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Efficient Sampling for Better OSN Data Provisioning

Nick Duffield∗ and Balachander Krishnamurthy‡

Abstract— Data concerning the users and usage of Online
Social Networks (OSNs) has become available externally, from
public resources (e.g., user profiles), participation in OSNs (e.g.,
establishing relationships and recording transactions such as
user updates) and APIs of the OSN provider (such as the
Twitter API). APIs let OSN providers monetize the release of
data while helping control measurement load, e.g. by providing
samples with different cost-granularity tradeoffs. To date, this
approach has been more suited to releasing transactional data,
with graphical data still being obtained by resource intensive
methods such a graph crawling. In this paper, we propose
a method for OSNs to provide samples of the user graph
of tunable size, in non-intersecting increments, with sample
selection that can be weighted to enhance accuracy when
estimating different features of the graph.

I. I NTRODUCTION

Online Social Networks (OSNs) continue to grow rapidly
with 1.7 billion monthly active users on Facebook1 and over
300 million on Twitter2. OSN providers are making small
portions of their vast data collections available to different
external parties, including researchers, based on business
considerations (increasing reach and sales or enabling exter-
nal application writers). The manner of providing access, the
choice of the samples, etc., are all unilateral decisions made
by the OSN providers. In this paper, we argue that there are
better ways to make samples of user data available to external
parties that would benefit all. We examine current practices
in OSN data availability, the manner of analyses which use
the data, and the challenges posed by scale and statistical
features of the data itself. We propose sampling schemes
that accommodate the need estimate accurately in multiple
data dimensions and can also serve different sampling rates
without duplication under a controllable database load.

We examine current practices in OSN data availability, the
manner of analyses which use the data, and the challenges
posed by scale and statistical features of the data itself. Exter-
nally to OSNs there is much interest in understanding users,
their OSN relationships, and the OSN events they generate.
Research aims to understand statistical properties, such as
connectivity, clustering, node degree, events. Increasingly,
there is commercial interest in identifying specific subsets of
the OSN graph (active users, highly connected and influential
users, groups of users with specific common interests) and
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subsets of OSN events, including updates containing specific
keywords, such as a company name, product, or service.

A. Current trends and our motivation

There are currently two types of methods to obtain infor-
mation concerning OSN networks. The first is direct mea-
surement of eternally visible portions of the OSN, possiblyas
a member, (e.g., viewing accessible portions of users’ profile
pages, or registering for content updates). The second is by
employing tools provided by the OSN, such as the Twitter
API, that give partial visibility into users relationships, and
the stream events (status updates, i.e. tweets). Much research
activity (see Section II) has focused both on developing
strategies for efficiently using these resources and estimating
OSN properties from the subsets of data so obtained. This
approach often involves traversal of portions of the OSN
graph, en passant compiling relatively large data subsets for
research and evaluation purposes. However, such approaches
are relatively costly in time, resources, and expertise, and
hence not feasible for non-specialist use.

A more effective model for non-specialist users positions
them at the end of a chain of commercial relationships.
The chain starts with OSNs monetizing access to their user
data by providing partial data feeds with members selected,
e.g., by sampling or attribute-based filtering, potentially at
different price points depending on factors such as the
sampling rate and reported detail per item. Independent
OSN analytic services subscribe to these data feeds, possibly
joining them with OSN data measured independently, and
other data sources such as demographic information. This
provides downstream feeds and/or query functionality that
can be sold to non-specialist end users. The OSN analytic
services would subscribe to higher-cost data feeds than
would be economical for an individual user, with the costs
effectively being divided over the set of end users.

