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Abstract—We prove the partial strong converse property for
the discrete memorylessnon-degraded wiretap channel, for which
we require the leakage to the eavesdropper to vanish but allow
an asymptotic error probability ǫ ∈ [0, 1) to the legitimate
receiver. We show that when the transmission rate is above
the secrecy capacity, the probability of correct decoding at the
legitimate receiver decays to zero exponentially. Therefore, the
maximum transmission rate is the same forǫ ∈ [0, 1), and the
partial strong converse property holds. Our work is inspired by
a recently developed technique based on information spectrum
method and Chernoff-Cramer bound for evaluating the exponent
of the probability of correct decoding.

I. I NTRODUCTION

We consider the discrete memorylessnon-degradedwiretap
channel, in which a transmitter wishes to send messages to
a legitimate receiver while keeping the messages secret from
an eavesdropper. The wiretap channel was first studied in [1]
with the assumption that the wiretap channel is degraded, and
the secrecy capacity of thenon-degradedwiretap channel was
determined in [2]. The general formula for the wiretap channel
can be found in [3]. Although [1] and [2] provide the secrecy
capacity for the wiretap channel, the proofs rely on Fano’s
inequality, and therefore, only a weak converse can be shown.

The strong converse property was first proposed in [4] for
the point-to-point channel, and has received significant atten-
tion recently due to the study of finite block-length channel
coding rate [5]–[7]. For the point-to-point channel, the strong
converse property states that when the transmission rate is
above the capacity, the asymptotic error probability goes to 1.
This implies that if we allow a potentially non-zero asymptotic
error probabilityǫ ∈ [0, 1), the maximal transmission rate is
still the same as the capacity, which only allowsǫ = 0. That
is, allowing a non-zero error probability does not increasethe
maximal rate. Reference [8] builds equivalent conditions for
the strong converse property using the information spectrum
method for the point-to-point channel, and [9, Section 3.7]
extends it to channels with cost constraints.

The maximal transmission rate for the wiretap channel is
constrained by two constraints: reliability and security.Let
ǫ denote the asymptotic error probability for the reliability
constraint, and letδ denote the variational distance for the
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secrecy constraint1. Reference [10] extends the method in
[9, Section 3.7] to show the strong converse property for
(ǫ, δ) ∈ [0, 1) × {0} for the degraded wiretap channel, and
name itpartial strong converseto account for the strict secrecy
constraint. Reference [11] utilizes the relationship between the
wiretap channel with feedback and secret key agreement [12]
to show that the strong converse property holds whenǫ+δ < 1
for the degraded wiretap channel. For the degraded quantum
wiretap channel, [13] develops a “pretty strong” converse.
Reference [14] develops strong Fano’s inequalities based on
image size characterization, and shows that the partial strong
converse property holds for the non-degraded wiretap channel.

Recently, a new strong converse technique has been pro-
posed in [15]–[19]. This technique is based on a novel usage
of information spectrum method [9] and a new recursive
bounding method. The usage of information spectrum method
provides an upper bound for the probability of correct decod-
ing, and the recursive bounding method plays a role similar
to single-letterization in the weak converse proof. It bounds
the exponent function of the probability of correct decoding,
and therefore shows that the probability of correct decoding
goes to zero exponentially when the rate is above the capacity.
This technique is general and has been applied to degraded
broadcast channels in [15], degraded broadcast channels with
feedback in [16], asymmetric broadcast channels in [17], state
dependent channels in [18], and Wyner-Ziv coding in [19].

Inspired by this new technique, we show that the partial
strong converse property holds for the non-degraded wiretap
channel. We utilize the information spectrum method and
Chernoff-Cramer bound to upper bound the probability of cor-
rect decoding. Under the condition that the leakage vanishes
asymptotically, we show that the exponent function of the
probability of correct decoding is strictly negative when the
transmission rate is higher than the secrecy capacity. Thus, the
probability of correct decoding decays to zero exponentially,
and the partial strong converse property holds. The main
difference between our work and [15]–[19] is that we do not
construct the auxiliary distributions for the recursive bounding
method for the purposes of single-letterization. Therefore,
our method can be extended to channels with multi-letter
characterizations [20]–[23] for their capacity regions.

