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Abstract

Consider a noisy linear observation model with an unknown permutation, based on
observing y = Π∗Ax∗ +w, where x∗ ∈ Rd is an unknown vector, Π∗ is an unknown n× n
permutation matrix, and w ∈ Rn is additive Gaussian noise. We analyze the problem
of permutation recovery in a random design setting in which the entries of the matrix A
are drawn i.i.d. from a standard Gaussian distribution, and establish sharp conditions on
the SNR, sample size n, and dimension d under which Π∗ is exactly and approximately
recoverable. On the computational front, we show that the maximum likelihood estimate
of Π∗ is NP-hard to compute, while also providing a polynomial time algorithm when
d = 1.

1 Introduction

Recovery of a vector based on noisy linear measurements is the classical problem of linear
regression, and is arguably the most basic problem in statistical inference. A variant, the
“errors-in-variables” model [LR14], allows for errors in the measurement matrix, but mainly
in the form of additive or multiplicative noise [LW12]. In this paper, we study a form of errors-
in-variables in which the measurement matrix is perturbed by an unknown permutation of its
rows.

More concretely, we study an observation model of the form

y = Π∗Ax∗ + w, (1)

where x∗ ∈ Rd is an unknown vector, A ∈ Rn×d is a measurement (or design) matrix, Π∗ is
an unknown n × n permutation matrix, and w ∈ Rn is observation noise. We refer to the
setting where w = 0 as the noiseless case. As with linear regression, there are two settings
of interest, corresponding to whether the design matrix is (i) deterministic (the fixed design
case), or (ii) random (the random design case).

There are also two complementary problems of interest – recovery of the unknown Π∗,
and recovery of the unknown x∗. In this paper, we focus on the former problem; the latter
problem is also known as unlabelled sensing [UHV15].

The observation model (1) is frequently encountered in scenarios where there is uncer-
tainty in the order in which measurements are taken. An illustrative example is that of
sampling in the presence of jitter [Bal62], in which the uncertainty about the instants at
which measurements are taken results in an unknown permutation of the measurements. A
similar synchronization issue occurs in timing and molecular channels [RMS12]. Here, identi-
cal molecular tokens are received at the receptor at different times, and their signatures are
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h̄

n
� h̄

n2
.

Hence, we have that

det Ȳ =
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where in the last step, we have used the fact that 0 < h̄  n. This completes the proof of the
Lemma.

4.3 Proofs of computational aspects

4.3.1 Proof of Theorem 3

In order to prove the Theorem, we need to show an algorithm that performs the optimization
(6) e�ciently. To that end, note that for the case when d = 1, (6) can be rewritten as

b⇧ML = arg max
⇧
ka>⇧yk2 (84)

= arg max
⇧

max{a>⇧y,�a>⇧y} (85)

= arg min
⇧

max{ka⇧ � yk22, ka⇧ + yk22}, (86)

where the last step follows since 2a>⇧y = kak2 + kyk2 � ka⇧ � yk22, and the first two terms do
not involve optimizing over ⇧.

Once the optimizer has been written as (86), it is easy to see that it can be found in
polynomial time. In particular, using the fact that for fixed vectors p and q, kp⇧ � qk is
minimized for ⇧ that sorts a according to the order of b, we see that the following algorithm
computes b⇧ML exactly.

Algorithm 1: Exact algorithm to find b⇧ML for the case when d = 1.

Input: design matrix (vector) a, observation vector y
1 ⇧1  permutation that sorts a according to y
2 ⇧2  permutation that sorts �a according to y

3 b⇧ML  arg max{|a>⇧1
y|, |a>⇧2

y|}
Output: b⇧ML

The procedure is clearly the correct thing to do in the noiseless case – since x⇤ is a scalar
value that scales the entries of a, the correct permutation can be identified by a simple sorting
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Figure 1. Example of pose and correspondence estimation. The camera introduces an un-
known linear transformation corresponding to the pose. The unknown permututation repre-
sents the correspondence between points, which is shown in the picture via coloured shapes,
and needs to be estimated.

indistinguishable. The vectors of transmitted and received times correspond to the signal and
the observations, repectively, where the latter is some permuted version of the former with
additive noise.

Another such scenario arises in multi-target tracking problems [PG06]. For example,
SLAM tracking [TL08] is a classical problem in robotics where the environment in which
measurements are made is unknown, and part of the problem is to infer relative permutations
between measurements. Archaeological measurements [Rob51] also suffer from an inherent
lack of ordering, which makes inference of chronology hard. Another compelling example
of such an observation model is in data anonymization, in which the order, or “labels”, of
measurements are intentionally deleted to preserve privacy. The inverse problem of data
de-anonymization [NS08] is to infer these labels from the observations.

Also, in large sensor networks, it is often the case that the number of bits of information
that each sensor records and transmits to the server is exceeded by the number of bits it
transmits in order to identify itself to the server [KSF+09]. In applications where sensor
measurements are linear, model (1) corresponds to the case where each sensor only sends its
measurement but not its identity. The server is then tasked with recovering sensor identites,
or equivalently, with determining the unknown permutation.

The pose and correspondence estimation problem in image processing [DDDS04, MSC09]
is also related to the observation model (1). The capture of a 3D object by a 2D image
can be modelled by an unknown linear transformation called the “pose”, and an unknown
permutation representing the “correspondence” between points in the two spaces. One of
the central goals in image processing is to identify this correspondence information, which in
this case is equivalent to permutation estimation in the linear model. An illustration of the
problem is provided in Figure 1.

The discrete analog of the model (1) in which the vectors x∗ and y, and the matrix A are
all constrained to belong to some finite alphabet/field corresponds to the permutation channel
studied by Schulman and Zuckerman [SZ99], with A representing the (linear) encoding matrix.
However, techniques for the discrete problem do not carry over to the continuous problem (1).
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Another line of work that is related in spirit to the observation model (1) is the genome as-
sembly problem from shotgun reads [HM99], in which an underlying vector x∗ ∈ {A, T,G,C}d
must be assembled from an unknown permutation of its continuous sub-vector measurements,
called “reads”. Two aspects, however, render it a particularization of our observation model,
besides the obvious fact that x∗ in the genome assembly problem is constrained to a finite al-
phabet: (i) in genome assembly, the matrix A is fixed and consists of shifted identity matrices
that select sub-vectors of x∗, and (ii) the permutation matrix of genome assembly is in fact a
block permutation matrix that permutes sub-vectors instead of coordinates as in equation (1).

1.1 Related work

Previous work related to the observation model (1) can be broadly classified into two cat-
egories – those that focus on x∗ recovery, and those focussed on recovering the underlying
permutation. We discuss the most relevant results below.

1.1.1 Latent vector estimation

The observation model (1) appears in the context of compressed sensing with an unknown
sensor permutation [EBDG14]. The authors consider the matrix-based observation model
Y = Π∗AX∗ + W , where X∗ is a matrix whose columns are composed of multiple unknown
vectors. Their contributions include a branch and bound algorithm to recover the underlying
X∗, which they show to perform well empirically for small instances under the setting in
which the entries of the matrix A are drawn i.i.d. from a Gaussian distribution.

In the context of pose and correspondence estimation, the paper [MSC09] considers the
noiseless observation model (1), and shows that if the permutation matrix maps a sufficiently
large number of positions to themselves, then x∗ can be recovered reliably.

In the context of molecular channels, the model (1) has been analyzed for the case when
x∗ is some random vector, A = I, and w represents non-negative noise that models delays
introduced between emitter and receptor. Rose et al. [RMS12] provide lower bounds on the
capacity of such channels. In particular, their results yield closed-form lower bounds for some
special noise distributions, e.g., exponentially random noise.

A more recent paper [UHV15] that is most closely related to our model considers the ques-
tion of when the equation (1) has a unique solution x∗, i.e., the identifiability of the noiseless
model. The authors show that if the entries of A are sampled i.i.d. from any continuous
distribution with n ≥ 2d, then equation (1) has a unique solution x∗ with probability 1. They
also provide a converse showing that if n < 2d, any matrix A whose entries are sampled i.i.d.
from a continuous distribution does not (with probability 1) have a unique solution x∗ to
equation (1). While the paper shows uniqueness, the question of designing an efficient algo-
rithm to recover a solution, unique or not, is left open. The paper also analyzes the stability
of the noiseless solution, and establishes that x∗ can be recovered exactly when the SNR goes
to infinity.

We also briefly compare the model (1) with the problem of vector recovery in unions
of subspaces, studied widely in the compressive sensing literature [LD08, Blu11]. In the
compressive sensing setup, the vector x∗ lies in the union of finitely many subspaces, and
must be recovered from linear measurements with a random matrix, without a permutation.
In our model, on the other hand, the vector x∗ is unrestricted, and the observation y lies in the
union of n! subspaces – one for each permutation. While the two models share a superficial
connection, results do not carry over from one to the other in any obvious way. In fact,
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our model is fundamentally different from traditional compressive sensing, since the unknown
permutation acts on the row space of the design matrix A. In contrast, restricting x∗ to a
union of subspaces (or more specifically, restricting its sparsity) influences the column space
of A.

