors.
The randomized design/reconstruction algorithm in the ρ-sized test scenario may also be made
universal – independent of the value of d, as long as ρ ∈ o(n/d).

1.1 Related work

While there is significant literature on multiple alternative models of group testing (see for instance
[8,10,11,13,15,16,18,20,25,26]), the focus of this work is primarily on non-adaptive group testing
(NAGT), under ǫ-error and zero-error reconstruction guarantees. We thus restrict the discussion of
prior work to the literature on lower bounds and algorithms (both deterministic and randomized)
for ǫ-error and zero-error non-adaptive group testing.

Du and Hwang [39] show that O(d2 log n) tests suffice for zero-error group testing, while Porat
and Rothschild [7] provide an explicit NAGT algorithm with O(d2 log n) tests, almost matching
the best known lower bound of Ω

(
min{n, d2 log n/ log d}

)
[2].

The lower bound of (1−ǫ)d log(n/d) for ǫ-error group testing, [19] is met (up to constant factors)
by [3, 22,26].

In all the works mentioned above there are no a prioriconstraints on the group tests themselves.
In classical group testing algorithms that meet (up to constant factors) the information-theoretic
lower bound of Ω(d log(n)) tests for ǫ-error reconstruction, each item is tested Ω(log(n/d)) times.

1.1.1 Most relevant papers

In this section we discuss in somewhat more detail prior work that is potentially the closest to this
paper.

• While an earlier conference version of this paper [24] also had results on zero-error designs
in the γ-divisible items and ρ-sized test settings, subsequent work in [29] subsequently signif-
icantly improved on those results with nearly matching achievabilities and lower bounds in
the zero-error setting. We hence reference readers interested in zero-error constrained com-
binatorial designs to [29]. We note in passing that while a direct comparison between the
results in [29] and this work is unfair due to the difference in error criteria (vanishing error
versus zero-error), the number of tests required for some designs in our work are significantly
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smaller than corresponding results in [29] (for instance an upper bound of O
(
γd(n/ǫ)1/γ

)

tests sufficing to ensure probability of error of at most ǫ in Theorem 4.2 of this work, ver-
sus a lower bound of about Ω

(
(nd2)d/γ

)
in [29]). This significant penalty that one pays

when one demands zero-error performance (instead of being satisfied with vanishing error
performance) is analogous the difference between information-theoretic and coding-theoretic
results in general, and to corresponding known results in classical non-adaptive group testing,
where Θ(d log(n)) tests are sufficient (and necessary for vanishing-error performance, versus
Ω
(
min{n, d2 log n/ log d}

)
[2] being necessary for zero-error performance.

• Perhaps the first work to consider group-testing with constraints on column or row weights
of the design matrix was [4], wherein a very elegant construction of both row and column
constraints was provided under a zero-error of reconstruction criteria. However, the number
of tests required is significantly greater than those required in this work. Specifically, viewed

as a γ-constrained design, the number of tests required in [4] scales as O
(
nd/γ1/d

)
, which is

significantly larger than the O
(
γdn1/γ

)
tests that suffice in the randomized design (Theo-

rem 4.2) in this work, or the designs in [4]. Alternatively, viewed as a ρ-constrained design,

the number of tests required in [4] scales as O
(

n
ρ

(
log(n)
log(nρ)

)d)
, which is significantly larger

than the O
(
n
ρ

)
tests that suffice in the randomized design (Theorem 4.6) in this work.

• The title of [17] is “Improved group testing rates with constant column weight designs”,
and as such it may be tempting to consider this work as related to the column-constrained
group-testing problem. While [17] is indeed very nice work for other reasons outlined below,
in actuality is not directly relevant to the problem at hand since the value of γ chosen is
Θ(log(n)). Hence the word “constant” does not truly mean a constant independent of n (as
can be the case in our setting when γ ∈ Θ(1).) The reason for this choice of γ by the authors
of [17] is that this allows them to improve over prior work by a constant factor the number
of tests required for successful reconstruction, from c1d log(n/d) to c2d log(n/d), where c2 is
a somewhat smaller constant than c1 (both constants depending on the limiting behaviour
log(d)/ log(n)). However, as we now note in our discussion in Section 4, γ ∈ Θ(log(n)) is no
longer “sparse” – if γ is substantially smaller (γ ∈ o(log(n)) then indeed the number of tests
required may increase by a factor that is as much as exponentially larger in n).

• Certain works such as [6] focused on graph-based test-matrix ensembles with fixed row/column
weights, and used insights from statistical physics (in particular via the “replica symmetric
cavity method”) to analyze their performance. 1 However, full proofs of correctness in these
works have been omitted.

2 Model

Let S be the set of n elements, and let set D ⊂ S with |D| = d consist of the defective items. The
elements in S/D are called non-defective. Here d is considered to be “small” with respect to n – it
could be as small as a constant, or as large as nα for some constant α strictly less than 1.2

1Another work in this vein was [31], which was later discovered to have an error, and was withdrawn [36].
2It has recently been shown [32, 33, 36] that for classical (unconstrained) group testing, in the regime d ∈ Θ(n)

individual testing is optimal when one desires vanishing probability of reconstruction error – i.e., there is no “group-
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We wish to identify the defective items through a series of group tests, which takes as input a
subset (group) of the n items, and output whether or not there exists at least one defective item in
the subset (group).3 The goal of non-adaptive group testing is to correctly identify the exact set
of defective items with a minimum number of non-adaptive group tests.

Group testing may be adaptive (the set of items to be tested in a group may be a function
of prior test outcomes) or non-adaptive (all group tests have to be chosen independently of prior
test outcomes). Aside from naturalness of the non-adaptive group-testing problem viewed as a
nonlinear estimation problem, the advantage of non-adaptive group tests over adaptive group tests
is that they allow for parallel testing, and can use off-the-shelf hardware. Another reason to prefer
non-adaptive group-testing over adaptive group-testing is its application as a module in other
algorithms, for instance in streaming algorithms [5]. We thus focus on non-adaptive group testing
in this paper.

Formally, we represent the set S by the weight-d binary input vector X ∈ {0, 1}n, which is the
indicator vector of S. For a vector v ∈ {0, 1}n we let Supp(v) denote the set of non-zero indices in
v.

The sequence of T non-adaptive tests is represented by the rows Mi ∈ {0, 1}n of a test matrix
M ∈ {0, 1}T×n, and the outcomes Yi ∈ {0, 1} are computed as Yi =

∨
i∈Supp(Mi)

Xi, for all i ∈ [T ].
Therefore, the result of a test is positive if and only if the test contains at least one defective item.
We note that the test matrix could be chosen deterministically, or may be randomized.

Given the tests and their outcomes, the decoding algorithm outputs an estimate vector X̂ ∈
{0, 1}n, representing an estimate of the indicator vector of the defectives.

We are interested in tests that fail with small probability. In particular, we focus on ǫ-group
testing and design tests for which the probability of error is bounded by some ǫ > 04, namely

Perror = Pr
[
X̂ 6= X

]
< ǫ.

The probability in the above definition is taken over the randomness of the set of defectives, and over
the randomness of the test matrix (if the tests are randomized). Here we assume that the set D of
defectives is chosen uniformly at random among all sets of size d, except in Theorem 4.4/Section 7.1,
where for ease of analysis we consider instead the closely related model wherein items are defective
i.i.d. Bernoulli(d/n), leading to an expected group size of d. 5

testing gain”. The regime where d is almost linear in n, such as d ∈ Θ(n/ log(n)) is still open – the best upper and
lower bounds differ by super-constant factors [26]. Hence in the constrained setting considered in this work we also
restrict ourselves to the regime where d scales polynomially slower than n.

3In classical group testing, the true value of d (or a (good) upper bound on it) is typically known a priori. Our
algorithms in general only require knowledge of a (good) upper bound on d – they are designed under the assumption
that the number of defectives is at most d, and will still have low probability of reconstruction error if the true
number of defectives is any smaller value. Indeed, in some scenarios (for instance see Remark 6.3) our designs and
reconstruction algorithms are universal, in the sense that they do not need to know the value of d at all, as long as
one is guaranteed that d ∈ o(n/ρ).