1There are various kinds of secrecy constraints [3, Proposition 1]. For
instance, [1] and [2] use normalized mutual information, and [10] and [11]
use variational distance. We use normalized mutual information in this paper.
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II. PROBLEM SETTING AND MAIN RESULTS

A. System Model and Definitions

A wiretap channel consists of a transmitter (Alice) who
wishes to send a message uniformly distributed inMn to
a legitimate receiver (Bob) secretly in the presence of an
eavesdropper (Eve) through a channelWn : Xn → Yn ×Zn.
X denotes the input alphabet for Alice, whileY andZ denote
the output alphabets for Bob and Eve, respectively.X , Y
andZ are finite. Here, we consider the discrete memoryless
channel, and therefore, we have

Wn(yn, zn|xn) =

n
∏

t=1

W (yt, zt|xt), (1)

whereW (y, z|x) is the conditional probability mass function
(pmf) of the channel.

In the following, Xn denotes a random variable taking
values inXn, and the elements ofXn are denoted byxn.
The pmf of random variableXn is denoted bypXn . Similar
notation also applies to other random variables. To satisfythe
secrecy constraint, we require

lim
n→∞

1

n
I(Mn;Z

n) = 0. (2)

The encoderφ(n) maps the messagem ∈ Mn to
a codeword xn ∈ Xn. We allow the encoderφ(n)

to be a stochastic encoder and denote it asφ(n) =
{φ(n)(xn|m)}(m,xn)∈Mn×Xn , where φ(n)(xn|m) is a con-
ditional pmf. The decoder is denoted byψ(n) such that
ψ(n) : Yn → Mn. The joint pmf onMn × Xn × Yn × Zn

is given by

pMnXnY nZn(m,xn, yn, zn)

=
1

|Mn|
φ(n)(xn|m)

n
∏

t=1

W (yt, zt|xt). (3)

The average probability of correct decoding is given by

P(n)
c = P(n)

c (φ(n), ψ(n)) (4)

, Pr{ψ(n)(Y n) =Mn}. (5)

The average probability of error isP(n)
e = 1−P

(n)
c . For fixed

ǫ ∈ [0, 1), a rateR is ǫ-achievableif there exists a sequence
of codes{φ(n), ψ(n)}∞n=1 such that

lim sup
n→∞

P(n)
e ≤ ǫ, (6)

lim inf
n→∞

1

n
log |Mn| ≥ R. (7)

In this work, we consider the partial strong converse prop-
erty. Therefore, we require the code to satisfy (2). LetCs(ǫ|W )
denote the maximalǫ-achievablerate satisfying (2) through the
wiretap channelW (y, z|x). From [2], we have

Cs(0|W ) = max
p∈P(W )

I(U ;Y )− I(U ;Z), (8)

whereP(W ) is defined as

P(W ) ,

{

pUXY Z(u, x, y, z) : |U| ≤ |X |,

pY Z|X(y, z|x) =W (y, z|x),

U → X → (Y, Z)

}

. (9)

B. Main Result

Theorem 1. For a discrete memoryless non-degraded wiretap
channelW (y, z|x), the partial strong converse property holds,
i.e., for ǫ ∈ [0, 1), for any code(φ(n), ψ(n)) satisfying(2),

Cs(ǫ|W ) = Cs(0|W ). (10)

The proof is provided in Section III. It is inspired by the
new strong converse proof technique developed in [15]–[19].
We first use Verdu-Han bound and Chernoff-Cramer bound
to upper bound the probability of correct decoding. Then, we
focus on bounding the exponent function. We show that when
the transmission rate is aboveCs(0|W ) and (2) is satisfied, the
probability of correct decoding decays to zero exponentially
fast, and the partial strong converse property holds.