1.1.2 Latent permutation estimation

While our paper seems to be the first to consider permutation recovery in the linear regression
model (1), there are many related problems for which permutation recovery has been studied.
We mention only those that are most closely related to our work.

The problem of feature matching in machine learning [CD16] bears a superficial resem-
blance to our observation model. There, observations take the form Y = X∗ + W and
Y ′ = Π∗X∗ + W ′, with all of (X∗, Y, Y ′,W,W ′) representing matrices of appropriate di-
mensions, and the goal is to recover Π∗ from the tuple (Y, Y ′). The paper [CD16] establishes
minimax rates on the separation between the rows of X∗ (as a function of problem parameters
n, d, σ) that allow for exact permutation recovery.

The problem of statistical seriation [FMR16] involves an observation model of the form
Y = Π∗X∗ + W , with the matrix X∗ obeying some shape constraint. In particular, if
the columns of X∗ are unimodal (or, as a special case, monotone), then Flammarion et al.
[FMR16] establish minimax rates for the problem in the prediction error metric ‖Π̂X̂−Π∗X∗‖2F
by analyzing the least squares estimator. The seriation problem was also considered by Fogel
et al. [FJBd13] in the context of designing convex relaxations to permutation problems.

Permutation estimation has also been considered in other observation models involving
matrices with structure, particularly in the context of ranking [SBGW15, Cha15], or even
more generally, in the context of identity management [HGG09]. While we mention both of
these problems because are related in spirit to permutation recovery, the problem setups do
not bear too much resemblance to our linear model (1).

Algorithmic approaches to solving for Π∗ in equation (1) are related to the multi-dimensional
assignment problem. In particular, while finding the correct permutation mapping between
two vectors minimizing some loss function between them corresponds to the 1-dimensional
assignment problem, here we are faced with an assignment problem between subspaces. While
we do not elaborate on the vast literature that exists on solving variants on assignment prob-
lems, we note that broadly speaking, assignment problems in higher dimensions are much
harder than the 1-D assignment problem. A survey on the quadratic assignment problem
[LdABN+07] and references therein provide examples and methods that are currently used to
solve these problems.

1.2 Contributions

Our primary contribution addresses permutation recovery in the noisy version of observation
model (1), with a random design matrix A. In particular, when the entries of A are drawn
i.i.d. from a standard Gaussian matrix, we show sharp conditions on the SNR under which
exact permutation recovery is possible. We also derive necessary conditions for approximate
permutation recovery to within a prescribed Hamming distortion.

We also briefly address the computational aspect of the permutation recovery problem. We
show that the information theoretically optimal estimator we propose for exact permutation
recovery is NP-hard to compute in the worst case. For the special case of d = 1, however, we
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show that it can be computed in polynomial time. Our results are corroborated by numerical
simulations.

1.3 Organization

The paper is organized as follows. In the next section, we set up notation and formally state
the problem. In Section 3, we state our main results and discuss some of their implications.
We provide proofs of the main results in Section 4, deferring the more technical lemmas to
the appendices.

2 Background and problem setting

In this section, we set up notation, state the formal problem, and provide concrete examples
of the noiseless version of our observation model by considering some fixed design matrices.

2.1 Notation

Since most of our analysis involves metrics involving permutations, we introduce all the rel-
evant notation in this section. Permutations are denoted by π and permutation matrices by
Π. We use π(i) to denote the image of an element i under the permutation π. With a minor
abuse of notation, we let Pn denote both the set of permutations on n objects as well as
the corresponding set of permutation matrices. We sometimes use the compact notation yπ
(or yΠ) to denote the vector y with entries permuted according to the permutation π (or Π).

We let dH(π, π′) denote the Hamming distance between two permutations. More formally,
we have dH(π, π′) := #{i | π(i) 6= π′(i)}. For convenience, we let dH(Π,Π′) denote the Ham-
ming distance between two permutation matrices, which is to be interpreted as the Hamming
distance between the corresponding permutations.

The notation vi denotes the ith entry of a vector v. We denote the ith standard basis
vector in Rd by ei. We use the notation a>i to refer to the ith row of A. We also use the
standard shorthand notation [n] := {1, 2, . . . , n}.

We also make use of standard asymptotic O notation. Specifically, for two real sequences
fn and gn, fn = O(gn) means that fn ≤ Cgn for a universal constant C > 0. Lastly, all
logarithms denoted by log are to the base e, and we use c1, c2, etc. to denote absolute
constants that are independent of other problem parameters.

2.2 Formal problem setting and permutation recovery

As mentioned in the introduction, we focus exclusively on the noisy observation model in the
random design setting. In other words, we obtain an n-vector of observations y from the
model (1) with n ≥ d to ensure identifiability, and with the following assumptions:

Signal model The vector x∗ ∈ Rd is fixed, but unknown. We note that this is different
from the adversarial signal model of Unnikrishnan et al. [UHV15], and we provide clarifying
examples in Section 2.3.

Measurement matrix The measurement matrix A ∈ Rn×d is a random matrix of i.i.d.
standard Gaussian variables chosen without knowledge of x∗. Our assumption on i.i.d. stan-
dard Gaussian designs easily extends to accommodate the more general case when rows of
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A are drawn i.i.d. from the distribution N (0,Σ). In particular, writing A = W
√

Σ, where
W in an n × d standard Gaussian matrix and

√
Σ denotes the symmetric square root of the

(non-singular) covariance matrix Σ, our observation model takes the form

y = Π∗W
√

Σx∗ + w,

and the unknown vector is now
√

Σx∗ in the model (1).

Noise variables The vector w ∼ N (0, σ2In) represents uncorrelated noise variables, each
of (possibly unknown) variance σ2. As will be made clear in the analysis, our assumption
that the noise is Gaussian also readily extends to accommodate i.i.d. σ-sub-Gaussian noise.
Additionally, the permutation noise represented by the unknown permutation matrix Π∗ is
arbitrary.

The main recovery criterion addressed in this paper is that of exact permutation recovery,
which is formally described below. Following that, we also discuss two other relevant recovery
criteria.

Exact permutation recovery The problem of exact permutation recovery is to recover
Π∗, and the risk of an estimator is evaluated on the 0-1. More formally, given an estimator
of Π∗ denoted by Π̂ : (y,A)→ Pn, we evaluate its risk by

Pr{Π̂ 6= Π∗} = E
[
1{Π̂ 6= Π∗}

]
, (2)

where the probability in the LHS is taken over the randomness in y induced by both A and
w.

Approximate permutation recovery It is reasonable to think that recovering Π∗ up to
some distortion is sufficient for many applications. Such a relaxation of exact permutation
recovery allows the estimator to output a Π̂ such that dH(Π̂,Π∗) ≤ D, for some distortion D
to be specified. The risk of such an estimator is again evaluated on the 0-1 loss of this error
metric, given by Pr{dH(Π̂,Π∗) ≥ D}, with the probability again taken over both A and w.
While our results are derived mainly in the context of exact permutation recovery, they can
be suitably modified to also yields results for approximate permutation recovery.

Recovery with side information In this variation, the unknown permutation matrix is
not arbitrary, but known to be in some Hamming ball around the identity matrix. In other
words, the estimator is provided with side information that dH(Π∗, I) ≤ h̄, for some h̄ < n.
In many applications, this may constitute a prior that leads us to believe that the permuta-
tion matrix is not arbitrary. In multi-target tracking, for example, we may be sure that at
any given time, a certain number of measurements correspond to the true sensors that made
them (that are close to the target, perhaps). Our results also address the exact permutation
recovery problem with side information.

We now briefly give some examples in which the noiseless version is identifiable.

2.3 Illustrative examples of the noiseless model

In this section, we present two examples to illustrate the problem of permutation recovery and
highlight the difference between our signal model and that of Unnikrishnan et al. [UHV15].
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Example 1 Consider the noiseless case of the observation model (1). Let νi, ν
′
i (i = 1, 2, . . . , d)

represent i.i.d. continuous random variables, and form the design matrix A by choosing

a>2i−1 := νie
>
i and a>2i = ν ′ie

>
i , i = 1, 2, . . . , d.

Note that n = 2d. Now consider our fixed but unknown signal model for x∗. Since the permu-
tation is arbitrary, our observations can be thought of as the unordered set {νix∗i , ν ′ix∗i | i ∈ [d]}.
With probability 1, the ratios ri := νi/ν

′
i are distinct for each i, and also that νix

∗
i 6= νjx

∗
j with

probability 1, by assumption of a fixed x∗. Therefore, there is a one to one correspondence
between the ratios ri and x∗i . All ratios are computable in time O(n2), and x∗ can be exactly
recovered. Using this information, we can also exactly recover Π∗.

Example 2 A particular case of this example was already observed by Unnikrishnan et
al. [UHV15], but we include it to illustrate the difference between our signal model and the
adversarial signal model. Form the fixed design matrix A by including 2i−1 copies of the
vector ei among its rows. We therefore1 have n =

∑d
i=1 2i−1 = 2d − 1.

