
Abstract— To meet the ever growing need for wireless spec-
trum, the Federal Communication Commision (FCC) intro-
duced a spectrum sharing model called the 3-Tier Sharing
Framework. In this model, under-utilized federal spectrum will
be released for shared use where the highest preference will be
given to Tier-1 followed by Tier-2 and then Tier-3. In this paper,
we present a model where a wireless operator, who is interested
in maximizing its profit, can operate as a Tier-2 and/or a Tier-3
user. Tier-2 is characterized by paid but “almost” guaranteed
and interference free channel access while Tier-3 access is free
but has lesser guarantee and also faces channel interference. So
the operator has to optimally decide between paid but better
channel quality and free but degraded channel quality. Also,
the operator has to make these decisions without knowing
future market parameters like customer demands or channel
availability. We use tools from ski-rental literature to design a
deterministic online algorithm for leasing channels which does
not rely on the knowledge of market statistics. The efficiency of
the online algorithm is analyzed by deriving its competitive ratio
(CR) and by conducting simulations. The mathematical model
for leasing channels is a novel generalization of the classical ski-
rental problem. We therefore make fundamental contribution
to ski-rental literature which may have diverse applications
beyond the problem considered in this paper.

I. INTRODUCTION

The demand for wireless Internet access is ever growing
and the wireless spectrum is getting scarce. The President’s
Council of Advisors on Science and Technology (PCAST),
in their report [1], calls the notion of spectrum scarcity
a “fundamental misunderstanding” arising due to under-
utilization of spectrums. In support of PCAST report [1], the
FCC decided to release 150 MHz of federal spectrum (from
3.55 to 3.7 GHz) . The shared use of these federal spectrums
should follow the 3-Tier Sharing Framework [2] (refer Figure
1): Tier-1 is called the “Incumbent tier” consisting of federal
users who have the highest priority access to any channel
and are guaranteed interference protection from lower tiers.
Tier-2 is called the “Priority Access Licenses (PAL) tier”.
PAL users can lease the channels by participating in auc-
tions. They can use the leased channels whenever Tier-1
users are not using it. Priority Access Users are gauranteed
interference protection from Tier-3 users. Tier-3 is called the
“Generalized Authorized Access (GAA) tier”. GAA users
can opportunistically use a channel for free provided that
it is not used by Tier-1 or Tier-2 users. A Tier-3 user is
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Fig. 1. The 3-Tier Sharing Framework and our System Model.

not gauranteed interference protection from Tier-1, Tier-2 or
even other Tier-3 users. The Spectrum Access System (SAS)
is a central database which keep record of channel states. It
is also a policy engine which enforces the 3-Tier hierarchy.

In this paper, we consider a market consisting of many
operators. These operators use wireless spectrum to serve
customer demands. We consider one such operator, labelled
“The Operator” in Figure 1. The objective is to maximize the
profit of the operator. In our model, the operator can work as
Tier-2 and/or Tier-3 user. We consider a time slotted model
where at the tth epoch, the operator must make the following
three decisions upon receiving dt customer demands:

1) Amount of customer demand gt to reject. As shown in
Figure 1, the rejected customer demands gets served
by “other operators” in the market.

2) Number of channels lt to lease (Tier-2) in order to
serve the accepted customer demands.

3) Number of channels ot to use opportunistically (Tier-3)
in order to serve the accepted customer demands.2

The decision process of rejecting demands, leasing chan-
nels and opportunistic channel use relies on customer de-
mand pattern and channel availability trends. The operator
has to make decisions without the future knowledge of these
variables. Online nature of the problem leads to the following
uncertainties when an operator wants to lease a channel:

1) Uncertainty in Customer Demand: Leasing a channel
is profitable only if the customer demand in future
epochs is consistently high.

2) Uncertainty in channel availability for opportunistic
use: Leasing a channel is not profitable if there are
enough channels for opportunistic use in future epochs.

3) Uncertainty in channel availability for leasing: All the
channel leases may get sold out in future.

Along with the online nature of the problem, there is
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an additional issue that serving customer demands using
opportunistic channels may lead to lower Quality of Service
(QoS) to the customers because such channels may suffer
from harmful interference. This is a challenging online
optimization problem which we address in this paper.

To the best of authors knowledge, the only work in
spectrum sharing literature which resembles our problem is
addressed in [3]. In [3], the authors modelled the customer
demand and channel availability statistics as Discrete Time
Markov Chain. It then used tools from Stochastic Dynamic
Programming to design an online algorithm for leasing
channels. Apart from the problem considered in this paper,
there are other bodies of work which is of importance to
the 3-TSF. In [4], the authors designed a network protocol
and a SAS which implements the rules of the 3-TSF. The
work done in [5] considers a market where an operator can
operate in either Tier-2 or Tier-3. It investigates the incentive
of an operator to enter such a market in presence of com-
petition. Other allied areas of research can be of significant
importance to the 3-TSF though they are not directly related.
From economic standpoint, research in the field of spectrum
contracts ([6], [7]), auctions and pricing ([8]) will help
understand if the 3-Tier Sharing Framework is economically
attractive for potential investors. From technical standpoint,
dynamic channel allocation is of significant importance to
3-TSF. While doing dynamic channel allocation it is crucial
to consider blocking probability [9] and co/adjacent channel
interference [10].