4Note that in our proofs ǫ does double duty as both the probability of error, and as a “generic sufficiently small
positive quantity” whenever some slack is needed. This allows us to reduce the number of parameters to keep track
of, and eases exposition.

5Another slightly different distributions over D that might be considered to have a uniform distribution over all
∑d

i=0

(

n
i

)

subsets of size at most d (rather than exactly d, as we do in our model). It turns out that these model per-
turbations do not substantially change results in the classical group-testing literature, and hence in this work we focus
on just the model wherein each set of d items may equal D with probability 1/

(

n
d

)

, except in Theorem 4.4/Section 7.1,
where items are defective i.i.d. Bernoulli(d/n).

4



Some authors [10,14] consider “noisy” tests, in which test outcomes are misreported with some
small probability. In this setting, the output vector Ŷ ∈ {0, 1}T is obtained as Ŷ = Y ⊕ Z, where
Z ∈ {0, 1}T is a noise vector produced by a binary-symmetric channel with crossover probability σ.
In such models, an ǫ-error reconstruction guarantee is desired again, with Perror = Pr

[
X̂ 6= X

]
< ǫ,

where the probability is taken over the randomness of X, possibly that of M , and that of the noise
process that converts Y to a noisy vector Ŷ . We briefly consider such models in Section 7.

We define the γ-divisible group-testing model as one in which each item can be tested at most
γ times, and so each column of M contains at most γ many 1’s. Similarly, we define the ρ-sized
group-testing model as one in which each test can include at most ρ items, and so each row of M
contains at most ρ many 1’s.

In what follows, all logarithms are base 2. The functionH(X) denotes the entropy of the (vector
valued) random variable X, H(p) denotes the binary entropy function, and I(X;Y ) the mutual
information between X and Y .

We first reprise the well-known Stirling approximation for the factorial function.

Fact 2.1 (Stirling’s approximation [38]). The factorial function n! can be bounded from above
and below as

(
1−O

(
1

n

))√
2πn

(ne
d

)n
≤ n! ≤

(
1 +O

(
1

n

))√
2πn

(ne
d

)n
.

We use the following bounds [37] on the binomial coefficients which follow from Stirling’s ap-
proximations

Fact 2.2. (Bounds on binomial coefficients [37]) For any integers n > 0, and d ≤ n,

(n
d

)d
≤
(
n

d

)
≤
(en
d

)d
.

3 Outline

Before the formal statements (in Section 4) and proofs (in subsequent sections) of our results, we
first present in this section a summary of our techniques, with supplementary intuition.

For our information-theoretic lower bounds on ǫ-error non-adaptive group testing (in Sec-
tions 5.1 and 6.1), we start with the observation that for any group testing procedure to succeed,
the entropy of the test outcome vector Y must almost equal the entropy of the input vector X
(which has entropy log

(
n
d

)
, which is approximately d log(n/d) +O(d) for d = o(nα)) for any posi-

tive constant α in [0, 1). (Note that if d is say a constant, or scales logarithmically in n, this may
be interpreted as α being an arbitrarily small positive constant.). Indeed, in classical group testing,
this is a design principle for the test matrices M , leading to designs such that the probability of
test outcomes being either positive or negative are each close to 1/2 (and hence the entropy of each
individual test is close to 1).6 This design principle implies that each test should include about

6Note that this is not a sufficient condition to guarantee low-error reconstructability of X from Y , merely a
necessary one. For instance, consider a test matrix M such that the first test Y1 has entropy 1 bit, and each of
the remaining d log(n/d) rows are identical to this first row. So while the sum of the entropies of individual tests
is large, the overall entropy of the test outcome vector is just 1 bit. This is due to the extreme correlation across
tests. So really, one needs to design a matrix M which not only has high entropy per tests, but also high entropy for
most collections of tests. Nonetheless, as a lower-bounding technique, bounding the entropy of individual tests often
provides a reasonable first-order approximation, as indeed seems to be the case in this work.
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g∗ = (n/d) ln(2) items, since then the probability of a negative test outcome can then be shown
to be ≈ 1/2. This density of items per test (corresponding to the density of items per row of M)
coupled with the desire to use only an information-theoretically optimal number of tests of about
Θ(d log(n/d)) (hence restricting M to have Θ(d log(n/d)) rows), induces the fact that each column
of M should have on average about Θ(log(n/d)) items.

But for “sparse” matrices, for instance when tests are size-constrained to ρ = o(n/d), it may be
impossible to meet this design principle. This implies a fundamental upper bound on the entropy
that can be “squeezed” out of each test Yi. Coupled with the need to squeeze a total of d log(n/d)
bits of entropy out of the test vector Y , and “standard” information-theoretic techniques (such
as Fano’s inequality) relating entropic quantities to probability of error give us non-trivial lower
bounds on the number of tests required in the ρ-size constrained model, as outlined in Section 6.1.

Similar techniques also work in Section 5.1 to provide lower bounds in the case when the testing
procedure involves γ-divisible items – this puts a fundamental upper bound on the number of 1’s
in any column of the testing matrix M . This implies a constraint on the average density of each
row in M . However, more care is required in this model, since there may be a few test rows of
M with “high” weight. Our bounding technique therefore proceeds by choosing a threshold above
which we consider a test to be “heavy”. We then do a two-stage approximation to obtain an upper
bound on the entropy of the test outcome vector Y , and the rest of the proof is similar to the one
in Section 6.1.

As an explicit example of the type of results obtainable via these lower bounding techniques,
we can show that to detect a single defective (d = 1) out of n items, with a constraint that each
item may be tested at most twice (γ = 2), it must be the case that group testing procedure has at
least about

√
n tests. (Compared with log(n) tests, which would suffice in the unconstrained case.)

To gain further intuition on why such a lower bound might be tight, consider the following testing
algorithm. The n items are arranged into a

√
n × √

n grid, as in Figure 1. The test matrix then

6 7 8

3 4 5

0 1 2

Test 1 Test 2 Test 3

Test 6

Test 5

Test 4

negative negative positive

negative

positive

negative

Figure 1: If n = 9, γ = 2, d = 1, the above test uniquely determines that item 5 is defective.

comprises of 2
√
n rows, corresponding to the

√
n sets of

√
n items in each column of this grid, and

the
√
n sets of

√
n items in each row of this grid. The unique defective item then must correspond

to the item sitting at the intersection of the single column and the single row that return positive
test outcomes.

Generalizing this explicit design to general item and test constrained settings takes more work.
We provide explicit constructions that use the toy example (d = 1, γ = 2) and generalize to arbitrary
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d, and γ or ρ, via a “divide-and-conquer” approach. Details are provided in Sections 5.3 and 6.3.
In Sections 5.2 and 6.2 we also provide randomized designs that draw intuition from the analysis

of “classical” (unconstrained) group testing schemes. We analyze the probability that randomly
chosen matrices chosen from suitable ensemble of matrices with either ρ-sparse rows or γ-sparse
columns (for the two models considered) have a “reasonable” probability of success, by analyzing
the probability that a non-defective item is “masked” by the set of d defective items. These results
are outlined in Sections 5.2 and 6.2. We highlight a special feature of the result in Section 6.2, that
it is universal, in the sense that the corresponding design/reconstruction algorithms are independent
of the value of d (as long as ρ is in the range of interest, i.e., ρ ∈ o(n/d).

Finally, in Section 7 we examine the effect of σ-noise (say BSC(σ) noise for concreteness) in test
outcomes Yi on the reconstructability of X – interestingly, while non-trivial achievability schemes
exist in the ρ-test size constrained setting with σ-noisy test outcomes (for instance by repeating
each test an appropriate number of times and taking the majority), in the γ-divisible item scenario
any non-trivial amount of noise renders any group testing algorithm unable to reconstruct X with
a vanishing probability of error. This latter impossibility result stems from the fact that if the
columns of M are sufficiently sparse (o(log(n)), then with non-trivial probability (1 − σo(log(n)))n,
all information about the status of at least one item will be completely masked by the noise in the
tests in which the item participates.

