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Abstract— Data concerning the users and usage of Online subsets of OSN events, including updates containing specifi
Social Networks (OSNs) has become available externally,dm keywordsl such as a company name, product' or service.
public resources (e.g., user profiles), participation in OSis (e.g.,
establishing relationships and recording transactions sth as A, Current trends and our motivation
user updates) and APIs of the OSN provider (such as the .
Twitter API). APIs let OSN providers monetize the release of ~ There are currently two types of methods to obtain infor-
data while helping control measurement load, e.g. by provitig ~ mation concerning OSN networks. The first is direct mea-
samples with different cost-granularity tra_deoffs. To qlate, this  surement of eternally visible portions of the OSN, possitsly
approach has been more suited to releasing transactional t& 4 member, (e.g., viewing accessible portions of users’ lprofi

with graphical data still being obtained by resource intensve . . .
methods such a graph crawling. In this paper, we propose Pages, or registering for content updates). The second is by

a method for OSNs to provide samples of the user graph €mploying tools provided by the OSN, such as the Twitter
of tunable size, in non-intersecting increments, with samie  API, that give partial visibility into users relationshijpsnd

selection that can be weighted to enhance accuracy when the stream events (status updates, i.e. tweets). Muchrobsea

estimating different features of the graph. activity (see Sectiofill) has focused both on developing
strategies for efficiently using these resources and estigha
l. INTRODUCTION OSN properties from the subsets of data so obtained. This

Online Social Networks (OSNS) continue to grow rapidly?PProach often involves traversal of portions of the OSN
with 1.7 billion monthly active users on FacebBaind over 9raPh, en passant compiling relatively large data subsets f

300 million on Twittefl. OSN providers are making small research.and evaluat_ion purposes. However, such appﬂ)ache
portions of their vast data collections available to digfer '€ relatively costly in time, resources, and expertise, an

external parties, including researchers, based on bussin&€nce not feasible for non-specialist use. .
considerations (increasing reach and sales or enablieg-ext A more effective model for non-specialist users positions
nal application writers). The manner of providing access, t tNém at the end of a chain of commercial relationships.
choice of the samples, etc., are all unilateral decisiongema IN€ chain starts with OSNs monetizing access to their user
by the OSN providers. In this paper, we argue that there af@t@ by providing partial data feeds with members selected,
better ways to make samples of user data available to exterffzd- PY sampling or attribute-based filtering, potenyialt
parties that would benefit all. We examine current practicddfférent price points depending on factors such as the
in OSN data availability, the manner of analyses which usg?mPling rate and reported detail per item. Independent
the data, and the challenges posed by scale and statisti@ac-l;'_\‘ analytic services subscribe to these_data feeds, possib
features of the data itself. We propose sampling schemi®ining them with OSN data measured independently, and
that accommodate the need estimate accurately in multifdder data sources such as demographic information. This
data dimensions and can also serve different sampling raf¥®Vvides downstream feeds and/or query functionality that
without duplication under a controllable database load. ~¢@n Pe sold to non-specialist end users. The OSN analytic

We examine current practices in OSN data availability, thaervices would sgbscrlbe tq h_|g_her-cost datf”l feeds than
manner of analyses which use the data, and the challengﬁ%md_ be eco_nom!c_al for an individual user, with the costs
posed by scale and statistical features of the data itseiére efiectively being divided over the set of end users.

nally to OSNs there is much interest in understanding user,s,'n order to realize the model just described, what is needed
their OSN relationships, and the OSN events they genera{@"’_’ systematic way for OSNs to release samples of graph level

Research aims to understand statistical properties, ssich ,]eCtS_S“Ch as users (nod_es), relationships petvvees user
connectivity, clustering, node degree, events. Increhgin (links) and node glusterg—w:ti? a level O_f samplmg th,at can
there is commercial interest in identifying specific subsit € tuned to a desired price poi@SNs primarily benefit in

the OSN graph (active users, highly connected and influenti§'© Ways. First, this produces a new data feed that can be

users, groups of users with specific common interests) afgPnetized. Second, this reduces the measurement based load
on the OSN service network, since it provides information
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Engineering and Computer Science & Engineering, Texas A&hwversity, ~ Of the OSN. A corollary of this second point it that OSNs