Our observations therefore consist of 2i−1 repetitions of x∗i for each i ∈ [d]. The value of
x∗i can therefore be recovered by simply counting the number of times it is repeated, with our
choice of the number of repetitions also accounting for cases when x∗i = x∗j for some i 6= j.
Notice that we can now recover any vector x∗, even those chosen adversarially with knowledge
of the A matrix. Therefore, such a design matrix allows for an adversarial signal model, in
the flavor of compressive sensing [CT06].

Having provided examples of the noiseless observation model, we now return to the noisy
setting of Section 2.2, and state our main results.

3 Main results

In this section, we state our main theorems and discuss their consequences. Proofs of the
theorems can be found in Section 4.

3.1 Statistical limits of exact permutation recovery

Our main theorems in this section provide necessary and sufficient conditions under which
the probability of error in exactly recovering the true permutation goes to zero.

In brief, provided that d is sufficiently small, we establish a threshold phenomenon that

characterizes how the signal-to-noise ratio snr :=
‖x∗‖22
σ2 must scale relative to n in order to

ensure identifiability. More specifically, defining the ratio

Γ (n, snr) :=
log (1 + snr)

log n
,

we show that the maximum likelihood estimator recovers the true permutation with high
probability provided Γ(n, snr) � c, where c denotes an absolute constant. Conversely, if
Γ(n, snr)� c, then exact permutation recovery is impossible. For illustration, we have plotted
the behaviour of the maximum likelihood estimator for the case when d = 1 in Figure 2.
Evidently, there is a sharp phase transition between error and exact recovery as the ratio
Γ(n, snr) varies from 3 to 5.

1Unnikrishnan et al. [UHV15] proposed that ei be repeated i times, but it is easy to see that this does not
ensure recovery of an adversarially chosen x∗.
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Figure 2. Empirical frequency of the event {Π̂ML = Π∗} over 1000 independent trials with
d = 1, plotted against Γ (n, snr) for different values of n. The probability of successful permu-
tation recovery undergoes a phase transition as Γ (n, snr) varies from 3 to 5. This is consistent
with the prediction of Theorems 1 and 2.

Let us now turn to more precise statements of our results. We first define the maximum
likelihood estimator (MLE) as

(Π̂ML, x̂ML) = arg min
Π∈Pn

x∈Rd

‖y −ΠAx‖22. (3)

The following theorem provides an upper bound on the probability of error of Π̂ML, with
(c1, c2) denoting absolute constants.

Theorem 1. For any d < n and ε <
√
n, if

log

(‖x∗‖22
σ2

)
≥
(
c1

n

n− d + ε

)
log n, (4)

then Pr{Π̂ML 6= Π∗} ≤ c2n
−2ε.

Theorem 1 provides conditions on the signal-to-noise ratio snr =
‖x∗‖22
σ2 that are sufficient

for permutation recovery in the non-asymptotic, noisy regime. In contrast, the results of Un-
nikrishnan et al. [UHV15] are stated in the limit snr→∞, without an explicit characterization
of the scaling behavior.

We also note that Theorem 1 holds for all values of d < n, whereas the results of Unnikr-
ishnan et al. [UHV15] require n ≥ 2d for identifiability of x∗ in the noiseless case. Although
the recovery of Π∗ and x∗ are not directly comparable, it is worth pointing out that the dis-
crepancy also arises due to the difference between our fixed and unknown signal model, and
the adversarial signal model assumed in the paper [UHV15].

We now turn to the following converse result, which complements Theorem 1.

8



Theorem 2. For any δ ∈ (0, 2), if

2 + log

(
1 +
‖x∗‖22
σ2

)
≤ (2− δ) log n, (5)

then Pr{Π̂ 6= Π∗} ≥ 1− c3e
−c4nδ for any estimator Π̂.

Theorem 2 serves as a “strong converse” for our problem, since it guarantees that if con-
dition (5) is satisfied, then the probability of error of any estimator goes to 1 as n goes
to infinity. Indeed, it is proved using the strong converse argument for the Gaussian chan-
nel [Sha59]. In fact, we are also able to show the following “weak converse” in the presence
of side information.

Proposition 1. If n ≥ 9 and

log

(
1 +
‖x∗‖22
σ2

)
≤ 8

9
log
(n

8

)
,

then Pr{Π̂ 6= Π∗} ≥ 1/2 for any estimator Π̂, even if it is known a-priori that dH(Π∗, I) ≤ 2.

As mentioned earlier, restriction of Π∗ constitutes some application-dependent prior; the
strongest such prior restricts it to a Hamming ball of radius 2 around the identity. Propo-
sition 1 asserts that even this side information does not substantially change the statistical
limits of permutation recovery.

It is also worth noting that the converse results hold uniformly over d. In particular, if
d ≤ pn for some fixed p < 1, Theorems 1 and 2 together yield the threshold behavior of
identifiability in terms of Γ(n, snr) that was discussed above. In the next section, we find that
a similar phenomenon occurs even with approximate permutation recovery.

3.2 Limits of approximate permutation recovery

The techniques we used to prove results for exact permutation recovery can be suitably modi-
fied to obtain results for approximate permutation recovery to within a Hamming distortionD.
In particular, we show the following converse result for approximate recovery.

Theorem 3. For any 2 < D ≤ n− 1, if

log

(
1 +
‖x∗‖22
σ2

)
≤ n−D + 1

n
log

(
n−D + 1

2e

)
, (6)

then Pr{dH(Π̂,Π∗) ≥ D} ≥ 1/2 for any estimator Π̂.

Note that for any D ≤ pn with p ∈ (0, 1), Theorems 1 and 3 provide a set of sufficient
and necessary conditions for approximate permutation recovery that match up to constant
factors. In particular, the necessary condition resembles that for exact permutation recovery,
and the same SNR threshold behaviour is seen even here. We remark that a corresponding
converse with side information can also be proved for approximate permutation recovery using
techniques similar to the proof of Proposition 1. It is also worth mentioning the following:

Remark 1. The converse results given by Theorem 2, Proposition 1, and Theorem 3 hold
even when the estimator has exact knowledge of x∗.
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3.3 Computational aspects

In the previous sections, we considered the MLE given by equation (3) and analyzed its
statistical properties. However, since equation (3) involves a combinatorial minimization over
n! permutations, it is unclear if Π̂ML can be computed efficiently. The following theorem
addresses this question.

Theorem 4. For d = 1, the MLE Π̂ML can be computed in time O(n log n) for any choice
of the measurement matrix A. In contrast, if d > 1, then Π̂ML is NP-hard to compute.

The algorithm used to prove the first part of the theorem involves a simple sorting opera-
tion, which introduces the O(n log n) complexity. We emphasize that the algorithm assumes
no prior knowledge about the distribution of the data; for every given A and y, it returns the
optimal solution to problem (3).

The second part of the theorem asserts that the algorithmic simplicity enjoyed by the d = 1
case does not extend to general d. The proof proceeds by a reduction from the NP-complete
partition problem. We stress here that the NP-hardness claim holds over worst case input
instances. In particular, it does not preclude the possibility that there exists a polynomial
time algorithm that solves problem (3) with high probability when A is chosen randomly as
in our original setting. However, we conjecture that solving problem (3) over random A is
also a computationally hard problem, conditioned on an average-case hardness assumption.

4 Proofs of Main Results

In this section, we prove our main results. Technical details are deferred to the appendices.
Throughout the proofs, we assume that n is larger than some universal constant. The case
where n is smaller can be handled by changing the constants in our proofs appropriately. We
also use the notation c, c′ to denote absolute constants that can change from line to line.

We begin with the proof of Theorem 1. At a high level, it involves bounding the probability
that any fixed permutation is preferred to Π∗ by the estimator. The analysis requires precise
control on the lower tails of χ2-random variables, and tight bounds on the norms of random
projections, for which we use results derived in the context of dimensionality reduction by
Dasgupta and Gupta [DG03].

In order to simplify the exposition, we first consider the case when d = 1 in Section 4.1,
and later make the necessary modifications for the general case in Section 4.2.

4.1 Proof of Theorem 1: d = 1 case

Recall the definition of the maximum likelihood estimator

(Π̂ML, x̂ML) = arg min
Π∈Pn

min
x∈Rd

‖y −ΠAx‖22.

For a fixed permutation matrix Π, assuming that A has full column rank2, the minimizing
argument x is simply (ΠA)†y, where X† = (X>X)−1X> represents the pseudoinverse of a
matrix X. By computing the minimum over x ∈ Rd in the above equation, we find that the
maximum likelihood estimate of the permutation is given by

Π̂ML = arg min
Π∈Pn

‖P⊥Π y‖22, (7)

2An n× d i.i.d. Gaussian random matrix has full column rank with probability 1 as long as d ≤ n
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where P⊥Π = I − ΠA(A>A)−1(ΠA)> denotes the projection onto the orthogonal complement
of the column space of ΠA.

For a fixed Π ∈ Pn, define the random variable

∆(Π,Π∗) := ‖P⊥Π y‖22 − ‖P⊥Π∗y‖22. (8)

For any permutation Π, the estimator (7) prefers the permutation Π to Π∗ if ∆(Π,Π∗) ≤ 0.
The overall error event occurs when ∆(Π,Π∗) ≤ 0 for some Π, meaning that

{Π̂ML 6= Π∗} =
⋃

Π∈Pn\Π∗
{∆(Π,Π∗) ≤ 0}. (9)

Equation (9) holds for any value of d. We shortly specialize to the d = 1 case. Our
strategy for proving Theorem 1 boils down to bounding the probability of each error event in
the RHS of equation (9) using the following key lemma, proved in Section 4.1.1. Recall the
definition of dH(Π,Π′), the Hamming distance between two permutation matrices.