This paper makes three contributions. First, we present
a system model in which an operator using 3-TSF can
maximize its profit by strategically operating as a Tier-2
and/or a Tier-3 user. Our model is novel as it captures key
elements of 3-TSF.

Second, compared to [3], our online algorithm has two
novelty. First, unlike [3], our algorithm does not require
statistical knowledge of the involved random processes (cus-
tomer demand and spectrum availability). In the early stages
of the deployment of 3-TSF, the operator will have either
limited or no knowledge of market statistics. Hence, the algo-
rithm proposed in this paper will be more suitable compared
to [3]. Second, the algorithm proposed in [3] has high time
complexity (pseudo-polynomial) if the optimization horizon
is large. Our algorithm has low time complexity (polynomial)
irrespective of the optimization horizon.

Third, this work adds a new application area to the ski-
rental problem among the already existing ones [11], [12],
[13]. We also make a fundamental contribution to ski-rental
literature, i.e. how the classical breakeven algorithm for
the ski-rental problem gets modified if the number of skis
available for leasing is finite.

The rest of the paper is organized as follows: In section
II we mathematically formulate the profit maximization
problem of the operator. Section III contains the main result
of the paper, a competitive deterministic online algorithm for
leasing channels. Simulation results are presented in Section
IV. Finally we conclude the paper in Section V with a brief
discussion on the immediate extensions to this work.

TABLE I
A TABLE OF FREQUENTLY USED NOTATIONS.

Notation Description
T Optimization Horizon.
M Total number of channels.

dt
Number of channels needed to serve the customer demand at
epoch t. We call this “demand” in the rest of the paper.

gt Number of demands the operator rejected at epoch t.
pt Price of serving a demand at epoch t.
pM Upper bound on pt, pt ≤ pM .
P , τ Price and duration of a channel lease. In general, pt � P .
M l
t Number of channels available for leasing at epoch t.
lt Number of channels the operator leased at epoch t.
vt Number of channels other operators wants to lease at epoch t.
wt Number of channels leased by all the operators at epoch t.

Mo
t

Number of channels the operator can opportunistically use at
epoch t.

At Number of active channel leases the operator has at epoch t.

λt
Number of active channel leases which got pre-empted by Tier-
1 users at epoch t.

ot
Number of channels the operator used opportunistically at
epoch t.

ft (ot) A function to penalize opportunistic channel use.

rt
rt = gt + ot, the combined action of using channels
opportunistically and rejecting demands.

Ft (rt) Renting function: A function to penalize the renting action.

ϕt
ϕt = (dt , λt , pt , Mo

t , vt , ft (·)), a tuple which forms the
input to OP1.

(x)+ Positivity operator: (x)+ = max (0, x)

II. SYSTEM MODEL

Notations: Table I lists notations used throughout this
paper. Other notations used in this paper are standard.

In this section we formulate the profit maximization
problem of the operator. We also discuss the underlying
assumptions in our problem formulation. Time is considered
to be slotted. In every epoch t ∈ {1, . . . , T}, the decision
variables are gt , ot, lt ∈ {0, . . . ,M}. Operator’s profit is

P =

T∑
t=1

(pt (dt − gt)− Plt) =
T∑
t=1

ptdt︸ ︷︷ ︸
1st term

−
T∑
t=1

(ptgt + Plt)︸ ︷︷ ︸
2nd term

(1)
where pt (dt − gt) is the operator’s revenue for serving
(dt − gt) demands and Plt is the operator’s expense to buy
lt channels at epoch t. Operator wants to maximize its profit
P which is equivalent to minimizing the 2nd term because in
our model, the operator has no control demand dt and price
pt. To make the model more realistic, we add a function
ft (ot) to the 2nd term which penalizes opportunistic use of
channels. This leads to the final optimization problem

OP1 : min
{gt,ot,lt}

C =
T∑
t=1

(ptgt + ft (ot) + Plt)

subject to: ot + gt +

 t∑
i=(t−τ+1)

li − λt

 ≥ dt
0 ≤ ot ≤Mo

t ; 0 ≤ lt ≤M l
t ; 0 ≤ gt

The function ft (ot) is time-varying and is assumed to be
convex and increasing in the range [0 , Mo

t ]. It has two real



world interpretations: First, to account for harmful interfer-
ence in an opportunistic channel, the operator may choose
to transmit at a higher power level1. In this case ft (ot)
respresents the cost to transmit at a higher power level.
Second, the use of opportunistic channels leads to lower
QoS to the customers if the channel interference is high.
The function ft (ot) can be used to capture the monetary

loss due to lower QoS. The term
t∑

i=(t−τ+1)

li in OP1 is the

number of active channel leases at epoch t and is denoted
as At. However λt active leases may get interrupted by

