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Abstract

This paper investigates the capacity of a communications channel that, in addition to additive white

Gaussian noise, also suffers from interference caused by a co-existing radar transmission. The radar

interference (of short duty-cycle and of much wider bandwidth than the intended communication signal)

is modeled as an additive term whose amplitude is known and constant, but whose phase is independent

and identically uniformly distributed at each channel use.The capacity achieving input distribution,

under the standard average power constraint, is shown to have independent modulo and phase. The

phase is uniformly distributed in[0, 2π]. The modulo is discrete with countably infinitly many mass

points, but only finitely many in any bounded interval. From numerical evaluations, a proper-complex

Gaussian input is seen to perform quite well for weak radar interference. We also show that for very

large radar interference, capacity is equal to1

2
log (1 + S) and a proper-complex Gaussian input achieves

it. It is concluded that the presence of the radar interference results in a loss of half of the degrees of

freedom compared to an AWGN channel without radar interference.

I. INTRODUCTION

Shortage of spectrum resources, coupled with the ever increasing demand for commercial ser-

vices, necessitates a more sensible bandwidth allocation policy. In 2012, the President’s council

of Advisors on Science and Technology published a report that recommended the release of

portions of government radar bands (e.g., 3550-3700 MHz) tobe shared with commercial wireless

services. A new Citizens Broadband Radio Service (CBRS) forshared wireless broadband in the

3550-3700 MHz band has also been established in 2015. Since then, several national funding

agencies have launched research programs to encourage research in this area.

April 16, 2018 DRAFT

http://arxiv.org/abs/1701.08791v1


2

To understand how these two very different systems should best share the spectrum, it is

useful to have an idea of the fundamental information theoretic performance limits of channels

in which two systems co-exist. In this work, the capacity of awhite additive Gaussian noise com-

munications channel, which in addition to noise, suffers interference from a radar transmission,

is studied. This extends the authors’ prior work in [1]. In the channel model considered, the

interfering radar transmission is modeled to be additive, but not Gaussian. Rather, it is modeled

as a constant (thus known) amplitude signal, but with unknown and uniformly distributed phase

at each channel use. A detailed justification of this model can be found in [2]. The capacity of an

additive Gaussian noise channel under an average power constraint is well known: the optimal

input is Gaussian of power equal to the power constraint. However, since the channel studied

here is no longer Gaussian, several questions emerge: (i) what is the capacity of this channel

and how does it differ from that of a Gaussian noise channel (without the radar interference),

and (ii) what input achieves the capacity. In this paper we aim to address both these questions.

A. Past Work

The capacity of channels with additive noise under various input constraints has been studied.

In [3] Ihara bounds the capacity of additive, but not necessarily Gaussian, noise channels.

Applying Ihara’s upper bound to our channel model yields a bound that grows as the radar

signal amplitude increases. This bound is not tight becausethe capacity of our channel is upper

bounded by the capacity of the classical power-contained Gaussian noise channel without radar

interference.

In [4, Theorem 1], it was shown that for any memoryless additive noise channel with a

second moment/power constraint on the input, the rate achievable by using a white Gaussian

input never incurs a loss of more than half a bit per real dimension with respect to the capacity.

This implies that one can obtain a capacity upper bound for a complex-valued additive noise

channel by adding 1 bit to the rate attained with a proper-complex Gaussian input for the same

channel. In our channel model however, we show that in the large radar interference regime,

the capacity is indeed achieved by a proper-complex Gaussian input and hence the bound given

in [4, Theorem 1] is loose for large radar interference.

In the seminal work by Smith [5], it was shown that the capacity of a real-valued white

Gaussian noise channel with peak amplitude and average power constraints is achieved by a
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discrete input with a finite number of mass points. This is in sharp contrast to the Gaussian

input that achieves the capacity when the amplitude constraint is dropped. In [6], the authors also

considered complex-valued Gaussian noise with average power and peak amplitude constraints

and derived the optimal input distribution characteristics. In particular, they showed that the

capacity of the complex-valued Gaussian noise channel under average power and peak amplitude

constraints is achieved by a complex-valued input with independent amplitude and phase; the

optimal phase is uniformly distributed in the interval[0, 2π], and the optimal amplitude is discrete

with finitely many mass points.

Later, the optimality of a discrete input under peak amplitude constraint was shown to hold

for a wide class of real-valued additive noise channels [7].As for the complex-valued additive

channels, [8] showed that for certain additive complex-valued channels with average power and

peak amplitude constraints, the optimal input has discretemodulo. Moreover, recently it was

shown in [9], that, under an average power constraint and certain ‘smoothness’ conditions on

the noise distribution, the only real-valued additive noise channel whose capacity achieving input

is continuous is the Gaussian noise channel.

