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Distortion Bounds for Transmitting Correlated
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Abstract—This paper investigates the joint source-channel
coding problem of sending two correlated memoryless sources
with common part over a memoryless multiple access channel
(MAC). An inner bound and two outer bounds on the achievable
distortion region are derived. In particular, they respectively
recover the existing bounds for several special cases, such as
communication without common part, lossless communication,
and noiseless communication. When specialized to quadratic
Gaussian communication case, the inner bound and outer bound
are used to generate two new bounds. Numerical result shows
that common part improves the performance of such distributed
communication system.

I. INTRODUCTION

The joint source-channel coding (JSCC) problem of trans-
mitting correlated sources (with common part) over multiple
access channel was first studied by Cover et al. [10] in which
a bivariate finite-alphabet source is to be transmitted losslessly
over a two-to-one multiple-access channel. As a lossy version
of such JSCC problem, Minero et al. [7] considered the
achievable distortion region of sending memoryless correlated
source without common part over memoryless multiple access
channel, and they derived an inner bound using a unified
framework of hybrid coding (although the result still holds for
the communication with common part, however it will become
loose especially when the correlated sources are identical).
This unified hybrid coding [7] generalizes the JSCC scheme
given by Cover et al. [10], and can recover the achievability
result given in [10]. In addition, specialized to quadratic
Gaussian communication case, the inner bound in [7] can also
recover the performance of hybrid coding given by Lapidoth
et al. [12].

As for the converse part, Cover et al. [10] gave a tight but
uncomputable (multi-letter) outer bound for lossless commu-
nication case, and Kang et al. [17] single-letterized this outer
bound by utilizing a data processing inequality on maximal
correlation coefficient. For lossy case, Lapidoth et al. [12]
gave an outer bound for quadratic Gaussian communication
utilizing a similar data processing inequality as well. Recently,
Lapidoth et al. [18] also derived a new outer bound by the
technology of introducing an auxiliary random variable (or
remote source). However, the necessary condition of [18]
is weaker than the one of [12] due to no data processing
inequality applied in the single-letterization processing [18].
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As a lossy version of the problem (with common part)
studied by Cover et al. [10], in this paper, we consider JSCC of
transmitting two memoryless correlated sources with common
part over multiple access channel, and give an inner bound
and two outer bounds on the achievable distortion region. For
the inner bound, we propose an extended version of hybrid
coding by adding common part into the hybrid coding [7]
that is designed for the case with no common part, and hence
our inner bound can recover the performance of the hybrid
coding [7] by setting the common part to be empty. In addition,
the outer bound is derived by introducing auxiliary random
variables (or remote sources) as in [1]-[6], and it can recover
the existing outer bounds when common part is absent at both
encoders. When specialized to Gaussian communication with
Gaussian common part, our bounds reduce to a new inner
bound and a new outer bound.

The rest of this paper is organized as follows. Section
II summarizes basic notations, and formulates the problem.
Section III gives the main results for transmitting memoryless
sources over memoryless MAC problem. Section IV gives
the main results for Gaussian communication case. Finally,
Section V gives the concluding remarks.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the correlated sources S1 and S2 have common
part in sense of Gács-Körner-Witsenhausen common informa-
tion [13], [14].

Definition 1. S0 is a common part of two correlated sources
S1 and S2 if there exist two functions fk : Sk 7→ S0, k = 1, 2
such that S0 = f1 (S1) = f2 (S2) with probability one, where
Sk denotes the alphabet of Sk, k = 0, 1, 2. We say that S1 and
S2 have a common part if there exists a such S0 as a common
part of S1 and S2.

Now consider the problem transmitting correlated sources
over a multiple access channel as shown in Fig. 1. The
sender k = 1, 2 first codes discrete memoryless source Snk
into Xn

k using a source-channel code, then transmits Xn
k to

a common receiver through a discrete memoryless multiple
access channel (DM-MAC) pY |X1,X2

, and finally, the receiver
produces source reconstructions Ŝn1 and Ŝn2 from the received
signal Y n.

Definition 2. An n-length source-channel code is defined by
the two encoding functions xnk : Snk 7→ Xnk , k = 1, 2 and two
decoding functions ŝk : Yn 7→ Ŝnk , k = 1, 2, where Ŝk,Xk
and Y are the alphabet of source reconstruction Ŝk, channel
input Xk, and channel output Y .
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Fig. 1. Communication of memoryless correlated sources over a DM-MAC.

For any n-length source-channel code, the induced distor-
tion is defined as

Edk(Snk , Ŝ
n
k ) =

1

n

n∑
t=1

Edk(Sk,t, Ŝk,t), (1)

for k = 1, 2, where dk(sk, ŝk) : Sk × Ŝk 7→ [0,+∞] is a
distortion measure function for source Sk.

Definition 3. For transmitting sources (S1, S2) over MAC
pY |X1,X2

, we say the distortion tuple (D1, D2) is achievable,
if there exists a sequence of source-channel codes such that

lim sup
n→∞

Edk(Snk , Ŝ
n
k ) ≤ Dk. (2)

Definition 4. For transmitting source (S1, S2) over MAC
pY |X1,X2

, the admissible distortion region is defined as

R , {(D1, D2) : (D1, D2) is achievable} . (3)

In symmetric case,

Rsym , {D : (D,D) is achievable} . (4)

III. GENERAL COMMUNICATION

Now, we bound the distortion region for correlated sources
communication over MAC. We first define a distortion region

R(i) =
{

(D1, D2) : There exist some pmf pV0|S0
pV1|S1,V0

pV2|S2,V0
,

and functions xk (v0, vk, sk) , ŝk (v0, v1, v2, y) , k = 1, 2 such that

Edk(Sk, Ŝk) ≤ Dk, k = 1, 2,

I (V1;S1|V0V2) < I (V1;Y |V0V2) ,

I (V2;S2|V0V1) < I (V2;Y |V0V1) ,

I (V1V2;S1S2|V0) < I (V1V2;Y |V0) ,

I (V0V1V2;S1S2) < I (V0V1V2;Y )
}
. (5)

and another two distortion regions1

R(o)
1 ={
(D1, D2) : For any pU[1:L]|S1,S2

, there exist some pmf pŜ1,Ŝ2|S1,S2,U
and

pQ
∏

pS1,S2
(s1,i, s2,i)pU[1:L]|S1,S2

(u[1:L],i|s1,i, s2,i)pX1|Sn
1 ,Q

pX2|Sn
2 ,Q

such that Edk(Sk, Ŝk) ≤ Dk, k = 1, 2,

I(S1S2; Ŝ1Ŝ2|UA) ≤ I (X1X2;Y |UnAQ) for any A ⊆ [1 : L]
}
. (6)

1The L in R(o)
1 is an arbitrary positive integer.
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Fig. 2. The hybrid coding used to prove the inner bound in Theorem 1.