Tier-1 users2 leaving effectively

(
t∑

i=(t−τ+1)

li − λt

)
active

channel leases. Given that the lease period of a channel is
τ , the time evolution of M l

t is governed by the equation3

M l
t = M l

t−1 − wt−1 + wt−τ where (2)

wt = lt +min
(
M l
t − lt , vt

)
(3)

where wt−τ are the number of leases which reappears in
the market at tth epoch when its lease period expires. In
equation (3), the term min

(
M l
t − lt , vt

)
is the number of

channels leased by other operators in the market. This term
captures an key assumption of our model, i.e. the operator
has superior auctioning strategy compared to other operators.
Therefore if the operator wants to lease lt ≤M l

t channels at
epoch t, it will win the bid for lt channels, leaving M l

t − lt
channels which can be leased by the other operators.

In our model, the tuple ϕt (defined in Table I) is a time
sequence which forms the input to OP1. The cost C incurred
by OP1 is a function of ϕt. All other variables in OP1,
except pt and P , lies in the discrete set {0, 1, . . . ,M}.

A. Assumptions
The key assumptions in our system model are as follows:
1) The cost of leasing a channel is time varying as it

depends on the outcome of the auction. However we
assumed it to be a constant P .

2) The role of competition among operators to maximize
the profit of the operator is not considered., for e.g.
we do not design optimal pricing policy for pt to
compete for customer demand nor do we consider
optimal bidding strategy to compete in auctions. In our
model pt and dt are arbitrary time varying sequences
which can not be controlled by the operator.

Other than the assumptions on system model, we also need
to impose the following assumptions in order to design online
algorithms with provable theoretic bounds:

1) Future knowledge of pt, dt, λt, Mo
t , vt and ft (·) is not

assumed. However we impose the following constrain

0 < µl ≤

t∑
i=(t−τ+1)

M l
i

τ
; ∀t (4)

1The highest power level at which the operator can transmit as Tier-3 user
is constrained by FCC rules. This indeed leads to the second interpretation.

2The SAS will try to relocate the channel of Tier-2 user if it gets
interrupted by Tier-1 user. λt models such relocations of channels too.

3Equation 2 and 3 is valid even for t < 1. However lt = 0 ; ∀t < 1.

which says that the moving horizon time average of
M l
t over τ period is at least µl.

2) The function ft (ot) can be evaluated for any ot.
3) pt is upper bounded by pM , i.e. pt ≤ pM ;∀t. Knowl-

edge of pM is assumed.

III. DETERMINISTIC ONLINE ALGORITHM

In this section we will design a deterministic online
algorithm for leasing channels. We approach this in steps. In
Section III-A we introduce a theorem which provides better
insight into the structure of OP1 and effectively reduces the
number of decision variables from three to two. In Section
III-B we consider a special case of OP1 called the Modified
Ski-Rental Problem. It is simpler to analyze but provides
useful insights into the online algorithms for OP1. Finally,
we will design and analyze a deterministic online algorithm
for leasing channels in Section III-C.

A. Simplification of OP1

OP1 can be decoupled into two sub-problems, one which
decides how many of the available opportunistic channel to
use and the other which captures the online nature of leasing
channels. The following theorem formalizes this notion.

Theorem 1: Let

OP2 : ot = argmin
0≤ot≤Mo

t

− ptot + ft (ot)

and define the following function

Ft (rt) = pt (rt − ot)+ + ft (min (rt , ot)) (5)

Then the optimal solution g∗t , o∗t and l∗t of OP1 can be
obtained by solving the optimization problem

OP3 : min
{rt,lt}

C =
T∑
t=1

[F t (rt) + Plt]

subject to: rt+

t∑
i=(t−τ+1)

li ≥ Dt , (dt + λt)

0 ≤ lt ≤M l
t ; 0 ≤ rt

for the optimal solution rt and lt and then setting

g∗t = (rt − ot)+ ; o∗t = min (rt , ot) ; l∗t = lt (6)

Proof: Please refer [14] for the proof.
OP2 decides how many of the available opportunistic

channel Mo
t to be used at epoch t. The function ht (ot) =

−ptot + ft (ot) is unimodal (refer [14]). We can therefore
use tools like binary search or fibonnaci search [15] to solve
OP2 in O (log2 (M

o
t )) time.