Lemma 1. For d = 1 and any two permutation matrices Π and Π∗, and provided
‖x∗‖22
σ2 > 1,

we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−c dH(Π,Π∗) log

(‖x∗‖22
σ2

))
.

We are now ready to prove Theorem 1.

Proof of Theorem 1 for d = 1. Fix ε > 0 and assume that the following consequence of con-
dition (4) holds:

c log

(‖x∗‖22
σ2

)
≥ (1 + ε) log n, (10)

where c is the same as in Lemma 1. Now, observe that

Pr{Π̂ML 6= Π∗} ≤
∑

Π∈Pn\Π∗
Pr{∆(Π,Π∗) ≤ 0}

(i)

≤
∑

Π∈Pn\Π∗
c′ exp

(
−c dH(Π,Π∗) log

(‖x∗‖22
σ2

))

≤ c′
∑

2≤k≤n
nk exp

(
−c k log

(‖x∗‖22
σ2

))

(ii)

≤ c′
∑

2≤k≤n
n−εk

≤ c′ 1

nε(nε − 1)
.

where step (i) follows since #{Π : dH(Π,Π∗) = k} ≤ nk, and step (ii) follows from condi-
tion (10). Relabelling the constants in condition (10) proves the theorem.
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4.1.1 Proof of Lemma 1

Before the proof, we establish notation. For each δ > 0, define the events

F1(δ) =
{
|‖P⊥Π∗y‖22 − ‖P⊥Πw‖22| ≥ δ

}
, and (11a)

F2(δ) =
{
‖P⊥Π y‖22 − ‖P⊥Πw‖22 ≤ 2δ

}
. (11b)

Evidently,

{∆(Π,Π∗) ≤ 0} ⊆ F1(δ) ∪ F2(δ). (12)

Indeed, if neither F1(δ) nor F2(δ) occurs

∆(Π,Π∗) =
(
‖P⊥Π y‖22 − ‖P⊥Πw‖22

)
−
(
‖P⊥Π∗y‖22 − ‖P⊥Πw‖22

)
> 2δ − δ = δ.

Thus, to prove Lemma 1, we shall bound the probability of the two events F1(δ) and F2(δ)
individually, and then invoke the union bound. Note that inequality (12) holds for all values of
δ > 0; it is convenient to choose δ∗ := 1

3‖P⊥Π Π∗Ax∗‖22. With this choice, the following lemma,
proved in Appendix B, bounds the probabilities of the individual events over randomness in
w conditioned on a given A.

Lemma 2. For any δ > 0 and with δ∗ = 1
3‖P⊥Π Π∗Ax∗‖22, we have

Prw{F1(δ)} ≤ c′ exp

(
−c δ

σ2

)
, and (13a)

Prw{F2(δ∗)} ≤ c′ exp

(
−c δ

∗

σ2

)
. (13b)

The next lemma, proved in Section 4.1.2, is needed in order to incorporate the ran-
domness in A into the required tail bound. It is convenient to introduce the shorthand
TΠ := ‖P⊥Π Π∗Ax∗‖22.

Lemma 3. For d = 1 and any two permutation matrices Π and Π∗ at Hamming distance h,
we have

PrA{TΠ ≤ t‖x∗‖22} ≤ 6 exp

(
− h

10

[
log

h

t
+
t

h
− 1

])
(14)

for all t ∈ [0, h].

We now have all the ingredients to prove Lemma 1.

Proof of Lemma 1. Applying Lemma 2 and using the union bound then yields

Prw{∆(Π,Π∗) ≤ 0} ≤ Prw{F1(δ∗)}+ Prw{F2(δ∗)}

≤ c′ exp

(
−cTΠ

σ2

)
. (15)

Combining bound (15) with Lemma 3 yields

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−ct‖x

∗‖22
σ2

)
PrA{TΠ ≥ t‖x∗‖22}+ PrA{TΠ ≤ t‖x∗‖22}

≤ c′ exp

(
−ct‖x

∗‖22
σ2

)
+ 6 exp

(
− h

10

[
log

h

t
+
t

h
− 1

])
, (16)
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where the last inequality holds provided that t ∈ [0, h], and the probability in the LHS is now
taken over randomness in both w and A.

Using the shorthand snr :=
‖x∗‖22
σ2 , setting t = h log snr

snr , and noting that t ∈ [0, h] since
snr > 1, we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp (−ch log snr) + 6 exp

(
− h

10

[
log

(
snr

log snr

)
+

log snr

snr
− 1

])
. (17)

It is easily verified that for all snr > 1, we have

log

(
snr

log snr

)
+

log snr

snr
− 1 >

log snr

4
. (18)

Hence, after substituting for snr, we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−ch log

(‖x∗‖22
σ2

))
. (19)

4.1.2 Proof of Lemma 3

In the case d = 1, the matrix A is composed of a single vector a ∈ Rn. Recalling the random
variable TΠ = ‖P⊥Π Π∗Ax∗‖22, we have

TΠ = (x∗)2

(
‖a‖22 −

1

‖a‖22
〈aΠ, a〉2

)

(i)

≥ (x∗)2
(
‖a‖22 − |〈a, aΠ〉|

)

=
(x∗)2

2
min

(
‖a− aΠ‖22, ‖a+ aΠ‖22

)
,

where step (i) follows from the Cauchy Schwarz inequality. Applying the union bound then
yields

Pr{TΠ ≤ t(x∗)2} ≤ Pr{‖a− aΠ‖22 ≤ 2t}+ Pr{‖a+ aΠ‖22 ≤ 2t}.

Let Z` and Z̃` denote (not necessarily independent) χ2 random variables with ` degrees
of freedom. We split the analysis into two cases.

Case h ≥ 3: Lemma 8 from Appendix A.1 guarantees that

‖a− aΠ‖22
2

d
= Zh1 + Zh2 + Zh3 , and (20a)

‖a+ aΠ‖22
2

d
= Z̃h1 + Z̃h2 + Z̃h3 + Z̃n−h, (20b)

where
d
= denotes equality in distribution and h1, h2, h3 ≥ h

5 with h1 + h2 + h3 = h. An
application of the union bound then yields

Pr{‖a− aΠ‖22 ≤ 2t} ≤
3∑

i=1

Pr

{
Zhi ≤ t

hi
h

}
.
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Similarly, provided that h ≥ 3, we have

Pr{‖a+ aΠ‖22 ≤ 2t} ≤ Pr{Z̃h1 + Z̃h2 + Z̃h3 + Z̃n−h ≤ t}
(ii)

≤ Pr{Z̃h1 + Z̃h2 + Z̃h3 ≤ t}
(iii)

≤
3∑

i=1

Pr

{
Z̃hi ≤ t

hi
h

}
,

where inequality (ii) follows from the non-negativity of Zn−h, and the monotonicity of the
CDF; and inequality (iii) from the union bound. Finally, bounds on the lower tails of χ2

random variables (see Lemma 9 in Appendix A.2) yield

Pr

{
Zhi ≤ t

hi
h

}
= Pr

{
Z̃hi ≤ t

hi
h

}
(iv)

≤
(
t

h
exp

(
1− t

h

))hi/2

(v)

≤
(
t

h
exp

(
1− t

h

))h/10

.

Here, inequality (iv) is valid provided thi
h ≤ hi, or equivalently, if t ≤ h, whereas inequality (v)

follows since hi ≥ h/5 and the function xe1−x ∈ [0, 1] for all x ∈ [0, 1]. Combining the pieces
proves Lemma 3 for h ≥ 3.

Case h = 2: In this case, we have

‖a− aΠ‖22
2

d
= 2Z1, and

‖a+ aΠ‖22
2

d
= 2Z̃1 + Z̃n−2.

Proceeding as before by applying the union bound and Lemma 9, we have that for t ≤ 2, the
random variable TΠ obeys the tail bound

Pr{TΠ ≤ t(x∗)2} ≤ 2

(
t

2
exp

(
1− t

2

))1/2

≤ 6

(
t

h
exp

(
1− t

h

))h/10

, for h = 2.

In the next section, we prove Theorem 1 for the general case.

4.2 Proof of Theorem 1: Case d ∈ {2, 3, . . . , n− 1}
In order to be consistent, we follow the same proof structure as for the d = 1 case. Recall the
definition of ∆(Π,Π∗) from equation (8). We begin with an equivalent of the key lemma to
bound the probability of the event {∆(Π,Π∗) ≤ 0}.

Lemma 4. For any 1 < d < n, any two permutation matrices Π and Π∗ at Hamming distance

h, and provided
(
‖x∗‖22
σ2

)
n−

2n
n−d > 5

4 , we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′max

[
exp

(
−n log

n

2

)
, exp

(
ch

(
log

(‖x∗‖22
σ2

)
− 2n

n− d log n

))]
.