III. PROOF OF THEMAIN RESULT

Consider a sequence of codes for which (2) is satisfied.
Therefore, for eachδ > 0, there existsn0 such that∀n > n0,
we have

1

n
I(Mn;Z

n) < δ. (11)

In the following, we considern > n0.

Lemma 1. (Verdu-Han [8, Theorem 4]) For anyη > 0 and
for any (φ(n), ψ(n)) satisfying 1

n
log |Mn| ≥ R, we have

P(n)
c (φ(n),ψ(n)) ≤ pMnXnY nZn

{

R ≤
1

n
log

pY n|Mn
(Y n|Mn)

pY n(Y n)
+ η

}

+ e−nη. (12)

Lemma 2. (Chernoff-Cramer) For any real valued random
variableA and anyθ > 0, we have

Pr{A ≥ a} ≤ exp{−[θa− log E[exp(θA)]]}. (13)

By Lemmas 1 and 2, we have the following lemma.

Lemma 3. For anyθ > 0, and for any(φ(n), ψ(n)) satisfying
1
n
log |Mn| ≥ R, we have

P(n)
c (φ(n), ψ(n))

≤ exp
{

n
[

θη − θR+
1

n
Ω

(θ)

p(n)(X
nY nZn|Mn)

]

}

+ e−nη (14)

whereΩ(θ)

p(n)(X
nY nZn|Mn) is defined as

Ω
(θ)

p(n)(X
nY nZn|Mn)

, log Ep(n)

[

{

pY n|Mn
(Y n|Mn)

pY n(Y n)

}θ
]

(15)



wherep(n) = pMnXnY nZn is defined in(3).

Proof: We define the random variableB as

B ,
1

n
log

pY n|Mn
(Y n|Mn)

pY n(Y n)
−R. (16)

Then, by (12) in Lemma 1, we have

P(n)
c (φ(n), ψ(n))

≤ pMnXnY nZn{B ≥ −η}+ e−nη (17)

= pMnXnY nZn{nB ≥ −nη}+ e−nη (18)

By identifying A = nB, a = −nη and applying (13) in
Lemma 2, we have

P(n)
c (φ(n), ψ(n))

≤ exp{−[θ(−nη)− log Ep(n) [exp(nθB)]]}+ e−nη (19)

= exp
{

n
[

θη − θR +
1

n
Ω

(θ)

p(n)(X
nY nZn|Mn)

]

}

+ e−nη. (20)

�

Let P(n)(W ) be a set of all pmfspMnXnY nZn on Mn ×
Xn ×Yn ×Zn defined in (3). Moreover, define the subset of
all pmfs inP(n)(W ) that satisfy the secrecy constraint in (11)
as,

P
(n)
δ (W ) =

{

pMnXnY nZn : pMnXnY nZn ∈ P(n)(W ),

1

n
I(Mn;Z

n) < δ

}

. (21)

In order to bound the exponent function in (14), we define
the communication potentialΩ

(θ)

n (W ) as follows:

Ω
(θ)

n (W ) , max
p(n)∈P

(n)
δ

(W )

1

n
Ω

(θ)

p(n)(X
nY nZn|Mn). (22)

We note that we do not construct the auxiliary distributions
for single-letterization. Therefore, the definition of commu-
nication potential is different from the definitions given in
[15]–[19]. References [15]–[19] apply a new technique called
recursive bounding method for the single-letterized exponent.
Here, we keep the multi-letterized form, and connect it to the
proof of the weak converse.