and

R(o)
2 ={
(D1, D2) : For any pU|S1,S2

such that S1 → (S0, U)→ S2,

there exist some pmf pŜ1,Ŝ2|S1,S2,U
and

pQ
∏

pS1,S2 (s1,i, s2,i) pU|S1,S2
(ui|s1,i, s2,i) pX1|Sn

1 ,Q
pX2|Sn

2 ,Q

such that Edk(Sk, Ŝk) ≤ Dk, k = 1, 2,

I(S1S2; Ŝ1Ŝ2) ≤ I (X1X2;Y |Q) ,

I(S1S2; Ŝ1Ŝ2|S0) ≤ I (X1X2;Y |Sn0Q) ,

I(S1; Ŝ1Ŝ2|S2) ≤ I (X1;Y |X2S
n
2Q) ,

I(S2; Ŝ1Ŝ2|S1) ≤ I (X2;Y |X1S
n
1Q) ,

I(S1S2; Ŝ1Ŝ2|S0U) ≤ I (X1X2;Y |Sn0 UnQ) ,

I(S1; Ŝ1Ŝ2|S2U) ≤ I (X1;Y |X2S
n
2 U

nQ) ,

I(S2; Ŝ1Ŝ2|S1U) ≤ I (X2;Y |X1S
n
1 U

nQ)
}
. (7)

Note that in R(o)
2 , pU |S1,S2

such that S1 → (S0, U)→ S2 al-
ways exists, since S1 → (S0, S1)→ S2 and S1 → (S0, S2)→
S2. In addition, it is easy to verify that for such pU |S1,S2

, the
random variables (Sn1 , S

n
2 , S

n
0 , U

n, X1, X2, Q) in R(o)
2 satisfy

X1 → (Sn1 , Q) → (Sn0 , U
n, Q) → (Sn2 , Q) → X2. Now we

give the following theorem.

Theorem 1. For transmitting sources (S1, S2) with common
part S0 over MAC pY |X1,X2

,

R(i) ⊆ R ⊆ R(o)
1 ⊆ R(o)

2 . (8)

Remark 1. The inner bound in Theorem 1 can be easily
extended to Gaussian or any other well-behaved continuous-
alphabet source-channel pair by standard discretization method
[9, Thm. 3.3], and moreover for this case the outer bound
still holds. Theorem 1 can be also extended to the case of
source-channel bandwidth mismatch, where m samples of
memoryless correlated sources are transmitted through n uses
of a DM-MAC. This can be accomplished by replacing the
source and channel symbols in Theorem 1 by supersymbols
of lengths m and n, respectively. Besides, Theorem 1 can
be also extended to the problem with channel input cost (by
adding channel input constraint).

Proof: The proof of R(i) ⊆ R ⊆ R(o)
1 is given

in Appendix A. Now we show that R(o)
1 ⊆ R(o)

2 . Actu-
ally R(o)

2 is a straightforward consequence of R(o)
1 . Choose

L = 4, U1 = S1, U2 = S2, U3 = S0, U4 = U in
R(o)

1 , where U |S1, S2 follows pU |S1,S2
. Then setting A =

∅, {1} , {2} , {3} , {1, 4} , {2, 4} , {3, 4} in R(o)
1 respectively

gives the inequalities in R(o)
2 . Hence R(o)

1 ⊆ R(o)
2 .
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The inner bound R(i) in Theorem 1 is achieved by
a unified hybrid coding scheme depicted in Fig. 2. In
this scheme, the codebook has a layered (or superposi-
tion) structure, and consists of randomly and independently
generated codewords (V n0 (m0), V n1 (m0,m1), V n2 (m0,m2)),
(m0,m1,m2) ∈

∏2
i=0 [1 : 2nri ], where (r0, r1, r2) denote

the rates of the digital information part and their values are
given in Appendix A. At encoder sides, upon source sequence
Snk , k = 1, 2, the encoder k first generates the common source
Sn0 , and produces a common digital message M0 from Sn0
by joint typicality encoding. Then upon M0 and Snk , the
encoder k produces a private digital messages Mk. Finally, the
codeword (V n0 (M0), V nk (M0,Mk)) and the source sequence
Snk are used to generate channel input Xn

k by symbol-by-
symbol mapping xk (v0, vk, sk). At decoder side, upon re-
ceived signal Y n, the decoder reconstruct (M0,M1,M2) (and
also (V n0 (m0), V n1 (m0,m1), V n2 (m0,m2))) losslessly by joint
typicality decoding, and then it produces Ŝnk , k = 1, 2 by
symbol-by-symbol mapping ŝk (v0, v1, v2, y). Such a scheme
could achieve any (D1, D2) in the inner bound R(i).

Note that our hybrid coding is a extension of the hybrid
coding in [7] to the case of correlated sources with common
part. By setting the common part as empty, i.e., V0 = ∅, our
result can recover the performance of the hybrid coding in [7];
see the special cases in the following.

The outer bounds R(o)
1 and R(o)

2 in Theorem 1 are derived
by introducing auxiliary random variables (or remote sources)
Un[1:L] or Un. This bounding technology was originated in the
multiple description problem by Ozarow [1], and sequentially
used in the distributed source coding problem by Wagner et
al. [2] and the source broadcast problem [3], [4], [5], [6]. As
these works, in our proof one or multiple additional random
variables beyond those in the original problem are introduced.
Besides, for R(o)

2 the auxiliary random variable U is restricted
to following the Markov chain S1 → (S0, U) → S2. This is
inspired the work of Wagner et al. [2], where they showed
that introducing an auxiliary random variable that follows
a Markov chain structure is sufficient to achieve the tight
bound for distributed source coding problem. Observe that our
problem is a extension of distributed source coding problem
to the noisy communication case, hence such a Markov chain
structure is also used in our bound. Besides, such a Markov
chain structure also makes a sequence of data processing
inequalities available, which in turn generates some simpler
bounds (see Section IV-C).

A. Special Cases

• Lossy Communication without Common Part
When there is no common part, the inner bound in Theorem
1 reduces to [7, Thm. 1], i.e.,

R(i) =
{

(D1, D2) : There exist some pmf pV0pV1|S1,V0
pV2|S2,V0

,

and functions xk (v0, vk, sk) , ŝk (v0, v1, v2, y) , k = 1, 2 such that

Edk(Sk, Ŝk) ≤ Dk, k = 1, 2,

I (V1;S1|V2V0) < I (V1;Y |V2V0) ,

I (V2;S2|V1V0) < I (V2;Y |V1V0) ,

I (V1V2;S1S2|V0) < I (V1V2;Y |V0)
}
. (9)

In this case, V0 is independent of S1 and S2, and it becomes
a timesharing auxiliary random variable. In addition, the outer
bound R(o)

2 reduces to a new outer bound

R(o) =
{

(D1, D2) : For any pU|S1,S2
such that S1 → U → S2,

there exist some pmf pŜ1,Ŝ2|S1,S2,U
and

pQ
∏

pS1,S2 (s1,i, s2,i) pU|S1,S2
(ui|s1,i, s2,i) pX1|Sn

1 ,Q
pX2|Sn

2 ,Q

such that Edk(Sk, Ŝk) ≤ Dk, k = 1, 2,

I(S1S2; Ŝ1Ŝ2) ≤ I (X1X2;Y |Q) ,

I(S1; Ŝ1Ŝ2|S2) ≤ I (X1;Y |X2S
n
2Q) ,

I(S2; Ŝ1Ŝ2|S1) ≤ I (X2;Y |X1S
n
1Q) ,

I(S1S2; Ŝ1Ŝ2|U) ≤ I (X1X2;Y |UnQ) ,

I(S1; Ŝ1Ŝ2|S2U) ≤ I (X1;Y |X2S
n
2 U

nQ) ,

I(S2; Ŝ1Ŝ2|S1U) ≤ I (X2;Y |X1S
n
1 U

nQ)
}
. (10)