(21)

We prove Lemma 4 in Section 4.2.1. Taking it as given, we are ready to prove Theorem 1
for the general case.
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Proof of Theorem 1, general case. As before, we use the union bound to prove the theorem.
We begin by fixing some ε ∈ (0,

√
n) and assuming that the following consequence of condi-

tion (4) holds:

c log

(‖x∗‖22
σ2

)
≥
(

1 + ε+ c
2n

n− d

)
log n. (22)

Now define b(k) :=
∑

Π:dH(Π,Π∗)=k Pr{∆(Π,Π∗) ≤ 0}. Applying Lemma 4 then yields

b(k) ≤ n!

(n− k)!
c′max

{
exp

(
−n log

n

2

)
, exp

(
−ck

(
log

(‖x∗‖22
σ2

)
− 2n

n− d log n

))}
. (23)

We upper bound b(k) by splitting the analysis into two cases.

Case 1: If the first term attains the maximum in the RHS of inequality (23), then for all
2 ≤ k ≤ n, we have

b(k) ≤ c′n! exp(−n log n+ n log 2)

(i)

≤ c′e√n exp(−n log n+ n log 2 +−n+ n log n)

(ii)

≤ c′

n2ε+1
,

where inequality (i) follows from the well-known upper bound n! ≤ e
√
n
(
n
e

)n
, and inequal-

ity (ii) holds since ε ∈ (0,
√
n).

Case 2: Alternatively, if the maximum is attained by the second term in the RHS of in-
equality (23), then we have

b(k) ≤ nkc′ exp

(
−ck

(
log

(‖x∗‖22
σ2

)
− 2n

n− d log n

))

(iii)

≤ c′n−εk,

where step (iii) follows from condition (22).
Combining the two cases, we have

b(k) ≤ max{c′n−εh, cn−2ε−1} ≤
(
c′n−εh + cn−2ε−1

)
.

The last step is to use the union bound to obtain

Pr{Π̂ML 6= Π∗} ≤
∑

2≤k≤n
b(k) (24)

≤
∑

2≤k≤n

(
c′n−εh + cn−2ε−1

)

(iv)

≤ cn−2ε,

where step (iv) follows by a calculation similar to the one carried out for the d = 1 case.
Relabelling the constants in condition (22) completes the proof.
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4.2.1 Proof of Lemma 4

The first part of the proof is exactly the same as that of Lemma 1. In particular, Lemma 2
applies without modification to yield a bound identical to the inequality (15), given by

Prw{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−cTΠ

σ2

)
, (25)

where TΠ = ‖P⊥Π Π∗Ax∗‖22, as before.

The major difference from the d = 1 case is in the random variable TΠ. Accordingly, we
state the following parallel lemma to Lemma 3.

Lemma 5. For 1 < d < n, any two permutation matrices Π and Π∗ at Hamming distance h,

and t ≤ hn− 2n
n−d , we have

PrA{TΠ ≤ t‖x∗‖22} ≤ 2 max

{
exp

(
−n log

n

2

)
, 6 exp

(
− h

10

[
log

(
h

tn
2n
n−d

)
+
tn

2n
n−d

h
− 1

])}
.

(26)

The proof of Lemma 5 appears in Section 4.2.2. We are now ready to prove Lemma 4.

Proof of Lemma 4. We prove Lemma 4 from Lemma 5 and equation (25) by an argument sim-
ilar to the one before. In particular, in a similar vein to the steps leading up to equation (16),
we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp

(
−ct‖x

∗‖22
σ2

)
+ PrA{TΠ ≤ t‖x∗‖22}. (27)

We now use the shorthand snr :=
‖x∗‖22
σ2 and let t∗ = h

log

(
snr·n−

2n
n−d

)
snr . Noting that snr·n− 2n

n−d >

5/4 yields t∗ ≤ hn− 2n
n−d , we set t = t∗ in inequality (27) to obtain

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp
(
−ch log sn−

2n
n−d

)
+ PrA{TΠ ≤ t∗‖x∗‖22}. (28)

Since PrA{TΠ ≤ t∗‖x∗‖22} can be bounded by a maximum of two terms (26), we now split
the analysis into two cases depending on which term attains the maximum.

Case 1: First, suppose that the second term attains the maximum in inequality (26), i.e.,

PrA{TΠ ≤ t∗‖x∗‖22} ≤ 12 exp

(
− h

10

[
log

(
h

t∗n
2n
n−d

)
+ t∗n

2n
n−d

h − 1

])
. Substituting for t∗, we

have

PrA{TΠ ≤ t∗‖x∗‖22} ≤ 12 exp


− h

10


log


 snr · n− 2n

n−d

log
(
snr · n− 2n

n−d

)


+

log
(
snr · n− 2n

n−d

)

snr · n− 2n
n−d

− 1




 .

(29)
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We have snr · n− 2n
n−d > 5

4 , a condition which leads to the following pair of easily verifiable
inequalities:

log


 snr · n− 2n

n−d

log
(
snr · n− 2n

n−d

)


+

log
(
snr · n− 2n

n−d

)

snr · n− 2n
n−d

− 1 ≥ log snr · n− 2n
n−d

4
, and (30a)

log


 snr · n− 2n

n−d

log
(
snr · n− 2n

n−d

)


+

log
(
snr · n− 2n

n−d

)

snr · n− 2n
n−d

− 1 ≤ 5 log
(
snr · n− 2n

n−d

)
. (30b)

Using inequality (30a), we have

PrA{TΠ ≤ t∗‖x∗‖22} ≤ 12 exp
(
−ch log

(
snr · n− 2n

n−d

))
. (31)

Now using inequalities (31) and (28) together yields

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp
(
−ch log

(
snr · n− 2n

n−d

))
. (32)

It remains to handle the second case.

Case 2: Suppose now that PrA{TΠ ≤ t∗‖x∗‖22} ≤ 2 exp
(
−n log n

2

)
, i.e., that the first term

in RHS of inequality (26) attains the maximum when t = t∗. In this case, we have

exp
(
−n log

n

2

)
≥ 6 exp

(
− h

10

[
log

(
h

t∗n
2n
n−d

)
+
t∗n

2n
n−d

h
− 1

])

(i)

≥ c′ exp
(
−ch log

(
snr · n− 2n

n−d

))
,

where step (i) follows from the right inequality (30b). Now substituting into inequality (28),
we have

Pr{∆(Π,Π∗) ≤ 0} ≤ c′ exp
(
−ch log

(
snr · n− 2n

n−d

))
+ 2 exp

(
−n log

n

2

)

≤ c′ exp
(
−n log

n

2

)
. (33)

Combining equations (32) and (33) completes the proof of Lemma 4.

4.2.2 Proof of Lemma 5

We begin by reducing the problem to the case x∗ = e1‖x∗‖2. In particular, if Wx∗ = e1‖x∗‖2
for a d × d unitary matrix W and writing A = ÃW , we have by rotation invariance of the
Gaussian distribution that the the entries of Ã are distributed as i.i.d. standard Gaussians. It
can be verified that TΠ = ‖I −ΠÃ(Ã>Ã)−1(ΠÃ)>Π∗Ãe1‖22‖x∗‖22. Since Ã

d
= A, the reduction

is complete.

In order to keep the notation uncluttered, we denote the first column of A by a. We also
denote the span of the first column of ΠA by S1 and that of the last d− 1 columns of ΠA by
S−1. Denote their respective orthogonal complements by S⊥1 and S⊥−1. We then have
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TΠ = ‖x∗‖22‖P⊥Π a‖22
= ‖x∗‖22‖PS⊥−1∩S⊥1 a‖

2
2

= ‖x∗‖22‖PS⊥−1∩S⊥1 PS⊥1 a‖
2
2.

We now condition on a. Consequently, the subspace S⊥1 is a fixed (n−1)-dimensional subspace.
Additionally, S⊥−1 ∩ S⊥1 is the intersection of a uniformly random (n − (d − 1))-dimensional
subspace with a fixed (n − 1)-dimensional subspace, and is therefore a uniformly random

(n− d)-dimensional subspace within S⊥1 . Writing u =
P
S⊥1

a

‖P
S⊥1

a‖2 , we have

TΠ
d
= ‖x∗‖22‖PS⊥−1∩S⊥1 u‖

2
2‖PS⊥1 a‖

2
2.

Now since u ∈ S⊥1 , note that ‖PS⊥−1∩S⊥1 u‖
2
2 is the squared length of a projection of an (n− 1)-

dimensional unit vector onto a uniformly chosen (n−d)-dimensional subspace. In other words,
denoting a uniformly random projection from m dimensions to k dimensions by Pmk , we have

‖PS⊥−1∩S⊥1 u‖
2
2
d
= ‖Pn−1

n−d v1‖22
(i)
= 1− ‖Pn−1

d−1 v1‖22,

where v1 represents a fixed standard basis vector in n − 1 dimensions. The quantities Pn−1
n−d

and Pn−1
d−1 are projections onto orthogonal subspaces, and step (i) is a consequence of the

Pythagorean theorem.
Now removing the conditioning on a, we see that the term for d > 1 can be lower bounded

by the corresponding TΠ for d = 1, but scaled by a random factor – the norm of a random
projection. Using T 1

Π := ‖P⊥S1
a‖22‖x∗‖22 to denote TΠ when d = 1, we have

TΠ = (1−Xd−1)T 1
Π, (34)

where we have introduced the shorthand Xd−1 = ‖Pn−1
d−1 e1‖22.

