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Abstract

This paper investigates the capacity of a communicatioasmdl that, in addition to additive white
Gaussian noise, also suffers from interference caused lyrexisting radar transmission. The radar
interference (of short duty-cycle and of much wider bandiwvitian the intended communication signal)
is modeled as an additive term whose amplitude is known andtant, but whose phase is independent
and identically uniformly distributed at each channel uBke capacity achieving input distribution,
under the standard average power constraint, is shown te imalependent modulo and phase. The
phase is uniformly distributed if0, 27]. The modulo is discrete with countably infinity many mass
points, but only finitely many in any bounded interval. Froomerical evaluations, a proper-complex
Gaussian input is seen to perform quite well for weak radtrierence. We also show that for very
large radar interference, capacity is equa%ﬂ@g (1+S) and a proper-complex Gaussian input achieves
it. It is concluded that the presence of the radar interfegarsults in a loss of half of the degrees of

freedom compared to an AWGN channel without radar intenfeze

arXiv:1701.08791v1l [cs.IT] 30 Jan 2017

. INTRODUCTION

Shortage of spectrum resources, coupled with the everastrg demand for commercial ser-
vices, necessitates a more sensible bandwidth allocatibbeypln 2012, the President’s council
of Advisors on Science and Technology published a repott th@ommended the release of
portions of government radar bands (e.g., 3550-3700 MHzgtshared with commercial wireless
services. A new Citizens Broadband Radio Service (CBRS3$tiared wireless broadband in the
3550-3700 MHz band has also been established in 2015. Sece $everal national funding

agencies have launched research programs to encouragectege this area.
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To understand how these two very different systems shousd sleare the spectrum, it is
useful to have an idea of the fundamental information theoperformance limits of channels
in which two systems co-exist. In this work, the capacity efldte additive Gaussian noise com-
munications channel, which in addition to noise, suffetsri@rence from a radar transmission,
is studied. This extends the authors’ prior work inl [1]. Ire tbthannel model considered, the
interfering radar transmission is modeled to be additiv#,fot Gaussian. Rather, it is modeled
as a constant (thus known) amplitude signal, but with unknend uniformly distributed phase
at each channel use. A detailed justification of this modellmafound in{[2]. The capacity of an
additive Gaussian noise channel under an average powetraiohss well known: the optimal
input is Gaussian of power equal to the power constraint. é¥&w since the channel studied
here is no longer Gaussian, several questions emerge: &) wthe capacity of this channel
and how does it differ from that of a Gaussian noise channgh@ut the radar interference),

and (ii) what input achieves the capacity. In this paper we t address both these questions.

A. Past Work

The capacity of channels with additive noise under variopsii constraints has been studied.

In [3] lhara bounds the capacity of additive, but not necelys&aussian, noise channels.
Applying lhara’s upper bound to our channel model yields arabthat grows as the radar
signal amplitude increases. This bound is not tight bectheseapacity of our channel is upper
bounded by the capacity of the classical power-containags&an noise channel without radar
interference.

In [4, Theorem 1], it was shown that for any memoryless adeglithoise channel with a
second moment/power constraint on the input, the rate \aablie by using a white Gaussian
input never incurs a loss of more than half a bit per real dsi@nwith respect to the capacity.
This implies that one can obtain a capacity upper bound fooraptex-valued additive noise
channel by adding 1 bit to the rate attained with a propergtexnGaussian input for the same
channel. In our channel model however, we show that in thgelaadar interference regime,
the capacity is indeed achieved by a proper-complex Gauggmt and hence the bound given
in [4, Theorem 1] is loose for large radar interference.

In the seminal work by Smith [5], it was shown that the capact a real-valued white

Gaussian noise channel with peak amplitude and averagerpmwstraints is achieved by a
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discrete input with a finite number of mass points. This is @arp contrast to the Gaussian
input that achieves the capacity when the amplitude cansisadropped. In[[6], the authors also
considered complex-valued Gaussian noise with averagempand peak amplitude constraints
and derived the optimal input distribution charactergstin particular, they showed that the
capacity of the complex-valued Gaussian noise channelrawgage power and peak amplitude
constraints is achieved by a complex-valued input with petelent amplitude and phase; the
optimal phase is uniformly distributed in the interj@l2~], and the optimal amplitude is discrete
with finitely many mass points.

Later, the optimality of a discrete input under peak amphitiwonstraint was shown to hold
for a wide class of real-valued additive noise channels Ag|for the complex-valued additive
channels,[[8] showed that for certain additive complexsgdlchannels with average power and
peak amplitude constraints, the optimal input has discredelulo. Moreover, recently it was
shown in [9], that, under an average power constraint angioeismoothness’ conditions on
the noise distribution, the only real-valued additive Batiannel whose capacity achieving input
is continuous is the Gaussian noise channel.

The model considered in this paper is a complex-valued igdditoise channel with an
average power constraint. When we transform the mutualrmdtion optimization problem
over a bivariate (modulo and phase) input distribution iom@ over a univariate (modulo only)
input distribution, the equivalent channel (i.e., the atgrkernel K (x,y), which is formally
defined in[(6)) is no longer additive. For this equivalent +amiditive channel, we camot proceed
as per the steps preceding [9, eq.(4)]. This is so, becalseg[@)], heavily relies on certain
integrals being convolution integrals and thus passingeéddourier domain to study/infer certain
properties of the optimal input distribution. In non-adiditchannels this is not possible.

In this respect, our approach is similar to that[of [6] and Wasely follow the steps within
that. In particular, the trick used inl[6] to reduce the twmdnsional optimization problem into
a one dimensional optimization problem helps us to avoidube of an identity theorem for
multiple dimensions. In fact, it was shown in [10] that thepligation of an identity theorem in
several variables is not just a straightforward generaineof one variable.

Extensions of Smith’s work [5] to Gaussian channels withiotas fading models, possibly
MIMO, are known in the literature but are not reported herealnse they are not directly relevant.