• Lossless Communication with Common Part
When specialized to lossless communication of correlated
source with common part, by setting V0 = (S0,W ) , Vk =
(Sk, Xk) , xk (v0, vk, sk) = xk, ŝk (v0, v1, v2, y) = sk, k =
1, 2 where W is a random variable independent of S1 and
S2, the inner bound in Theorem 1 recovers the inner bound
[10, Thm. 1] on the admissible sources region, i.e.,

R(i) =
{
pS1,S2 : There exist some pmf pW pX1|S1,W pX2|S2,W such that

H (S1|S2) ≤ I (X1;Y |X2S2W ) ,

H (S2|S1) ≤ I (X2;Y |X1S1W ) ,

H (S1S2|S0) ≤ I (X1X2;Y |S0W ) ,

H (S1S2) ≤ I (X1X2;Y )
}
. (11)

In addition, the outer bound in Theorem 1 reduces to a new
outer bound

R(o) =
{
pS1,S2 : For any pU|S1,S2

such that S1 → (S0, U)→ S2,

there exist some pmf

pQ
∏

pS1,S2 (s1,i, s2,i) pU|S1,S2
(ui|s1,i, s2,i) pX1|Sn

1 ,Q
pX2|Sn

2 ,Q
such that

H (S1S2) ≤ I (X1X2;Y |Q) ,

H (S1|S2) ≤ I (X1;Y |X2S
n
2Q) ,

H (S2|S1) ≤ I (X2;Y |X1S
n
1Q) ,

H (S1S2|S0) ≤ I (X1X2;Y |Sn0Q) ,

H (S1S2|S0U) ≤ I (X1X2;Y |Sn0 UnQ) ,

H (S1|S2U) ≤ I (X1;Y |X2S
n
2 U

nQ) ,

H (S2|S1U) ≤ I (X2;Y |X1S
n
1 U

nQ)
}
. (12)

Furthermore, if (S1, S2) satisfy S1 → S0 → S2, then

R = R(i) = R(o) =
{
pS1,S2 : There exist some pmf

pW pX1|S1,W pX2|S2,W such that
H (S1|S2) ≤ I (X1;Y |X2S2W ) ,

H (S2|S1) ≤ I (X2;Y |X1S1W ) ,

H (S1S2|S0) ≤ I (X1X2;Y |S0W ) ,

H (S1S2) ≤ I (X1X2;Y )
}
. (13)

This implies the admissible sources region for transmitting
the correlated sources that are conditionally independent given
the common part has been characterized completely. As a
counterpart, the admissible sources region for broadcasting
conditionally independent sources has been given in [6].
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When S0, S1, S2 are independent, the distortion region can
be used to derive the capacity region of Multiple Access
Channel with Common Message.
• Multiple Access Channel with Common Message

Consider lossless communication of independent sources
S0, S1, S2 with H (Sk) = Rk, k = 0, 1, 2, then the problem
becomes Multiple Access Channel with Common Message
[11]. Specialized to this case, (13) reduces to the capacity
region [11, Eqn. 11], i.e.,

R = R(i) = R(o) =
{

(R0, R1, R2) : There exist some pmf

pW pX1|W pX2|W such that
R1 ≤ I (X1;Y |X2W ) ,

R2 ≤ I (X2;Y |X1W ) ,

R1 +R2 ≤ I (X1X2;Y |W ) ,

R0 +R1 +R2 ≤ I (X1X2;Y )
}
. (14)

• Distributed Source Coding with Common Part
Consider the MAC pY |X1,X2

is noiseless, i.e., Y = (X1, X2),
and constrain H (Xk) ≤ Rk, k = 1, 2, then the problem
becomes Distributed Source Coding with Common Part [8].
Set Vk = (Vk, Xk) , xk (v0, vk, sk) = xk, ŝk (v0, v1, v2, y) =
ŝk (v0, v1, v2) , k = 1, 2, where X1 and X2 are two random
variables independent of each other and other variables. Then
the inner bound of Theorem 1 recovers the inner bound [8,
Thm.1] on the achievable distortion region, i.e.,

R(i) =
{

(D1, D2) : There exist some pmf pV0|S0
pV1|S1,V0

pV2|S2,V0
,

and functions ŝk (v0, v1, v2) , k = 1, 2 such that

Edk(Sk, Ŝk) ≤ Dk, k = 1, 2,

I (V1;S1|V0V2) < R1,

I (V2;S2|V0V1) < R2,

I (V0V1V2;S1S2) < R1 +R2

}
. (15)

IV. QUADRATIC GAUSSIAN COMMUNICATION

In this section, we apply the result for general communica-
tion to the quadratic Gaussian communication case. Consider
sending jointly Gaussian sources Sk = (S0, S

′
k) , k = 1, 2 with

(S0, S
′
1, S
′
2) ∼ N

(
0,Σ(S0,S′

1,S
′
2)

)
and2

Σ(S0,S′
1,S

′
2)

=

 1 ρ01 ρ02

ρ01 1 ρ12

ρ02 ρ12 1

 (16)

over a power-constrained Gaussian MAC Y = X1 +X2 + Z
with E

(
X2
k

)
≤ Pk, k = 1, 2 and Z ∼ N (0, 1)3. We

also assume distortion is measured by quadratic distortion
function on S′k, k = 1, 2, i.e., dk(sk, ŝk) = d(s′k, ŝk) ,
(s′k − ŝk)2, k = 1, 2, and source bandwidth and channel
bandwidth are matched.

Without loss of generality, (S0, S
′
1, S
′
2) can be expressed as

S′1 = ρ01S0 +
√

1− ρ2
01U1, (17)

S′2 = ρ02S0 +
√

1− ρ2
02U2, (18)

2Throughout this paper, we use Σ(X,Y ) to denote the covariance of (X,Y )
and ΣX,Y to denote the cross-covariance of X and Y .

3For simplicity, we assume source variances are unit and so is the channel
noise power, which can cover general cases by scaling Pk and Dk .

with

U1 = β1U +
√

1− β2
1B1, (19)

U2 = β2U +
√

1− β2
2B2. (20)

where U ∼ N (0, 1) and Bk ∼ N (0, 1) , k = 1, 2 are mutually
independent Gaussian variables and also independent of S0,
and

β1β2 =
ρ12 − ρ01ρ02√

(1− ρ2
01) (1− ρ2

02)
. (21)

Obviously S1 → (S0, U)→ S2 holds.

A. Hybrid Coding Scheme

In the following, we obtain the performance of hybrid
coding scheme by specializing the inner bound of Theorem
1. Let

V0 = S0 +W0 (22)

Vk = Fk (S0, Sk, V0)
T

+Wk, k = 1, 2, (23)

and set xk (v0, vk, sk) , k = 1, 2 to the linear functions

Xk = Gk (S0, Sk, V0, Vk)
T
, k = 1, 2, (24)

where Wk ∼ N (0, ωk) , k = 0, 1, 2 are mutually indepen-
dent and also independent of Sk, k = 0, 1, 2, and Fk =
(fk,1, fk,2, fk,3) and Gk = (gk,1, gk,2, gk,3, gk,4) are two row
vectors of coefficients.

This induces the relationship

(S0, S1, S2, V0, V1, V2, Y )
T

= A (S0, S1, S2,W0,W1,W2, Z)
T
,

where A is given in (25) with

a71 = g1,1+g2,1+g1,3+g2,3+g1,4 (f1,1 + f1,3)+g2,4 (f2,1 + f2,3) .