We first handle the random projection term in equation (34) using Lemma 11 in Ap-
pendix A.2. In particular, substituting β = (1− z)n−1

d−1 in inequality (55) yields

Pr{1−Xd−1 ≤ z} ≤
(
n− 1

d− 1

)(d−1)/2(z(n− 1)

n− d

)(n−d)/2

(i)

≤
√(

n− 1

d− 1

)√(
n− 1

n− d

)
z

n−d
2

=

(
n− 1

d− 1

)
z

n−d
2

(ii)

≤ 2n−1z
n−d
2 ,

where in steps (i) and (ii), we have used the standard inequality 2n ≥
(
n
r

)
≥
(
n
r

)r
. Now setting

z = n
−2n
n−d , which ensures that (1− z)n−1

d−1 > 1 for all d < n and large enough n, we have

Pr{1−Xd−1 ≤ n
−2n
n−d } ≤ exp

(
−n log

n

2

)
. (35)
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Applying the union bound then yields

Pr{TΠ ≤ t‖x∗‖22} ≤ Pr{1−Xd−1 ≤ n
−2n
n−d }+ Pr{T 1

Π ≤ tn
2n
n−d ‖x∗‖22}. (36)

We have already computed an upper bound on Pr{T 1
Π ≤ tn

2n
n−d ‖x∗‖22} in Lemma 3. Applying

it yields that provided t ≤ hn− 2n
n−d , we have

Pr{T 1
Π ≤ tn

2n
n−d ‖x∗‖22} ≤ 6

(
tn

2n
n−d

h
exp

(
1− tn

2n
n−d

h

))h/10

. (37)

Combining equations (37) and (35) with the union bound (36) and performing some alge-
braic manipulation then completes the proof of Lemma 5.

4.3 Information theoretic lower bounds on Pr{Π̂ 6= Π∗}
We prove Theorem 2 in Section 4.3.1 via the strong converse for the Gaussian channel. We
prove the weak converse of Proposition 1 in Section 4.3.2 by employing Fano’s method. We
note that the latter is a standard technique for proving minimax bounds in statistical inference
problems [Yu97, YB99].

4.3.1 Proof of Theorem 2

We begin by assuming that the design matrix A is fixed, and that the estimator has knowledge
of x∗ a-priori. Note that the latter cannot make the estimation task any easier. In proving
this lower bound, we can also assume that the entries of Ax∗ are distinct, since otherwise,
perfect permutation recovery is impossible.

Given this setup, we now cast the problem as one of coding over a Gaussian channel.
Toward this end, consider the codebook

C = {ΠAx∗ | Π ∈ Pn}.

We may view ΠAx∗ as the codeword corresponding to the permutation Π, where each permu-
tation is associated to one of n! equally likely messages. Note that each codeword has power
‖Ax∗‖22.

The codeword is then sent over a Gaussian channel with noise power equal to
∑n

i=1 σ
2 = nσ2.

The decoding problem is to ascertain from the noisy observations which message was sent, or
in other words, to identify the correct permutation.

We now use the non-asymptotic strong converse for the Gaussian channel [Yos64]. In
particular, using Lemma 12 (see Appendix A.3) with R = logn!

n then yields that for any
δ′ > 0, if

log n!

n
>

1 + δ′

2
log

(
1 +
‖Ax∗‖22
nσ2

)
,

then for any estimator Π̂, we have Pr{Π̂ 6= Π} ≥ 1− 2 · 2−nδ′ . For the choice δ′ = δ/(2− δ),
we have that if

(2− δ) log
(n
e

)
> log

(
1 +
‖Ax∗‖22
nσ2

)
, (38)
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then Pr{Π̂ 6= Π} ≥ 1− 2 · 2−nδ/2. Note that the only randomness assumed so far was in the
noise w and the random choice of Π.

We now specialize the result for the case when A is Gaussian. Toward that end, define
the event

E(δ) =

{
1 + δ ≥ ‖Ax

∗‖22
n‖x∗‖22

}
.

Conditioned on the event E(δ), it can be verified that condition (5) implies condition (38).
We also have

Pr{E(δ)} = 1− Pr

{‖Ax∗‖22
n‖x∗‖22

> 1 + δ

}

(i)

≥ 1− c′e−cnδ,

where step (i) follows by using the sub-exponential tail bound (see Lemma 10 in Appendix A.2),

since
‖Ax∗‖22
‖x∗‖22

∼ χ2
n.

Putting together the pieces, we have that provided condition (5) holds,

Pr{Π̂ 6= Π∗} ≥ Pr{Π̂ 6= Π∗|E(δ)}Pr{E(δ)}
= (1− 2 · 2−nδ/2)(1− c′e−cnδ)
≥ 1− c′e−cnδ.

We now move on to the proof of Proposition 1.

4.3.2 Proof of Proposition 1

Proposition 1 corresponds to a weak converse in the scenario where the estimator is also
provided with the side information that Π∗ lies within a Hamming ball of radius 2 around
the identity. We carry out the proof for the more general case where dH(Π∗, I) ≤ h̄ for any
h̄ ≥ 2, later specializing to the case where h̄ = 2. We denote such a Hamming ball by
BH(h̄) := {Π ∈ Pn | dH(Π, I) ≤ h̄}.

For the sake of the lower bound, assume that our observation model takes the form

y = Π∗Ax∗ + Π∗w. (39)

Since w ∈ Rn is i.i.d. standard normal, model (39) has a distribution equivalent to that of
model (1).

Notice that the ML estimation problem is essentially a multi-way hypothesis testing prob-
lem among permutations in BH(h̄), and so Fano’s method is directly applicable. As before, we
assume that the estimator knows x∗, and consider a uniformly random choice of Π∗ ∈ BH(h̄).

Now note that the observation vector y is drawn from the mixture distribution

M(h̄) =
1

|BH(h̄)|
∑

Π∈Pn

PΠ, (40)

where PΠ denotes the Gaussian distribution N (ΠAx∗, σ2In). The following lemma provides
a crucial statistic for our bounds.
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Lemma 6. For y drawn according to the mixture distribution M(h̄), we have

detE
[
yy>

]
≤ (σ2 + ‖x∗‖22)n (1 + n)

(
h̄

n

)n−1

. (41)

We prove Lemma 6 in Section 4.3.3. Taking it as given, we are now in a position to prove
Proposition 1.

Proof of Proposition 1. We begin by using Fano’s inequality to bound the probability of error
of any tester random ensemble of Π∗. In particular, for any estimator Π̂ that is a measurable
function of the pair (y,A), we have

Pr{Π̂ 6= Π∗} ≥ 1− I(Π∗; y,A) + log 2

log |BH(h̄)| . (42)

Applying the chain rule for mutual information yields

I(Π∗; y,A) = I(Π∗; y|A) + I(Π∗, A)

(i)
= I(Π∗; y|A)

= EA [I(Π∗; y|A = α)] , (43)

where step (i) follows since Π∗ is chosen independently of A. We now evaluate the mutual in-
formation term I(Π∗; y|A = α), which we denote by Iα(Π∗; y). Letting Hα(y) := H(y|A = α)
denote the conditional entropy of y given a fixed realization of A, we have

Iα(Π∗; y) = Hα(y)−Hα(y|Π∗)
(ii)

≤ 1

2
log det cov yy> − n

2
log σ2,

where the covariance is evaluated with A = α, and in step (ii), we have used two key facts:
(a) Gaussians maximize entropy for a fixed covariance, which bounds the first term, and
(b) For a fixed realization of Π∗, the vector y is composed of n uncorrelated Gaussians. This
leads to an explicit evaluation of the second term.

Now taking expectations over A and noting that cov yy> � Ew
[
yy>

]
, we have from the

concavity of the log determinant function and Jensen’s inequality that

I(Π∗; y|A) = EA [Iα(Π∗; y)]

≤ 1

2
log detE

[
yy>

]
− n

2
log σ2, (44)

where the expectation in the last line is now taken over randomness in both A and w.
Applying Lemma 6, we can then substitute inequality (41) into bound (44), which yields

EA [Iα(Π∗; y)] ≤ n

2
log

(
1 +
‖x∗‖22
σ2

)
+
n− 1

2
log

h̄

n
+

1

2
log (1 + n) .

Finally, substituting into the Fano bound (42) yields the lower bound

Pr{Π̂ 6= Π∗} ≥ 1−
n
2 log

(
1 +

‖x∗‖22
σ2

)
+ n−1

2 log h̄
n + 1

2 log (1 + n) + log 2

log |BH(h̄)|
(ii)

≥ 1−
n
2 log

(
1 +

‖x∗‖22
σ2

)
+ n−1

2 log h̄
n + 1

2 log (1 + n) + log 2

h̄ log(n/e)
,
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where in step (ii), we have used the fact that

|BH(h̄)| =
(
n

h̄

)
· h̄! ≥

(
n/h̄

)h̄
(
h̄

e

)h̄
.