In order to realize the model just described, what is needed
is a systematic way for OSNs to release samples of graph level
objects—such as users (nodes), relationships between users
(links) and node clusters—with a level of sampling that can
be tuned to a desired price point.OSNs primarily benefit in
two ways. First, this produces a new data feed that can be
monetized. Second, this reduces the measurement based load
on the OSN service network, since it provides information
that would otherwise be obtained only by direct measurement
of the OSN. A corollary of this second point it that OSNs
have an incentive to employ a sampling strategy that, for
a given data feed sampling rateoptimizes the accuracy of
analyses built on the feed.This reduces any incentive for
subscribers to revert to independent measurement.

http://arxiv.org/abs/1612.04666v1


How should the OSN sample its user graph? The con-
straints for external measurement do not apply to the OSN
provider. We assume that the OSN stores the user graph in
a database and that it is feasible to pass exhaustively over
all elementary graph objects (nodes and links) in order to
compile samples. Composite objects such as node clusters
of a given size may also be amenable to treatment. Within
this framework, a sampling methodology should exhibit the
following three properties:

S1: Multidimensional Estimation Accuracy:There are
many interesting properties for OSN analytics, including
node properties (e.g., event activity rate, node in and out
degree) and link properties (e.g., degree pairs of connected
nodes). The sampling methodology must be able to yield ac-
curate estimates of the marginal distributions of the variables,
e.g., to service queries on the distribution of the number of
connection beween OSN users. However for OSN analytics,
there is a great interest in understanding therelationships
between user properties, as expressed through queries such
as finding the proportion of all connections or of all event
activity that is represented by a given proportion of the
most connected users (see e.g. [14]). Answering such queries
requires accurate estimation of not only the joint distribution
of the variables concerned, but thejoint mass distributions,
i.e., the joint distributions weighted by the values of one of
more variables.

S2: Single Pass Serving of Different Sampling Rates:
rather than have separate database passes for each sampling
rate with associated duplication of resource usage, we wish
to serve queries based on any sampling rate from a single
pass through the data.

S3: Control of User Database Access Rate:We assume
that in order to limit measurement access load on the
database, the access rate must be controlled to a desired
level. This may occur through limiting either the frequency
of exhaustive passes, or the frequency of individual accesses
during the traversal.

A challenge for creating a sampling regime satisfying
these properties comes from certain empirical facts: (i) the
distributions of some variables are markedly skewed, exhibit-
ing heavy tails, and (ii) there are strong correlations between
some pairs of variables (see Section V). Uniform sampling is
effective for estimating ordinary distributions, but is a poor
choice for estimating the mass distribution of a heavy-tailed
variable [5], since random omission from the sample of a
single large value can render estimates inaccurate. Instead,
weighted sampling (see e.g., [9]) can be used to preferentially
sample high-weight objects to provide accurate estimates of
mass distributions.

B. Contribution and Outline

The contribution of this paper is first to specify a sampling
methodology that satisfies the properties [S1,2,3] above. We
propose to meet the condition [S1] by compiling, for each
type of graph object (e.g., node, link) a uniform sample
and one or more weighted sample sets. This raises two
questions. First: how should the weightings be chosen? A

minimal way to do this is to determine the smallest set of
(roughly) independent heavy-tailed variables of interest, and
use each of these as a weight. In this approach, correlations
between variables are advantages in the sense that they may
reduce the number of sample sets that must be compiled. The
second question is which sample set or sets should be used in
serving a given query. We propose that the uniform sample be
used for ordinary distribution queries and queries concerning
the mass distribution of light-tailed variables, while a query
concerning the mass distribution of a heavy-tailed variable
should use a weighted sample set of either that variable, or,
if absent, a sample set weighted by a correlated heavy-tailed
variable.

We propose to meet condition [S2] by using Priority
Sampling [9] to compile, for each graph element type and
sample weighting, aMaster Samplecomprising a randomly
ordered subset of graph elements. A simple query on the
master sample returns the firstk items in order, with possible
followup queries returning the nextk and so on. A more
complex query returns only elements that match a given
predicate. Here, the parameterk determines the effective
sampling rate.

Priority Sampling can be implemented as either an offline
or a streaming algorithm. Correspondingly, condition [S3]
can be achieved by limiting a frequency of an offline
redrawing of the sample sets or by streaming graph elements
into the sampler at some desired rate.

The outline of the paper is as follows. Section II sur-
veys the current state of related work and positions our
contribution with respect to this. Section III describes some
classes of query used in OSN analysis and discuss the
ramifications for observed distribution features. SectionIV
describes the compilation of master samples using Priority
Sampling, and procedures for estimating weight sums over
subsets of population elements specified by a selection
predicate. We also show how to estimate both ordinary and
mass distributions from the samples. For evaluation purposes
we collected an OSN dataset described in Section V; the
evaluations are described in Section VI. Our concluding
discussion in Section VII sketches some possible extensions
of our approach.