Hence the covariance of (S0, S1, S2, V0, V1, V2, Y ) is given by

Σ(S0,S1,S2,V0,V1,V2,Y ) = AΣ(S0,S1,S2,W0,W1,W2,Z)A
T . (26)

Set ŝk (v0, v1, v2, y) , k = 1, 2 to the linear functions

Ŝk = ΣSk,(V0,V1,V2,Y )Σ
−1
(V0,V1,V2,Y ) (V0, V1, V2, Y )

T
, (27)

then the covariance of error Ek , Sk − Ŝk, k = 1, 2 is given
by

ΣEk
= ΣSk

− ΣSk,(V0,V1,V2,Y )Σ
−1
(V0,V1,V2,Y )Σ

T
Sk,(V0,V1,V2,Y ).

In addition, owing to power constraint,

ΣXk
≤ Pk, (28)

where
ΣXk

= GkΣ(S0,Sk,V0,Vk)G
T
k . (29)

Substitute these random variables and functions into R(i) in
Theorem 1, then we get the performance of the hybrid coding.
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A =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0

f1,1 + f1,3 f1,2 0 f1,3 1 0 0
f2,1 + f2,3 0 f2,2 f2,3 0 1 0

a71 g1,2 + g1,4f1,2 g2,2 + g2,4f2,2 g1,3 + g1,4f1,3 + g2,3 + g2,4f2,3 g1,4 g2,4 1


(25)

Theorem 2. For transmitting Gaussian source with common
part over Gaussian MAC,

R ⊇ R(i)
h ,

{
(D1, D2) : There exist Fk, Gk, ω0, ω1, ω2, k = 1, 2

such that ΣEk ≤ Dk,ΣXk ≤ Pk, k = 1, 2,∣∣Σ(V0,V2,S0,S1)

∣∣∣∣Σ(V0,V2,V1,S0,S1)

∣∣ <
∣∣Σ(V0,V2,Y )

∣∣∣∣Σ(V0,V2,V1,Y )

∣∣ ,∣∣Σ(V0,V1,S0,S2)

∣∣∣∣Σ(V0,V2,V1,S0,S2)

∣∣ <
∣∣Σ(V0,V1,Y )

∣∣∣∣Σ(V0,V2,V1,Y )

∣∣ ,∣∣Σ(V0,S0,S1,S2)

∣∣∣∣Σ(V0,V2,V1,S0,S1,S2)

∣∣ <
∣∣Σ(V0,Y )

∣∣∣∣Σ(V0,V2,V1,Y )

∣∣ ,∣∣Σ(S0,S1,S2)

∣∣∣∣Σ(V0,V2,V1,S0,S1,S2)

∣∣ < |ΣY |∣∣Σ(V0,V2,V1,Y )

∣∣}. (30)

Proof: Substitute the random variables and functions set
above into R(i) of Theorem 1, then

I (V1;S1|V0V2) =
1

2
log

∣∣Σ(V0,V2,S1)

∣∣ ∣∣Σ(V0,V2,V1)

∣∣∣∣Σ(V0,V2,V1,S1)

∣∣ ∣∣Σ(V0,V2)

∣∣
and

I (V1;Y |V0V2) =
1

2
log

∣∣Σ(V0,V2,Y )

∣∣ ∣∣Σ(V0,V2,V1)

∣∣∣∣Σ(V0,V2,V1,Y )

∣∣ ∣∣Σ(V0,V2)

∣∣ .
Hence the inequality I (V1;S1|V0V2) < I (V1;Y |V0V2) in

R(i) is equivalent to |Σ(V0,V2,S0,S1)|
|Σ(V0,V2,V1,S0,S1)| <

|Σ(V0,V2,Y )|
|Σ(V0,V2,V1,Y )| . Sim-

ilarly, the last three inequalities in R(i) are equivalent to the
last three inequalities in R(i)

h .

B. Uncoded Scheme

Now we consider an uncoded scheme which adopts linear
symbol-by-symbol encoders

X1 = g10S0 + g11U1 (31)
X2 = g20S0 + g22U2 (32)

and MMSE (minimum mean square error) decoders (which is
optimal given the encoder (31) and (32))

Ŝ1 = E (S′1|Y )

=

(
ρ01(g10 + g20) + g11

√
1− ρ2

01 + g22
ρ12−ρ01ρ02√

1−ρ202

)
Y

(g10 + g20)2 + g2
11 + g2

22 + 2g11g22
ρ12−ρ01ρ02√

(1−ρ201)(1−ρ202)
+ 1

,

Ŝ2 = E (S′2|Y )

=

(
ρ02(g10 + g20) + g22

√
1− ρ2

02 + g11
ρ12−ρ01ρ02√

1−ρ201

)
Y

(g10 + g20)2 + g2
11 + g2

22 + 2g11g22
ρ12−ρ01ρ02√

(1−ρ201)(1−ρ202)
+ 1

where (gk0, gkk) , k = 1, 2 satisfy power constraint g2
k0+g2

kk ≤
Pk, k = 1, 2. Note that such uncoded scheme is a special case
of hybrid coding above.

Theorem 3. The distortion pairs (Du
1 , D

u
2 ) resulting from the

described uncoded scheme are given by

Du
1 = 1−

(
ρ01(g10 + g20) + g11

√
1− ρ201 + g22

ρ12−ρ01ρ02√
1−ρ202

)2

(g10 + g20)2 + g211 + g222 + 2g11g22
ρ12−ρ01ρ02√

(1−ρ201)(1−ρ202)
+ 1

,

Du
2 = 1−

(
ρ02(g10 + g20) + g22

√
1− ρ202 + g11

ρ12−ρ01ρ02√
1−ρ201

)2

(g10 + g20)2 + g211 + g222 + 2g11g22
ρ12−ρ01ρ02√

(1−ρ201)(1−ρ202)
+ 1

.

Hence

R ⊇ R(i)
u ,

{
(D1, D2) : There exist (gk0, gkk) , k = 1, 2 such that

g2
k0 + g2

kk ≤ Pk, k = 1, 2, D1 ≥ Du
1 , D2 ≥ Du

2

}
.

C. Outer Bound
Substitute the random variable U such that (19) and (20)

into the outer bound R(o)
2 of Theorem 1, then the following

outer bound on Gaussian communication is recovered.