OP3 has two decision variables. The variable lt as usual
implies leasing (Tier-2). The new variable rt implies renting.
Renting is the combined action of using channels opportunis-
tically (Tier-3) and rejecting demands, i.e. rt = ot + gt. So
in every epoch the operator has to decide how much to rent
and how much to lease in order to serve the effective demand
Dt. We will use this terminology quite often in rest of the
paper. The function Ft (rt) is called the renting function. It
penalizes the renting action and has the following properties:



Property 1: Ft (rt) is monotonically increasing in rt. This
property suggest that if lt is the optimal solution to OP3,
and At the corresponding sequence of the number of active
leases, then the optimal solution rt is given by

rt =
(
Dt −At

)+
(7)

Property 2: Ft (rt) is convex in rt. This implies

Ft (rt)− Ft (rt − 1) ≤ Ft (rt + 1)− Ft (rt) ; ∀rt (8)

Property 3: First derivative of Ft (rt) is bounded as follows

Ft (rt + 1)− Ft (rt) ≤ pt ≤ pM ; ∀rt (9)

The proof of these properties are trivial. It can be found
in [14] but has been skipped here for brevity.

OP3 captures the online nature of leasing channels. Say
that the operator has to decide the optimal number of lease
lt at epoch t. A necessary condition for optimality of lt is

t+τ−1∑
i=t

[
Fi

(
(Di − ai)+

)
− Fi

((
Di − ai − lt

)+)] ≥ Plt
(10)

where ai =
t−1∑

j=i−τ+1

lj ; ∀i ∈ {t, . . . , t+ τ − 1} is the num-

ber of active leases in the ith epoch if lt = 0. Inequality (10)
implies that the net rental cost saved by leasing lt channels
should be greater than the cost of leasing lt channels. The
operator must know Di, Fi (·) ; ∀i ∈ {t, . . . , t+ τ − 1} in
order to choose a lt which satisfies inequality (10). To
calculate Di, Fi (·) for i > t, the operator needs future
knowledge of ϕi (refer Table I). Hence, online information
is not enough to find an optimal sequence lt.

The operator has to decide (rt , lt) just based on the
knowledge of ϕi ; ∀i ≤ t in a certain optimal sense called
the competitive ratio. Competitive ratio (CR) is a relative
measure of an online algorithm with respect to an optimal
algorithm4. Define the sequence ϕ = {ϕ1, ϕ2 . . . , ϕT }. Let
CA (ϕ) and COPT (ϕ) be the cost incurred by a determin-
istic online algorithm A and the optimal algorithm OPT
respectively. A is called c−competitive iff

CA (ϕ) ≤ c · COPT (ϕ) ; ∀ϕ ∈ S

A smaller c implies a better online algorithm. The set S
contains all possible values of ϕ. Competitive analysis is
often thought of as a two player game between an adversary
which generates ϕ to maximize the ratio CA(ϕ)

COPT (ϕ) and the
online algorithm A which tries to minimize the ratio.

The rest of this section deals with designing an online
algorithm for OP3. OP3 has important resemblance with
works in ski-rental literature like [12] but with one key dif-
ference: the operator cannot lease more than M l

t channels at
epoch t. This additional constrain makes the online algorithm
for OP3 non-trivial both in terms of design and analysis.

4The optimal algorithm for OP3 is an offline algorithm based on
dynamic programming and has pseudo-polynomial time complexity [12].

B. Modified Ski-Rental Problem

In this section we consider a modification of the classical
Ski-Rental Problem (SRP) and show that it is a special case
of OP3. Then we will design an optimal deterministic online
algorithm to solve the Modified Ski-Rental Problem (MSRP)
which will give us insights into solving OP3 online.

MSRP can be stated as follows:
1. A skier plans a skiing vacation with a tourism agency

which rents a ski5 for pM dollars per day and leases a ski for
P dollars (where pM � P ) with the lease period being τ > 1
days6. In context of OP3 it means that Ft (rt) = pMrt.

2. The skier needs one ski a day. Skiing vacation is at
most τ days (equal to the lease period) but can end on the
yth day (where 0 ≤ y ≤ τ ) if the skier gets injured while
skiing. In context of OP3 it implies the following demand
structure : Dt = 1 ; 1 ≤ t ≤ y and Dt = 0 ; t > y.

3. The tourism agency has a maximum of M skis to lease.
The number of skis available for leasing on the tth day is
M l
t where M l

t is governed by equation 2 and 3. In context
of MSRP, lt and vt are the number of skis “the skier” and
the other skiers wanted to lease in day t respectively.

4. The skier can lease a ski on the first day, i.e. M l
1 > 0.

The above four points shows that MSRP is a special case
of OP3. If M = ∞ then M l

t > 0 ; ∀t. In this case MSRP
reduces to SRP. For SRP, the optimal online deterministic
algorithm is the breakeven algorithm which states: Say the
skier is still skiing on the kth day. If the net renting cost
pMk ≥ P , the skier should lease a ski on the kth day. Else,
the skier should rent. CR of this algorithm is 2.