II. A SURVEY OF OSN MEASUREMENT

In this section we survey the current state of external
and internal measurement of OSN and node and link-level
queries of common interest. We describe the known effects
of sampling on query accuracy and the challenge that heavy-
tailed distributions of the variable bring to answering queries.
We also explain how our work develops the state-of-the-art
in distribution estimation and sample provisioning.

A. External Measurements, Crawling and Random Walks

There is a large literature on external measurements of
OSNs that illustrates the scale and complexity involved in
data acquisition. Early papers gathered data by crawling
Orkut [20] and Twitter [14], [16]. A more recent, larger scale
study [18] used 20 machines simultaneously sending a large



number of requests to Twitter to fetch nearly 42 Million user
profiles and over 100 Million tweets. Another [4] fetched
nearly 55 Million user profiles, 2 billion follow links, and
1.75 billion tweets.

The statistical properties of OSN data acquisition through
crawling has been examined in the framework of random
walks on graphs. The general theory of these goes back to
[10]. A number of different sampling strategies for graph
traversal have been proposed, and evaluated for online net-
works including the web, peer-to-peer, and social networks.
These evaluations have included examining the dependence
of various graphical statistics on the sampling rate. Unbi-
ased sampling via Metropolis-Hastings Random Walks was
examined in Facebook [12] and P2P networks [23]. Forest
Fire Sampling [19] explores the graph in a Markovian walk
from randomly selected nodes, while Frontier Sampling [21]
used multidimensional random walks to mitigate trapping.
Weighted random walks on graphs to implement stratified
sampling was proposed in [17]. Graph sampling methods
exploiting temporal clustering properties of OSN updates
are presented in [1]. Estimation of YouTube video counts
through random prefix sampling was proposed in [30]. Esti-
mating degree distribution under network sampling is treated
as a linear inversion problem by [29].

The effectiveness of different crawling and non-crawling
sampling strategies have been compared though their effects
on estimation of graphical statistics. Uniform sampling, BFS
with threshold and OPIC (online page importance) were
compared in [3]. The effects of different sampling strategies
information diffusion metrics in Twitter were examined in
[6]. Sampling based estimates of the distributions of popu-
larity, length & number of views reported in YouTube video
metadata were compared in [15]. Our work is distinct from
these in that we consider the methodological underpinnings
of what makes an effective sampling strategy and its relation
to the queries that are served.

B. OSN Queries and Feature Distributions

OSN research literature has focused on some popular
questions about various properties. These include charac-
terization concerns such as statistics about “friendships”
(which in asymmetric OSNs like Twitter includes notions
of following and followers), outliers, connected and dis-
connected components in the social graph, degree of sep-
aration, homophily, assortativity, and participation fraction
[3]. Dynamic properties such as reach, spread, and cascade
focus on users and applications that have higher influence,
as characterized by the speed with which an application
or a user’s communication spreads [6]. This topic is of
considerable commercial interest.

The joint distributions of graphical statistics in online net-
works are of great interest for the user community [24] and
have been studied experimentally by a number of authors.
The joint distributions of OSN user characteristics (numbers
of friends, followers, activity measures such as number of
posts) were studied in [14]. [20] found correlations between
in and out degrees in crawls of Flickr, Orkut and YouTube.

[4] studied the dependence between different measures of in-
fluence in Twitter, namely, in-degree, retweets and mentions.
Our work is different from these in that we provide insight
on how best to sample based on the desired target statistics.
Closer to our approach is [27], which proposed Probability
Proportional to Size sampling in OSN for estimation of node
degrees. Our work goes further: we consider the problem
of how to estimate for joint distributions of interest in
applications. None of the above works consider our problem
of how to play out samples for analysis in a optimal, tunable,
and scaleable manner.