Theorem 4. For transmitting Gaussian source with common
part over Gaussian MAC,

R ⊆ R(o) ,

{
(D1, D2) : There exist some values 0 ≤ ρ̂ ≤ 1,

0 ≤ ρ̂0 ≤ ρ12|0 ,
ρ12 − ρ01ρ02√

(1− ρ201) (1− ρ202)
such that for any ρ12|0 ≤ β1 ≤ 1,

RS1S2(D1, D2) ≤ 1

2
log
(

1 + P1 + P2 + 2ρ̂
√
P1P2

)
,

RS1S2|S0
(D1, D2)

≤ 1

2
log

(
1 +

[ 1− ρ̂2

1− ρ212|0
, 1
]− (

P1 + P2 + 2ρ̂0
√
P1P2

))
,(

1− ρ201
) (

1− ρ212|0
)

D1
≤ 1 + [1− ρ̂2, 1− ρ̂20]−P1,(

1− ρ202
) (

1− ρ212|0
)

D2
≤ 1 + [1− ρ̂2, 1− ρ̂20]−P2,[(1− ρ201) (1− β2

1

)
D1

, 1
]+[(1− ρ202) (1− β2

2

)
D2

, 1
]+
≤ 1+[

(1− θ21)P1 + (1− θ22)P2,
(

1− ρ̂20
β2
2

)
P1 +

(
1− ρ̂20

β2
1

)
P2

]−
,(

1− ρ201
) (

1− β2
1

)
D1

≤ 1 +
[
1− θ21, 1−

ρ̂20
β2
2

]−
P1,(

1− ρ202
) (

1− β2
2

)
D2

≤ 1 +
[
1− θ22, 1−

ρ̂20
β2
1

]−
P2,

for some θ1, θ2 such that 0 ≤ θ1, θ2 ≤ 1, ρ̂ ≤ θ1θ2
}
, (33)
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where [x, y]+ , max {x, y} , [x, y]− , min {x, y} , β2 =
ρ12−ρ01ρ02

β1

√
(1−ρ201)(1−ρ202)

,

RS1S2(D1, D2)

= inf
pŜ1Ŝ2|S1S2

: E(S′k − Ŝk)2 ≤ Dk, k = 1, 2
I(S1S2; Ŝ1Ŝ2)

=


1
2

log+ 1
D1
, if ρ212 ≥ 1−D2

1−D1
;

1
2

log+ 1−ρ212
D1D2

, if ρ212 ≤ (1−D1) (1−D2) ;
1
2

log+ 1−ρ212
D1D2−

(
|ρ12|−

√
(1−D1)(1−D2)

)2 , otherwise

with log+ x , max {log x, 0} , under the assumption that
D1 ≤ D2, denotes the minimum sum rate needed to achieve
both D1 and D2 at the receiver when the encoders cooperate
to encode their observations [12, Thm. III.1], and

RS1S2|S0
(D1, D2)

= inf
pŜ1Ŝ2|S0S1S2

: E(S′k − Ŝk)2 ≤ Dk, k = 1, 2
I(S1S2; Ŝ1Ŝ2|S0)

= inf
pÛ1Û2|U1U2

: E(Uk − Ûk)2 ≤ Dk, k = 1, 2
I(U1U2; Û1Û2)

=


1
2

log+ 1
D′

1
, if ρ212|0 ≥

1−D′
2

1−D′
1
;

1
2

log+ 1−ρ212|0
D′

1D
′
2
, if ρ212|0 ≤ (1−D′1) (1−D′2) ;

1
2

log+ 1−ρ212|0

D′
1D

′
2−
(
|ρ12|0|−

√
(1−D′

1)(1−D′
2)
)2 , otherwise

with

D′1 =
D1

1− ρ2
01

,

D′2 =
D2

1− ρ2
02

,

under the assumption that D′1 ≤ D′2, denotes the minimum
sum rate needed to achieve both D1 and D2 at the receiver
when the side information S0 is available at both the encoders
and the decoder and the encoders cooperate to encode their
observations with help of S0 .

The proof of Theorem 4 is given in Appendix B. The Maxi-
mal Correlation Theory (Hirschfeld–Gebelein–Rényi maximal
correlation) is exploited in the proof. When ρ01 = ρ02 = 0,
Theorem 4 can recover the outer bound without common part
[12, Thm. IV.1]. Besides, Theorem 4 can be extended to any
other source-channel pair by following similar steps to the
proof.

When specialized to the symmetric case, Theorem 4 reduces
to the following result.

Corollary 1. In the symmetric case,

Rsym ⊆ R(o)
sym ,

{
D : There exist some values 0 ≤ ρ̂ ≤ 1,

0 ≤ ρ̂0 ≤ ρ12|0 ,
ρ12 − ρ01ρ02√

(1− ρ201) (1− ρ202)
such that for any ρ12|0 ≤ β1 ≤ 1,

RS1S2(D,D) ≤ 1

2
log (1 + 2 (1 + ρ̂)P ) ,

RS1S2|S0
(D,D) ≤ 1

2
log

(
1 +

[ 1− ρ̂2

1− ρ212|0
, 1
]−
· 2 (1 + ρ̂0)P

)
,(

1− ρ201
) (

1− ρ212|0
)

D
≤ 1 + [1− ρ̂2, 1− ρ̂20]−P,(

1− ρ202
) (

1− ρ212|0
)

D
≤ 1 + [1− ρ̂2, 1− ρ̂20]−P,[(1− ρ201) (1− β2

1

)
D

, 1
]+[(1− ρ202) (1− β2

2

)
D

, 1
]+

≤ 1 +
[
2− θ21 − θ22, 2−

ρ̂20
β2
2

− ρ̂20
β2
1

]−
P,(

1− ρ201
) (

1− β2
1

)
D

≤ 1 +
[
1− θ21, 1−

ρ̂20
β2
2

]−
P,(

1− ρ202
) (

1− β2
2

)
D

≤ 1 +
[
1− θ22, 1−

ρ̂20
β2
1

]−
P,

for some θ1, θ2 such that 0 ≤ θ1, θ2 ≤ 1, ρ̂ ≤ θ1θ2
}
, (34)

where

RS1S2(D,D) =

{
1
2 log+ 1−ρ212

D2 , if |ρ12| ≤ 1−D;
1
2 log+ 1+|ρ12|

2D−(1−|ρ12|) , otherwise

and

RS1S2|S0
(D,D) =

 1
2 log+ 1−ρ212|0

D′2 , if |ρ12|0| ≤ 1−D′;
1
2 log+ 1+|ρ12|0|

2D′−(1−|ρ12|0|)
, otherwise

with

D′ =
D

1− ρ2
01

.

Fig. 3 illustrates the various bounds on the achievable
distortion.

V. CONCLUDING REMARKS

In this paper, we focused on the joint source-channel
coding problem of sending memoryless correlated sources
with common part over memoryless multiple access channel,
and developed an inner bound and two outer bounds for this
problem. The inner bound is achieved by a unified hybrid
coding scheme with common part, and as special cases, it can
recover the performance of existing hybrid coding without
common part. Similarly, our outer bound can also recover
several outer bounds in the literature. When specialized to
transmitting Gaussian sources over Gaussian MAC, the inner
bound and outer bound are used to generate a new inner bound
and a new outer bound, which can recover the best known
inner bound and outer bound without common part in the
literature.

It is worth noting that in our results, two kinds of common
informations are involved. They are respectively in sense of
Gács-Körner-Witsenhausen common information [13], [14],
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Fig. 3. Distortion bounds in the symmetric case for sending Gaussian sources
over Gaussian MAC. Uncoded Scheme w/ Common Part, Hybrid Coding
w/ Common Part, and Lower Bound w/ Common Part are the bounds for
the case with common part where ρ12 = 0.3, ρ01 = ρ02 = 0.8. They
respectively correspond to the inner bound in Theorem 3, the inner bound in
Theorem 2, the outer bound in Corollary 1. Uncoded Scheme w/o Common
Part, Hybrid Coding w/o Common Part, and Lower Bound w/o Common Part
are the bounds for the case with no common part where ρ12 = 0.3, ρ01 =
ρ02 = 0.

and in sense of Wyner’s common information [15]. In our
problem, the Gács-Körner-Witsenhausen common informa-
tion, i.e., the common part, has been exploited to improve
the performance of communication system, and the Wyner’s
common information has been exploited to obtain the outer
bounds. Besides, correlation ratio and maximal correlation
coefficient are also utilized to derive the outer bound for
Gaussian communication case. These concepts and tools are
expected to be exploited to derive achievability and converse
results for other problems in network information theory.