The model considered in this paper is a complex-valued additive noise channel with an

average power constraint. When we transform the mutual information optimization problem

over a bivariate (modulo and phase) input distribution intoone over a univariate (modulo only)

input distribution, the equivalent channel (i.e., the channel kernelK(x, y), which is formally

defined in (6)) is no longer additive. For this equivalent non-additive channel, we cannot proceed

as per the steps preceding [9, eq.(4)]. This is so, because [9, eq.(4)], heavily relies on certain

integrals being convolution integrals and thus passing to the Fourier domain to study/infer certain

properties of the optimal input distribution. In non-additive channels this is not possible.

In this respect, our approach is similar to that of [6] and we closely follow the steps within

that. In particular, the trick used in [6] to reduce the two dimensional optimization problem into

a one dimensional optimization problem helps us to avoid theuse of an identity theorem for

multiple dimensions. In fact, it was shown in [10] that the application of an identity theorem in

several variables is not just a straightforward generalization of one variable.

Extensions of Smith’s work [5] to Gaussian channels with various fading models, possibly

MIMO, are known in the literature but are not reported here because they are not directly relevant.

In [11], [12] a subset of the authors studied the uncoded average symbol error rate performance
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of the same channel model considered here. Two regimes of operation emerged. In the low

Interference to Noise Ratio (INR) regime, it was shown that the optimal decoder is a minimum

Euclidean distance decoder, as for Gaussian noise only; while in the high INR regime, radar

interference estimation and cancellation is optimal. Interestingly, in the process of canceling the

radar interference at high INR, part of the useful signal is also removed, and after cancellation the

equivalent output is real-valued (one of the two real-valued dimensions of the original complex-

valued output is lost). We shall observe the similar ‘half degrees of freedom’ loss for the capacity

of this channel.

B. Contributions

The capacity of the channel model proposed here has not, to the best of our knowledge, been

studied before and provides a new model for bounding the fundamental limits of a communication

system in the presence of radar interference. Likewise, in the literature on the co-existence of

radar and communications channels, we are not aware of any capacity results. Our contributions

thus lie in the study of the capacity of this novel channel model, in which we show that the

optimal input distribution has independent modulo and phase. The phase is uniformly distributed

in [0, 2π]. The modulo is discrete with countably infinite many mass points, but only finitely

many in any bounded interval.

By upper bounding the output entropy by the cross entropy of the output distribution and an

output distribution induced by Gaussian input, we show thatvery high radar interference results

in a loss of half the degrees of freedom compared to an interference-free channel and that a

Gaussian input is optimal in the high interference regime.

We also show achievable rates. The Gaussian input is seen to perform very well for weak

radar interference, where it closely follows the upper bound in [3]. We numerically find some

suboptimal inputs for the regime0 < α :=
I(dB)

S(dB)
< 2, where I and S are the interference and

signal to noise ratios respectively, which perform better than the Gaussian input.

C. Paper organization

The paper is organized as follows. Section II introduces thechannel model. Section III derives

our main result. Section IV finds the capacity for large INR regime. Section V provides numerical

results. Section VI concludes the paper. Proofs can be foundin the Appendix.
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II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Next, boldface letters indicate complex-valued random variables, while lightface letters real-

valued ones. Capital letters represent the random variables and the lower case letters represent

their realization. In addition,̃X and∠X are respectively used to indicate the modulus squared,

|X|2, and phase of the complex-valued random variableX. We also define the following notation

R+ := {x : x ≥ 0},

C+ := {z : z ∈ C, ℜ(z) > 0},

for the set of non-negative real line and right half plane in the complex domain, respectively.

A. System model

We model the effect of a high power, short duty cycle radar pulse at the receiver of a

narrowband data communication system as

Y = X+W, (1)

W =
√
IejΘI + Z, (2)

whereY is the channel output,X is the input signal subject to the average power constraint

E[|X|2] ≤ S, ΘI is the random phase of the radar interference uniformly distributed in[0, 2π], and

Z is a zero-mean proper-complex unit-variance Gaussian noise. The random variables(X,ΘI,Z)

are mutually independent.ΘI andZ are independent and identically distributed over the channel

uses, that is, the channel is memoryless. Our normalizations imply thatS is the average Signal

to Noise Ratio (SNR) whileI is the average Interference to Noise Ratio (INR). We assumeI to

be fixed and thus known. For later use, the distribution of theadditive noise in (2) is given by

fW(w) = EΘI

[
e−|w−

√
IejΘI |2

π

]
=

e−|w|2−I

π
I0

(
2
√

I|w|2
)
, (3)

whereI0(w) = E[ew cos(ΘI)] ∈ [1, e|w|] for w ∈ C is the zero-order modified Bessel function of

the first kind. The channel transition probability is thus

fY|X(y|x) = fW(y − x), (x,y) ∈ C
2. (4)
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B. Channel Capacity

Our goal is to characterize the capacity of the memoryless channel in (1)-(2) given by

C(S, I) = sup
FX:E[|X|2]≤S

I(X;Y), (5)

whereFX is the cumulative distribution function ofX, andI(X;Y) denotes the mutual infor-

mation between random variablesX andY in (1).