In other words, if

log

[
4

(
1 +
‖x∗‖22
σ2

)]
≤ h̄

n
log(n/e) +

n− 1

n
log(n/h̄)− log (1 + n)

n
, (45)

then Pr{Π̂ 6= Π∗} ≥ 1/2 for any estimator Π̂. Evaluating condition (45) for h̄ = 2 yields the
required result.

4.3.3 Proof of Lemma 6

We first explicitly calculate the matrix Y := E
[
yy>

]
. Note that the diagonal entries take the

form

Yii = (x∗)>E
[
aπia

>
πi

]
x∗ + E

[
w2
πi

]
= ‖x∗‖22 + σ2.

The off-diagonal entries can be evaluated as

Yij = (x∗)>E
[
aπia

>
πj

]
x∗ + E

[
wπiwπj

] (i)
=

(
n− h̄
n

+
h̄

n2

)(
‖x∗‖22 + σ2

)
, for i 6= j,

where step (i) follows since

πi = πj with probability
n− h̄
n

+
h̄

n2
. (46)

Equation (46) is a consequence of the fact that a uniform permutation over BH(h̄) can be
generated by first picking h̄ positions (the permutation set) out of [n] uniformly at random,
and then uniformly permuting those h̄ positions. The probability that πi = πj is equal to the
probability that πi = i, an event that occurs if:
(a) position i is not chosen in the permutation set, which happens with probability n−h̄

n , or if
(b) position i is in the permutation set but the permutation maps i to itself, which happens

with probability h̄
n

1
n .

Hence, the determinant of Y is given by detY = (‖x∗‖22 + σ2)n detY , where we have
defined Y := 1

‖x∗‖22+σ2Y . Note that Y is a highly structured matrix, and so its determinant

can be computed exactly. In particular, letting the scalar β = 1 denote the identical diagonal
entries of Y and the scalar γ denote its identical off-diagonal entries, it is easy to verify that
the all ones vector 1 is an eigenvector of Y , with corresponding eigenvalue β + (n − 1)γ.
Additionally, for any vector v that obeys 1>v = 0, we have

Y v = (β − γ)v + γ(v>1)1 = (β − γ)v,

and so the remaining n− 1 eigenvalues are identically β − γ.
Substituting for β and γ, the eigenvalues of Y are given by

λ1(Y ) = 1 +
(n− h̄)(n− 1)

n
+
h̄(n− 1)

n2
, and
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λ2(Y ) = λ3(Y ) = · · · = λn(Y ) =
h̄

n
− h̄

n2
.

Hence, we have

detY =

(
1 +

(n− h̄)(n− 1)

n
+
h̄(n− 1)

n2

)(
h̄

n
− h̄

n2

)n−1

≤
(

1 + n− h̄+
h̄

n

)(
h̄

n

)n−1

≤ (1 + n)

(
h̄

n

)n−1

,

where in the last step, we have used the fact that 0 < h̄ ≤ n. This completes the proof.

4.4 Proof of Theorem 3

We now prove Theorem 3 for approximate permutation recovery. For any estimator Π̂, we
denote by the indicator random variable E(Π̂, D) whether or not the Π̂ has acceptable dis-
tortion, i.e., E(Π̂, D) = I[dH(Π̂,Π∗) ≥ D], with E = 1 representing the error event. For Π∗

picked uniformly at random in Pn, we have the following variant of Fano’s inequality.

Lemma 7. The probability of error is lower bounded as

Pr{E(Π̂, D) = 1} ≥ 1− I(Π∗; y,A) + log 2

log n!− log n!
(n−D+1)!

. (47)

Taking the lemma as given for the moment, we are now ready to prove Theorem 3.

Proof of Theorem 3. The proof of the theorem follows by upper bounding the mutual infor-
mation term. In particular, we have

I(Π∗; y,A) ≤ EA [Ia(Π
∗; y)]

≤ 1

2
log detE

[
yy>

]
− n

2
log σ2

(i)

≤ n

2
log

(
1 +
‖x∗‖22
σ2

)
,

where the expectation on the RHS is taken over both Π∗ and A. Also, step (i) follows from the
AM-GM inequality for PSD matrices detX ≤

(
1
n traceX

)n
, and by noting that the diagonal

entries of the matrix E
[
yy>

]
are all equal to ‖x∗‖22 + σ2.

Combining the pieces, we now have that Pr{Π̂ 6= Π∗} ≥ 1/2 if

n log

(
1 +
‖x∗‖22
σ2

)
≤ (n−D + 1) log

(
n−D + 1

2e

)
, (48)

which completes the proof.
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4.4.1 Proof of Lemma 7

We use the shorthand E := E(Π̂, D) in this proof to simplify notation. Proceeding by the
usual proof of Fano’s inequality, we begin by expanding H(E,Π∗|y,A = a, Π̂) in two ways:

H(E,Π∗|y,A, Π̂) = H(Π∗|y,A, Π̂) +H(E|Π∗, y, A, Π̂) (49a)

= H(E|y,A, Π̂) +H(Π∗|E, y,A, Π̂). (49b)

Since Π∗ → (y,A) → Π̂ forms a Markov chain, we have H(Π∗|y,A, Π̂) = H(Π∗|y,A). Non-
negativity of entropy yields H(E|Π∗, y, A, Π̂) ≥ 0. Since conditioning cannot increase entropy,
we have H(E|y,A, Π̂) ≤ H(E) ≤ log 2, and H(Π∗|E, y,A, Π̂) ≤ H(Π∗|E, Π̂). Combining all
of this with equations (49) yields

H(Π∗|y,A) ≤ H(Π∗|E, Π̂) + log 2

= Pr{E = 1}H(Π∗|E = 1, Π̂) + (1− Pr{E = 1})H(Π∗|E = 0, Π̂) + log 2. (50)

We now use the fact that uniform distributions maximize entropy to bound the two terms
as H(Π∗|E = 1, Π̂) ≤ H(Π∗) = log n!, and H(Π∗|E = 0, Π̂) ≤ log n!

(n−D+1)! , where the last

inequality follows since E = 0 reveals that Π∗ is within a Hamming ball of radius D − 1
around Π̂, and the cardinality of that Hamming ball is n!

(n−D+1)! .

Substituting back into inequality (50) yields

Pr{E = 1}
(

log n!− log
n!

(n−D + 1)!

)
+H(Π∗)

≥ H(Π∗|y,A)− log 2− log
n!

(n−D + 1)!
+ log n!,

where we have added the term H(Π∗) = logn! to both sides. Simplifying then yields inequality
(47).

4.5 Proofs of computational aspects

In this section, we prove Theorem 4 by providing an efficient algorithm for the d = 1 case and
showing NP-hardness for the d > 1 case.

4.5.1 Proof of Theorem 4: d = 1 case

In order to prove the theorem, we need to show an algorithm that performs the optimiza-
tion (7) efficiently. Accordingly, note that for the case when d = 1, equation (7) can be
rewritten as

Π̂ML = arg max
Π
‖a>Πy‖2

= arg max
Π

max
{
a>Πy,−a>Πy

}

= arg min
Π

max
{
‖aΠ − y‖22, ‖aΠ + y‖22

}
, (51)

where the last step follows since 2a>Πy = ‖a‖2 + ‖y‖2 − ‖aΠ − y‖22, and the first two terms do
not involve optimizing over Π.
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Algorithm 1: Exact algorithm for implementing equation (7) for the case when d = 1.

Input: design matrix (vector) a, observation vector y
1 Π1 ← permutation that sorts a according to y
2 Π2 ← permutation that sorts −a according to y

3 Π̂ML ← arg max{|a>Π1
y|, |a>Π2

y|}
Output: Π̂ML

Once the optimization problem has been written in the form (51), it is easy to see that it
can be solved in polynomial time. In particular, using the fact that for fixed vectors p and q,
‖pΠ − q‖ is minimized for Π that sorts a according to the order of b, we see that Algorithm 1
computes Π̂ML exactly.

The procedure defined by Algorithm 1 is clearly the correct thing to do in the noiseless case:
in this case, x∗ is a scalar value that scales the entries of a, and so the correct permutation
can be identified by a simple sorting operation. Two such operations suffice, one to account
for when x∗ is positive and one more for when it is negative. Since each sort operation takes
O(n log n) steps, Algorithm 1 can be executed in nearly linear time.

4.5.2 Proof of Theorem 4: NP-hardness

In this section, we show that given a vector matrix pair (y,A) ∈ Rn ×Rn×d, it is NP-hard to
determine whether the equation y = ΠAx has a solution for a permutation matrix Π ∈ Pn
and vector x ∈ Rd. Clearly, this is sufficient to show that the problem (3) is NP-hard to solve
in the case when A and y are arbitrary.

Our proof involves a reduction from the PARTITION problem, the decision version of which
is defined as the following.

Definition 1 (PARTITION). Given d integers b1, b2, · · · , bd, does there exist a subset S ⊂ [d]
such that ∑

i∈S
bi =

∑

i∈[d]\S
bi?