If M is finite then it is possible that M l
t = 0 for

some t. The key difference between SRP and MSRP is the
availability of ski leases. The skier may decide to lease on
the kth day only to find that M l

k = 0. Without any constrain
on M l

t , there may not be any skis available for leasing till the
end of skier’s vacation. In the worst case scenario, the skier
has to keep renting till her vacation ends incurring a cost
of τpM while the offline algorithm which can foresee the
future will lease a ski on the 1st day. Hence the CR is τpM

P .
This suggests that CR for MSRP cannot be better than τpM

P
without any constrain on M l

t . We therefore constrain M l
t

using inequality (4). This leads to the following proposition.
Proposition 1: Say that the skier/operator decides to buy

lt > 0 leases at epoch t. The skier/operator buys lt leases as
and how it reappears in the market. Define

η = inf

{
δ ≥ 0 |

δ∑
k=0

M l
t+k ≥ lt

}
as the wait time because the skier/operator has to wait at least
till epoch t+ η to buy all the lt leases. If M l

t is constrained
by inequality (4), then η can be upper bounded by ηM where

ηM = τ
(
1− µl

M

)
≤ τ − 1 (11)

Proof: Please refer [14] for the proof.

5“a ski” implicitly means a pair of skis.
6“Renting” and “leasing” are indeed synonyms but in this paper they are

differentiated based on price and contract duration.



Proposition 2: Consider the following online algorithm:
1) Keep renting if the net renting cost is less than zop,

where zop is the solution to the quadratic equation

z2op + τ
(
1− µl

M

)
pMzop − P 2 = 0

If the net renting cost exceeds zop, the skier must
decide to lease a ski.

2) If a ski is availabe for lease that day, then lease it. Else
wait till it is available again.

3) The skier should buy a lease when it is available again
only if the wait time η ≤ τ− (zop+P )

pM
. Else keep renting

till the end of skiing vacation.
Among all online algorithms for MSRP which only assumes
the knowledge of µl and hence the upper bound on wait time,
ηM = τ

(
1− µl

M

)
, the above algorithm has the best CR of

copt (µl) =


(
1 +

zop
P

)
+ τpM

P

(
1− µl

M

)
; µl ≥ M

( τpMP −1)
τpM
P ; µl <

M

( τpMP −1)
(12)

Proof: Please refer [14] for the proof.
Theorem 2: An online algorithm for OP3 which only

assumes the knowledge of µl and hence the upper bound on
wait time, ηM = τ

(
1− µl

M

)
, cannot achieve CR better than

copt (µl).
Proof: This follows from the fact that MSRP is a special

case of OP3 and copt (µl) is the best possible CR we can
achieve for MSRP (by Proposition 2).

C. Online Algorithm for Leasing Channels

Motivated by the optimal online algorithm to solve MSRP,
we suggest a threshold based algorithm for leasing channels.
There are two threshold criterias:

1) The algorithm decides to lease a channel when the net
incremental renting cost exceeds threshold zth.

2) The algorithm rejects the decision to lease a channel
if the wait time exceeds the threshold τ − (zth+P )

pM
.

A generic algorithm for any threshold zth is presented
in the listing Algorithm 1. However in this paper, we only
concentrate on the case when zth = P . The working of the
algorithm can be divided into five steps.
Step 1 (Learn ϕt)

Recall that the tuple ϕt = (dt , λt , pt , M
o
t , vt , ft (·)) is

the input to OP1. At epoch t, the operator knows dt and pt
while λt, Mo

t and vt−1 can be learned by querying the SAS7.
The penalty function ft (·) for opportunistic channel use is
estimated, possibly using QoS reviews from the customers.
Step 2 (Calculate ot)

The operator computes ot by solving OP2 using binary/
fibonacci search (line 6). The renting function Ft (rt) is

7Note that at time t, it is impractical to assume knowledge of vt however
knowledge of vt−1 is feasible. In many auction the demand of other bidders
may be kept confidential because any asymmetry in information can lead
to unfair advantage. However releasing such information after the auction
may be feasible. We therefore assume that during time t, the operator can
query SAS for the value of lt−1+vt−1 (the number of channels the entire
market wanted to lease at time t) and hence infer vt−1.

Algorithm 1 Azth : a deterministic online algorithm for
leasing channels in 3-Tier Sharing Framework.