Coglggle Sﬁaﬁg”' TKX_ 17843' Uhsﬂufféi#gil@{_@ﬁagu-eduh - have an incentive to employ a sampling strategy that, for
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How should the OSN sample its user graph? The comminimal way to do this is to determine the smallest set of
straints for external measurement do not apply to the OS{¥oughly) independent heavy-tailed variables of interastl
provider. We assume that the OSN stores the user graphtee each of these as a weight. In this approach, correlations
a database and that it is feasible to pass exhaustively ovmtween variables are advantages in the sense that they may
all elementary graph objects (nodes and links) in order taeduce the number of sample sets that must be compiled. The
compile samples. Composite objects such as node clusteexond question is which sample set or sets should be used in
of a given size may also be amenable to treatment. Withierving a given query. We propose that the uniform sample be
this framework, a sampling methodology should exhibit theised for ordinary distribution queries and queries coringrn
following three properties: the mass distribution of light-tailed variables, while aequ

Sl: Multidimensional Estimation Accuracyfhere are concerning the mass distribution of a heavy-tailed vaeabl
many interesting properties for OSN analytics, includinghould use a weighted sample set of either that variable, or,
node properties (e.g., event activity rate, node in and oiftabsent, a sample set weighted by a correlated heavydtaile
degree) and link properties (e.g., degree pairs of condecteariable.
nodes). The sampling methodology must be able to yield ac-We propose to meet condition [S2] by using Priority
curate estimates of the marginal distributions of the \deis, = Sampling [9] to compile, for each graph element type and
e.g., to service queries on the distribution of the number afample weighting, Master Sampleomprising a randomly
connection beween OSN users. However for OSN analyticsrdered subset of graph elements. A simple query on the
there is a great interest in understanding teétionships master sample returns the fiksttems in order, with possible
between user propertieas expressed through queries sucliollowup queries returning the next and so on. A more
as finding the proportion of all connections or of all eventomplex query returns only elements that match a given
activity that is represented by a given proportion of theredicate. Here, the parametkrdetermines the effective
most connected users (see e.g. [14]). Answering such guergampling rate.
requires accurate estimation of not only the joint disthidiu Priority Sampling can be implemented as either an offline
of the variables concerned, but ti@nt mass distributions or a streaming algorithm. Correspondingly, condition [S3]
i.e., the joint distributions weighted by the values of offie ocan be achieved by limiting a frequency of an offline
more variables. redrawing of the sample sets or by streaming graph elements

S2: Single Pass Serving of Different Sampling Ratesinto the sampler at some desired rate.
rather than have separate database passes for each samplifithe outline of the paper is as follows. Sectioh Il sur-
rate with associated duplication of resource usage, we wislkys the current state of related work and positions our
to serve queries based on any sampling rate from a singientribution with respect to this. Sectibnllll describesnso
pass through the data. classes of query used in OSN analysis and discuss the

S3: Control of User Database Access Rafge assume ramifications for observed distribution features. Secligh
that in order to limit measurement access load on thgescribes the compilation of master samples using Priority
database, the access rate must be controlled to a desi&mpling, and procedures for estimating weight sums over
level. This may occur through limiting either the frequencysubsets of population elements specified by a selection
of exhaustive passes, or the frequency of individual aesesspredicate. We also show how to estimate both ordinary and
during the traversal. mass distributions from the samples. For evaluation p@pos

A Cha”enge for Creating a Samp”ng regime Satisfyingve collected an OSN dataset described in Sedﬂd)n V; the
these properties comes from certain empirical facts: @) thevaluations are described in Sectibnl VI. Our concluding
distributions of some variables are markedly skewed, éhib discussion in Section VIl sketches some possible exteasion
ing heavy tails, and (ii) there are strong correlations leefwv Of our approach.
some pairs of variables (see Secfidn V). Uniform sampling is
effective for estimating ordinary distributions, but is aop
choice for estimating the mass distribution of a heavyethil  In this section we survey the current state of external
variable [5], since random omission from the sample of @and internal measurement of OSN and node and link-level
single large value can render estimates inaccurate. thstegueries of common interest. We describe the known effects
weighted sampling (see e.g., [9]) can be used to prefetigntiaof sampling on query accuracy and the challenge that heavy-

sample high-weight objects to provide accurate estimaftes @iled distributions of the variable bring to answering Ge
mass distributions. We also explain how our work develops the state-of-the-art

in distribution estimation and sample provisioning.