APPENDIX A
PROOF OF THEOREM 1

A. Inner Bound

We use the hybrid coding shown in Fig. 2 to prove the inner
bound.

Codebook Generation: Fix conditional pmf
pV0|S0

pV1|S1,V0
pV2|S2,V0

, encoding functions
xk (v0, vk, sk) , k = 1, 2 and decoding functions
ŝk (v0, v1, v2, y) , k = 1, 2 that satisfy all the inequalities in
the inner bound (5). Randomly and independently generate
a set of sequences vn0 (m0),m0 ∈ [1 : 2nr0 ], with each
distributed according to

∏n
i=1 pV0

(v0,i). For k = 1, 2 and for
each m0 ∈ [1 : 2nr0 ], randomly and independently generate
a set of sequences vnk (m0,mk),mk ∈ [1 : 2nrk ], with each
distributed according to

∏n
i=1 pVk|V0

(vk,i|v0,i(m0)). The
codebook

C =
{

(vn0 (m0), vn1 (m0,m1), vn2 (m0,m2)) :

(m0,m1,m2) ∈ [1 : 2nr0 ]× [1 : 2nr1 ]× [1 : 2nr2 ]
}
.

is revealed to both the encoders and the decoder.

Encoding: We use joint typicality encoding. Let ε > ε0.
Given sn0 , both encoders 1 and 2 find the smallest in-
dex m0 such that (sn0 , v

n
0 (m0)) ∈ T (n)

ε0 . If there is no
such index, let m0 = 1. For k = 1, 2, given snk and
vn0 (m0), encoder k finds the smallest index mk such that
(sn0 , s

n
k , v

n
0 (m0) , vnk (m0,mk)) ∈ T (n)

ε . If there is no such
index, let mk = 1. Then the encoder k transmits the signal

xk,i = xk (v0,i (m0) , vk,i(m0,mk), sk,i) , 1 ≤ i ≤ n. (35)

Decoding: We use joint typicality decoding. Let ε′ > ε.
Upon receiving signal yn, the decoder of the receiver finds
the smallest index vector (m̂0, m̂1, m̂2) such that

(vn0 (m̂0), vn1 (m̂0, m̂1), vn2 (m̂0, m̂2), yn) ∈ T (n)
ε′ . (36)

If there is no such index vector, let (m̂0, m̂1, m̂2) = (1, 1, 1).
The decoder reconstructs the sources as for k = 1, 2,

ŝk,i = ŝk(v0,i(m̂0), v1,i(m̂0, m̂1), v2,i(m̂0, m̂2), yi), 1 ≤ i ≤ n.
(37)

Analysis of Expected Distortion: We bound the distortion
averaged over (Sn1 , S

n
2 ), and the random choice of the code-

book C. Define the “error” event

E ={(
Sn0 , S

n
1 , S

n
2 , V

n
0 (M̂0), V n1 (M̂0, M̂1), V n2 (M̂0, M̂2), Y n

)
/∈ T (n)

ε′

}
.

Then we have

E ⊆ E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5, (38)

where

E0 =
{

(Sn0 , V
n
0 (m0)) /∈ T (n)

ε0 for all m0

}
,

E1 =
{

(Sn0 , S
n
1 , V

n
0 (M0), V n1 (M0,m1)) /∈ T (n)

ε for all m1

}
,

E2 =
{

(Sn0 , S
n
2 , V

n
0 (M0), V n2 (M0,m2)) /∈ T (n)

ε for all m2

}
,

E3 =
{

(Sn0 , S
n
1 , S

n
2 , V

n
0 (M0), V n1 (M0,M1), V n2 (M0,M2)) /∈ T (n)

ε1

}
,

E4 =
{

(Sn0 , S
n
1 , S

n
2 , V

n
0 (M0), V n1 (M0,M1), V n2 (M0,M2), Y n) /∈ T (n)

ε′

}
,

E5 =
{(
V n0 (m′0), V n1 (m′0,m

′
1), V n2 (m′0,m

′
2), Y n

)
∈ T (n)

ε′

for some (m′0,m
′
1,m

′
2) 6= (M0,M1,M2)

}
,

for some ε1 such that ε0 < ε < ε1 < ε′. Using union bound,
we have

P (E) ≤ P (E0) + P (Ec0 ∩ E1) + P (Ec0 ∩ E2)

+ P (Ec0 ∩ Ec1 ∩ Ec2 ∩ E3) + P (Ec3 ∩ E4) + P (E5) . (39)

Now we claim that if all the inequalities in the inner bound
(5) hold, then P (E) tends to zero as n→∞. Before proving
it, we show that this claim implies the distortions in the inner
bound (5) are achievable. The expected distortions are bounded
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by

lim sup
n→∞

Edk(Snk , Ŝ
n
k )

= lim sup
n→∞

(
P (E4,k)E

[
dk(Snk , Ŝ

n
k )|E4,k

]
+ P

(
Ec4,k

)
E
[
dk(Snk , Ŝ

n
k )|Ec4,k

])
(40)

= lim sup
n→∞

E
[
dk(Snk , Ŝ

n
k )|Ec4,k

]
(41)

≤ (1 + ε′)Edk(Sk, Ŝk) (42)
≤ (1 + ε′)Dk, (43)

for k = 1, 2, where (42) follows from typical average lemma
[9]. Therefore, the desired distortions are achieved for suffi-
ciently small ε′.

Next we turn back to prove the claim above. Following
from covering lemma [9, Sec. 3.7], the first three terms of
(39), P (E0) + P (Ec0 ∩ E1) + P (Ec0 ∩ E2), vanishes as n→∞
if

r0 > I (V0;S0) , (44)

and according to Markov lemma [9, Sec. 12.1.1], the fourth
item tends to zero as n→∞ if

rk > I (Vk;Sk|V0) , k = 1, 2. (45)

Then by conditional typicality lemma [9, Sec. 2.5], the fifth
item tends to zero as n→∞.

Now we focus on the last term of (39). E5 can be writen as

E5 = E51 ∪ E52 ∪ E53 ∪ E54, (46)

where

E51 =
{(
V n0 (m′0), V n1 (m′0,m

′
1), V n2 (m′0,m

′
2), Y n

)
∈ T (n)

ε′

for some m′0 6= M0,m
′
1 6= M1,m

′
2 6= M2

}
,

E52 =
{(
V n0 (M0), V n1 (M0,m

′
1), V n2 (M0,m

′
2), Y n

)
∈ T (n)

ε′

for some m′1 6= M1,m
′
2 6= M2

}
,

E53 =
{(
V n0 (M0), V n1 (M0,M1), V n2 (M0,m

′
2), Y n

)
∈ T (n)

ε′

for some m′2 6= M2

}
,

E54 =
{(
V n0 (M0), V n1 (M0,m

′
1), V n2 (M0,M2), Y n

)
∈ T (n)

ε′

for some m′1 6= M1

}
,

Using union bound we have

P (E5) ≤ P (E51) + P (E52) + P (E53) + P (E54) . (47)

Following similar steps to the proof of [7, Thm. 1], one can
prove P (E51) vanishes as n→∞ if

r0 + r1 + r2 < I (V0V1V2;Y ) + I (V1;V2|V0) , (48)

P (E52) vanishes as n→∞ if

r1 + r2 < I (V1V2;Y |V0) + I (V1;V2|V0) , (49)

P (E53) vanishes as n→∞ if

r2 < I (V2;Y |V0V1) , (50)

and P (E54) vanishes as n→∞ if

r1 < I (V1;Y |V0V2) . (51)

Combining (44), (45), and (48)-(51) leads to the sufficient
condition, which completes the proof of the inner bound.