1. Let xt be the number of virtual active leases at the tth

epoch. Set xt = 0 ; t = 1, 2, . . . , T
2. Let yt be the virtual number of channels available for

leasing at the tth epoch. Set yt = 0 ; t = 1, 2, . . . , T
3. Initialize an empty FIFO queue which will store times-

tamps of leasing decisions.
4. Repeat steps 5-13 in all epochs. Let current epoch be t.
5. Learn dt, pt, λt, Mo

t , vt−1 and ft (·). Set Dt = dt+λt.
6. Compute ot by solving optimization problem OP2.
7. Set wt−1 = min (vt−1 , yt−1), yt = yt−1 − wt−1 +

wt−τ .
8. Set R = zth.
9. while (R ≥ zth)

9.a. Check the first epoch after (t− τ + 1) when the
operator could have bought another lease. Mathe-
matically, tM = inf {k | yk > 0 , k ≥ t− τ + 1}.

9.b. Compute the net incremental rental cost R from
tM to the current epoch t using equation (13).

9.c. if (R ≥ zth)
9.c.1. The operator decides to lease a channel. Hence,

current epoch t is pushed into the FIFO queue.
9.c.2. Set xi = xi + 1 ; i = tM , . . . , t − 1 to update

the history of xi’s. This shows that previous
mistakes have been accounted.

9.c.3. Set wtM = min (wtM + 1 , ytM ) and
yi = (yi − 1)

+
; i = tM , . . . , t. This shows that

a virtual lease was bought at epoch tM .
9.c.4. Set xi = xi + 1 ; i = t, . . . , t + τ − 1. This

updates future xi’s to show that an additional
virtual lease is available in future epochs.

9.c. end if
9. end while

10. Set the number of channels to lease to zero : lt = 0.
11. while (M l

t > 0 AND “FIFO Queue is Not Empty”)
11.a. Read timestamp from the FIFO queue. Let this

epoch be tl. Set wait time η = t− tl.
11.b. if

(
η ≤

(
τ − (zth+P )

pM

))
11.b.1. Lease a channel: lt = lt + 1.

11.b. end if
11.c. Pop timestamp from the FIFO queue.

11. end while
12. Number of active lease is At =

t∑
i=t−τ+1

li. Remaining

rt = (Dt −At)+ demands are served by renting.
13. Number of channels to use opportunistically,

ot = min (rt, ot). Reject gt = (rt − ot)+ demands.

implicitly dependent on ot (refer equation (5)). Hence we
need to compute ot in order to evaluate Ft (rt) in Step 3.
Step 3 (Deciding to lease or not)

The operator maintains two time sequences xt, the number
of virtual active lease the operator has at epoch t and yt, the
virtual number of channels available for leasing at epoch t.
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Fig. 3. A FIFO Queue containing time stamps. Timestamps are pushed
behind the queue while they are read and popped from front of the queue.

The sequence xt is virtual in the sense that the operator may
not have xt active leases at epoch t. Rather the operator
decides xt, for a past epoch t, by looking back in time
and analyzing the number of additional channels it should
have leased at epoch t to minimize the loss. Similarly yt is
the number of channels available for leasing at epoch t if
the operator had leased additional channels at past epochs.
These two sequences helps the operator decide the number
of channel it wants to lease in the current epoch. This can
be explained as follows.

At current epoch t, the operator looks back τ epochs and
find the first epoch after t− τ + 1 when an additional lease
could have been bought (line 9.a.). Let this epoch be tM . The
net incremental renting cost R is the net renting cost which
could have been saved in the time period [tM , t] if one more
lease was bought in epoch tM (line 9.b.). Mathematically,

R =

t∑
i=tM

[
Fi

(
(Di − xi)+

)
− Fi

(
(Di − xi − 1)

+
)]

(13)
where Di and xi are the effective demand and the num-
ber of virtual active leases respectively in the ith epoch.
Fi

(
(Di − xi)+

)
and Fi

(
(Di − xi − 1)

+
)

are the renting
cost in the ith epoch to serve the demands above the red and
the blue graph respectively in Figure 2.

If R ≥ P then the operator could have minimized the
loss by leasing a channel in epoch tM . To compensate for
this mistake the operator decides to lease a channel. The
current timestamp t is pushed in the end of the FIFO queue as
shown in Figure 3 indicating the decision to buy an additional
lease (line 9.c.1.). A virtual lease is bought at epoch tM to
indicate that a corrective measure has been taken for the past
mistake. This updates the history of xi (line 9.c.2.) and yi
(line 9.c.3.). Without such updation the operator will take
corrective measure for the same mistake multiple times. The
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Fig. 4. A typical plot comparing the CR of AP with the most optimal
CR, copt (µl), as given by equation (12). In this plot τpM

P
= 5.

future xi’s are also updated assuming that the operator can
buy the additional lease in the current epoch (line 9.c.4.).