II. A SURVEY OF OSN MEASUREMENT

B. Contribution and Outline

The contribution of this paper is first to specify a samplind" External Measurements, Crawling and Random Walks

methodology that satisfies the properties [S1,2,3] above. W There is a large literature on external measurements of
propose to meet the condition [S1] by compiling, for eaclOSNs that illustrates the scale and complexity involved in
type of graph object (e.g., node, link) a uniform sampl@&ata acquisition. Early papers gathered data by crawling
and one or more weighted sample sets. This raises twirkut [20] and Twitter [14], [16]. A more recent, larger seal
guestions. First: how should the weightings be chosen? gtudy [18] used 20 machines simultaneously sending a large



number of requests to Twitter to fetch nearly 42 Million usef4] studied the dependence between different measures of in
profiles and over 100 Million tweets. Another [4] fetchedfluence in Twitter, namely, in-degree, retweets and meastion
nearly 55 Million user profiles, 2 billion follow links, and Our work is different from these in that we provide insight
1.75 billion tweets. on how best to sample based on the desired target statistics.

The statistical properties of OSN data acquisition throug@loser to our approach is [27], which proposed Probability
crawling has been examined in the framework of randorRroportional to Size sampling in OSN for estimation of node
walks on graphs. The general theory of these goes back degrees. Our work goes further: we consider the problem
[10]. A number of different sampling strategies for graptof how to estimate for joint distributions of interest in
traversal have been proposed, and evaluated for online napplications. None of the above works consider our problem
works including the web, peer-to-peer, and social networksf how to play out samples for analysis in a optimal, tunable,
These evaluations have included examining the dependerared scaleable manner.
of various graphical statistics on the sampling rate. Unbi- OSNs place various constraints on the ability of users to
ased sampling via Metropolis-Hastings Random Walks wasbtain social graph data. Twitter provides limited live sam
examined in Facebook [12] and P2P networks [23]. Foregles via their Streaming API, while the Search API allows
Fire Sampling [19] explores the graph in a Markovian wallqueries against recent or popular tweets [26]. Faceboatslim
from randomly selected nodes, while Frontier Sampling [21the number of API queries that can be submitted in a time
used multidimensional random walks to mitigate trappingoeriod. Thus, most of the research described here repods on
Weighted random walks on graphs to implement stratifiedample of the data, which leads to questions about the nature
sampling was proposed in [17]. Graph sampling methodand size of samples needed to answer specific questions. The
exploiting temporal clustering properties of OSN updatesvolution of this data, including the effective samplingesa
are presented in [1]. Estimation of YouTube video counthas been studied over a multi-year period by [28], which
through random prefix sampling was proposed in [30]. Estialso notes the inherent activity bias of this datasets. Even
mating degree distribution under network sampling is &éat studies that report on full crawls could be out of date after
as a linear inversion problem by [29]. a relatively short period of time.

The effectiveness of different crawling and non-crawlin
sampling strategies have been compared though their &ffe
on estimation of graphical statistics. Uniform sampling,38 The approach of this paper builds on experience and
with threshold and OPIC (online page importance) werenethods from sampling Internet traffic flow records. The dis-
compared in [3]. The effects of different sampling stragsgi tribution of bytes per flow is heavy-tailed [11]. Consequgnt
information diffusion metrics in Twitter were examined inuniform sampling of flows, while providing good estimates
[6]. Sampling based estimates of the distributions of popwf counts of flows satisfying any predicate, provides bad
larity, length & number of views reported in YouTube videoestimates of their byte counts because non-selection @é lar
metadata were compared in [15]. Our work is distinct fronflows greatly impact byte estimation accuracy. On the other
these in that we consider the methodological underpinningmnd, weighting sampling by byte size enables accurate es-
of what makes an effective sampling strategy and its refatidimation of bytes in flows satisfying any predicate, resigti