We aim to show that the supremum in (5) is actually attained bya uniqueinput distribution,

for which we want to derive its structural properties. Before we continue however, we rewrite

the optimization for the original channel (1) (involving the real and the imaginary part of the

input) in a way that allows optimization with respect to a univariate distribution only.

By following steps similar to those in [6, Section II.B], we can show that an optimal input

distribution induces̃Y and∠Y independent givenX, with ∠Y uniformly distributed over the

interval [0, 2π]; such an output distribution can be attained by the uniform distribution on∠X

and by∠X independent ofX̃; therefore, it is convenient for later use to denote the channel

transition probabilityfỸ |X̃(y|x) as the kernelK(x, y) given by (see Appendix VII-A)

K(x, y) := fỸ |X̃(y|x) (6a)

=

∫

|θ|≤π

e−I−ξ(θ;x,y)

2π
I0

(
2
√
I ξ(θ; x, y)

)
dθ, (6b)

ξ(θ; x, y) := y + x− 2
√
yx cos(θ) ≥ 0, (y, x) ∈ R

2
+. (6c)

Since the random variables̃X and Ỹ are connected through a channel with kernelK(x, y), an

input distributed asFX̃ results in an output with probability distribution function (pdf)1

fỸ (y;FX̃) :=

∫

x≥0

K(x, y)dFX̃(x), y ∈ R+. (7)

We stress the dependence of the output pdf on the input distribution FX̃ by adding it as an

‘argument’ infỸ (y;FX̃).

Finding the channel capacity in (5) can thus be equivalentlyexpressed as the following

optimization over the distribution of a non-negative random variableX̃

C(S, I) + h(|W|2) = sup
F
X̃
:E[X̃]≤S

h(Ỹ ;FX̃), (8)

1 The pdff
Ỹ
(y;F

X̃
) in (7) exists since the kernel in (6) is a continuous and bounded (see (12)) function and thus integrable.
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whereh(Ỹ ;FX̃) is the output differential entropy given by2

h(Ỹ ;FX̃) =

∫

y≥0

fỸ (y;FX̃) log
1

fỸ (y;FX̃)
dy. (9)

We expressh(Ỹ ;FX̃) in (9) as

h(Ỹ ;FX̃) =

∫

y≥0

∫

x≥0

K(x, y) log
1

fỸ (y;FX̃)
dFX̃(x) dy

=

∫

x≥0

h(x;FX̃) dFX̃(x), (10)

where we defined themarginal entropyh(x;FX̃) as 3

h(x;FX̃) :=

∫

y≥0

K(x, y) log
1

fỸ (y;FX̃)
dy, x ∈ R+, (11)

and where the order of integration in the line above (10) can be swapped by Fubini’s theorem.

For later use, we note that the introduced functions can be bounded as follows: for the kernel

in (6)

e−(y+x+I) ≤ K(x, y) ≤ 1, (x, y) ∈ R
2
+; (12)

for the output pdf in (7)

e
−(y+I+βF

X̃
) ≤ fỸ (y;FX̃) ≤ 1, y ∈ R+, (13)

where βF
X̃

is defined and bounded (by using Jensen’s inequality together with the power

constraint) as

0 ≤ βF
X̃
:= − ln

(∫

x≥0

e−xdFX̃(x)

)
≤ S; (14)

for the marginal entropy in (11)

0 ≤ h(x;FX̃) ≤ E[Ỹ |X̃ = x] + I+ βF
X̃
, x ∈ R+, (15)

where the conditional mean of̃Y given X̃ is

E[Ỹ |X̃ = x] = x+ I+ 1, x ∈ R+. (16)

2 The entropyh(Ỹ ;F
X̃
) in (9) exists since the output pdf in (7) is a continuous and bounded (see (13)) function and thus

integrable.

3 The marginal entropyh(x;F
X̃
) in (11) exists since the involved functions are integrable by (12) and (13).
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C. Trivial Bounds

Trivially, one can lower bound the capacity in (5) by treating the radar interference as a

Gaussian noise and obtain

log

(
1 +

S

1 + I

)
≤ C(S, I), (17)

and upper bound it as

C(S, I) ≤ max
FX:E[|X|2]≤S

I(X;Y,ΘI) = log (1 + S) , (18)

or from Ihara’s work [3] as

C(S, I) ≤ log (πe(1 + S+ I))− h(W), (19)

or from Zamir and Erez’s work [4, Theorem 1], as

C(S, I) ≤ I(XG;Y) + log(2), (20)

where I(XG;Y) is the achievable rate with a proper-complex Gaussian inputthat meets the

power constraint with equality.