4 Results

We now formally state our results, with proofs presented in subsequent sections.

4.1 γ-divisible items

We begin with discussing our results for the scenario wherein each item may be tested at most γ
times.

4.1.1 Parameter regime of interest for γ-divisible items

Some prefatory remarks that will be useful in the proofs are in order. It is well-known in the
classical group-testing literature (see for instance [19, 26]) that in unconstrained settings T >
(1− ǫ)(d log(n/d)) tests are necessary to reconstruct all defectives with error probability at most ǫ,
hence the same is certainly true in the constrained setting. It is also known that if each item can be
tested Θ(log(n/d)) times, then Θ(d log(n)) tests suffice for group-testing algorithms with vanishing
error. Hence the parameter regime of primary interest is when γ ∈ o(log(n/d)) = o(log(n)) (since
d ∈ o(nα) for some positive constant α < 1), and when T ∈ Ω(d log(n/d)). Note that this implies
a fact that will be useful later in our proofs, that

T

γd
∈ ω(1). (1)

To trade off between precision and readability, we specify explicit (upper and lower) bounds in the
following theorems, but use instead Bachmann-Landau asymptotic notation to specify parameter
regimes and computational complexity.
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4.1.2 Results for γ-divisible items

Perhaps the result with the most technically involved proof involves a lower bound (Theorem 4.1)
on the number of tests in any non-adaptive group-testing algorithm that tests each item at most
γ ∈ o(log(n)) times, and is allowed to make an error with probability at most ǫ. This result sets the
stage for the remainder of this work, by showing the stark price one pays for imposing constraints on
test designs, with the number of tests shooting up from being logarithmic in n in the unconstrained
setting, to being polynomial in n in the constrained setting.

Theorem 4.1 (Section 5.1). For any sufficiently large n, sufficiently small ǫ > 0, and d ∈ o(nα)
for some positive constant α < 1, any non-adaptive group-testing algorithm that tests each item at

most γ ∈ o(log n) times and has a probability of error of at most ǫ requires at least γd
(
n
d

) 1−5ǫ
γ tests.

To complement this lower bound, we also present two designs, both of which have affiliated recon-
struction algorithms with computational complexities that are polynomial in problem parameters.

The first provides a randomized construction, requiring a number of tests that is larger than the

lower bound by a factor that scales essentially as Θ(
(
d
ǫ

)1/γ
) (neglecting lower-order dependencies

on the probability of error ǫ) – see Remark 5.2 for a discussion on the potential reasons for this
gap.

Theorem 4.2 (Section 5.2). For any sufficiently large n, sufficiently small ǫ > 0, and d ∈ o(nα),
for some positive constant α < 1, there exists a randomized design testing each item at most

γ ∈ o(log(n)) times that uses at most
⌈
eγd

(
n
ǫ

) 1

γ

⌉
tests, and an affiliated reconstruction algorithm

of computational complexity O
(
γd
(
n
ǫ

)1+1/γ
)
, that ensures a reconstruction error of at most ǫ.

The second design is explicit (does not require randomness in designing the test matrix). On the

one hand this design requires more tests than the one in Theorem 4.2 (by a factor of Θ
(
d
ǫ

)1−2/γ
),

but on the other hand for small d (say constant d, or d ∈ O(log n)) has reconstruction complexity
that can be exponentially smaller in n than that of the algorithm in Theorem 4.2. One point to
highlight about Theorem 4.3 is that due to technical reasons, the construction only works when
d ∈ o (

√
n), rather than d ∈ o(n) as in Theorem 4.2.

Theorem 4.3 (Section 5.3). For any sufficiently large n, sufficiently small ǫ > 0, and d ∈ o(nα) for
some positive constant α < 1/2, there exists a deterministic design testing each item at most γ ∈
o(log(n)) times that uses at most ⌈d2γǫ ⌉

⌈
(nǫ
d2
)1/γ

⌉
tests, and an affiliated reconstruction algorithm

of computational complexity O
(
d2

ǫ log
(
nǫ
d2

))
, that ensures a reconstruction error of at most ǫ.

Noisy tests: Finally, we consider the case where there is Bernoulli(σ) noise in test outcomes –
individual test outcomes are mis-reported in an i.i.d. manner, with the probability of misreporting
σ ∈ (0, 1/2). In this scenario we show that when items may be tested at most γ times, if log(d)/γ ∈
Ω(1), (for instance when γ ∈ Θ(1), or when γ ∈ o(log(n)) and d ∈ Θ(nα) for some α in (0, 1)) the
probability of error of any non-adaptive design/reconstruction algorithm is bounded away from zero,
regardless of the number of tests performed. This is in contrast to results in unconstrained group-
testing, wherein reliable reconstruction is still possible, albeit at the cost of a constant (dependent
on σ) factor increase in the number of tests required.
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Theorem 4.4 (Section 7). If non-adaptive test outcomes are corrupted by Bernoulli(σ) noise,
σ ∈ (0, 1/2), any non-adaptive group-testing algorithm that tests each item at most γ times has a

probability of error of at least d
(

σ
1−σ

)γ
.

4.2 ρ-sized tests

We now discuss our results for the scenario wherein each test may comprise of at most ρ items.

4.2.1 Parameter regime of interest for ρ-sized tests

We begin by again first identifying the parameter regimes of interest for ρ. Recall that it is
well-known in the classical group-testing literature (see for instance [19,26]) that in unconstrained
settings T > (1−ǫ)(d log(n/d)) tests are necessary to reconstruct all defectives with error probability
at most ǫ, hence the same is certainly true in the constrained setting. It is also known (see for
instance [19, 26]) that if each test can comprise of Θ

(
n
d

)
items, then Θ(d log(n)) tests suffice for

group-testing algorithms with vanishing error. Hence, the parameter regime of primary interest is
when ρ ∈ o

(
n
d

)
. For this ρ-sized test model, since our results depend on the ratio between log

(
n
d

)

and log
(

n
ρd

)
, it will help to parametrize d as Θ(nα) for some α ∈ [0, 1), and ρ as Θ((n/d)β) ∈

Θ(n(1−α)β) for some β ∈ [0, 1). If d or ρ behave like constants, or say logarithmically in n, one may
then set the corresponding value of α or β to equal zero.

To trade off between precision and readability, we specify explicit (upper and lower) bounds in
the following theorems, but use instead Bachmann-Landau asymptotic notation to specify param-
eter regimes and computational complexity.

4.2.2 Results for ρ-sized tests

We now discuss our results for the scenario wherein each test may comprise of at most ρ items.
The results here are broadly similar in flavor to those corresponding to the γ-divisible constrained
ones above, with one notable exception being the difference between Theorem 4.4 above and The-
orem 4.8 below.

The lower bound we derive in Theorem 4.5 for the ρ-sized scenario is broadly similar in flavor
to the one derived in Theorem 4.1.

Theorem 4.5 (Section 6.1). For any sufficiently large n, sufficiently small ǫ > 0, and d ∈ Θ(nα)
for some α ∈ [0, 1), any non-adaptive group-testing algorithm that includes ρ ∈ Θ((n/d)β) (for

some β ∈ [0, 1)) items per test and has a probability of error of at most ǫ requires at least
(
1−6ǫ
1−β

)
n
ρ

tests.

Analogously to the γ-divisible group testing schemes in Section 4.1.2, we now give two different
constructions of test matrices (and affiliated computationally tractable reconstruction algorithms)
which are row-constrained.

First we give (in Theorem 4.6) a construction of a randomized test matrix that requires a number
of tests that is larger by a constant factor of essentially 1/(1−α) (neglecting mild dependencies on
the probability of reconstruction error) than the lower bound (in Theorem 4.5) to reliably identify
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d ∈ o(nα) defective items. We note that this additional factor of 1/(1−α) is similar to the state of
affairs in classical group testing scenario (with no row/column constraints) (for instance see [19,26]).