In [11]], [12] a subset of the authors studied the uncodeds@esymbol error rate performance
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of the same channel model considered here. Two regimes ohtope emerged. In the low
Interference to Noise Ratio (INR) regime, it was shown that dptimal decoder is a minimum
Euclidean distance decoder, as for Gaussian noise onlyle whithe high INR regime, radar
interference estimation and cancellation is optimal.reg@ngly, in the process of canceling the
radar interference at high INR, part of the useful signalss amoved, and after cancellation the
equivalent output is real-valued (one of the two real-vdldanensions of the original complex-
valued output is lost). We shall observe the similar ‘haljiées of freedom’ loss for the capacity

of this channel.

B. Contributions

The capacity of the channel model proposed here has notetbast of our knowledge, been
studied before and provides a new model for bounding thedmghtal limits of a communication
system in the presence of radar interference. Likewisehénliterature on the co-existence of
radar and communications channels, we are not aware of gacitya results. Our contributions
thus lie in the study of the capacity of this novel channel etpch which we show that the
optimal input distribution has independent modulo and phabke phase is uniformly distributed
in [0,27]. The modulo is discrete with countably infinite many masssibut only finitely
many in any bounded interval.

By upper bounding the output entropy by the cross entropyhefdutput distribution and an
output distribution induced by Gaussian input, we show tleay high radar interference results
in a loss of half the degrees of freedom compared to an im@rée-free channel and that a
Gaussian input is optimal in the high interference regime.

We also show achievable rates. The Gaussian input is seearformp very well for weak

radar interference, where it closely follows the upper lwbim[3]. We numerically find some

l(aB)
S(ds)

signal to noise ratios respectively, which perform bettemtthe Gaussian input.

suboptimal inputs for the regimeé < o := < 2, wherel and S are the interference and

C. Paper organization

The paper is organized as follows. Secfidn Il introducescttennel model. Sectianlll derives
our main result. Sectidn 1V finds the capacity for large INBimee. Section V provides numerical

results. Section VI concludes the paper. Proofs can be fautide Appendix.
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II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Next, boldface letters indicate complex-valued randomatdes, while lightface letters real-
valued ones. Capital letters represent the random vasiabid the lower case letters represent
their realization. In additionX and /X are respectively used to indicate the modulus squared,

|X|?, and phase of the complex-valued random varidbl&Ve also define the following notation

R, :={z:2z >0},
Cy:={z:2€C, R(2) >0},

for the set of non-negative real line and right half planehia tomplex domain, respectively.

A. System model

We model the effect of a high power, short duty cycle radars@uit the receiver of a

narrowband data communication system as
Y=X+W, 1)
W = V1e® 1+ Z, 2)

whereY is the channel outpufX is the input signal subject to the average power constraint
E[|X|*] < S, ©, is the random phase of the radar interference uniformlyiliged in|[0, 27, and

Z is a zero-mean proper-complex unit-variance Gaussiarendtse random variablgX, ©,, Z)

are mutually independen®, andZ are independent and identically distributed over the cabnn
uses, that is, the channel is memoryless. Our normaliziioply thatS is the average Signal

to Noise Ratio (SNR) whilé is the average Interference to Noise Ratio (INR). We assutae

be fixed and thus known. For later use, the distribution ofatiditive noise in[(2) is given by

e~ lw=V1e7®1)2
Jw (W) = IE9|

_ 6_:2_'10 (2v/1IwE). 3)

™

where Ih(w) = E[e¥®)] ¢ [1, V] for w € C is the zero-order modified Bessel function of

the first kind. The channel transition probability is thus

Ax(ylx) = fw(y —x), (x,y) e C%. (4)
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B. Channel Capacity

Our goal is to characterize the capacity of the memorylessimél in [1){(2) given by
CS,)=  sup I(X;Y), (5)
Fx:E[X[?]<S
where Fx is the cumulative distribution function &, and /(X;Y) denotes the mutual infor-
mation between random variabl&s andY in (1).

We aim to show that the supremum [d (5) is actually attaineé bypiqueinput distribution,
for which we want to derive its structural properties. Befave continue however, we rewrite
the optimization for the original channéll (1) (involvingetlieal and the imaginary part of the
input) in a way that allows optimization with respect to avamiate distribution only.

By following steps similar to those in [6, Section 11.B], wart show that an optimal input
distribution induces” and £ Y independent giveX, with £Y uniformly distributed over the
interval [0, 27]; such an output distribution can be attained by the uniforstridution on /X
and by /X independent of\; therefore, it is convenient for later use to denote the obln

transition probabilityfs ;(y|z) as the kernelK (z, y) given by (see Appendix VII-A)

K(z,y) == fyx(ylr) (6a)
e 1-¢(05zy)

- /@ N ——1o (2 | €(6; 7, y)) a0, (6b)

§(0;7,y) ==y +x —2y/yzcos(d) >0, (y,z) € RY. (6c)

Since the random variable§ and Yare connected through a channel with kerﬁdéc,y), an

input distributed ad’; results in an output with probability distribution funatigpdf

folys Fy) = />OK<:c,y>dF)~(<x>, yER,. @)

We stress the dependence of the output pdf on the inputllistn F'; by adding it as an
‘argument’ in fy(y; Fg).
Finding the channel capacity inl(5) can thus be equivaleadpressed as the following

optimization over the distribution of a non-negative ramdeariable X

CS,)+h(IWP) = sup  h(Y;Fg), (8)

Fg:E[X]<S

! The pdf f; (y; Fiz) in (7) exists since the kernel ifll(6) is a continuous and bedn@ee[(X2)) function and thus integrable.
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whereh(f/; F5) is the output differential entropy given l@y

~ 1
hY; Fs :/ fo(y; Fy)log ——— dy. 9)
( X) y>0 Y( X) f?(% FX)
We express(Y; Fz)in Q) as
~ 1
h(Y; Fy :/ K(z,y)log—— dFy(x) dy
( X) y>0 Ja>0 ( ) f?(?ﬁ FX’) X( )
= / h(z; Fg) dFg(x), (10)
x>0
where we defined thenarginal entropyh(xz; F'y) aSH
1
h(x; Fg) = K(x,y)log ——— dy, r € R, 11
( X) y>0 ( ) f?(%F)?) i

and where the order of integration in the line abdvd (10) caswapped by Fubini’'s theorem.
For later use, we note that the introduced functions can baded as follows: for the kernel

in (6)

et < K(z,y) <1, (,y) € R%; (12)
for the output pdf in[(7)

e VI < fo(y FR) <1, yeRy, (13)

where Sr_ is defined and bounded (by using Jensen’s inequality togetith the power

constraint) as
0<fr. :=—In </>0 e_xdF;((x)) <S; (14)
for the marginal entropy in. (11) :
0 < h(z; Fg) <E[Y|X =]+ 1+ Bp., z€Ry, (15)
where the conditional mean of given)? IS

EY|X=z]=2+1+1, zcR,. (16)

2 The entropyh(Y; F3) in (@) exists since the output pdf ifil(7) is a continuous andrided (see[{13)) function and thus

integrable.