OSNs place various constraints on the ability of users to
obtain social graph data. Twitter provides limited live sam-
ples via their Streaming API, while the Search API allows
queries against recent or popular tweets [26]. Facebook limits
the number of API queries that can be submitted in a time
period. Thus, most of the research described here reports ona
sample of the data, which leads to questions about the nature
and size of samples needed to answer specific questions. The
evolution of this data, including the effective sampling rates,
has been studied over a multi-year period by [28], which
also notes the inherent activity bias of this datasets. Even
studies that report on full crawls could be out of date after
a relatively short period of time.

C. The Challenge of Heavy Tails

The approach of this paper builds on experience and
methods from sampling Internet traffic flow records. The dis-
tribution of bytes per flow is heavy-tailed [11]. Consequently,
uniform sampling of flows, while providing good estimates
of counts of flows satisfying any predicate, provides bad
estimates of their byte counts because non-selection of large
flows greatly impact byte estimation accuracy. On the other
hand, weighting sampling by byte size enables accurate es-
timation of bytes in flows satisfying any predicate, resulting
in bad estimates of flow counts. The conclusion here is
that the heavy-tailed byte distribution makes it difficult to
simultaneously satisfy the accuracy requirements of byte and
flow estimation in a single sample. Instead, it is best to
compile two sample reservoirs, one with uniform sampling to
serve flow-level queries, one with bytes weighted sampling
to serve byte-level queries [8]. In this paper we will exploit
existing methods for efficient Probability Proportional toSize
sampling [2], [9], but the application of these to the problem
of scaleable playout of samples without repetition is new.

III. M ODELING OSN QUERIES

Our work focuses on queries based on topological features
of single node or pairs of nodes, and on activity features. We
consider the class of queries that correspond to statements
concerning the (possibly joint) distribution of these node
quantities, or some summary statistic that integrates overthe
distributions. Thus, our evaluation focuses on the question
of how accurately the distributions of these features can be
estimated from the collection of sampling reservoirs. Many
distributional queries and features of commercial interest (see
[14], [24]) can be abstracted into forms that we now describe.



The set of single-user queries include:

(i) Distributions of single features, e.g., givenn find x such
thatx% of users generate at leastn tweets each.

(ii)) Self-weighted mass distributions of single features, e.g.,
given y, find x such that the topx% most active users
generatey% of all tweets.

(iii) Mass distributions of one feature weighted by another,
e.g., giveny, find x such that the topx% most followed
users together generatey% of all tweets.

In this paper we will focus on single use queries of the form
just described. However, the same methods can, in principle,
be applied to pair user queries including the following:

(iv) Joint distributions of features from two users, e.g., given
y, find x such thatx% of the total activity between user
pairs are between the topy% most active users.

(v) Pairwise summary statistics such as assortativity, i.e., the
correlation between graph degrees of directly connected
users.

IV. SAMPLES, PLAYOUT & ESTIMATION

This section describes the technical approach underpinning
our work. Section IV-A motivates weighted sampling as a
response to heavy-tailed distributions of node characteristics,
while Section IV-B illustrates the ramifications of correla-
tions between different heavy-tailed variables for sampling.
Section IV-C briefly reviews Priority Sampling, while Sec-
tion IV-D describes how it can be used to fulfill the objectives
S1–3 in the introduction. Section IV-E shows how samples
selected through these means can be used to estimate the
mass distributions described in Section III.

A. Heavy Tails and Weighted Sampling

Our approach to sampling is guided by the principle
that sampling methodology should be chosen to match the
statistical characteristics of the data with the queries onthat
data. In this case, the salient statistical features are:

(i) Node features such as graph degree and activity that
exhibit highly skewed, heavy-tailed distributions.

(ii) Node characteristics that exhibit varying amounts of
statistical correlation; see [14] and Section VI.

Uniform sampling estimates mass distributions poorly in case
(i), since estimation accuracy of large sizes becomes highly
sensitive to inclusion or exclusion from the sample of large
items, i.e., those for which the measure of interest, such as
node degree, is large. Weighted sampling reduces estimation
variance by boosting the relative selection probabilitiesof
large items relative to small items. The prime example is
selecting a item of sizex with Proportional to Size (PPS). A
number of variants of this approach exist, including weighted
sampling without replacement, Priority Sampling [9], and
Variance Optimal Sampling [7]. All these methods are able
to construct a sample of a specified fixed size. Priority
Sampling and Variance Optimal sampling have efficient
implementations on data streams, and the latter minimizes
estimation variance compared with any online or offline
unbiased estimator.