It is well known [PS98] that PARTITION is NP-complete. Also note that asking whether
or not equation (1) has a solution (Π, x) is equivalent to determining whether or not there
exists a permutation π and a vector x such that yπ = Ax has a solution. We are now ready
to prove the theorem.

Given an instance b1, · · · bd of PARTITION, define a vector y ∈ Z2d+1 with entries

yi :=

{
bi, if i ∈ [d]

0, otherwise.

Also define the 2d+ 1× 2d matrix

A :=

[
I2d

1>d −1>d

]
.

Clearly, the pair (y,A) can be constructed from b1, · · · bd in time polynomial in n = 2d + 1.
We now claim that yπ = Ax has a solution (Π, x) if and only if there exists a subset S ⊂ [d]
such that

∑
i∈S bi =

∑
i∈[d]\S bi.
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By converting to row echelon form, we see that yπ = Ax if and only if

∑

i|π(i)≤d
yπ(i) =

∑

i|π(i)>d

yπ(i), (52)

and equation (52) holds, by construction, if and only if for S = {i | π(i) ≤ d} ∩ [d], we have

∑

i∈S
bi =

∑

i∈[d]\S
bi.

This completes the proof.

5 Discussion

We analyzed the problem of exact permutation recovery in the linear regression model, and
provided necessary and sufficient conditions that are tight in most regimes of n and d. We
also provided a converse for the problem of approximate permutation recovery to within some
Hamming distortion. It is still an open problem to characterize the fundamental limits of exact
and approximate permutation recovery for all regimes of n, d and the allowable distortion D.
In the context of exact permutation recovery, we believe that the limit suggested by Theorem 1
is tight for all regimes of n and d, but showing this will likely require a different technique.
In particular, as pointed out in Remark 1, all of our lower bounds assume that the estimator
is provided with x∗ as side information; it is an interesting question as to whether stronger
lower bounds can be obtained without this side information.

On the computational front, many open questions remain. The primary question concerns
the design of computationally efficient estimators that succeed in similar SNR regimes. We
have already shown that the maximum likelihood estimator, while being statistically optimal
for moderate d, is computationally hard to compute in the worst case. Showing a correspond-
ing hardness result for random A is also an open problem. Finally, while this paper mainly
addresses the problem of permutation recovery, the complementary problem of recovering x∗

is also interesting, and we plan to investigate its fundamental limits in future work.
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A Auxiliary results

In this section, we prove a preliminary lemma about permutations that is useful in many of
our proofs. We also derive tight bounds on the lower tails of χ2-random variables and state
an existing result on tail bounds for random projections.

A.1 Independent sets of permutations

In this section, we prove a combinatorial lemma about permutations, for which we need
to set up some additional notation. For a permutation π on k objects, let Gπ denote the
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corresponding undirected incidence graph, i.e., V (Gπ) = [k], and (i, j) ∈ E(Gπ) iff j = π(i)
or i = π(j).

Lemma 8. Let π be a permutation on k ≥ 3 objects such that dH(π, I) = k. Then the vertices
of Gπ can be partitioned into three sets V1, V2, V3 such that each is an independent set, and
|V1|, |V2|, |V3| ≥ bk3c ≥ k

5 .

Proof. Note that for any permutation π, the corresponding graph Gπ is composed of cycles,
and the vertices in each cycle together form an independent set. Consider one such cycle.
We can go through the vertices in the order induced by the cycle, and alternate placing
them in each of the 3 partitions. Clearly, this produces independent sets, and furthermore,
having 3 partitions ensures that the last vertex in the cycle has some partition with which
it does not share edges. If the cycle length C ≡ 0 (mod 3), then each partition gets C/3
vertices, otherwise the smallest partition has bC/3c vertices. The partitions generated from
the different cycles can then be combined (with relabelling, if required) to ensure that the
largest partition has cardinality at most 1 more than that of the smallest partition.

A.2 Tails bounds on χ2 random variables and random projections

In our analysis, we require tight control on lower tails of χ2 random variables. The following
lemma provides one such bound.

Lemma 9. Let Z` denote a χ2 random variable with ` degrees of freedom. Then for all
p ∈ [0, `], we have

Pr{Z` ≤ p} ≤
(p
`

exp
(

1− p

`

))`/2
= exp

(
− `

2

[
log

`

p
+
p

`
− 1

])
(53)

Proof. The lemma is a simple consequence of the Chernoff bound. In particular, we have for
all λ > 0 that

Pr{Z` ≤ p} = Pr{exp(−λZ`) ≥ exp(−λp)}
≤ exp(λp)E [exp(−λZ`)]
= exp(λp)(1 + 2λ)−

`
2 . (54)

where in the last step, we have used E [exp(−λZ`)] = (1 + 2λ)−
`
2 , which is valid for all

λ > −1/2. Minimizing the last expression over λ > 0 then yields the choice λ∗ = 1
2

(
`
p − 1

)
,

which is greater than 0 for all 0 ≤ p ≤ `. Substituting this choice back into equation (54)
proves the lemma.

We also state the following lemma for general sub-exponential random variables (see, for
example, Wainwright [Wai15, Theorem 2.2]). We use it in the context of χ2 random variables.

Lemma 10. Let X be a sub-exponential random variable. Then for all t > 0, we have

Pr{|X − E[X]| ≥ t} ≤ c′e−ct.

Lastly, we require tail bounds on the norms of random projections, a problem that has
been studied extensively in the literature on dimensionality reduction. The following lemma,
a consequence of the Chernoff bound, is taken from Dasgupta and Gupta [DG03, Lemma
2.2b].
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Lemma 11 ([DG03]). Let x be a fixed n-dimensional vector, and let Pnd be a projection matrix
from n-dimensional space to a uniformly randomly chosen d-dimensional subspace. Then we
have for every β > 1 that

Pr{‖Pnd x‖22 ≥
βd

n
‖x‖22} ≤ βd/2

(
1 +

(1− β)d

n− d

)(n−d)/2

. (55)

A.3 Strong converse for Gaussian channel capacity

The following result due to Shannon [Sha59] provides a strong converse for the Gaussian
channel. The non-asymptotic version as stated here was also derived by Yoshihara [Yos64].

Lemma 12 ([Yos64]). Consider a vector Gaussian channel on n coordinates with message
power P and noise power σ2, whose capacity is given by R = log

(
1 + P

σ2

)
. For any codebook

C with |C| = 2nR, if for some ε > 0 we have

R > (1 + ε)R,

then the probability of error pe ≥ 1− 2 · 2−nε for n large enough.

B Proof of Lemma 2

We prove each claim of the lemma separately.

B.1 Proof of claim (13a)

To start, note that by definition of the linear model, we have ‖P⊥Π∗y‖22 = ‖P⊥Π∗w‖22. Letting
Z` denote a χ2 random variable with ` degrees of freedom, we claim that

‖P⊥Π∗w‖22 − ‖P⊥Πw‖22 = Zk − Z̃k,
where k := min(d, dH(Π,Π∗)).

For the rest of the proof, we adopt the shorthand Π \ Π′ := range(ΠA) \ range(Π′A), and
Π ∩Π′ := range(ΠA) ∩ range(Π′A). Now, by the Pythagorean theorem, we have

‖P⊥Π∗w‖22 − ‖P⊥Πw‖22 = ‖PΠw‖22 − ‖PΠ∗w‖22.
Splitting it up further, we can then write

‖PΠw‖22 = ‖PΠ∩Π∗w‖22 + ‖(PΠ − PΠ∩Π∗)w‖22,
where we have used the fact that PΠ∩Π∗PΠ = PΠ∩Π∗ = PΠ∩Π∗PΠ∗ .

Similarly for the second term, we have ‖PΠ∗w‖22 = ‖PΠ∩Π∗w‖22 + ‖(PΠ∗ −PΠ∩Π∗)w‖22, and
hence,

‖PΠw‖22 − ‖PΠ∗w‖22 = ‖(PΠ − PΠ∩Π∗)w‖22 − ‖(PΠ∗ − PΠ∩Π∗)w‖22.
Now each of the two projection matrices above has rank3 dim(Π\Π∗) = k, which completes

the proof of the claim. To prove the lemma, note that for any δ > 0, we can write

Pr{F1(δ)} ≤ Pr{|Zk − k| ≥ δ/2}+ Pr{|Z̃k − k| ≥ δ/2}.
Using the sub-exponential tail-bound on χ2 random variables (see Lemma 10 in Appendix A.2)
completes the proof.

3With probability 1
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B.2 Proof of claim (13b)

We begin by writing

Prw{F2(δ)} = Prw




‖P⊥Π Π∗Ax∗‖22 + 2〈P⊥Π Π∗Ax∗, P⊥Πw〉︸ ︷︷ ︸

R(A,w)

≤ 2δ




.

We see that conditioned on A, the random variable R(A,w) is distributed as N (TΠ, 4σ
2TΠ),

where we have used the shorthand TΠ := ‖P⊥Π Π∗Ax∗‖22.

So applying standard Gaussian tail bounds (see, for example, Wainwright [Wai15, Exam-
ple 2.1]), we have

Prw{F2(δ)} ≤ exp

(
−(TΠ − 2δ)2

8σ2TΠ

)
.

Setting δ = δ∗ := 1
3TΠ completes the proof.
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