® The marginal entropy:(z; Fz) in (L) exists since the involved functions are integralye(f¥) and [IB).
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C. Trivial Bounds

Trivially, one can lower bound the capacity inl (5) by tregtithe radar interference as a

Gaussian noise and obtain

S
— <
log (1 + T I) < C(S,1), a7)
and upper bound it as
< : =

c(s,h < szﬁ%}gsl(xY’ O)) =log(1+59), (18)

or from lhara’s work [[3] as
C(S, 1) <log(me(1+S+1)) — h(W), (19)

or from Zamir and Erez’s work [4, Theorem 1], as
C(S, 1) < I(Xe: Y) + log(2), (20)

where I (Xs;Y) is the achievable rate with a proper-complex Gaussian itipait meets the
power constraint with equality.

We shall use these bounds later to benchmark the achievalfleripance in SectionlV.

[1l. M AIN RESULT

We are now ready to state our main result: a characterizatidhe structural properties of

the optimal input distribution in({5), in relation to the jptem in (8).

Theorem 1. The optimal input distribution in{8) is unique and has independent modulo and
phase. The phase is uniformly distributedin2z]. The modulo is discrete with countably infinite

many mass points, but only finitely many in any bounded iaterv

Proof: As argued in Sectioh 1B, an optimal input distribution &) (hasZX uniformly
distributed in[0, 2] and independent oK. The modulo squared’, solves the problem if8),
whose supremum is attained by thriqueinput distribution 72"

o because (seé [13, Theorem
1)):
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1) the space of input distributiong is compact and convex (see [13, Theorem 1§);is

given by
Fo= {FX L Fg(z) =0, Vo <0, (21a)
dFg(xz) >0, Vo >0, (21b)
/ 1- dFX—(QL') =1, (21C)
x>0
L(Fg) = / z-dFg(r) =S < 0}, (21d)
x>0

where the various constraints arg:_(21a) for non-neggtif@1b) and [(21c) for a valid
input distribution, and[(21d) for the average power comstyand
2) The differential entropyz(ff; F3) in (10) is a weak continuous (see Appendix VI[iB)
and strictly concave (see Appendix VII-C) functional of tin@ut distribution ;.
From this and by Smith’s approachl [5], the solution of theirogation problem in[(B) is

equivalent to the solution of

h;%pt(?; Fg) - AL;%pt(FX) <0, forall Fy € F, (22a)
A>0: L(FF) =0, (22b)

where the functional.(.) was defined in[(21d), and where the prime sign along with theipt
F)%pt denotes the wedkderivative of the functiorh(Y; F) at F)%pt [5] (see Appendix VII-D).
The conditions in[(22) can be equivalently expressed as ¢eessary and sufficient Karush-

Kuhn-Tucker (KKT) condition: for some > 0
hz; FP) < (Y; FP) + Mz —S), Vo € Ry, (23)

where equality in[(23) holdenly at the points of increase cﬁ)%pt (see Appendix VII-E).
At this point, as it is usual in these types of problems [5¢ f@iroof follows by ruling out
different types of distributions. A distribution takes ookthe following forms:
1) Its support contains an infinite number of mass points mestounded interval;
2) It is discrete with finitely many mass points; or
3) It is discrete with countably infinitely many mass pointg bnly a finite number of them
in any bounded interval.

Next, we will rule out casels|1 arid 2 by contradiction.
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Rule out case(l (F)‘%pt has an infinite number of mass points in some bounded injei
prove that this case requires the inequality[inl (23) to hoilth wquality for allz > 0; we then
prove this to be impossible.

We start by stating the following proposition, the proof dfiiah is given in Appendix VII-F.

Proposition 1. The optimal Lagrange multipliek®?'(S), which represents the weaklerivative
of the capacityC(S, |) with respect toS, must satisfy) < A°P%(S) < 1 for all S > 0.

For the feasible rangé < A < 1, we re-write the KKT condition in[(23) by following the
recent work [[9]. Given the conditional output power expegsas in[(16), we can write
x—S:/>§y—(1+I+S))K(x,y) dy, Vo € R,. (24)
With (24), the KKT condition Z:r; [(2B) reads: there exists a stamt0 < \ < 1 such that
g(z,\) < h(Y; FP) = constant for allr € R, (25)

with equality only at the points of increase E@pt, and where

e M
g(z, \) = /y>0 K(z,y)log <m> dy (26a)
+log§ +A(1+1+459). (26b)

We show next that (25) can not be satisfieﬂﬁ)%Ot contains an infinite number of mass points in
some bounded interval. This step is accomplished by shothiigthe functiory(z, \), = € R,

in (26) can be extended to the complex domain and glat)), = € C,, is analytic.

Remark 1. In this type of analysis, we only require the analyticity loé functiong(z, \) over

a region in the complex domain which contains the non-negaal line. Hence, it is sufficient
to prove the analyticity ofi(z, \) over a strip around the non-negative real line but we prove it
over the entire right half plane (see Appendix VII-G).

Since the analytical functiog(z, \) is equal to a constant at the set of points of increase
of F)%pt and since the set of points of increase B has an accumulation point (by the
Bolzano Weierstrass Theorem [14]), by the Identity Theoféd], we conclude thay(z, \) =

constant Vz € C,. As the resultg(z, \) = constant Vz € R,. One solution, and thenly
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11

solution due to invertibility of the kernelK(z,y) (see AppendiX_VII-H), forg(z, \) to be a
constant and not to depend anis that the function that multiplies the kernel in the intgr
in (26a) is a constant (in which caggzo K(x,y) dy =1 for all z € R,). For this to happen,

we need

fo(y FE) =A™, Wy € Ry, (27)

or in other words, we need the outpMt to be a zero-mean proper-complex Gaussian random
variable. Such an output in additive models is only possibtae noise is Gaussian, which is

only possible ifl = 0. Therefore, unlesk= 0, is it impossible forF2" to have an accumulation

X
must have finitely many masses in any bounded interval. hesuled

point and thereford”™
out casd 1.