For ease of presentation in Theorem 4.6 below it will be convenient to scale the probability of
error ǫ as n−ζ for some sufficiently small ζ > 0.7

Theorem 4.6 (Section 6.2). For any sufficiently large n, sufficiently small ζ > 0, and d ∈ Θ(nα)
for some positive constant α < 1, there exists a randomized non-adaptive group-testing design

that includes at most ρ ∈ Θ
(
n
d

)β
(for some positive constant β < 1) items per test, using at

most
⌈

1+ζ
(1−α)(1−β)

⌉ ⌈
n
ρ

⌉
tests, and an affiliated reconstruction algorithm of computational complexity

O
(
n2/ρ

)
, that ensures a reconstruction error of at most ǫ = n−ζ.

In fact, if the scheme in Theorem 4.6 is used to design a test matrix with ω(n/ρ) tests instead
of Θ(n/ρ) tests, we then have a universal design, which works regardless of the value of d, as long
as d ∈ o(n/ρ). See Remark 6.3 for details.

Our second design results in an explicit construction, analogous to the design in Theorem 4.3.
Even though the number of tests required by the design in Theorem 4.7 is somewhat larger (by a
factor of between O(log(ρ)) toO(d) larger, depending on the regime of ρ and d) than the randomized
construction, the reconstruction algorithm in Theorem 4.7 may be significantly faster. To do this,
it will help to subdivide ρ into two separate regimes (our design will have different behaviors for
these parameter regimes):

1. The first “test-size constrained” regime when ρ is less than nǫ
d2
, and

2. The second “block-number constrained” when ρ is larger than nǫ
d2

(but still asymptotically
smaller than n

d ).

Theorem 4.7 (Section 6.3). For any sufficiently large n, sufficiently small ǫ > 0, d ∈ Θ(nα) for
any α ∈ [0, 1) and ρ ∈ Θ(n/d)β for some β ∈ [0, 1), there exists a deterministic design that ensures
a reconstruction error of at most ǫ such that

1. When ρ < nǫ
d2
, the number of tests and computational complexity of reconstruction are both at

most
⌈
n
ρ

⌉
⌈log(ρ+ 1)⌉.

2. When ρ ≥ nǫ
d2 , the number of tests and computational complexity of reconstruction are both at

most
⌈
d2

ǫ

⌉
⌈log

(
nǫ
d2

+ 1
)
⌉.

Noisy tests: Finally, we consider the impact of noise in test outcomes when the size of each test
is constrained to at most ρ. The situation here is more akin to the situation in unconstrained
noisy non-adaptive group-testing (for instance see [12, 19, 30]) wherein one can ensure reliable
reconstruction even from noisy test outcomes at the cost of at most a “small” multiplicative factor
in the number of test outcomes – a constant factor (dependent on σ but independent of d and n)
in unconstrained group-testing. In the setting we now consider a factor that is at most logarithmic
in n will suffice to ensure reliable recovery (i.e., Θ(n log(n)

ρ ) tests suffice in this setting), and indeed,
as discussed in Remark 7.2, it is conceivable that even the need for this logarithmic factor can be
obviated by somewhat more sophisticated arguments than those we consider in this work.

7Indeed, it is possible to obtain a similar polynomial decay in the probability of error in each of our achievability
algorithms, but to reduce notational clutter we have chosen to specify such scaling for ǫ only when necessitated by
proof details, as in Theorem 4.6.
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Theorem 4.8 (Section 7). For any sufficiently large n, sufficiently small ζ > 0, and d ∈ Θ(nα)
for some positive constant α < 1, there exist a randomized non-adaptive group-testing design that

includes at most ρ ∈ Θ
(
n
d

)β
(for some positive constant β < 1) items per test, using at most⌈

1+ζ
(1−α)(1−β)

⌉ ⌈
n
ρ

⌉ ⌈
(1+ζ) ln(n)
(1/2−σ)2

⌉
tests, and an affiliated reconstruction algorithm of computational com-

plexity O
(
n2 log(n)

ρ

)
, that ensures a reconstruction error of at most ǫ = 2n−ζ .

All results stated in this section are summarized in Table 1

Model Regime Tests Computational Complexity

G
en
er
a
l

R
a
n
d
o
m
iz
ed

γ ∈ Θ(log(n))
T > (1− ǫ)d log(n/d) [19]

ρ ∈ Θ(n/d)
T < (1 + ǫ)d log(n/d) for d ∈ o(n1/3) [26] O(nd)

T < O((1 + ǫ)d log(n/d)) [34] O(dn log(n))

d = o(nα), α < 1
T < O(log(d)(1 + ǫ)d log(n/d)) [25] O(d log(d) log(n)

E
x
p
li
ci
t

Same as above

Same as randomized

T < O
(
d logn
log d log(

n
ǫ )
)
[21]

O (dn log n)

N
o
is
y

Same as above T < O
(
d log(nd )

)
[35] O

(
d2 log2(nd )

)

γ
-d
iv
is
ib
le

it
em

s

R
a
n
d
o
m
iz
ed d = o(nα), α < 1 T > γd

(
n
d

) 1−6ǫ
γ [Thm 4.1]

O
(
γd
(
n
ǫ

)1+1/γ
)

γ = o(log n) T <
⌈
eγd

(
n
ǫ

) 1

γ

⌉
[Thm 4.2]

E
x
p
li
ci
t d = o(nα), α < 1

2 Same as Randomized

O
(
d2

ǫ log
(
nǫ
d2

))

γ = o(log n) T < ⌈d2γǫ ⌉
⌈
(nǫ
d2
)1/γ

⌉
[Thm 4.3]

N
o
is
y

Noise: Bernoulli(σ), σ ∈ (0, 1/2)

Impossible [Thm 4.4]

log(d)/γ ∈ Ω(1)

ρ
-s
iz
ed

te
st
s

R
a
n
d
o
m
iz
ed

d ∈ Θ(nα), α < 1
T >

(
1−6ǫ
1−β

)
n
ρ [Thm 4.5]

O
(
n
ρ log

(
n
ǫ

))
ρ ∈ Θ((n/d)β), β < 1

T <
⌈

1+ζ
(1−α)(1−β)

⌉ ⌈
n
ρ

⌉
[Thm 4.6]

ǫ = n−ζ , ζ > 0

E
x
p
li
ci
t d ∈ Θ(nα), α < 1 Same as randomized

O(T )

ρ ∈ Θ(n/d)β , β < 1 T <





⌈
n
ρ

⌉
⌈log(ρ+ 1)⌉ if ρ > nǫ

d2⌈
d2

ǫ

⌉
⌈log

(
nǫ
d2 + 1

)
⌉ if ρ < nǫ

d2

[Thm 4.7]

N
o
is
y

d ∈ Θ(nα), α < 1

T <
⌈

1+ζ
(1−α)(1−β)

⌉ ⌈
n
ρ

⌉ ⌈
(1+ζ) ln(n)
(1/2−σ)2

⌉
[Thm 4.8] O

(
n2 log(n)

ρ

)
ρ ∈ Θ

(
n
d

)β
, β < 1

Error: ǫ = 2n−ζ

Table 1: A summary of non-adaptive group testing results.
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5 γ-Divisible Items

In Section 5.1 we present the proof of an information-theoretic lower bound on the number of
tests required by any non-adaptive group-testing scheme that is allowed to test each item no
more than γ times and has probability of error no more than ǫ. In Section 5.2 we provide a
randomized construction of a corresponding group-testing algorithm, and in Section 5.3 we provide
an alternative explicit construction (that requires more tests than the randomized construction,
but on the other hand has significantly smaller computational complexity of decoding).