B. Outer Bound
For fixed pU[1:L]|S1,S2

, we introduce a set of
auxiliary random variables Un[1:L] that follow∏n
i=1 pU[1:L]|S1,S2

(
u[1:L],i|s1,i, s2,i

)
. Then the Markov

chain Un[1:L] → (Sn1 , S
n
2 ) → (Xn

1 , X
n
2 ) → Y n → (Ŝn1 , Ŝ

n
2 )

holds. Assume A ⊆ [1 : L]. Next, we derive a lower bound
for I (Sn1 S

n
2 ;Y n|UnA).

I (Sn1 S
n
2 ;Y n|UnA)

=

n∑
t=1

I
(
S1,tS2,t;Y

n|UnASt−1
1 St−1

2

)
(52)

=

n∑
t=1

H
(
S1,tS2,t|UnASt−1

1 St−1
2

)
−H

(
S1,tS2,t|Y nUnASt−1

1 St−1
2

)
(53)

=

n∑
t=1

H (S1,tS2,t|UA,t)−H
(
S1,tS2,t|Y nUnASt−1

1 St−1
2

)
(54)

=

n∑
t=1

I
(
S1,tS2,t;Y

nUnAS
t−1
1 St−1

2 |UA,t
)

(55)

≥
n∑
t=1

I(S1,tS2,t; Ŝ1,tŜ2,t|UA,t) (56)

= nI(S1,QS2,Q; Ŝ1,QŜ2,Q|UA,QQ) (57)

= nI(S1,QS2,Q; Ŝ1,QŜ2,QQ|UA,Q) (58)

≥ nI(S1,QS2,Q; Ŝ1,QŜ2,Q|UA,Q) (59)

= nI(S1S2; Ŝ1Ŝ2|UA), (60)

where Q is a time-sharing random variable uniformly dis-
tributed [1 : n] and independent of all other random variables,
and in (60), Sk , Sk,Q, Ŝk , Ŝk,Q, Ul , Ul,Q, k = 1, 2, 1 ≤
l ≤ L.

Now, we turn to upper-bounding I (Sn1 S
n
2 ;Y n|UnA).

I (Sn1 S
n
2 ;Y n|UnA)

≤ I (Xn
1 X

n
2 ;Y n|UnA) (61)

=

n∑
t=1

I
(
Yt;X

n
1 X

n
2 |UnAY t−1

)
(62)

≤
n∑
t=1

I
(
Yt;X

n
1 X

n
2 Y

t−1|UnA
)

(63)

=

n∑
t=1

I (Yt;X1,tX2,t|UnA) (64)

= nI (YQ;X1,QX2,Q|UnAQ) , (65)
= nI (Y ;X1X2|UnAQ) , (66)

where (64) follows from
(
Xn

1 , X
n
2 , Y

t−1
)
→ (X1,t, X2,t) →

Yt, Q is the time-sharing random variable defined above, and
Y , YQ, Xk , Xk,Q, k = 1, 2.

Combine (60) and (66), then we have

I(S1S2; Ŝ1Ŝ2|UA) ≤ I (X1X2;Y |UnAQ) for any A ⊆ [1 : L] .
(67)
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In addition, (Q,Sn1 , S
n
2 , X1, X2, Y ) follows the distri-

bution pQ
∏
pS1,S2 (s1,i, s2,i) pU[1:L]|S1,S2

(
u[1:L],i|s1,i, s2,i

)
pX1|Sn

1 ,Q
pX2|Sn

2 ,Q
pY |X1,X2

. This completes the proof of the
outer bound R(o)

1 .

APPENDIX B
PROOF OF THEOREM 4

Before proving Theorem 4, we need introduce several corre-
lations and their properties, including correlation coefficient,
correlation ratio, maximal correlation coefficient, as well as
the corresponding conditional correlations.

Definition 5. For any random variables W1 and W2 with
alphabets W1 ⊆ R and W2 ⊆ R, the (Pearson) correlation
coefficient of W1 and W2 is defined by

ρ(W1,W2) =
cov (W1,W2)√

var (W1)
√

var (W2)
.

Similarly, the conditional correlation coefficient of W1 and W2

given another random variable W0 is defined by

ρ(W1,W2|W0) =
E [cov (W1,W2|W0)]√

E [var (W1|W0)]
√

E [var (W2|W0)]
.

Definition 6. For any random variables W1 and W2 with
alphabets W1 ⊆ R and W2, the correlation ratio of W1 on
W2 is defined by

θ (W1,W2) = sup
f
ρ (W1, f(W2)) ,

where the supremum is taken over all the functions f :W2 7→
R satisfying

0 < E
[
f2(W2)

]
<∞. (68)

Similarly, the conditional correlation ratio of W1 on W2 given
another random variable W0 is defined by

θ(W1,W2|W0) = sup
f
ρ(W1, f(W2,W0)|W0),

where the supremum is taken over all the functions f :W2 ×
W0 7→ R satisfying

0 < E
[
f2(W2,W0)

]
<∞. (69)

Definition 7. For any random variables W1 and W2 with
alphabets W1 and W2, the maximal correlation coefficient of
W1 and W2 is defined by

ρm (W1,W2) = sup
f1,f2

ρ (f1(W1), f2(W2)) ,

where the supremum is taken over all the functions fk :Wk 7→
R for k = 1, 2, satisfying

0 < E
[
f2
k (Wk)

]
<∞, (70)

Moreover, the conditional maximal correlation coefficient of
W1 and W2 given another random variable W0 is defined by

ρm(W1,W2|W0) = sup
f1,f2

ρ(f1(W1,W0), f2(W2,W0)|W0),

where the supremum is taken over all the functions fk :Wk×
W0 7→ R for k = 1, 2, satisfying

0 < E
[
f2
k (Wk,W0)

]
<∞. (71)

Lemma 1. [19] For any random variables W0, W1 and W2,
(conditional) correlation coefficient, (conditional) correlation
ratio, and (conditional) maximal correlation coefficient have
the following properties:

0 ≤ |ρ (W1,W2)| ≤ θ (W1,W2) ≤ ρm (W1,W2) ≤ 1; (72)

0 ≤ |ρ (W1,W2|W0)| ≤ θ (W1,W2|W0)

≤ ρm (W1,W2|W0) ≤ 1; (73)

θ (W1,W2W0) ≥ θ (W1,W0) ; (74)

ρm (W1,W2W0) ≥ ρm (W1,W0) ; (75)

θ (W1,W2) =

√
var (E [W1|W2])

var (W1)

=

√
1− E [var (W1|W2)]

var (W1)
; (76)

θ(W1,W2|W0) =

√
E [var (E [W1|W2W0] |W0)]

E [var (W1|W0)]

=

√
1− E [var (W1|W2W0)]

E [var (W1|W0)]
; (77)

ρm (W1,W2) = sup
f

√
var (E [f(W1)|W2])

var (f(W1))

= sup
f

√
1− E [var (f(W1)|W2)]

var (f(W1))
; (78)

ρm(W1,W2|W0) = sup
f

√
E [var (E [f(W1,W0)|W2W0] |W0)]

E [var (f(W1,W0)|W0)]

= sup
f

√
1− E [var (f(W1,W0)|W2W0)]

E [var (f(W1,W0)|W0)]
; (79)

1− θ2 (W1,W2W0)

=
(
1− θ2 (W1,W0)

) (
1− θ2 (W1,W2|W0)

)
; (80)

and

1− θ2 (W1,W2W0|Z)

=
(
1− θ2 (W1,W0|Z)

) (
1− θ2 (W1,W2|W0Z)

)
. (81)

Besides, some other remarkable properties are also needed
in proving Theorem 4.