The Challenge of Heavy Tails

to the queries that are served. in bad estimates of flow counts. The conclusion here is
) S that the heavy-tailed byte distribution makes it difficudt t
B. OSN Queries and Feature Distributions simultaneously satisfy the accuracy requirements of byte a

OSN research literature has focused on some populflow estimation in a single sample. Instead, it is best to
guestions about various properties. These include charammpile two sample reservoirs, one with uniform sampling to
terization concerns such as statistics about “friendshipserve flow-level queries, one with bytes weighted sampling
(which in asymmetric OSNs like Twitter includes notionsto serve byte-level queries [8]. In this paper we will exploi
of following and followers), outliers, connected and dis-existing methods for efficient Probability ProportionaBize
connected components in the social graph, degree of seyampling [2], [9], but the application of these to the prable
aration, homophily, assortativity, and participationctian of scaleable playout of samples without repetition is new.
[3]. Dynamic properties such as reach, spread, and cascade
focus on users and applications that have higher influence, Il. M ODELING OSN QUERIES
as characterized by the speed with which an application Our work focuses on queries based on topological features
or a user's communication spreads [6]. This topic is 0bf single node or pairs of nodes, and on activity features. We
considerable commercial interest. consider the class of queries that correspond to statements

The joint distributions of graphical statistics in onlinetn concerning the (possibly joint) distribution of these node
works are of great interest for the user community [24] anduantities, or some summary statistic that integrates iheer
have been studied experimentally by a number of authomdistributions. Thus, our evaluation focuses on the questio
The joint distributions of OSN user characteristics (nursbe of how accurately the distributions of these features can be
of friends, followers, activity measures such as number astimated from the collection of sampling reservoirs. Many
posts) were studied in [14]. [20] found correlations betweedistributional queries and features of commercial intefe=e
in and out degrees in crawls of Flickr, Orkut and YouTube[14], [24]) can be abstracted into forms that we now describe



The set of single-user queries include: B. Correlated Heavy Tails: A Thought Experiment

(i) Distributions of single featureg.g., givem find = such Consider two familiesX = {X;, ¢« = 1,...,n} and
thatz% of users generate at leasttweets each. Y = {Y;, i = 1,...,n} of heavy-tailed random weights,
(i) Self-weighted mass distributions of single featureg., drawn independently within each family. How do correla-
giveny, find  such that the top:% most active users tions betweenX andY affect PPS sampling? We use the
generatey% of all tweets. following thought experiment to examine two extreme cases:
(iii) Mass distributions of one feature weighted by anather iy perfect correlationX; = Y; for all i;

e.g., giveny, find = such that the top% most followed (i) IndependenceX; andY; are independent for ail

.users togethe.r generage; (.)f all tweets. . Under perfect correlations, PPS sampling usiAg as
In this paper we will focus on single use queries of the formyeights is effective for estimating largé, since these equal
just des_cribed. H_owever, the_sar_ne me_thods can, in_principllqz.Ie corresponding(;. But whenX andY are independent,
be applied to pair user queries including the following:  ihe occurrences of large values &f and Y are not cor-
(iv) Joint distributions of features from two usgeesg., given related, so weighted sampling based Enwill not select
y, find 2 such that:% of the total activity between user largerY'. In practice, correlations between node variables lie
pairs are between the tas most active users. between these extremes. Our experiments in Sectibn VI find
(v) Pairwise summary statistics such as assortativély, the varying degrees of correlation between different heailpda
correlation between graph degrees of directly connectetbde variables. The less strongly correlated variablesaire
users. interchangeable as weights for PPS sampling.