B. Correlated Heavy Tails: A Thought Experiment

Consider two familiesX = {Xi, i = 1, . . . , n} and
Y = {Yi, i = 1, . . . , n} of heavy-tailed random weights,
drawn independently within each family. How do correla-
tions betweenX and Y affect PPS sampling? We use the
following thought experiment to examine two extreme cases:

(i) Perfect correlation:Xi = Yi for all i;
(ii) Independence:Xi andYi are independent for alli.

Under perfect correlations, PPS sampling usingXi as
weights is effective for estimating largeYi, since these equal
the correspondingXi. But whenX andY are independent,
the occurrences of large values ofX and Y are not cor-
related, so weighted sampling based onX will not select
largerY . In practice, correlations between node variables lie
between these extremes. Our experiments in Section VI find
varying degrees of correlation between different heavy-tailed
node variables. The less strongly correlated variables arenot
interchangeable as weights for PPS sampling.

C. Priority Sampling

The specific form of weighted sampling we use in the
paper is Priority Sampling [9]. From a populationΩ of items
with weightswi, Priority Sampling constructs a sample of
any fixed sizek as follows. First generate for eachi a
priority αi = wi/ui where eachui is independently and
uniformly distributed in(0, 1]. ThenΩ(k) comprisesk items
of highest priority. Define thethresholdz(k) as the(k+1)st

highest priority. Then the effective sampling probabilityis
is pi(wi, k) = min{1, wi/z(k)}, and using the Horvitz-
Thompson inverse probability method [13],

ŵi =

{
max{wi, z(k)} if i is sampled
0 if i not sampled

(1)

is an unbiased estimator ofwi [9]. An unbiased estimate of
the subset sumX(S) =

∑
i∈X xi over any subsetS is just

X̂(S) =
∑

i∈S x̂i. A common case is whenS is a set of
items satisfying a predicate (e.g., users registered in some
region or with at least some number of relationships).

D. Database Sampling and Playout

In this section we show how Priority Sampling is well
suited to serve database queries based on any predicate with
a mechanism possessing the following properties

(i) Different sample sizes and predicates can be served
from a master sample.

(ii) Multiple non-overlapping samples can be generated on
the same predicate.

(iii) Sample volume or processing load can be controlled.

In each case, unbiased estimators can be constructed from
the corresponding samples.

1) Creation of the Master Sample: Following [2], we first
create the master sample: a descending priority-order sorted
versionΩ′ of the populationΩ of database records, typically
realized a sorted index into the original set. This prodecure
is performed one-time only: all randomness occurs during
this initial step. If the size of the master sample must be



constrained to a sizekmax, we take asΩ′ thekmax elements
of largest priority.

2) Samples of Given Size Over a Predicate: A sample
S(k) of sizek over any predicateS andk can be constructed
by selecting the firstk items inΩ′ that match the predicate.
These are returned along with the sampling weightswi and
the sampling thresholdz(S, k) being the(k + 1)st largest
priority of items matchingk. If Ω′ is exhausted with only
1 + k′ matching items found, then the firstk′ of these are
returned, along withz(S, k′).

3) Non-overlapping Samples on a Given Predicate: An
initial sample S(k) can be extended to sizek + j by
adjoining the nextj elements that matchS, to yieldS(j+k).
The originalz(S, k) is discarded andz(S, j + k) used for
estimation purposes. This step can be repeated as required;
exhaustion ofΩ′ is handled as above.

4) Control of Computational Cost: Computational cost
may be controlled instead by selecting elements matching
S from within the firstk of all elements ofΩ′. In this case,
the threshold reported isz(k), the (k + 1)st largest priority
in all of Ω′.

5) Estimation Accuracy: General bounds for estimation
accuracy of subset sums has been determined in [25]: an
unbiased estimatêX of a subset sumX based ink samples
obeys the boundvar(X̂) ≤

√
X/(k − 1).