Step 3 is repeated till R < P . When R < P , it indicates
that purchasing any more additional lease is costlier than
renting. This is a direct consequence of Property 2. Hence
the operator decides not to buy any additional leases.
Step 4 (To lease or not)

The timestamps of leasing decisions are read from the
front of the FIFO queue (line 11.a.) as shown in Figure 3.
If the wait time η corresponding to the timestamp is lesser
than τ − 2P

pM
(line 11.b), an additional channel is leased (line

11.b.1.). Finally the processed timestamp is popped out of
the queue (line 11.c.). This step is continued either till the
FIFO queue is empty or there are no more channels available
for leasing in the current epoch.

A FIFO queue is used so that the timestamps are processed
in the order in which they were generated. Otherwise it may
happen that the wait time of a timestamp, which could have
been below the threshold τ − 2P

pM
gets rejected because it

was processed later.

Step 5 (Calculate ot and gt)
If there are At active leases, then by Property 1,

(Dt −At)+ demands are served by renting (line 12). The
number of channels to use opportunistically and the amount
of demands to reject is given by equation (6) (line 13).

Theorem 3: The competitive ratio of online algorithm AP
(Azth with zth = P ) is

c (µl) =

2 + τpM
P

(
1− µl

M

)
; µl ≥ M

( τpM2P )
τpM
P ; µl <

M

( τpM2P )

(14)

Proof: Please refer [14] for the proof.
Figure 4 compares the CR of AP with copt (µl), the best

possible CR that any online algorithm for OP3 (and hence
OP1) can achieve. Figure 4 shows that the performance of
AP is satisfactorily close to the optimal CR.

IV. SIMULATION RESULTS

In this section we carry out simulations using artifically
generated traces with two-fold objective. First, is to study the
effect of few trace parameters on the online algorithm AP .
Second, we compare AP with some benchmark algorithms.



TABLE II
COMMON TRACE PROPERTIES.

1 EPOCH = 1 HOUR, τ = 1 YEAR, T = 10τ , pM = 1, τpM
P

= 5,
M = 50, dM = 15. ’∗’ IMPLIES THAT THE FIELD CAN BE SET TO ANY

ACCEPTABLE VALUE.

Trace # of States State Space Mean (µ) CV (σ
µ

)
dt dM + 1 {0, . . . , dM} 4 0.9
Mo
t dM + 1 {0, . . . , dM} 2 0.5
pt 50 {0.8pM , . . . , pM} 0.95pM 0.05
βt 50 {0.05, . . . , 1} 0.66 0.35

λt M + 1 {0, . . . ,M} 3M
τ

∗
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Fig. 5. a) The effect of the erratic nature of dt and Mo
t on the normalized

cost. The normalized cost for each pair of
(
σd
µd
, σMo
µMo

)
is averaged over

100 traces. µd and µMo was held constant throughout the simulation. b)
Effect of erroneous βt on the normalized cost. The normalized cost for each
value of standard deviation is averaged over 100 traces.

Setup and trace generation: Recall that dt, λt, pt, Mo
t ,

vt and ft (·) are the inputs to OP1. In all our simulations,
ft (o) = pt

2Mo
t βt

o2 if Mo
t > 0 and 0 otherwise. βt ∈ (0, 1]

is the penalty parameter for opportunistic channel use. A
lower βt implies higher penalty. Due to the lack of real-
world traces, we had to generate artificial traces for dt, λt, pt,
Mo
t , vt and βt. We consider all the six traces to be discrete

time markov chain (DTMC). The mean and coefficient of
variation (CV8) of the stationary distribution of all the six
DTMC’s (and hence the traces) can be controlled9. Table II
tabulates common trace properties. These properties will be
used in the following simulations unless stated otherwise.

Effect of erratic nature of dt and Mo
t : The erratic nature

of customer demand dt and opportunistic channel availability
Mo
t decides the value of available opportunistic channels.

In this regard we study the following normalized cost: Cost
incurred byAP when it uses the opportunistic channels to the
cost incurred by AP when it does not use the opportunistic
channels. An available opportunistic channel is of value only
if there is a demand in that epoch, the probability of which
decreases as dt and Mo

t becomes erratic. Mathematically,
the normalized cost should be monotonic increasing in σd

µd
and σMo

µMo
where µd and σd (µMo and σMo) represents the

mean and standard deviation of dt (Mo
t ). As shown in

8CV is the ratio of standard deviation to mean. It can be used as a measure
of erratic nature of a trace. Higher the CV, more erratic is the trace.

9The problem of designing a Markov matrix whose stationary distribution
has a given mean and CV can be formulated as a linear program.
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Fig. 6. The performance of our online algorithm with respect to two trivial
algorithms. For each value of σ

µ
, we considered 4 values of µ and for each

(σ, µ) pair, we averaged the normalized cost over 100 traces.

Figure 5.a., this intuition is verified by simulations too,
subjected to simulation errors. There is a saving of 13%

between the lowest and the highest
(
σd
µd
, σMoµMo

)
pairs.