IV. SAMPLES, PLAYOUT & ESTIMATION C. Priority Sampling

This section describes the technical approach undergnnin The specific form of weighted sampling we use in the
our work. Sectiorl TV-A motivates weighted sampling as gaper is Priority Sampling [9]. From a populati®nof items
response to heavy-tailed distributions of node charastiesi with weightsw;, Priority Sampling constructs a sample of
while Section[IV-B illustrates the ramifications of correla any fixed sizek as follows. First generate for eacha
tions between different heavy-tailed variables for sanwpli priority «; = w;/u; where eachu; is independently and
Section[IV=C briefly reviews Priority Sampling, while Sec-uniformly distributed in(0, 1]. ThenQ(k) comprises: items
tion[V-Dldescribes how it can be used to fulfill the objective of highest priority. Define the¢hresholdz (k) as the(k + 1)
S1-3 in the introduction. Sectidn TME shows how samplekighest priority. Then the effective sampling probabilisy
selected through these means can be used to estimate ithe;(w;, k) = min{1,w;/z(k)}, and using the Horvitz-

mass distributions described in Sectiod IIl. Thompson inverse probability method [13],
A. Heavy Tails and Weighted Sampling o, = § max{w;, 2(k)} if i is sampled (1)
¢ 0 if ¢ not sampled

Our approach to sampling is guided by the principle
that sampling methodology should be chosen to match th& an unbiased estimator af; [9]. An unbiased estimate of
statistical characteristics of the data with the querieshat the subset sunk (S) = >, x; over any subses is just

data. In this case, the salient statistical features are: X(S) = > ,c5Ti- A common case is whef is a set of
(i) Node features such as graph degree and activity thiiéms satisfying a predicate (e.g., users registered inesom
exhibit highly skewed, heavy-tailed distributions. region or with at least some number of relationships).

i) Node characteristics that exhibit varying amounts o :

() statistical correlation; see [14] and SeyctI?E VI. b Datz.albase Sf'jlmpl|ng and Playout o o

Uniform sampling estimates mass distributions poorly iseca !n this section we show hc,)W Priority Sampling IS well ,
(i), since estimation accuracy of large sizes becomes ynigh?u'ted to serve databa_se queries ba_sed on any predicate with
sensitive to inclusion or exclusion from the sample of Iargél mechanism possessing the following properties

items, i.e., those for which the measure of interest, such af) Different sample sizes and predicates can be served
node degree, is large. Weighted sampling reduces estimatio ~ from a master sample.
variance by boosting the relative selection probabilitiés (i) Multiple non-overlapping samples can be generated on
large items relative to small items. The prime example is the same predicate.
selecting a item of size with Proportional to Size (PPS). A (iii) Sample volume or processing load can be controlled.
number of variants of this approach exist, including wedght In each case, unbiased estimators can be constructed from
sampling without replacement, Priority Sampling [9], andhe corresponding samples.
Variance Optimal Sampling [7]. All these methods are able 1) Creation of the Master Sample: Following [2], we first
to construct a sample of a specified fixed size. Prioritgreate the master sample: a descending priority-ordegdort
Sampling and Variance Optimal sampling have efficientersion)’ of the populatiorf) of database records, typically
implementations on data streams, and the latter minimizesalized a sorted index into the original set. This prodecur
estimation variance compared with any online or offlings performed one-time only: all randomness occurs during
unbiased estimator. this initial step. If the size of the master sample must be



constrained to a sizk,,.., we take ag)’ the k..« elements
of largest priority.

2) Samples of Given Sze Over a Predicate: A sample
S(k) of sizek over any predicat& andk can be constructed

by selecting the firsk items inQ)’ that match the predicate.

These are returned along with the sampling weightsand

the sampling threshold(S, k) being the(k + 1)% largest

priority of items matchingk. If ' is exhausted with only
1 4+ k¥’ matching items found, then the first of these are
returned, along withe (S, £).

3) Non-overlapping Samples on a Given Predicate: An
initial sample S(k) can be extended to sizé + j by
adjoining the nexjy elements that matcH, to yield S(j+k).
The original z(S, k) is discarded and(S, j + k) used for

estimation purposes. This step can be repeated as requiré

exhaustion of?’ is handled as above.
4) Control of Computational Cost: Computational cost

Theny estimates the(y)-quantile of X (7). To estimate the
full CDF ofAX(j) we use the valug(y) asy is varied. We
denote byD,, (X)) the resulting distribution estimate.
Mass distribution X () by quantiles of X ). This estimate
aims to yield statements of the forra:proportionr of the
total mass ofX(¥) is contained in a proportioq of records
with smallestX /). Given a valuey, define