5.1 Proof of Theorem 4.1: Information-Theoretic Lower Bounds

We begin by partitioning the tests T into sets Sl and Sh, where i ∈ Sl if test i includes less than
n

ǫd log
(

T
γd

) items, and i ∈ Sh otherwise (that is, test i includes at least n

ǫd log
(

T
γd

) items). Roughly

speaking, tests in set Sl are “light” (test “few” items per test) and hence have a “high” probability
of being negative, and thus “low” entropy (significantly less than 1 bit per test). Conversely, tests
in set Sh are “heavy” (test “many items per test) and may potentially have “high” entropy (as
much as 1 bit per test) – however, there cannot be too many heavy tests, due to the constraint
that each item is tested at most γ times.

We first bound the entropy of the heavy tests. Since there are at most a total of γn 1’s in the
test matrix and the entropy of each test outcome binary variable Yi is at most 1, then

∑

i∈Sh

H(Yi) ≤ |Sh| ≤
γn(
n

ǫd log
(

T
γd

)

) = ǫγd log

(
T

γd

)
. (2)

Next, we bound from above the entropy of the light tests. For any i ∈ T , let gi denote the number
of items in test i. We first note that since for light tests, gi ≤ n

ǫd log
(

T
γd

) , hence dgi
n ≤ 1

ǫ log
(

T
γd

) , and

hence by Equation (1),
dgi
n

∈ o(1) (3)

We next bound from below, for any fixed test i with a fixed set of gi items being tested,

the probability (with randomness uniformly distributed over all possible

(
n

d

)
sets of defectives)

that test outcome Yi is negative, and denote this probability p−i . While the precise value of p−i

equals

(
n− gi

d

)

(
n

d

) , via some direct calculations this equals (n−gi)!(n−d)!
n!(n−d−gi)!

=

(
n− d

gi

)

(
n

gi

) , which may be

interpreted as the probability that for a fixed set of d items being defective, the probability (with

randomness uniformly distributed over all possible

(
n

gi

)
sets of tests of size gi) that test outcome

Yi is negative, i.e., the randomness is shifted from sampling the defectives without replacement d
times, to sampling the test items without replacement gi times. But for a fixed set of d defectives
the probability of a negative test outcome by sampling gi items without replacement is strictly

12



greater than that of sampling gi items with replacement, which in turn equals
(
1− d

n

)gi . Hence

p−i >

(
1− d

n

)gi

≥ 1− dgi
n

, (4)

where the latter inequality inequality follows from Bernoulli’s identity [40].
Hence, for light tests, the probability of negative test outcomes is very close to 1. This allows

us to bound the entropy of any individual light test from above as follows:

H(Yi) = H(p−i ) = H(1− p−i ) < H

(
dgi
n

)

=
dgi
n

log

(
n

dgi

)
−
(
1− dgi

n

)
log

(
1− dgi

n

)

≤ dgi
n

log

(
n

dgi

)
+

dgi
n

(5)

≤ dgi
n

log

(
n

dgi

)
(1 + ǫ).

for any ǫ > 0 and sufficiently large n. Here Equation (5) follows using the fact that − log(1− x) ≤
x

1−x , for x < 1, x 6= 0.
Note that since the total number of 1’s in the test matrix is at most γn, the entropy over all

light tests (
∑

i∈Sl
H(Yi)) is bounded from above by the following constrained optimization problem,

where the optimization variables are the set of gi for light tests:

(1 + ǫ) max
{gi:i∈Sl}


∑

i∈Sl

dgi
n

log

(
n

dgi

)
 subject to

∑

i∈Sl

gi ≤ γn. (6)

It can be readily verified (via, for instance the method of Lagrange multipliers) that the max-
imum of (6) occurs when each of the gi’s are equal, and hence each is at most γn

|Sl|
. Thus, since

|Sl| ≤ T , the total entropy over all the light tests is at most

|Sl|(1 + ǫ)

(
dγ

|Sl|
log

( |Sl|
dγ

))
≤ (1 + ǫ)dγ log

(
T

dγ

)
. (7)

Hence, adding Equation (2) to (7), the overall entropy H(Y ) of all test outcomes, is bounded
from above by

H(Y ) ≤
T∑

i=1

H(Yi) ≤ (1 + 2ǫ)dγ log

(
T

dγ

)
. (8)

The remainder of this proof follows relatively standard lines (see for instance [12,19]) in the literature
on information-theoretic converses for (classical) group-testing. Specifically, we begin by noting that
X ↔ Y ↔ X̂ form a Markov chain.8 From standard information-theoretic definitions, we have

H(X) = H(X|X̂) + I(X; X̂), (9)

8Note that this implicitly assumes that the specific test-matrix M is deterministically fixed in advance. As is
standard in information-theoretic this is without loss of generality in the average probability of error setting.
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where H(X) is the binary entropy of the length-n binary vector X, and I(X; X̂) is the mutual
information between X and X̂ . Since X is uniformly distributed over X , the set of all length-n,
d-sparse binary vectors, we have

H(X) = log |X | = log

(
n

d

)
. (10)

We now upper bound each of the terms in RHS of Equation 9 separately. By Fano’s Inequality,

H(X|X̂) ≤ H(ǫ) + ǫ log(|X | − 1). (11)

Note that for ǫ < 1
2 ,

H(ǫ) < −2ǫ log ǫ. (12)

Also, by the data processing inequality and standard information theoretic inequalities,

I(X; X̂) ≤ I(X;Y ) = H(Y )−H(Y |X) ≤ H(Y ).

Combining Equations (10), (12), (11), (8) and (9) we have

H(X) = H(X|X̂) + I(X; X̂) ≤ H(ǫ) + ǫ log(|X | − 1) +H(Y )

⇒ log

(
n

d

)
≤ −2ǫ log ǫ+ ǫ log

(
n

d

)
+ (1 + 2ǫ)γd log

(
T

γd

)
.

By reordering the terms we get a lower bound on the number of tests as

T ≥ γd exp

(
(1− ǫ) log

(n
d

)
+ 2ǫ log ǫ

(1 + 2ǫ)γd

)

≥ γd exp

(
(1− 5ǫ) log

(
n
d

)

γd

)
(for sufficiently large n)

= γd

(
n

d

) 1−5ǫ
γd

≥ γd
(n
d

) 1−5ǫ
γd

(by Fact 2.2).

Hence, T ≥ γd
(
n
d

) 1−5ǫ
γd tests are needed by any non-adaptive group-testing procedure that has

probability of error at most ǫ.

Remark 5.1. As pointed out by an anonymous reviewer, the approach followed in the above proof
does not carry through for adaptive group testing, since our proof bounding the entropy H(Yi) of
individual testing outcomes critically relies on the test matrix M being independent of X. Since
the focus of this work is on the nonadaptive setting, we leave open the question of deriving lower
bounds for the adaptive setting as an interesting open question.

5.2 Proof of Theorem 4.2: Randomized Construction of Test Matrices

We now describe a randomized construction of a T × n test matrix M , where T =
⌈
eγd

(
n
ǫ

)1/γ⌉

tests suffice to guarantee a probability of reconstruction error of at most ǫ via a reconstruction

algorithm of computational complexity O
(
γd
(
n
ǫ

)1+1/γ
)
. The test matrix is obtained by picking
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each column of M uniformly at random from the set {0, 1}T of length T binary vectors of Hamming
weight γ. We now describe how to reconstruct the estimate vector X̂ from the test results. This
reconstruction algorithm is essentially the same as one outlined for classical group-testing in [19],
adapted to the parameter settings in this paper.

5.2.1 The Column Matching Algorithm (CoMa)

To obtain the estimate vector X̂ from result vector Y , the Column Matching algorithm (CoMa)
from [19] uses the tests which have positive outcomes to identify all defective items, while declaring
all other items to be non-defective. Namely, the algorithm marks item i defective if every test
in which i is included is positive. Note that CoMa cannot incorrectly mark defective items as
non-defective. CoMa can only incorrectly designate a non-defective item as defective if the item is
not tested, or is only tested in positive tests (i.e., every test it occurs in has at least one defective
item). If M is chosen to have enough rows, then we show that with significant probability, each
non-defective item appears in at least one negative test, and hence will be appropriately marked
non-defective. Note that the computational complexity of this reconstruction algorithm is therefore

Tn = O
(
γd
(
n
ǫ

)1+1/γ
)
.