E. Distribution Estimation

We now show how the joint distributions of user vari-
ables used in the queries described in Section III can be
computed using subset sums whose estimation from samples
is described above in Sections IV-C and IV-D. We model
each user record in the database as containing a set of
m features(x(1), . . . , x(m)). A sampling weight is a value
w = w(x(1), . . . , x(m)) computed as a function of its fields.
These value may be directly reported in the record, and/or
in the simplest case be a single feature.

Given a predicateπ, we will denote

X̂(j)(w, k, π) =
∑

π(i)∧i∈Ω(k)

x
(j)
i /pi(wi, k) (2)

the estimate of the subpopulation sum ofx(j) over all records
satisfying the predicateπ, based on a sample of sizek using
weights wi = w(x

(1)
i , . . . , x

(m)
i ). We also distinguish the

estimated subpopulation count:

N̂(w, k, π) =
∑

π(i)∧i∈Ω(k)

1/pi(wi, k) (3)

We will omit the π when all records are to be used,
corresponding to the caseπ is identically true.

Distribution of X(j). This estimate aims to yield statements
of the form:a proportionq have records haveX(j) less than
or equal toy. Given a valuey, define

q(y) =
N̂ (j)(w, k, x(j) ≤ y)

N̂ (j)(w, k)
(4)

Theny estimates theq(y)-quantile ofX(j). To estimate the
full CDF of X(j) we use the valueq(y) asy is varied. We
denote byD̂w(X

(j)) the resulting distribution estimate.
Mass distribution X(ℓ) by quantiles ofX(j). This estimate
aims to yield statements of the form:a proportionr of the
total mass ofX(ℓ) is contained in a proportionq of records
with smallestX(j). Given a valuey, define

q(y) =
N̂(w, k, x(j) ≤ y)

N̂(w, k)
, r(y) =

X̂(ℓ)(w, k, x(j) ≤ y)

X̂(ℓ)(w, k)
(5)

Similar to above,y estimates theq(y)-quantile ofX(j), while
r(y) is the proportion of the mass ofX(ℓ) attributable to
records withX(j) no greater than this quantiley. Varying
y as a parameter yields the estimated curve(q(y), r(y))
of the mass distribution ofX(ℓ) by the quantiles ofX(j).
M̂w(X

(ℓ), X(j)) is the resulting mass distribution estimate.

Note that in all the above examples, one can further restrict
the distribution to those items matching additional predicates
that select on the(x(1), . . . , x(m)).

V. OSN MEASUREMENTDATASET

This section describes the acquisition and properties of
the OSN dataset used in the measurement-based study of
this paper. Twitter supplies streamed data on a sampled
basis via its Streaming API interface [26], also referred
to as the gardenhose. This provided a sample of 5 public
tweets out of every 100 (based on the last two digits of the
monotonically increasing status IDs), written on a single TCP
connection, significantly minimizing overhead on Twitter
servers. Twitter guaranteed randomness via their selection
process and their internal algorithm for assigning status IDs.
Each record streamed included nearly forty fields ranging
from information about the user who generated the tweet
(including number of friends, followers, status IDs) to infor-
mation about the tweet itself (textual content, language, etc.).
During 2010, we gathered seven consecutive weeks of data
resulting in 75 million tweets and the associated information
generated by just over 8 million unique users. We selected
100,000 unique users using weighted sampling with each
user weighted proportionally to the number of tweets that
the user originated in our sample. Through the Twitter API
we obtained the list of their friends and followers3.

Our dataset is inherently activity weighted since the more
active users have a greater chance of selection than the
less active users; see [28]. Thus, the distributions of node
variables in our data is different from those in the unsampled
user database available to an OSN provider. However, this
does not change the essential thrust of our work (how best to
sample from correlated heavy-tailed distributions) sincethe
heavy-tails we observe are not created by sampling.