XO(w, k, 29 < y)
XO(w, k)

N(w, k, 20 < y)
N(w, k)

q(y) = , r(y) =

(5)
Similar to abovey estimates the(y)-quantile of X ), while
r(y) is the proportion of the mass of ) attributable to
records with X (7) no greater than this quantile Varying
?as a parameter yields the estimated cufyé&y),r(y))
he mass distribution o ) by the quantiles ofX (4).
M,(X®, X @) is the resulting mass distribution estimate.

may be controlled instead by selecting elements matching Note that in all the above examples, one can further restrict

S from within the firstk of all elements ofY'. In this case,
the threshold reported is(k), the (k + 1)¥ largest priority
in all of €V'.

the distribution to those items matching additional pratés
that select on théxz™), ... 2(™),

V. OSN MEASUREMENTDATASET

5) Estimation Accuracy: General bounds for estimation
accuracy of subset sums has been determined in [25]: anThis section describes the acquisition and properties of
unbiased estimat& of a subset sunk based ink samples the OSN dataset used in the measurement-based study of

obeys the boundar(X) < /X/(k — 1).

E. Distribution Estimation

this paper. Twitter supplies streamed data on a sampled
basis via its Streaming API interface [26], also referred
to as the gardenhose. This provided a sample of 5 public

We now show how the joint distributions of user vari-tweets out of every 100 (based on the last two digits of the
ables used in the queries described in Sedfioh Il can gonotonically increasing status IDs), written on a sing@&PT
computed using subset sums whose estimation from sampggnnection, significantly minimizing overhead on Twitter
is described above in Sectiohs IV-C and TV-D. We modeservers. Twitter guaranteed randomness via their selectio
each user record in the database as containing a setpspcess and their internal algorithm for assigning stass |

m features(z™, ..., z(™)). A sampling weight is a value

w=w(z®,.. .,

(™)) computed as a function of its fields.

Each record streamed included nearly forty fields ranging
from information about the user who generated the tweet

These value may be directly reported in the record, and/@including number of friends, followers, status IDs) todnf

in the simplest case be a single feature.
Given a predicater, we will denote

Z %(‘j) /pi(wi, k)

w(i)nieQ(k)

)?(j)(w,k,ﬂ') = (2)

the estimate of the subpopulation sume6f over all records
satisfying the predicate, based on a sample of sizeusing
weights w; = w(z!",..., ™). We also distinguish the
estimated subpopulation count:

i ey

T (§)Ai€Q(K)

N(w, k,) 1/pi(wi, k) (3)

mation about the tweet itself (textual content, language).e
During 2010, we gathered seven consecutive weeks of data
resulting in 75 million tweets and the associated infororati
generated by just over 8 million unique users. We selected
100,000 unique users using weighted sampling with each
user weighted proportionally to the number of tweets that
the user originated in our sample. Through the Twitter API
we obtained the list of their friends and followRrs

Our dataset is inherently activity weighted since the more
active users have a greater chance of selection than the
less active users; see [28]. Thus, the distributions of node
variables in our data is different from those in the unsashple
user database available to an OSN provider. However, this

We will omit the = when all records are to be used,does not change the essential thrust of our work (how best to

corresponding to the caseis identically true.

Distribution of X ), This estimate aims to yieId statement

of the form: a proportion; have records hav& %) less than
or equal toy. Given a valuey, define
NO (w, k,20) <
) = T =) @

NG (w, k)

S

sample from correlated heavy-tailed distributions) sitiee
heavy-tails we observe are not created by sampling.