5.2.2 Analysis

Since each of the d defective items can be tested at most γ times, the maximum number of tests
which are positive is at most dγ. Now, an item will be marked by CoMa as defective if all the
tests which pick this particular item are positive. Therefore for a fixed non-defective item i, the
probability that it is incorrectly marked defective is the probability that i is always tested with
one of the d defective items which happens with probability at most

(dγ
γ

)
/
(T
γ

)
. Taking a union

bound over the (n − d) non-defective items, we require (n − d)
(dγ
γ

)
/
(T
γ

)
≤ ǫ. From Fact 2.2, we

know that this condition is satisfied if
(
dγ
γ

)
< (ed)γ and

(
T
γ

)
>
(
T
γ

)γ
then this certainly occurs if

(ed)γ(n − d) ≤ ǫ
(
T
γ

)γ
(since

(dγ
γ

)
< (ed)γ and

(T
γ

)
>
(
T
γ

)γ
). Thus, we see that choosing T as

⌈
eγd

(
n
ǫ

)1/γ⌉
suffices to ensure correct recovery of the set of defective items with a probability of

error of at most ǫ.

Remark 5.2. Note the ratio between the number of tests required via the algorithm considered
here and the lower bound in Section 5.1 scales essentially as Θ((d/ǫ)1/γ ) (neglecting lower-order
dependencies on the probability of error ǫ), which for large values of d (say d scaling as nα for
some α ∈ (0, 1)) may be significant. It is conceivable that there is room to improve on our upper
bound. Specifically, if one were to consider the Definitely Defective decoder (see, for instance, [17])
or Maximum Likelihood decoding (for instance, via the approach followed in [26]) instead of the
greedy CoMa decoding considered in this section, it is possible that one may be able to significantly
improve the gap between the upper and lower bounds in this work. Alternatively, it might also
be possible to improve our lower bound in this model, by using the approach in [32] (attempting
to quantify the correlation between tests, and thereby obtaining a tighter bound on H(Y ) than∑T

i=1H(Yi)), or the approach in [33] (which bounds from below the probability that at least one
item is completely masked by other items, and hence leads to error). We leave these directions
open as interesting questions to be explored in future work.
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5.3 Proof of Theorem 4.3: Explicit Construction of Test Matrices

In this section we focus on explicit constructions of non-adaptive test matrices. Even though the
explicit construction requires more tests than the randomized construction (shown in Section 5.2),
its decoding complexity far better. We first attempt to generalize the grid construction for γ = 2
in Section 3, and point out a shortcoming in a näıve implementation.

5.3.1 First Tool: γ-Dimensional Hypergrid

For ease of presentation, define b = ⌈n1/γ⌉. We represent each item i ∈ {0, . . . , n− 1} by its base-b
representation (xγ . . . x2x1)b, so that each xj ∈ {0, 1, . . . , b− 1} and

i =

γ∑

j=1

xjb
j−1.

For test t, where t = αb+ k, for α ∈ {0, 1, . . . , γ − 1} and k ∈ {0, 1, . . . , b− 1}, we include exactly
the items whose (α + 1)th coordinate is k, i.e., xα+1 = k. Hence, there are γb = γ

⌈
n1/γ

⌉
tests in

total. See Figure 2 for an example.
Intuitively, test t = αb+ k returns whether or not there exists a defective item i whose base-b

representation has xα+1 = k. Note that a defective item i ∈ [n] will cause exactly γ tests to be
positive, corresponding to when each of its coordinates is tested. Thus, if there exists a unique
defective item, it can be successfully recovered from its unique base-b representation.

Remark 5.3. Indeed, note that if the vector Y of test outcomes is provided as a list of indices corre-
sponding to positive test outcomes (rather than the full length-T vector Y ), then the computational
complexity of the reconstruction algorithm is just O(γ log(n1/γ)) = O(log(n)).

However, with multiple defective items, we may not be able to uniquely determine each item.
For example, for n = 9, d = 2 and γ = 2, if items 2 and 4 are defective, then positive tests will tell
us that there exist defective items with x1 = 1 (corresponding to item 4), x1 = 2 (corresponding to
item 2), x2 = 0 (corresponding to item 2) and x2 = 1 (corresponding to item 4). However, another
pair of defective items which return the same positive test results are items 1 and 5. Thus, we
cannot uniquely recover all defective items, unless there is only one defective item. See Figure 2
for more details.

5.3.2 Block Algorithm: Divide and Conquer

When d = o(
√
n) we now provide an explicit construction of a T × n test matrix M , where

T = ⌈d2γǫ ⌉
⌈
(nǫ
d2
)1/γ

⌉
, using the previous ideas. The key observation is that the algorithm from

Section 5.3.1 succeeds if there is a unique defective item. Thus, we split [n] into ⌈cd2⌉ blocks, where
c = 1

ǫ , and run the algorithm in Section 5.3.1 separately on each block of size n′ = n/⌈cd2⌉. (See
Figure 3 for an example.) Then the probability that no two defective items fall into the same block
is at most

1

(
1− 1

cd2

)(
1− 2

cd2

)
· · ·
(
1− d− 1

cd2

)
≥
(
1− d

cd2

)d

=

(
1− 1

cd

)d

(13)

≥ 1− 1

c
= 1− ǫ (by Bernoulli’s Inequality).
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6 7 8

3 4 5

0 1 2

Test 1 Test 2 Test 3

Test 6

Test 5

Test 4

negative positive positive

negative

positive

positive

Figure 2: If n = 9, γ = 2, d = 2, the above test cannot distinguish whether the red items or the
blue items are defective. However, if there were only one defective item, the series of tests would
uniquely identify the defective item.

Thus with probability at least 1 − ǫ no block contains more than one defective item, so we can
also successfully identify the d defective items with probability at least 1− ǫ using the algorithm in

Section 5.3.1 for n′ items. Since there are at most ⌈d2ǫ ⌉ blocks, each requiring at most γ
⌈(

nǫ
d2

)1/γ⌉

tests, this leads to a total of T = ⌈d2γǫ ⌉
⌈
(nǫd2 )

1/γ
⌉
tests.

Figure 3: The test matrix for the block algorithm, where each gray block represents the test matrix
for the first part.

Remark 5.4. Building on Remark 5.3, we note that the computational complexity of the decoding

algorithm for this explicit design is O
(
d2

ǫ log
(
nǫ
d2

))
. Hence, while the number of tests required by

this explicit design is larger (by a factor of Θ
(
d
ǫ

)1−2/γ
) than the randomized design discussed in

Section 5.2.1, for small values of d (for instance if d is constant or logarithmic in n) the computa-
tional complexity of the reconstruction algorithm may be exponentially less than that of the CoMa
algorithm in Section 5.2.1. Explicit constructions (with affiliated fast reconstruction algorithms),
perhaps using the coding-theoretic ideas in [9,25,27,28], perhaps also obviating the need to restrict
d ∈ o(

√
n) rather than d ∈ o(n), is an interesting direction for future research.
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6 ρ-Sized Tests

This section parallels the results in Section 6, but with constraints on the size of each test rather
than constraints on the number of times items can be divided. Specifically, in Section 6.1 we present
the proof of an information-theoretic lower bound on the number of tests required, in Section 6.2 we
provide a randomized construction of a corresponding group-testing algorithm, and in Section 6.3
we provide an alternative explicit construction.

6.1 Proof of Theorem 4.5: Information-Theoretic Lower Bounds

This proof broadly parallels the one in Section 5.1 with some simplifications (in particular, one
does not have to divide tests into light and heavy tests – all tests may be treated as light tests,
with at most ρ items).