Lemma 2. [14, Thm. 1] For a sequence of pairs of indepen-
dent random variables (W1,i,W2,i)

n
i=1, we have

ρm (Wn
1 ,W

n
2 ) ≤ sup

1≤i≤n
ρm (W1,i,W2,i) , (82)

where Wn
k = (Wk,1,Wk,2, · · · ,Wk,n) for k = 1, 2.

Lemma 3. [16, Sec. IV, Lem. 10.2] For jointly Gaussian
random variables W0,W1 and W2, we have

ρm (W1,W2) = |ρ (W1,W2) |, (83)
ρm (W1,W2|W0) = |ρ (W1,W2|W0) |. (84)
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Lemma 4 (Data Processing Inequality). [19] If random vari-
able W and non-degenerate random variables X,Y, Z form
a Markov chain X → (Y,W )→ Z, then

ρ(X,Z|W ) ≤ θ (X,Y |W ) θ (Z, Y |W ) , (85)
θ(X,Z|W ) ≤ θ (X,Y |W ) ρm (Z, Y |W ) , (86)

ρm(X,Z|W ) ≤ ρm (X,Y |W ) ρm (Z, Y |W ) . (87)

Moreover, the equalities hold in (85)-(87), if (X,Y,W ) and
(Z, Y,W ) have the same distribution. In particular, if W is
degenerate, then

ρ(X,Z) ≤ θ (X,Y ) θ (Z, Y ) , (88)
θ(X,Z) ≤ θ (X,Y ) ρm (Z, Y ) , (89)

ρm(X,Z) ≤ ρm (X,Y ) ρm (Z, Y ) . (90)

Now we use R(o)
2 to prove Theorem 4. For R(o)

2 , denote
ρ̂ as the correlation coefficient between X1 and X2, i.e., ρ̂ ,
ρ(X1, X2), and θk as correlation ratio of Xk on (Sn0 , U

n, Q)
, i.e.,

θk , θ (Xk, S
n
0U

nQ) , k = 1, 2. (91)

It should hold that 0 ≤ ρ̂, θ1, θ2 ≤ 1. Observe that in R(o)
2 ,

X1 → (Sn1 , Q) → (Sn0 , U
n, Q) → (Sn2 , Q) → X2 holds.

Hence from Lemma 4, we have

ρ̂ ≤ θ1θ2. (92)

From Property (76) of Lemma 1, we have

E [var(Xk|Sn0UnQ)] =
(
1− θ2

k

)
E [var(Xk)] , k = 1, 2. (93)

In addition, denote ρ̂0 = ρ(X1, X2|Sn0Q),
ρ12|0 = ρ(S1, S2|S0) = ρ12−ρ01ρ02√

(1−ρ201)(1−ρ202)
and

θ′k = θ (Xk, U
n|Sn0Q) , k = 1, 2. Then utilizing Lemmas 2, 3

and 4, we have

ρ̂0 ≤ ρm(Sn1 , S
n
2 |Sn0Q) = ρm(S1, S2|S0) = ρ12|0, (94)

ρ̂0 ≤ θ (X1, S
n
2 |Sn0Q) (95)

≤ θ (X1, U
n|Sn0Q) ρm (Sn2 , U

n|Sn0Q) (96)
= θ′1β2, (97)

and

ρ̂0 ≤ θ′2β1. (98)

Now based on the inequalities above and utilizing the
outer bound R(o)

2 of Theorem 1, we can obtain a sequence
of desired results. Specifically, Combining the inequality
I(S1S2; Ŝ1Ŝ2) ≤ I (X1X2;Y |Q) in R(o)

2 with

I(S1S2; Ŝ1Ŝ2) ≥ RS1S2
(D1, D2) (99)

and

I (X1X2;Y |Q) = h (Y |Q)− h (Y |X1X2) (100)
≤ h (Y )− h (Y |X1X2) (101)

≤ 1

2
log (1 + var(X1 +X2)) (102)

=
1

2
log
(
1 + var(X1) + var(X2)

+ 2ρ(X1, X2)
√

var(X1)var(X2)
)

(103)

≤ 1

2
log
(

1 + P1 + P2 + 2ρ̂
√
P1P2

)
,

(104)

gives

RS1S2
(D1, D2) ≤ 1

2
log
(

1 + P1 + P2 + 2ρ̂
√
P1P2

)
.

(105)
In addition, from Property (80) of Lemma 1, we have

1− θ2 (X1, S
n
0Q) =

1− θ2 (X1, X2S
n
0Q)

1− θ2 (X1, X2|Sn0Q)
(106)

≤ min

(
1− ρ̂2

1− ρ2
12|0

, 1

)
, (107)

where the inequality (107) follows from

θ (X1, X2S
n
0Q) ≥ θ (X1, X2) ≥ ρ (X1, X2) , (108)

and

θ (X1, X2|Sn0Q) ≤ ρm (X1, X2|Sn0Q) ≤ ρ12|0. (109)

Then combining the inequality I(S1S2; Ŝ1Ŝ2|S0) ≤
I (X1X2;Y |Sn0Q) in R(o)

2 with

I(S1S2; Ŝ1Ŝ2|S0) ≥ RS1S2|S0
(D1, D2) (110)

and

I (X1X2;Y |Sn0Q)

= h (Y |Sn0Q)− h (Y |X1X2)

≤ 1

2
log (1 + Evar(X1 +X2|Sn0Q))

=
1

2
log
(

1 + Evar(X1|Sn0Q) + Evar(X2|Sn0Q)

+ 2ρ(X1, X2|Sn0Q)
√

Evar(X1|Sn0Q)Evar(X2|Sn0Q)
)

≤ 1

2
log
(

1 +
(
1− θ2 (X1, S

n
0Q)

)
P1 +

(
1− θ2 (X2, S

n
0Q)

)
P2

+ 2ρ̂0
√

(1− θ2 (X1, Sn0Q)) (1− θ2 (X2, Sn0Q))P1P2

)
≤ 1

2
log

(
1 + min

( 1− ρ̂2

1− ρ212|0
, 1
)(

P1 + P2 + 2ρ̂0
√
P1P2

))
(111)

gives

RS1S2|S0
(D1, D2)

≤ 1

2
log

(
1 + min

( 1− ρ̂2

1− ρ212|0
, 1
)(

P1 + P2 + 2ρ̂0
√
P1P2

))
.

(112)

Similarly, the last five inequalities in (33) can be obtained as
well. This completes the proof.
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