In graph language, each node corresponds to a user, and
we denote by o andrFr the numbers of followers and friends
as reported in the most recently observed status update for

3|f friends/followers count exceeds 100, the API limits tresgonse to
the 100 most recent
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Fig. 1. Pairwise scatter plots of node characteristics g0Q® random users. Left: weaker correlation(Ac, FR) = 0.44. Right stronger correlation
rs(FO, FR) = 0.82 (Statistics from full dataset).

w X=FO X=FR X=AC

each node. The activityc is the number of status updates onr T 006600520352

observed for a given user. Each of the 7.3 million direct FR | 0.130 0.152  0.330
graph links(u1,uz) corresponds to a follower relationship, Fo | 0.116 0.110  0.346
i.e., u is a follower ofu;. An example of a link feature AC | 0069 0055 0347
combining features from both nodesHsAN, the follower TABLE |

fanout of a link(uy, u2), defined as the ratibo(us) /FO(u;).  ORDINARY DISTRIBUTION ACCURACY FORNODE VARIABLES: MEDIAN
We believe this is an interesting feature because high saluS STATISTIC FORDy,(X) OVER 100RUNS. KS NOTICEABLY SMALLER
of FFAN indicate links where a tweet for usen has the FOR WEIGHTINGSw = UNI AND AC
potential to be amplified if retweeted by uses, sinceus
has a larger follower set.

As stated in Sectiofi |, the correlations amongst different
data features have ramifications for the choice of a set

different sample weightings. If a set of _vari_ables is stigng sampling and other denote weighting by the specified node
mutually correlated, then a sample weighting based on a¥ iable. The mass distribution estimates wéie (X, X')

one of them may be sufficient for estimating the MaS§sedx. X' e {Fo, FR, AC} andw € . For the link variable
distribution of any of them. To assess the correlation aerngFFAN’ we estimate the ordinary distribution usiﬁgU(FFAN)

user features, we calculated the Spearman rank correlati\%h w € W’ = {UNI, FOy, FOs, FEAN} where fori € {1, 2}

r, between each pair of features to normalize the varyingoi is the Fo value of nodeu, in a directed follower link

scaling behavior of the featuresR and FO are strongly (u1,us). We estimated the mass distributiohs, (FFAN, X')
correlated, withr,(FR,FO) = 0.82. Their correlation with ¢ - ’X, € {FO1, FOy, FFAN} andw € W' ’

AC is weaker:r(AC, FO) = 0.53 andrs(AC, FR) = 0.44. o ) .
rs(AC, FO) rs(AC, FR) Our principle comparison was between true and estimated

We also use scatter plots of pairs of user features t bt the diff h terized by th .
illuminate the relationships between the variables, using istribution, the dilierence characterized by the maximum
solute difference of the cumulative distributions, mi

niform random sample of 10,000 users; see Figlre 1. Hi : -
un! P . 1Gu ! 0 the Kolomogorov-Smirnov (KS) test statistic [22]. For

values ofFR and Ac are relatively uncorrelated, while high .
y 9 eachw, X (and X’ in the mass case) we conducted 100

values of FO and FR are more strongly correlated. The. d dent select f 1000 | q zed
consequences of this behavior are discussed next. Independent selections 0 samples, ‘and summarize

differences using the median KS statistic over the selpstio
VI. MEASUREMENTSTUDY & EVALUATION Results for node variables are shown in Tables | &hd 1l for
We show how the estimation accuracy of both ordinargrdinary and mass distributions, respectively. For ongina
and mass distributions depends both on the variables whadistribution, the difference is noticeably smaller foxi and
distribution is to be estimated and the features used tohweigac weightings than folro and FR. This is unsurprising for
sampling. To assess accuracy we compare the estimated; for AC it reflects the absence of strong correlations
ordinary and mass distribution®,,(X) and M, (X, X’) between large values ofic with other variables. For the
of X (according to the quantiles oX’ in the mass case), mass distribution, we observe the difference fo (X, X’)
under the sample weighting, with the true distributions is typically smallest whem = X, regardless of the value of
computed as “estimates” of all the data instead of sampling’. In other words, the mass distribution &frelative to any
For node variables, we estimated the ordinary distribstiorother variable is generally most accurately estimatedgusin
D, (X) where X € {Fo,FR ACc} and different weighting X as the sample weighting. However, the mass distributions

gt:hemeslz € W = {UNI, FO, FR,AC} whereuNI is uniform
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Fig. 2. Quantile-Quantile Plot of Estimate vs. Actual Madstiibution from 1000 Samples of Node Variables and Fo best estimated using either as
sample weights.