Rule out case[2 (F)‘%pt has a finite number of points). We again proceed by contriadictVe
assume that the number of mass points is finite, say given lyteger\/ < +oo, with optimal
masses located &t < z7 < ... < 2}, < oo and each occurring with probability;, ..., p3,,
respectively. Note that the superscripts used to emphasize the optimality of the parameters.

Then the output pdf corresponding to this specific inputritistion is

M
Folys FPY) = piK(a},y)
i=1

e—(y+m;+l+21 /x¥1cos 6)

M
= ZP:/@| o 1o (2\/y(xj+|+2\/xi*lcosﬁ)) de, (28)
i=1 s

where the expression in_(28) is based on an equivalent wayite thie kernel in[(B) (see ef.(36b)
in Appendix[VII=A). With (28), one can bound the marginal ety in (11) as

(e PP = [ Koy lon Syl PPy (29a)
M

< — (z+1+1+41log(2m))+log <Z p;e_(VE*w)Q) (29b)
i=1

[ K (Vi + VD) (290)

where the second term ih (29b) is independent ahd hence we only need to deal with (R9c).
The term in [(29c) can be bounded as

E [\/?‘X' _ x} <./E [?‘X’ - x} —Vitazt], (30)
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where [[30) follows from Jensen’s inequality and by|(16). W\the bound in[(29) back into the
KKT condition in (23) we get

—2 4 VT + K1 > —\T + Ko, (31)

for some finite constants > 0, k1, ko that are not functions of. However, ast — oo, for
A < 1 (by Propositiori L), the right-hand-side 6f[31) grows fasten the left-hand-side, which
is impossible. We reached a contradiction, which implied the optimal number of mass points
can not be finite. Thus, we ruled out case 2.

Having ruled out the possibility thaf>™

X
bounded interval or is discrete with finitely many mass pgihe only remaining option is

has either infinitely many mass points in some

that F)%pt has countably infinitely many mass points, but only a finitenbar of masses in any

bounded interval. This concludes the proof. [ |

IV. CAPACITY AT HIGH INR

In this section, we prove that in the high INR regime, the camivation system has only
1/2 the degrees of freedom compared to the interfereneedystem; which is a substantial
improvement from the zero rate achieved when communicatigpresence of radar signal is

prohibited. We also show that the Gaussian input is asynepttyt optimal asl — oc.

Theorem 2. The capacity of channdlb) as| — co is given by

lim C(S,1) = %log(l +5).

l—00

Proof: We show that in the high INR regime, the mutual informatiotwsen the input and
the output is upper bounded %yog(1+5) for anyinput distribution subject to an average power
constraint. We then show that the Gaussian input can asyicgdtp achieve this upper bound

as| — oco. We wrrite:

I(X;Y) = h(Y) — h(W)

= h(Y) — h(W) (32a)

1 —
< 150 y(y) log % dy — h(W), (32b)
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where [32h) is becaus¥€ and W are circularly symmetric[(32b) is due to non-negativity of
relative entropy and wher&(y) is an auxiliary output density function which is absolutely
continuous with respect té;(y). Take

R(y) = gge (B (2%) , (33)

to be the auxiliary output distribution in_(32b). The intait behind this choice oRR(y) lies
behind our conjecture that the Gaussian input is optimaldigge INR and the fact that (B3) is

the induced distribution o by a proper-complex Gaussian input. Then by (32b) we have

Y+l
lim 7(X;Y) < lim K(o.y)log [ CFYETN G ap2) - Lloglame)  (34a)
=00 =00 £>0,y>0 ]O(QS\{:l) 2
Sy2lt1 s 1
eS+1
—log(S+ 1) + lim {22272 K(z,y)1 dy dF(z)\ — = log(dnel
Og( T ) T |l>r£> { S -+ 1 /:L‘>O,y>0 (x7 y) o8 ( 471' \/7> 4 X('I)} 2 Og( e )
S+1
(34b)
1 S+20+1 VI = 1 1 ~ 1
= 5 log(S+1) + lim { -2 1E[\/?] + 7 log(1) + 7Ellog(Y)] — 5 logel)}
L 1 2l 2v/1 S+1 1
< = v - - z
<! (S+1)+2+hm{s+1 S+1{w+ i +0(|)]} (34c)
_ %mg(s +1), (34d)

where [[34h) is by calculating the entropy of a non-centrat<guare distribution with 2 degrees
of freedom as the non-centrality parametegoes to infinity [15, eq. (9)] and wheré_(34b)
and [34t) are proved in Appendix VII-1 and Appendix _V]I-J spectively. Next, a Gaussian
input can achieve the upper bound given[in (34d), as follows

lim 7(X; Y) = lim h(Y) — h(W) (35a)
| ,
S JjO _ 7O
_Ilggolog(1+5)+h<,/1+se +z> h(\/le +z)
= lim 1 (1+S)+11 1+L —11 (1+1) (35b)
08 g 8 1+S 2 08

1 o1 S
=3 log(1+S) + |li>r?o§ log (1 + 1—+|)
1
= —log(1+Y9),
2
wher X, is the proper-complex Gaussian input and wherel(35b) isnagai[15, eq. (9)]. =
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V. NUMERICAL EVALUATIONS

In this section, we numerically find a sub-optimal input fotefi S = 5 and three different
values ofl in the regime0 < « := % < 2 and we compare the achieved rates with that
of a proper-complex Gaussian input. We also evaluate diffeachievable rates in the regime
—1 < o < 2.5 and compare them with the bound in Section JlI-C.