From (14) in Lemma 3, we have

P(n)
c (φ(n), ψ(n)) ≤ exp

{

n
[

θη − θR+Ω
(θ)

n (W )
]

}

+ e−nη. (23)

We remark that there are two main factors affecting the
exponent function in (23): the code rateR and the communi-
cation potentialΩ

(θ)

n (W ).
To further study (23), we show thatΩ(θ)

p(n)(X
nY nZn|Mn)

has the properties listed in Lemma 4 below. Lemma 4 connects
communication potential to the mutual information expression.
We note that the properties listed in Lemma 4 are first obtained
in [15]–[19].

Lemma 4.
1) Ω

(θ)

p(n)(X
nY nZn|Mn) is a convex function ofθ > 0,

whereΩ(θ)

p(n)(X
nY nZn|Mn) is defined in(15).

2)

lim
θ→0+

1
n
Ω

(θ)

p(n)(X
nY nZn|Mn)

θ
=

1

n
I(Mn;Y

n) (24)

3) For each∆ > 0, there existsθ > 0 such that

Ω
(θ)

n (W ) ≤ θ

[

max
p(n)∈P

(n)
δ

1

n
I(Mn;Y

n) +
∆

2

]

, (25)

whereΩ
(θ)

n (W ) is given in(22).

Proof: To simplify the notation, define

a , (m, yn), (26)

A , (Mn, Y
n), (27)

A , Mn × Yn, (28)

ρ(a) , log
pY n|Mn

(yn|m)

pY n(yn)
, (29)

ξ(θ) , Ω
(θ)

p(n)(X
nY nZn|Mn). (30)

From (15), we have

ξ(θ) = Ω
(θ)

p(n)(X
nY nZn|Mn) = log





∑

a∈A

p
(n)
A (a)eθρ(a)



 .

(31)

We evaluate the second derivative to show the convexity ofθ

ξ′(θ) = e−ξ(θ)





∑

a∈A

p
(n)
A (a)ρ(a)eθρ(a)



 , (32)

ξ′′(θ) = e−2ξ(θ)

×





∑

a,b∈A

p
(n)
A (a)p

(n)
A (b)

{ρ(a)− ρ(b)}2

2
eθ{ρ(a)+ρ(b)}



 .

(33)

From (33), sinceξ′′(θ) ≥ 0, Ω(θ)

p(n)(X
nY nZn|Mn) is a convex

function of θ > 0. Hence, part 1) holds.
For part 2), considerθ = 0 in (32), andξ(0) = 0. We have

ξ′(0) = I(Mn;Y
n). (34)

For part 3), given∆ > 0, define the following function:

ζ(θ) , Ω
(θ)

n (W )− θ

[

max
p(n)∈P

(n)
δ

(W )

1

n
I(Mn;Y

n) +
∆

2

]

.

(35)

The functionζ(θ) has the following properties:

ζ(0) = 0, (36)

ζ′(0) = −
∆

2
< 0, (37)



ζ′′(θ) =
1

n
ξ′′(θ) ≥ 0. (38)

By the definition given in (22) and (24), (37) holds. (38)
follows (33). For each∆ > 0, there existsf(∆) > 0 such
that for θ ∈ (0, f(∆)], we haveζ(θ) ≤ 0. Finally, (25) holds.
�

Now, consider a code with rate

R = Cs(0|W ) + 4δ. (39)

We can further boundΩ
(θ)

n (W ) in (25) as in the following
lemma.

Lemma 5. For eachδ > 0, there existsθ > 0 such that

Ω
(θ)

n (W ) ≤ θ [Cs(0|W ) + 3δ] , (40)

whereΩ
(θ)

n (W ) is given in(22).

Proof: Take ∆ = 4δ. For the fixed∆ > 0, from (25) in
Lemma 4, there exits aθ > 0 such that

Ω
(θ)

n (W ) ≤ θ

[

max
p(n)∈P

(n)
δ

1

n
I(Mn;Y

n) + 2δ

]

(41)

≤ θ

[

max
p(n)∈P(n)

1

n
I(Mn;Y

n) +

(

δ −
1

n
I(Mn;Z

n)

)

+ 2δ

]

(42)

≤ θ [Cs(0|W ) + 3δ] , (43)

where (42) holds due to the definition in (21), and (43) holds
due to [2] [24, Section 22.1.2].�

We are now ready to prove Theorem 1. We consider a
sequence of codes for which (2) is satisfied. Therefore, given
δ > 0, there existsn0 such that∀n > n0, we have (11).