w X' X=FO X =FR X =AC W=UNI W=FO; W=FOy w=ffan
UNI FO | 0.399 0.144 0.081 0.027 0.070 0.116 0.153
UNI | FR | 0.152 0.141 0.076
UNI | AC | 0172 0175  0.083 TABLE Il
FO FO | 0.024 0.044 0.089 ORDINARY DISTRIBUTIONACCURACY FORLINK VARIABLE FFAN:
FO | FR | 0.024 0.042  0.088 MEDIAN KS STATISTIC FORD,, (FFAN) OVER 100RUNS.
FO | AC | 0.108 0.162 0.092
FR Fo | 0.291 0.027 0.075
FR FR | 0.196 0.029 0.086
FR | Ac | 0.129 0.165 0.089 — — —
AC | FO | 0.370 0.125 0.026 W | X =Foi X =FO X=FFAN
Ac | FR | 0138 0135  0.031 o 8-‘2&1) 8-%2 8-2‘7’2
AC AC 0.175 0.169 0.040 1 . : :
FO2 0.065 0.061 0.064
TABLE 1l FFAN 0.034 0.027 0.025
MASSDISTRIBUTIONACCURACY FORNODE VARIABLES: MEDIAN KS TABLE IV
STATISTIC FORDy, (X, X’) OVER 100RUNS. NOTE KS GENERALLY MASSDISTRIBUTION ACCURACY FORLINK VARIABLES FFAN: MEDIAN
SMALLEST FOR WEIGHTINGw = X. KS STATISTIC FORD,, (FFAN, X') OVER 100RUNS,

of X = Fo,FR have roughly equal estimation differenceWith FO2, the numerator ofFAN, also produces good results,
whichever is used as the weighting This reflects the fact While weighting with the denominat®o; is not so accurate.
that the distributions high values @fo and FRr are fairly ~ This is consistent with the observation that large values of
strongly correlated; see Sectibn V. Tablg IV shows resulfsFAN are driven more by large values #o. than large
for the mass distribution of the link variableran. The Values ofFo.

smallest estimation error usingFAN weighting, although

FO, weighting is reasonable, performing noticeably better VII. DISCUSSION ANDCONCLUSIONS

than with uniform ofrFo; weighting. This paper was motivated by commercial interest in the
We illustrate a selection of the estimated distributiongint distributional properties of users and the connexio
through quantile-quantile plots of the estimated vs. dctufetween them in online social networks. Although much
mass distributions for a section of variables. Figudre 2 showesearch has been devoted to acquiring data through ekterna
the joint mass distributions ofo weighted byAc (left) crawling, OSN providers themelves are well positioned both
and FrR weighted byFo (right), where each line of the to access OSN data directly through their customer database
graph corresponds to a different sample weighing variabknd to monetize this as an information resource.
(UNI, FO, FR, and AC). As expectedUNI has the poorest  This paper proposes a method by which OSNs can provide
performanceFo and FR the best (being highly correlated), samples of the user graph of tunable size, in non-intersgcti
while Ac has variable performance. Figlide 3 displays similaincrements, with sample selection that can be weighted to
plots for the link fanout variableFAN, for both the self- enhance accuracy when estimating different features of the
weighted distribution (left) and the mass distribution twit graph. A key experimental conclusion what that neither
respect to the initial node follower courto;. In this uniform nor activity weighted sampling were accurate for es
case, estimation accuracy is, unsurprisingly, best forpéam timating mass distributions of friends, followers and fafo
weighting with FFAN itself. However, sampling weighting as compared with weighting by these features themselves.
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Fig. 3. Quantile-Quantile Plot of Estimate vs. Actual Madstfibution from 1000 Samples of Link VariablrAN. Best estimated usingrAN as weight,
FO reasonablepyNI and FO; poor.

To bring our approach to fruition requires two steps whicll5] KarkuLAHTI, O., AND KANGASHARJU, J. Youtube Revisited: On
we identify as future work. The first is to provide a method to
systematically determine the set of required sample Weigrﬁe]
ings as a function of the joint feature distribution and the
class of queries to be served. The second is to provide &l
automated classification scheme that can dynamicallytselec
the best weighted sample set or sets to serve a given query.
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