Numerically finding the optimal input for the channel corsid in this paper is more
challenging compared to channels with finite dimensionglacdy achieving inputs such as
the ones considered in![5] and [6]. In [5], for example, thémation was initially performed
for a very low SNR where an input with two mass points was pdotcebe optimal. As SNR
increased, more mass points were added to the optimizatatotgm in order to satisfy the KKT
conditions and guarantee the optimality of the input. In ¢hannel considered here however,
a finite number of mass points is sub-optimalaaty SNR. Hence, in the rest of this section,
we find sub-optimal inputs with a finite number of mass poimtd aolving the corresponding
constraint optimization problem. We increase the numbeanass points until the achieved rate
remains unchanged after tled digit after the decimal point. Figufé 1 shows the locatadn
the mass points for each sub-optimal input as a function dR.SNe note that we do not claim
the rates achieved with these inputs to be optimal, nor dolamndhat these input distributions

are capacity-optimal. It is however interesting to note thay can outperform Gaussian inputs.

45 —

40

o awN e

35

30 -

25

20 -

Location of mass points

Fig. 1: Location of mass points for sub-optimal input as actiom of SNR for fixed INR=S.
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Rate in bits

1
INR (dB)/SNR (dB)

Fig. 2: Lower and upper bounds to the capacitylvier fixed S = 5 = 6.9897dB.

We find the achievable inputs for fix&d= 5 and three different values bf= [3.6239, 9.5183, 25
which correspond tex = [0.8, 1.4, 2], by solving a finite dimensional constraint optimization
problem. The achievable rates obtained by a Gaussian inglibptimized finite dimensional
inputs are given in Tablg I. As it can be seen, the optimizeidefidimensional inputs achieve

marginally better rates than the Gaussian input.

TABLE |: Achievable rates for Gaussian and optimized finitme@nsional inputS = 5.

INR
S98 =3.6239 | S** =95183 | S2=25
Input
Gaussian 1.2905 1.1910 1.2470
Optimized finite dimension 1.2927 1.1922 1.2480

TABLE II: Achievable rates for Gaussian and optimized findienensional inputS = 10.

INR
508 = 6.3096 | S** =25.1189 | S? =100
Input
Gaussian 1.6986 1.6393 1.7100
Optimized finite dimension 1.7108 1.6398 1.7102

In Fig[2 we plot achievable rates as functionl dbr fixed S = 5:
« (yellow solid line) an equally likelyt--QAM constellation,
« (purple solid line) a distribution with uniform phase andyoane mass point a/S for the

modulo,
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. (orange solid line) a proper-complex Gaussian input,

« (blue solid line) treat the radar interference as Gaussaseras given in(17), and

« (stared cyan points) optimized finite dimensional input.

We also show the outer bound in_{19) (green dashed line) andrik in[(18) (red dashed line).
The Gaussian input performs very well for .= % < 1, where it closely follows the
upper in [19), in comparison to the discret€QAM input and a distribution with uniform phase

and only one mass point atS for the modulo. Although this behavior was expected|fex 1
(actually a Gaussian input is optimal foe 0), it is very pleasing to see that it actually performs
very well for the whole regimeé < S.

We note that the equally likely-QAM and the distribution with uniform phase and only one
mass aty/S for the modulo are only a ‘constant gap’ away from the the ugmmind in [20)
for the simulated> = 5, which shows that capacity can be well approximated by mmith a
finite number of masses. The rate achieved by optimized filitensional input ak = 5%8, St4

andS? is only slightly higher than the rate achieved by a propenglex Gaussian input.

VI. CONCLUSION

In this paper we studied the structural properties of theénwgdt(communication) input of a
new channel model which models the impact of a high powentshday cycle, wideband, radar
interference on a narrowband communication signal. Ini@dar, we showed that the optimal
input distribution has uniform phase independent of the utmdvhich is discrete with countably
infinite many mass points. We also argue that for large ragarference there is a loss of half

the degrees of freedom compared to the interference-fraeng.
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VIl. APPENDICES
A. Derivation of the kerneK (z,y) in (6)

By (4) and by passing to polar coordinates we have
K(z,y) = ;}X(ylx

2T — Jo_ Jjo|2 _
d |VTei?— e 2| _ _

y+:c+| 2\/y_xcos(
= / I (2\ﬂ\/y tz— 2\/y_xcos(6’)) de (36a)
|9‘<7r

2

) e~ (ra+1+2v/zl cos(9))
— / 5 I (2\/5\/ x4+ 1+ 2Vl cos(e)) doe, (36b)
|6|<m ™

where [[36R) and (36b) correspond to solving for the two iratisgin different orders.

B. The mapFy; — h(Y; F;) is weak continuous

To prove the weak continuity of theh(?; F%) in ([0), we show that for any sequence of
distribution functions{ F},}> , € F if F, N Fs then WY F,) — h(Y; F3). We have

~ 1
lim A(Y; F,) = lim / [ (y; F) log —————dy
n—o0 ( n—o0 Y ) fy(y, )

1
= /y>0 nh_{glo fy(y; F,) log mdy (37a)
= h(Y; Fy), (37b)

where the exchange of limit and integral [n (B7a) is due toDeninated Convergence Theo-
rem [16], and equality in[(37b) is due to continuity of the midp — f5(y; F's) log f3(y; Fg)-
This last assertion is true by noting that— zlogx is a continuous function of € R, and
fy(y; Fg) in (@) is a continuous function of'y since K(z,y) in (@) is a bounded continuous
function of x for all y € R,..

Back to [37&a), to satisfy the necessary condition requiredhe Dominated Convergence

Theorem, we have to show that there exists an integrablaifumg(y) such that

| fy(y: Fo)log fy(y; ) [< g(y), Yy € Ry. (38)

We state the following Lemma which is a generalization of dhe given in[[17, Lemma A.2].

April 16, 2018 DRAFT



18

Lemma 1. Foranydé; >0and0 <z <1
-1
0< —zxlogz < 66—231_51. (39)
1

Proof. Fix a §; > 0; the fuctionz — —2° logz is concave i) < = < 1, and is maximized at

1

r=e /%, Hence—2" logx < 5 and [39) follows. O

According to Lemmall we can write
-1

| f3(y; ) log f5(y; F) |< %fg(y;Fn)l‘él.