Now, assume that the code rate,R, equals toCs(0|W )+4δ.
From Lemma 3, we upper bound the probability of correct
decoding as (14). We further upper bound (14) as (23). Now,
taking∆ = 4δ, from 3) in Lemma 4, there existsθ > 0 such
that (25) holds, which can be further upper bounded by (40)
in Lemma 5. Therefore, (23) becomes

P(n)
c (φ(n), ψ(n)) ≤ exp

{

n
[

θη − θR+ θ [Cs(0|W ) + 3δ]
]

}

+ e−nη (44)

= exp
{

nθ
[

η − δ
]

}

+ e−nη. (45)

Finally, by pickingη = δ
2 , we have

P(n)
c (φ(n), ψ(n)) ≤ e−nθ δ

2 + e−n δ

2 . (46)

Thus, the probability of correct decoding decays to zero
exponentially fast. For eachδ > 0 andR ≥ Cs(0|W ) + 4δ,
we have shownlim supn→∞ P

(n)
e = 1. Therefore, for fixed

ǫ ∈ [0, 1), if (2) and (6) are satisfied, thenR < Cs(0|W )+4δ.
Hence, we haveCs(ǫ|W ) = Cs(0|W ), completing the proof
of Theorem 1.

IV. CONCLUSIONS AND REMARKS

In this work, we proved the partial strong converse property
for the discrete memoryless non-degraded wiretap channel,for
which we require the leakage to the eavesdropper to vanish.
Our work is based on the information spectrum method and
Chernoff-Cramer bound for upper bounding the probability
of correct decoding. We focus on bounding the exponent
function of the probability of correct decoding. There are two
main factors affecting the exponent function: the transmission
rate and the communication potential. When the transmission
rate is higher than the secrecy capacity, we show that the
exponent is strictly negative. Therefore, the probabilityof
correct decoding decays to zero exponentially fast, which
implies that the partial strong converse property holds.

We remark that the proof of Theorem 1 can also be adapted
to the proof of the strong converse for the point-to-point
discrete memoryless channel. First, we defineC(0|W ) as
the channel capacity for the point-to-point channel. For this
channel,p(n) = pMnXnY n in Lemma 3. Since there is no
security constraint, the communication potential for the point-
to-point channel becomes

Ω
(θ)

n (W ) , max
p(n)∈P(n)(W )

1

n
Ω

(θ)

p(n)(X
nY n|Mn). (47)

Moreover, (25) in Lemma 4 becomes

Ω
(θ)

n (W ) ≤ θ

[

max
p(n)∈P(n)

1

n
I(Mn;Y

n) +
∆

2

]

. (48)

Therefore, given∆ > 0, for a code withR ≥ C(0|W ) + ∆,
we havelim supn→∞ P

(n)
e = 1.

We also remark that the proof of Theorem 1 can also be
adapted to the proof of the strong converse for the discrete
memoryless multiple access channel, discrete memoryless in-
terference channel and discrete memoryless broadcast channel.
Although we do not know the single-letterized capacity region
expressions for interference and broadcast channels, we have
the multi-letterized capacity region expressions [22], [23].
With the multi-letterized capacity region expressions [21]–
[23], we can show that these channels satisfy the strong
converse property. For the multiple access channel, the strong
converse property has been reported in [25], [26]. Our method
can be viewed as an alternative proof without resorting to
the wringing technique. For broadcast channels, the strong
converse properties reported so far are for those with known
single-letterized capacity regions, such as the degraded broad-
cast channel [15], [27] and the broadcast channel with de-
graded message sets [17], [28].
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