In graph language, each node corresponds to a user, and
we denote byFO andFR the numbers of followers and friends
as reported in the most recently observed status update for

3If friends/followers count exceeds 100, the API limits the response to
the 100 most recent
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Fig. 1. Pairwise scatter plots of node characteristics of 10,000 random users. Left: weaker correlation,rs(AC, FR) = 0.44. Right stronger correlation
rs(FO, FR) = 0.82 (Statistics from full dataset).

each node. The activityAC is the number of status updates
observed for a given user. Each of the 7.3 million direct
graph links(u1, u2) corresponds to a follower relationship,
i.e., u2 is a follower of u1. An example of a link feature
combining features from both nodes isFFAN, the follower
fanout of a link(u1, u2), defined as the ratioFO(u2)/FO(u1).
We believe this is an interesting feature because high values
of FFAN indicate links where a tweet for useru1 has the
potential to be amplified if retweeted by useru2, sinceu2

has a larger follower set.
As stated in Section I, the correlations amongst different

data features have ramifications for the choice of a set of
different sample weightings. If a set of variables is strongly
mutually correlated, then a sample weighting based on any
one of them may be sufficient for estimating the mass
distribution of any of them. To assess the correlation amongst
user features, we calculated the Spearman rank correlation
rs between each pair of features to normalize the varying
scaling behavior of the features.FR and FO are strongly
correlated, withrs(FR, FO) = 0.82. Their correlation with
AC is weaker:rs(AC, FO) = 0.53 andrs(AC, FR) = 0.44.

We also use scatter plots of pairs of user features to
illuminate the relationships between the variables, usinga
uniform random sample of 10,000 users; see Figure 1. High
values ofFR and AC are relatively uncorrelated, while high
values of FO and FR are more strongly correlated. The
consequences of this behavior are discussed next.

VI. M EASUREMENTSTUDY & EVALUATION

We show how the estimation accuracy of both ordinary
and mass distributions depends both on the variables whose
distribution is to be estimated and the features used to weight
sampling. To assess accuracy we compare the estimated
ordinary and mass distributionsDw(X) and Mw(X,X ′)
of X (according to the quantiles ofX ′ in the mass case),
under the sample weightingw, with the true distributions
computed as “estimates” of all the data instead of sampling.
For node variables, we estimated the ordinary distributions
D̂w(X) whereX ∈ {FO, FR, AC} and different weighting

w X=FO X =FR X = AC

UNI 0.066 0.052 0.352
FR 0.130 0.152 0.330
FO 0.116 0.110 0.346
AC 0.069 0.055 0.347

TABLE I

ORDINARY DISTRIBUTION ACCURACY FORNODE VARIABLES: MEDIAN

KS STATISTIC FORDw(X) OVER 100RUNS. KS NOTICEABLY SMALLER

FOR WEIGHTINGSw = UNI AND AC

schemesw ∈ W = {UNI, FO, FR, AC} whereUNI is uniform
sampling and otherw denote weighting by the specified node
variable. The mass distribution estimates werêMw(X,X ′)
usedX,X ′ ∈ {FO, FR, AC} andw ∈ W . For the link variable
FFAN, we estimate the ordinary distribution usinĝDw(FFAN)
with w ∈ W ′ = {UNI, FO1, FO2, FFAN} where fori ∈ {1, 2},
FOi is the FO value of nodeui in a directed follower link
(u1, u2). We estimated the mass distributionsMw(FFAN, X ′)
for X ′ ∈ {FO1, FO2, FFAN} andw ∈ W ′.

Our principle comparison was between true and estimated
distribution, the difference characterized by the maximum
absolute difference of the cumulative distributions, similar
to the Kolomogorov-Smirnov (KS) test statistic [22]. For
eachw,X (and X ′ in the mass case) we conducted 100
independent selections of 1000 samples, and summarized
differences using the median KS statistic over the selections.

Results for node variables are shown in Tables I and II for
ordinary and mass distributions, respectively. For ordinary
distribution, the difference is noticeably smaller forUNI and
AC weightings than forFO and FR. This is unsurprising for
UNI; for AC it reflects the absence of strong correlations
between large values ofAC with other variables. For the
mass distribution, we observe the difference forDw(X,X ′)
is typically smallest whenw = X , regardless of the value of
X ′. In other words, the mass distribution ofX relative to any
other variable is generally most accurately estimated using
X as the sample weighting. However, the mass distributions
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Fig. 2. Quantile-Quantile Plot of Estimate vs. Actual Mass Distribution from 1000 Samples of Node Variables.FR and FO best estimated using either as
sample weights.