Via the same approach as in Section 5.1 (see the argument leading up to Equation (4)), noting
that each test may have at most ρ items, the probability of a negative test outcome is bounded
from below by

(
1− d

n

)ρ ≥ 1− ρd
n .

Hence, for d ∈ o(nα) for some constant α ∈ [0, 1), ρ ∈ Θ(n/d)β for some constant β ∈ [0, 1),

and any sufficiently small positive ǫ, we have that H(Yi) ≤ (1 + ǫ)
(
ρd
n log

(
n
ρd

))
. Therefore,

H(X) = H(X|X̂) + I(X; X̂) ≤ H(ǫ) + ǫ log(|X | − 1) +H(Y )

⇒ log

(
n

d

)
≤ −2ǫ log ǫ+ ǫ log

(
n

d

)
+ T (1 + ǫ)

(
ρd

n
log

(
n

ρd

))

⇒ (1− ǫ) log

(
n

d

)
+ 2ǫ log ǫ ≤ (1 + ǫ)T

(
ρd

n
log

(
n

ρd

))

⇒ (1− ǫ) log
(
n
d

)
+ 2ǫ log ǫ

(1 + ǫ)ρdn log
(

n
ρd

) ≤ T

⇒ (1− 5ǫ)
n

ρ

log
(
n
d

)

log
(

n
ρd

) ≤ T.

The last inequality follows from Stirling’s approximation for
(
n
d

)
(see Fact 2.2). Therefore, for

ρ ∈ o(n/d)β , and sufficiently small ǫ > 0 at least T ≥ (1 − 5ǫ)nρ
log(n

d )
log

(

n
ρd

) >
(
1−6ǫ
1−β

)
n
ρ tests are

needed.

6.2 Proof of Theorem 4.6: Randomized Construction of Test Matrices

We now describe a randomized construction of a T ×n test matrix M , where T = c
⌈
n
ρ

⌉
, where c is

a constant positive integer to be chosen later. For ease of exposition in this algorithm, it will help
to assume that the probability of error ǫ scales as n−ζ for some ζ > 0. Also recall that d scales as
o(nα), and ρ ∈ Θ(n/d)β , for non-negative constants α and β both less than 1.

We pick M by sampling uniformly from all T ×n binary matrices with exactly ρ items per test,
and each item sampled exactly c times.9 We output the estimate vector X̂ from the test results

9The reason for sampling in this manner, rather than sampling rows uniformly at random from the set of all
vectors with support exactly ρ, is because it makes analysis easier.
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using the same CoMa algorithm as in Section 5.2.1.
A fixed item is incorrectly marked defective when all the tests it participates in also correspond

to tests in which at least one other defective item participates in, and hence is marked positive.
While the choice of test matrix (uniform over T × n matrices with c ones per column and ρ ones
per row) implies that any individual column is uniformly distributed among all length-T columns
of Hamming weight c. Since the total number of positive tests may be bounded from above by cd,
the number of times each item is tested is exactly c, and any individual column of the test matrix
is uniformly distributed among all length-T columns of weight exactly c, therefore the probability

that the item is incorrectly marked defective is at most

(
cd

c

)

(
T

c

) .

Taking a union bound over the (n− d) nondefective items, we require

(n− d)

(
cd

c

)

(
T

c

) < ǫ (14)

By Fact 2.2

(
cd

c

)
< (ed)c and

(
T

c

)
>
(
T
c

)c
, and T = cn/ρ by choice. Hence Equation (14)

certainly occurs if
n

ǫ
<

(
n

ρde

)c

. (15)

Recalling that ρ ∈ o(n/d)β (hence eρ ≪ (n/d)β), Equation (15) holds for c > log
(
n
ǫ

)
/(1−β) log

(
n
d

)
.

Therefore, recalling d ∈ o(nβ) for some 0 < β < 1, and ǫ = n−ζ , we have that Equation (15) holds

for sufficiently large n if c > 1+ζ
(1−α)(1−β) . Hence for sufficiently large n,

⌈
1+ζ

(1−α)(1−β)

⌉ ⌈
n
ρ

⌉
tests suffice

to guarantee a probability of error of at most ǫ = n−ζ .

Remark 6.1. Note that the computational complexity of reconstruction of this algorithm, as in
CoMa in Section 5.2.1, is Tn, which is in O(n2/ρ).

Remark 6.2. Note that this construction of a randomized test matrix that requires a number of
tests that is larger by a factor of essentially 1/(1 − α) (neglecting dependencies on the probability
of error) than the lower bound (in Theorem 4.5) to reliably identify d ∈ o(nα) defective items. We
note that this additional factor of 1/(1−α) is similar to the state of affairs in classical group testing
scenario (with no row/column constraints) (for instance see [19,26]).

Remark 6.3. Note that the design proposed in this section depends only very weakly on the specific
value of d – the only place where the value of d matters is in the constant pre-factor multiplying
n/ρ in the number of tests, and the requirement that ρ ∈ o(n/d); the remainder of the design and
reconstruction algorithm are independent of the specific value of d. Indeed, it can be directly verified
that if one chooses T ∈ ω(n/ρ) (instead of T ∈ Θ(n/ρ) as in the design above), and one is guaranteed
that d ∈ o(n/ρ), then regardless of the specific value of d, the scheme above will also result in a
design with a low probability of reconstruction error. This universality is reminiscent of universal
(fixed-length) source coding – as long as the input vector is “sparse enough”, a given random code
will be able to compress it in a manner compatible with low probability of reconstruction error.

19



6.3 Proof of Theorem 4.7: Explicit Construction of Test Matrices

As in Section 5.3 we now provide an explicit design of test matrices for the scenario with ρ-sized
tests. As in Section 5.3, this explicit design only works for a restricted parameter range for d, when
d ∈ o(

√
n). Specifically, let d = Θ(nα), α ∈ [0, 1/2), ρ ∈ Θ(n(1−α)β). The first tool in our explicit

construction similar to the divide-and-conquer idea in Section 5.3. We divide the [n] items into at
least nǫ

d2 blocks, where each block contains at most ρ items. Specifically:

1. When ρ < nǫ
d2
, we divide [n] into

⌈
n
ρ

⌉
> d2

ǫ blocks, each of size at most n′ = ρ.

2. When ρ ≥ nǫ
d2
, we divide [n] into

⌈
d2

ǫ

⌉
blocks, each of size at most n′ =

⌈
nǫ
d2

⌉
≤ ρ.

Since in both regimes, by design, there are at least d2

ǫ blocks, therefore as in Section 5.3, with
probability at least 1− ǫ, each group contains at most one defective item.

Within each block, our test-design is a “non-adaptive binary search”. Specifically, for each ith
block of size n′, there is a ⌈log(n′ + 1)⌉ × n′ “sub-test matrix” M (i) that non-adaptively tests only
the corresponding n′ items. The jth column of M (i) comprises of the (length-⌈log(n′ + 1)⌉) binary
representation of the ingteger j. The decoding algorithm, on observing test outcomes corresponding
to block i, declares no defectives present if all test outcomes are negative. On the other hand, if
some test outcomes are positive, then viewing positive test outcomes as 1s and negatives test
outcomes as 0s, the length-⌈log(n′+1)⌉ test outcome vector viewed as the binary representation of
integer j precisely identifies the unique defective item in block i. Hence, conditioned on each block
containing at most one defective item (which happens with probability at least 1 − ǫ), the above
algorithm always outputs the correct answer.

The number of tests and computational complexity of reconstruction of this design are as follows:

1. When ρ < nǫ
d2
, the number of tests and computational complexity of reconstruction are both

at most
⌈
n
ρ

⌉
⌈log(ρ+ 1)⌉.

2. When ρ ≥ nǫ
d2
, the number of tests and computational complexity of reconstruction are both

at most
⌈
d2

ǫ

⌉
⌈log

(
nǫ
d2

+ 1
)
⌉.