We next need to fin@(y) : fi(y; F.) < ®(y) which would then lead to

9(y) = 5—1‘1>(y)1_617 (40)

which is integrable for someé < §,. Similarly to [18, eq. A9] we can show that for any > 0
1 y<iel

dy) =9 ., : (41)

is such a desirable upper bound for soe< oo. The proof is as follows. Foy > 161 we

write

(Va/4=V1)? 0

ol Fe) = [ Kleifg@)+ [ Kepdfs@.  @2)

0 (Vu/4=V1)?

The first term in[(4R) can be upper bounded as

(vu/4=V1)?
[ K
0

(Vy/4=VD?  p2r e—(x+|+2x/ﬂcos€)
< e‘y/ / I (2057 + V1)) db dFg(a)
0 0

2
(VI/4—V1)? 21 —(a+14+2val cos §)
< eI (2@@) / / ‘ do dFg ()
4 0 0 27
<ep(y/2)-1< eV (43)

while the second term in_(42) can be upper bounded as

[ Klewirse <X > (- VS [ s {ee eyavm) Jas
(vVy/4—V1)? T Jo x>0

€_y 2m S Supx9>0 {6_:0910 (2\/§\/T€) }de

=2 ), (Vi) e
w3 >
< g 10U (440
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wherez, := z + | + 2v/zl cos(6), the inequality in[(44a) is from Markov’s inequality, andeth
one in [44b) is by[[19, eq.(E.6)]. By (#3) and (44b), we have

12S 1 1
fot ) < 22 {y— ; 0%)} |

Hence, for any0 < §; < 1 there exists somé/ < oo andyj,, such that

ol Fo) < s (45)
for all y > y;,. We fix 5, now. Due to continuity of thef;: (y; F,) for y € [161, y3,], there exists
an M < oo such that[(4b) holds for al} > 161. The bound in[(45) together with the one [n](13)
gives

fe(ys Fr) < @(y),
for any 0 < 9, < 1 and someM < oo and where®(y) was defined in[(41). Finally, one can
find small enoughy; andd, such thaty(y) given in (40) is integrable.

C. The mapF; — h(Y; Fy) is strictly concave
The functionh(Y; Fg) in (@) is concave infy(y; Fiz) in (7) (becauser — —xlog(x) is).
Since f;(y; F'y) is an injective function off’; (due to invertibility of the kernel as proved in

Appendix[VI[-H), we conclude thah(ff; F3) is a strictly concave function of's.

D. The functional(Y; Fy) — L(Fy), is weakly* differentiable aIFO'Ot

By using the definition of the functional derivative, we shtat h’ﬂpt(?; Fg)and L on(F')
exist for all Fg, F)%pt and hencei(Y; Fiy) — L(Fy) is weak differentiable. i

First, foré € [0, 1], we defineF} := (1 — H)F%’Ur §F; and then we find the wealderivative
of h(Y; Fg) at FY" as follows

~ 11 ~ -
B on(Vi Fg) = lim — [h(Y;Fg) — (Y F
X

0—0+

0—0+ 9

— 1 K(z,y)l dy dF%
Pl /M /y>0 ) e F°pt) % (@)

— / h(x; F)%pt)dFX(x)—h(Y; FF)
x>0

Sy (y; Fo)
- /y >Oelggl+9fy(y7 v) log Wdy (46)

1
= lim / K(xz,y)lo 7d dF,
x>0 Jy>0 ( y) & fY( F@) Y 6( )
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where the interchange of limit and integral in (46) is due wninated Convergence Theorem.

By [20, Lemma 6], we can write

f;?(y;Fe)l I3 (y; Fy)
0 P P

— fy(y; Fx)log fy(y; Fi) — fy(y; Fx)log fy(y; F)

< [y Fy) + fo(us FE) + 23 (4 Fy)(y +1+S), (47)

< fyly; Fy) + fy(y; FY)

where the right hand side df (47) is integrable. In addititm term given in[(46) is vanishing
by L'Hospital's Rule. Hence, the weaklerivative is given by
h;%pl(?; Fg) = / g h(w; FPdFg(x) — h(Y; FPY). (48)

It is also easy to show that

L/F%pt<F)?) = L(Fg) — L(F)%pt)v (49)

exists because of the linearity of the power constraint.

E. Equaivalence of KKT conditions {&3) to (22)

Let £°* be the set of points of increase of the optimal input dist'rdJuF)%pt. Then
/m . (h(a: FP) — \2) dFg (a) < h(V: FP) ~ 2 (50)

for all F'y € F if and only if

h(z; FP) < B(Y; FP) 4+ Mz = S), Vo € Ry, (51)
h(w; FP) = h(Y; FP) 4+ M = S), Vo € P (52)

The if direction is trivial since the derivative given in_(48) haslkie non-positive. To prove the

only if direction, assume thdt (51) is false. Then there exists anch that
WE FP) > (Y FP) + AF - S).
If F)%pt is a unit step function at, then

h(z; FP®) — ) dFg(z) = h(F, FPY) — AT > h(Y; FP") — XS,
/mzo( (w50 ) (@) (@ Fg) Y3 FF)
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which contradicts[(50). Assume that [51) holds thufl (52) doats i.e., there exists € £°P*
W@ FP) < h(Y; FP) + AF - S). (53)

Since all functions in[(53) are continuous:nthe inequality is satisfied strictly on a neighbor-
hood ofz indicated ast;. Sincez is a point of increase, the sét has nonzero measure, i.e.,
Jp. dF () = 6 > 0; hence

WY; FPY) — \S = <h(x; FO) - Ax) dF®(z)

x>0
. t t
_ /E 5 (G F2) = xx) aF(a)
. opty opt
+ /5 . <h(x, Fo Ax) dFP(x)
<S(h(Y; FZ) = AS) + (1= 8)((Y; F&) — AS),

which is a contradiction.

F. Proof of Propositiori 1L

We prove that\ can not be equal t® or greater than or equal tb. By the Envelope
Theorem [[21] and the upper bound [n}(18), having 1 is not possible. The cas¥?y(S) = 0
is unfeasible; if otherwise, the unique solution [of](23)iqueness follows by invertibility of the
integral transform in[(7) as proven in Appendix VII-H) wouladuce the output pdf

[y FE) = exp{=h(Y; FP)}, Vy € Ry, (54)

which is not a valid pdf since it does not integrate to one.ré&foge we conclude that we must
have0 < A\°P{(S) < 1.