w X’ X=FO X =FR X = AC

UNI FO 0.399 0.144 0.081
UNI FR 0.152 0.141 0.076
UNI AC 0.172 0.175 0.083
FO FO 0.024 0.044 0.089
FO FR 0.024 0.042 0.088
FO AC 0.108 0.162 0.092
FR FO 0.291 0.027 0.075
FR FR 0.196 0.029 0.086
FR AC 0.129 0.165 0.089
AC FO 0.370 0.125 0.026
AC FR 0.138 0.135 0.031
AC AC 0.175 0.169 0.040

TABLE II

MASS DISTRIBUTION ACCURACY FORNODE VARIABLES: MEDIAN KS

STATISTIC FORDw(X,X′) OVER 100 RUNS. NOTE KS GENERALLY

SMALLEST FOR WEIGHTINGw = X .

of X = FO, FR have roughly equal estimation difference
whichever is used as the weightingw. This reflects the fact
that the distributions high values ofFO and FR are fairly
strongly correlated; see Section V. Table IV shows results
for the mass distribution of the link variableFFAN. The
smallest estimation error usingFFAN weighting, although
FO2 weighting is reasonable, performing noticeably better
than with uniform ofFO1 weighting.

We illustrate a selection of the estimated distributions
through quantile-quantile plots of the estimated vs. actual
mass distributions for a section of variables. Figure 2 shows
the joint mass distributions ofFO weighted by AC (left)
and FR weighted by FO (right), where each line of the
graph corresponds to a different sample weighing variable
(UNI, FO, FR, and AC). As expected,UNI has the poorest
performance,FO and FR the best (being highly correlated),
while AC has variable performance. Figure 3 displays similar
plots for the link fanout variableFFAN, for both the self-
weighted distribution (left) and the mass distribution with
respect to the initial node follower countFO1. In this
case, estimation accuracy is, unsurprisingly, best for sample
weighting with FFAN itself. However, sampling weighting

w = UNI w = FO1 w=FO2 w=ffan
0.027 0.070 0.116 0.153

TABLE III

ORDINARY DISTRIBUTION ACCURACY FORL INK VARIABLE FFAN :

MEDIAN KS STATISTIC FORDw(FFAN) OVER 100RUNS.

w X’ = FO1 X’ = FO2 X’= FFAN

UNI 0.231 0.279 0.300
FO1 0.420 0.462 0.574
FO2 0.065 0.061 0.064

FFAN 0.034 0.027 0.025

TABLE IV

MASS DISTRIBUTION ACCURACY FORL INK VARIABLES FFAN: MEDIAN

KS STATISTIC FORDw(FFAN,X′) OVER 100RUNS.

with FO2, the numerator ofFFAN, also produces good results,
while weighting with the denominatorFO1 is not so accurate.
This is consistent with the observation that large values of
FFAN are driven more by large values inFO2 than large
values ofFO1.

VII. D ISCUSSION ANDCONCLUSIONS

This paper was motivated by commercial interest in the
joint distributional properties of users and the connections
between them in online social networks. Although much
research has been devoted to acquiring data through external
crawling, OSN providers themelves are well positioned both
to access OSN data directly through their customer databases
and to monetize this as an information resource.

This paper proposes a method by which OSNs can provide
samples of the user graph of tunable size, in non-intersecting
increments, with sample selection that can be weighted to
enhance accuracy when estimating different features of the
graph. A key experimental conclusion what that neither
uniform nor activity weighted sampling were accurate for es-
timating mass distributions of friends, followers and fanout,
as compared with weighting by these features themselves.
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Fig. 3. Quantile-Quantile Plot of Estimate vs. Actual Mass Distribution from 1000 Samples of Link VariableFFAN. Best estimated usingFFAN as weight,
FO2 reasonable,UNI and FO1 poor.

To bring our approach to fruition requires two steps which
we identify as future work. The first is to provide a method to
systematically determine the set of required sample weight-
ings as a function of the joint feature distribution and the
class of queries to be served. The second is to provide an
automated classification scheme that can dynamically select
the best weighted sample set or sets to serve a given query.
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