Effect of erroneous βt: Implementation of AP relies on
computing ft (o) which in turn relies on the knowledge of
βt. Penalty parameter βt depends on channel states like
number of users in a given channel, the transmission power
of individual users etc. The operator does not have direct
access to these information, it can only infer it (possibly
through customer feedback). Hence βt is prone to error.
Understanding the effect of erroneous βt on the normalized
cost (same as defined before) is important. To do this we
add zero mean white gaussian noise to βt and compute
the normalized cost incurred by AP as we increase the
standard deviation of the gaussian noise. This is shown
in Figure 5.b. As expected, the normalized cost increases
with increase in standard deviation. More importantly, with
standard deviation as high as 100%, the incurred cost can be
reduced by 3% if we use the available opportunistic channels.

In the remaining part of this section, we will compare AP
with some benchmark algorithms. To do this we will use the
following definition of normalized cost: Cost incurred by AP
to the cost incurred by the benchmark algorithm.

Comparison with trivial online algorithms: We compare
AP with two trivial online algorithms: i) Opportunistic
use only: This algorithm never leases any channel. It uses
available opportunistic channels and reject the remaining de-
mand. ii) Lease when needed: This algorithm leases channels
whenever the number of active channel leases is less then the
demand, provided there are channels available for leasing.
Leasing is not advisable if the demand is erratic because
there is a high probability that the demand may decrease
after we lease a channel. Therefore “opportunistic use only”
works better when the demand is erratic (Figure 6.a.) and
“lease when needed” works better when demand is smooth
(Figure 6.b.). If the number of available opportunistic channel
is erratic, it is better to lease a channel because there may not
be opportunistic channels available in future. This intuition
is validated by Figure 6.c. and 6.d. Figure 6 shows that AP
outperforms these trivial algorithms except when σd

µd
≥ 2.3.
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Fig. 7. The performance of our online algorithm with respect to two
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Comparison with statistics based online algorithms: To
implement AP we do not require any knowledge of the
statistics of the six traces. Therefore AP will be desirable
in the early stages of the deployment of 3-TSF because
knowledge of market statistics will be limited to none10.
We illustrate the advantage of AP by comparing it with
two statistics based algorithms: i) Markov Decision Process
(MDP): This algorithm was proposed in [3] and is the state-
of-the-art work with any resemblance to our problem. It
needs complete knowledge of the Markov matrices of all
the traces. It can be implemented online only if T ≤ τ 11. In
our case T > τ and hence we use the following heuristic: we
divide the optimization horizon T into T

τ frames and apply
the algorithm to each frame seperately. ii) Static Leasing
Strategy: This algorithm uses the stationary distribution of
the traces to compute the number of active leases required
to minimize the expected cost. It then tries to maintain the
optimal number of active leases subjected to lease availabil-
ity. Performance of such algorithms are prone to error in the
statistical model. Figure 7 shows the normalized cost when
µd is erroneous. As shown in Figure 7, AP performes better
than both the algorithms if µd is off by around ±50%. It is
to be noted that in this simulation, all statistical parameter
but µd was known accurately. Also due to the high time
complexity of MDP, we could only simulate for τ = 1week.

V. CONCLUDING REMARKS AND EXTENSIONS

For a wireless operator who works in Tier-2 and Tier-
3 of the 3-TSF, it is important to strategically decide the
number of channels to lease (Tier-2), the number of channels
to use opportunistically (Tier-3) and the number of customer
demands to reject. Such decisions rely on customer demand
and channel availability pattern which can be considered as
random processes. In this paper, we used tools from ski-
rental literature to design an algorithm which makes online
decisions without any knowledge of the statistics of the

10Statistics based algorithms like [3] will outperform AP if market
statistics is sufficiently accurate. Accurate market statistics will be available
after the 3-TSF is in operation for a sufficiently long time.

11The MDP based algorithm has a linear time complexity if T ≤ τ and
psuedo-polynomial for T > τ . Psuedo-polynomial time complexity is too
high to be implementable online.

involved random processes. We claim that our algorithm will
be of importance in the early stages of the deployment of
3-TSF because the operator will have either limited or no
knowledge of market statistics. Our algorithm has bounded
competitive ratio which is nearly optimal when compared
with the least possible competitive ratio. In the process of
designing an online algorithm for leasing channels, we for-
mulated and studied the modified ski-rental problem which
is state-of-the-art in ski-rental literature.

We are interested in addressing the following three issues
in later works. First, the online algorithm for leasing channels
which we designed has sub-optimal competitive ratio. We are
interested in desiging an online algorithm which is optimal
in sense of competitive ratio. Second, we are interested in
designing randomized online algorithms for leasing channels.
Third, we would like to explore other assumptions, like the
lower bound on the time average of the number of channels
available for leasing, through which we can derive a better
bound on the competitive ratio.
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