Remark 6.4. Note that in the first regime, the number of tests required exceed the information-
theoretic lower bound derived in Theorem 4.5 by only a factor of about log(ρ). On the other hand,
in the second regime the number of tests required is larger than the unconstrained information-
theoretic lower bound Θ(d log(n)) by a factor of Θ(d), which may be as large as O(

√
n) (since in

our design d is restricted to be in O(
√
n)). As in Section 5.3, test designs that reduce these extra

factors (and obviate the need to restrict d to be in O(
√
n)) is an interesting open question.

7 Impact of Noisy Tests

We now consider the impact of noise in test outcomes on the performance on group-testing al-
gorithms. While multiple noise models (for instance, erasures [23], bit-flips [12, 19, 30], dilution
noise [12]) have been considered in the literature, for the sake of concreteness, we focus on perhaps
the most commonly considered model in the literature, bit-flip noise, wherein test outcomes are
passed through a binary-symmetric channel with crossover probability 0 < σ < 1/2.
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Remark 7.1. At first sight, it might seem surprising that the model with ρ-size constraints on
tests allows for designs that are robust to noise, but the model with γ-divisibility constraints on
items does not. The underlying reason for this asymmetry is that if an item only participates in
relatively few tests (as in the γ-divisible model), then with non-trivial probability evidence of its
status (defective or not) can be erased. On the other hand, even if tests are highly constrained in
size (as in the ρ-sized tests model), relatively simple ideas like repetition coding (as described in
Section 4.8 allow for each individual test to be made highly reliable – this option is unavailable in
the γ-divisible setting.

7.1 Proof of Theorem 4.4: γ-Divisible Items

We first consider the noisy setting, where each test can be incorrect with probability 0 < σ < 1/2, for
γ-divisible tests. Recall that, for ease of analysis, solely in this section our probability distribution
over the set D of defectives is that each item is defective with probability d/n in an i.i.d. manner.

Given the observed length-T vector of noisy test outcomes Ŷ , say the decoder outputs the
length-n vector X̂. Let X̂(ic) denote the length-n vector that equals X̂ in each coordinate except
the ith, in which location the value (X̂(ic))i equals 1− (X̂)i, i.e., corresponds to ith bit of X̂i being
flipped. Roughly speaking, we will now show the set of these X̂(ic)s is “relatively easily confusable”
with X̂. More precisely, our strategy will be to show that for any test matrix with at most γ ones
per column, any Ŷ , and any X̂ (corresponding to a decoding strategy mapping Ŷ to X̂), the ratio

r =

∑n
i=1 Pr(X = X̂(ic)|Ŷ )

Pr(X = X̂|Ŷ )
(16)

is “non-trivial”. That is, given its observation Ŷ , regardless of how the decoder picks his estimate
X̂, the probability that the true X corresponded to one of X̂(ic) is at least a factor r of the
probability that X equaled X̂ . This would imply a lower bound on the probability of decoding
error as

Pr(error) = Pr(X̂ 6= X) ≥ r

r + 1
. (17)

Hence as long as one can bound r by a quantity asymptotically bounded away from zero, one can
bound the probability of error away from zero. To do so, we individually bound each of the n terms
in Equation (16).

By Bayes’ rule, for any i,

Pr(X = X̂(ic)|Ŷ )

Pr(X = X̂|Ŷ )
=

Pr(Ŷ |X = X̂(ic))

Pr(Ŷ |X = X̂)

Pr(X = X̂(ic))

Pr(X = X̂)
(18)

We now bound from below the two factors Pr(Ŷ |X=X̂(ic))

Pr(Ŷ |X=X̂)
and Pr(X=X̂(ic))

Pr(X=X̂)
in Equation (18)

Noting that X̂ and X̂(ic) differ in just the ith bit, the ratio Pr(X=X̂(ic))

Pr(X=X̂)
equals either d/n

1−d/n (if

Xi = 0) or 1−d/n
d/n (if Xi = 1), and hence we have the lower bound d/(n − d) > d/n.

Pr(X = X̂(ic))

Pr(X = X̂)
≥ d

n− d
>

d

n
. (19)
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We next consider the term Pr(Ŷ |X=X̂(ic))

Pr(Ŷ |X=X̂)
. Let YM(X̂(ic)) denote the noiseless length-T test

outcome vector corresponding to test matrix M and input X̂(ic), and YM (X̂) denote the noiseless
length-T test outcome vector corresponding to test matrix M and input X̂ . Since, for a fixed M ,

X ↔ Y ↔ Ŷ ↔ X̂ form a Markov chain, the ratio Pr(Ŷ |X=X̂(ic))

Pr(Ŷ |X=X̂)
equals Pr(Ŷ |YM (X̂(ic)))

Pr(Ŷ |YM (X̂))
. Since the

test matrix is constrained to have at most γ ones per column and X̂ and X̂(ic) differ in just a single
bit, therefore YM(X̂) and YM (X̂(ic)) differ in at most γ locations. Hence we have the lower bound

Pr(Ŷ |X = X̂(ic))

Pr(Ŷ |X = X̂)
=

Pr(Ŷ |YM (X̂(ic)))

Pr(Ŷ |YM (X̂))
≥
(

σ

1− σ

)γ

. (20)

Substituting Equations (19) and (20) into Equation (18), and noting that there are n terms

in Equation (16), allows us to bound r from below as d
(

σ
1−σ

)γ
. Hence if log(d)/γ ∈ Ω(1), the

probability of error is bounded away from zero.

7.2 Proof of Theorem 4.8: ρ-Sized Tests

Finally, we consider the setting where each test can be incorrect with probability 0 < σ < 1/2, for
ρ-sized tests.

The idea here is quite straightforward – we use essentially the same design as in Section 6.2,
but each test is repeated k times, for a design parameter k specified below. For each set of k
repeated tests, the reconstruction algorithm takes the majority outcome to represent the outcome
of the single test in the noiseless model, and thence uses the reconstruction algorithm in Section 6.2.
Since each test is misreported with probability σ, the expected number of failures over k repetitions
is kσ. Then by standard Chernoff bounds, the probability that the number of failures is at least

k/2 is at most exp
(
−k(1/2−σ)2

2× 1

2

)
= exp

(
−k(1/2 − σ)2

)
. Hence, if k =

⌈
(1+ζ) ln(n)
(1/2−σ)2

⌉
, the probability

that any single majority outcome is incorrect is at most ⌈n−1−ζ⌉. Since the number of tests in

the design in Section 6.2 is Θ
(
n
ρ

)
∈ o(n), therefore the probability that any of the o(n) majority

test outcomes is less than n−ζ . Hence the overall probability of error is at most 2n−ζ (n−ζ from
the probability of an incorrect majority outcome, and n−ζ from the probability of reconstruction
error in the algorithm in Section 6.2), the overall number of tests is at most k times the number of

tests in the design in Section 6.2, i.e.
⌈

1+ζ
(1−α)(1−β)

⌉ ⌈
n
ρ

⌉ ⌈
(1+ζ) ln(n)
(1/2−σ)2

⌉
, and the overall reconstruction

complexity is at most O
(
n2 log(n)

ρ

)
.

Remark 7.2. While the repetition coding scheme presented above has the advantage of relative
simplicity of presentation and analysis, it does require a number of tests that is larger than the
noiseless scenario by a multiplicative factor of log(n). In principle, however, it is conceivable that
the Noisy CoMa algorithm in [19] will also work in the ρ-sized noisy test setting. To avoid the
intricate calculations required to validate this suggested code-design, in this journeyman work on
sparse group testing we leave open this possibility for future work.

8 Conclusion

In this work we consider the impact of constraints on non-adaptive group-testing the number of
times items can be tested, or the size of tests. In both settings we show that even mild con-
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straints can result in a dramatic blowup (compared to the unconstrained setting) in the number
of tests required, and provide algorithms with computationally efficient reconstruction algorithms
that (nearly) match the performance (in terms of the number of tests required for reliable recon-
struction) of the lower bounds we prove. We also consider the impact of noisy test outcomes.
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