G. The functiore — g(z, \) is analytic

The analyticity ofg(z,\), z € C,, follows from the analyticity ofh(z; F'z) on the same

domain, wheréi(z; Fiz) was defined in[(11). In other words, we want to show that thetfan

1
h(z Fg) = /yzo K(z,y) logm

is analytic. Note that the integrand in_{55) is a continuawscfion on{z € C.} x {y € R, }

dyv KAS C-l—v (55)

and analytic for eacly so we use the Differentiation Lemma [14] to prove the anailytiby
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proving thath(z; F'z) is uniformly convergent for any rectanglé := {z € C: 0 < a < R(z) <
b, —b < ¥(z) < b} (since any compact sét € C is closed and bounded in the complex plane).

By (I3) we havellog f3(y; Fg)| <y + 1+ fr,,, and as a result we have

h(z: >|</ K (=, y)| | log fy (i Fy)| dy

/ o ‘6—(2+y 2x/7/C059+' ‘ ( \/I (z4+y —2\/zycosb) )) : }y—|—|+ﬁp}?} do dy
y>0 0|<m

/ / ¢ Ry =2y cos 041) (2%{\/ I( + y — 2,/Zy cos 9)}) (y+1+ Br.) db dy
y>0 2 |6]<m *

</ _/ e—ﬂ‘?(y+z—2\/@cost9+| i 62?]?{\/|(z+y—2\/@c059)} (y+ | + 5F~) de d,y

N y>0 27 0|<m *

1
= / — / e (VR aeos VP (4 |t B ) dO dy. (56)
y>0 27 Jjg|<n

Since [(56) is exponentially decreasingiire R, , the integral is bounded, concluding the proof.

H. Invertibility of the integral transform ir{7)

To prove the invertibility of the transform

/ K(z,y)g(z) dx, y € Ry, (57)

we will show that if g(y) = 0forally € R, theng(z) = 0forallx € R,. From the
invertibility of (§7)), also the integral transforrjrfy20 K(z,y)g(y)dy is invertible due to the
symmetry of the kerneK (z,y) in = andy.

We first define the following two integrals [22, eq(6.633) au{6.684)]

[Fermmram i g (757) 2 (3)

Rf{a} >0, R{v} > —1, (58)

7r Jy, 24+ 5%2-2 0
/ (sin 0)? <\/a g ) do = 2"\/7T (u + 1) ifé)‘uf),
0 <\/a2—|—52—2aﬁcos6’> 2) av

R{v} > —%, (59)

whereJ,(.) and,(.) are thev-th order Bessel function of the first kind aneth order modified

Bessel function of the first kind, and whelg.) is the Gamma function.
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We next use[(88) and (59) as follows.dfy) = 0 for all y > 0, then for ally > 0 we have

Am%w¢@mwdy=o

<:>/ dx/owjo <7\/x+|+2\/acose) do =0 (60)
@:/’ (2)Jo(1v/E) Jo( V1) da (61)
<:>/ NJo(v2)z dz =0

= H{g(z*)} =0, (62)

> g(2*) =0, Vz € Ry,

< g(z) =0, Vz € Ry,

where [[60) follows by [(58),[(81) by (59), and whe#¢{g(2)} in (©2) denotes the Hankel
transform [23] of the functiory(z).

|. Justification of (348)

In order to show that

lim K(x,y)log Iy (Q—yl) dy dFx:(x)

I=00 J2>0,4>0

1=00 Je>0,9>0

= lim K(x,y)log (

we make the variable changé = = and prove

lim K(x,?)log[o <2 V2 ) 1 (2)

100 J2>0,2>0

2
d
= lim K(x, E)log < i dFgz(x).
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For B = max{1,'/?}, we can write

NG B
Ihm | /x>0 Z>0K )1og ([ (25 1 dz dFg(x)
N B
= —Ihm i /x>0 g oK log (IO (2—5 ] dz dFg(x)

il >log< () @

—_ lim K log ( )) dz dFg(x)
l—o0 >0 J 2=0
— lim © / K(x )10g dz dFg(x) (632)
oo | Jyso Josn 4%5\1_1
. / (e, 2)] il 1 dz dFs(z) (63b)
— lim = ) log =gl
=00 | /50 J2=0 47Ts{1 Iy <25{1>

2
— lim — / K(x log dz dFg(z),
x>0 J2>0

I—oo | /471_ S\-/i__l

where [63R) holds by approximation of Bessel function wittgé arguments.

To this end, if we prove that the limit in_(6Bb) is zero, therr quoof is complete. In this
regard, we find an upper and lower bound bn {63b) and show hiegtdre both zero. We can
upper bound[(63b) as

I / K(z, )1 625% ! dz dF ()
im — ) log z dF'g(x
I—oco | >0 J z=0 A/ ]0 ( S\—/i-_l) *

]_ B 625\«/51 1
< Ilim i log : G dz (64a)
—00 _ z il
o\ i o (2:5)
1[5 €237
< lim — log dz (64b)
I—oo | 2=0 4 Vz
S+1
1 (B NZ 4 1
.f?ol/zo<5+1 S+1 4°g(z)> ©
o1 423/ 4m
fim 7 (3(5 7oy gy) e losle) _Z> S
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where [648) is by (12) and whefe (64b) is due to the fact that aeler modified Bessel function

is always larger than or equal o In addition, we can lower bound (63b) as

|11>I;2[>10|/:B>0 2= OK( ’|)1Og( A2 ( )) dz dFs(x)

S+1 5+1
> lim — / K(x, — log ( ) dz dFg( (65a)
I=oo | Jos0 /=0
s+1
1
= lim —/ K(z log — dF5(
=00 4l [0 /=0 z
li K(x,-)1 ! dz dFg(z) + li K( )1 E dz dF 3 (z)
_|igloj 2>0 J 2=0 )log z : E?Oa 2>0 J2=1 by R
1
> lim —/ K(x log — | dz dFg( (65b)
=00 4 x>0 J2z=1 <
1 1
> lim —/ log dz (65c¢)
1
= lim — x (—zlog(z) +2) |7, =0,
=00 | z=1

where [(65h) is by the inequalitiy(z) < ¢*, and where[(68b) and (65c) are true for the choice
of B. Since both lower and upper bounds on (63b) are zero, oundialiows.

J. Justification of@4d) Calculation oflimy_,.. E[vVY]

Here we calculate the expected value of the output modulengby

lim E[VY] = lim VK (@,y) dy dFz(z) = C1 + Cs,
l—00 l—00 >0 Jy>0
where
A
C; = lim VYK (z,y) dy dFg(x),

I—oo /.o y>0

Cy = lim VYK (z,y) dy dFs(z),
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and where we takel = 11-9 for some§ > 0.
A 21
C, = I1im / / / e~ raHl2valeos ) p (2@\/x + 14 2Vl cos 9) dy df dF's(x)
=0 Jz=0J0 y>0

4 n z+1+2vzl cos | 9 |
= lim / / e—(m+|+2\/ﬂcose)r(3/2)e Vi + 142zl cos 0
z=0 J0 F(?)/Q)

' [ x+li%2)%cose +0 G)] df dFg(x) (66)

A 27 1 1
zllim/ / (\/x+|+2\/ﬂcos@+ +O(T)> df dFs(z)
—° Jz=0J0
A

4\/x+|+2\/acose

. r+1 1
:'llglo 2=0 (\ﬂjL 41 +O<T)> Wxlo) 7
B S+1 1
—\/|+—4\ﬂ +O<I), (68)

where [68) is by the Dominated Convergence Theorem. Theliggira (66) is due to [22,
e(q(6.631)]

3
/:v>0 Vae “Iy(28x)dx = 1;532) 1F1 (3/2> L, 5) ;
where 1 Fi(a, b, x) is thé confluent hypergeometric function [24, Chapter 138je Feries expan-
sion of 1 Fi(a, ¢, x) for z — oo is given by [24, Section 13.7]
[(c)e* s ¢ =N (¢ — a)n(1 — a),

e ) 2 ) B
LT =m0 (1))

where(a), :=ala+1)...(a+n—1).
In addition, the equality in[(67) is justified by [22]

27TE9

o _ 1 w [ 4/l N 1 K 4v/zl
4(\/x+|—|—2\/acos€)_ 2(V1 — /1) z+1—2Vxl 2(v1+ /) x4 1+2val )’

27Eq {\/x+|+2\/acosﬁ =2(vV1 = V2)E <_H+%>+2(\[|+ﬁ)]3 (#%)7

> [(2n — 1)1 ™ 1 9 25
K2y = TS [ DU on Ty L 90 By
() 22[ (2! ] 2[ TV TR Tt T }
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are respectively the complete elliptic integral of the fastl second kind. Hence

Ey |:\/£L’+|+2\/ECOSHJ = %(\ﬂ_ VT) |14 (\ﬂ\ij/fp B Z(\ﬂ_xlﬁ)4 N

1 Vel 3 xl
SV |- o T T v ]
Val 3 al
VI—x -
[ NV - v P
Vvl 3 xl
1] KR e T ey ]
1 3 xl
5V Vi— f_1(|\ﬂ—3lﬁ+3ﬂx—xﬁ)+"']
+1{\/+ 3 ! +]
2 Vit vz A0+ 31z 4 3V1z 4 2/7)
:muiﬂm(%), (69)
and
E, 1 ] L. [1_ L +]
\/9:+ | + 2v/zl cos 6) 4(V1= ) (V1= Vz)?
11 Val
TIViT V) 1+<W+ﬁ>2+'”]
RN I R
A V-vE (-
1 Val
AN EE M+ﬁ>3+”']
1 1
:4_\/|+0<T). (70)
Finally, given [69) and[(70), for < | (which holds in the regio < z < A, A = 10-9) we
have
1 r+1 1
Ey ﬁ““mmﬁ4<¢x+|+z\/acose>] =VI+ ™ +O<T).

As the result, and sinc€y > 0

ENVY]> O, = x/+S—T/|1+O( )
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K. Justification of (344} Calculation oflim,_, E, % [log()N( + 142V Xl cos 9)]

2T
I1im E, 5 log(X + | 4 2V |0059 = hm / log(z + | 4+ 2V zl cos 0)df dF s ()
—00 X

x>0

=C + Cy,
where

| 27
Cy = lim / / log(z + 142Vl cos0) df dFy(x),
=0

|—00

2T
C'g—hm/ / log(z + 1+ 2Vl cos§) df dFy(x).
x>l

To calculateC’;, we state the following lemma.
Lemma 2.
27
/ log(1+ 2rcos(z) +7%) dr =0, 0<r <1 (71)
0

Proof. Based on Cauchy’s integral formula

fla) =5 41 Gy,

2nj J, z—a

for 0 < r < 1, we can write
2w 2m ) 21 '
/ log(1 + 2r cos(z) +r?) dz = / log(1 + re’®) da + / log(1 4 re™’*) dx
0 0 0

:27{1%(1,7“)@:0.
S

Forr =1, we have

™

2
/ log(1 + 2rcos(x) +r?) dx = 4nlog(2) +4 [ log(cos(d)) df (72a)
0

s s

log (cos(0)) do + 4/2 log (sin(f)) db

0
> log (sm(22«9)) "

log (sin(#)) do

= 4rlog(2) + 4
= 4rlog(2) + 4

= 2mlog(2) + 2

™

=27mlog(2) +2 [ log(cos(#)) db, (72b)

o— 5 — — —
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which according to[(72a) and (72b), results in

4mlog(2) + 4 /7r log (cos(0)) df = 2mlog(2) + 2 /7r log (cos(6)) df = 0.

Based on lemmd]2, we see that

| 21
Cy = lim / / log(z + | + 2Vl cos 0) db dFs(x),
=0 J0

l—o00

zllim log(l) dFg(x) +hm/ / log( 1—1—2\/;0059—1— I) df dFg(z)
70 Jz=0 =0

Tr=

= log(l).
In addition,

2
C’2—hm/ / log(z + 142Vl cos0) df dFy(x)
z>|

= lim log(z) dFg(x)

< lim r dFg(x),
which goes to zero as— oo by Dominated Convergence Theorem. As the result

Ilim E, 5 [log()? + 1+ 2V Xl cos 9)} — log (I).
—00 ’
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