We shall use these bounds later to benchmark the achievable performance in Section V.

III. M AIN RESULT

We are now ready to state our main result: a characterizationof the structural properties of

the optimal input distribution in (5), in relation to the problem in (8).

Theorem 1. The optimal input distribution in(5) is unique and has independent modulo and

phase. The phase is uniformly distributed in[0, 2π]. The modulo is discrete with countably infinite

many mass points, but only finitely many in any bounded interval.

Proof: As argued in Section II-B, an optimal input distribution in (5) has∠X uniformly

distributed in[0, 2π] and independent of̃X. The modulo squared̃X, solves the problem in (8),

whose supremum is attained by theunique input distributionF opt

X̃
, because (see [13, Theorem

1]):

April 16, 2018 DRAFT
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1) the space of input distributionsF is compact and convex (see [13, Theorem 1]);F is

given by

F :=
{
FX̃ : FX̃(x) = 0, ∀x < 0, (21a)

dFX̃(x) ≥ 0, ∀x ≥ 0, (21b)
∫

x≥0

1 · dFX̃(x) = 1, (21c)

L(FX̃) :=

∫

x≥0

x · dFX̃(x)− S ≤ 0
}
, (21d)

where the various constraints are: (21a) for non-negativity, (21b) and (21c) for a valid

input distribution, and (21d) for the average power constraint; and

2) The differential entropyh(Ỹ ;FX̃) in (10) is a weak⋆ continuous (see Appendix VII-B)

and strictly concave (see Appendix VII-C) functional of theinput distributionFX̃ .

From this and by Smith’s approach [5], the solution of the optimization problem in (8) is

equivalent to the solution of

h′
F

opt

X̃

(Ỹ ;FX̃)− λL′
F

opt

X̃

(FX̃) ≤ 0, for all FX̃ ∈ F , (22a)

λ ≥ 0 : L(F opt

X̃
) = 0, (22b)

where the functionalL(.) was defined in (21d), and where the prime sign along with the subscript

F opt

X̃
denotes the weak⋆ derivative of the functionh(Ỹ ;FX̃) at F opt

X̃
[5] (see Appendix VII-D).

The conditions in (22) can be equivalently expressed as the necessary and sufficient Karush-

Kuhn-Tucker (KKT) condition: for someλ ≥ 0

h(x;F opt

X̃
) ≤ h(Ỹ ;F opt

X̃
) + λ(x− S), ∀x ∈ R+, (23)

where equality in (23) holdsonly at the points of increase ofF opt

X̃
(see Appendix VII-E).

At this point, as it is usual in these types of problems [5], the proof follows by ruling out

different types of distributions. A distribution takes oneof the following forms:

1) Its support contains an infinite number of mass points in some bounded interval;

2) It is discrete with finitely many mass points; or

3) It is discrete with countably infinitely many mass points but only a finite number of them

in any bounded interval.

Next, we will rule out cases 1 and 2 by contradiction.

April 16, 2018 DRAFT
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Rule out case 1 (F opt

X̃
has an infinite number of mass points in some bounded interval). We

prove that this case requires the inequality in (23) to hold with equality for allx ≥ 0; we then

prove this to be impossible.

We start by stating the following proposition, the proof of which is given in Appendix VII-F.

Proposition 1. The optimal Lagrange multiplierλopt(S), which represents the weak⋆ derivative

of the capacityC(S, I) with respect toS, must satisfy0 < λopt(S) < 1 for all S > 0.

For the feasible range0 < λ < 1, we re-write the KKT condition in (23) by following the

recent work [9]. Given the conditional output power expressed as in (16), we can write

x− S =

∫

y≥0

(y − (1 + I+ S))K(x, y) dy, ∀x ∈ R+. (24)

With (24), the KKT condition in (23) reads: there exists a constant0 < λ < 1 such that

g(x, λ) ≤ h(Ỹ ;F opt

X̃
) = constant for allx ∈ R+, (25)

with equality only at the points of increase ofF opt

X̃
, and where

g(x, λ) :=

∫

y≥0

K(x, y) log

(
λe−λy

fỸ (y;F
opt

X̃
)

)
dy (26a)

+ log
1

λ
+ λ(1 + I+ S). (26b)

We show next that (25) can not be satisfied ifF opt

X̃
contains an infinite number of mass points in

some bounded interval. This step is accomplished by showingthat the functiong(x, λ), x ∈ R+,

in (26) can be extended to the complex domain and thatg(z, λ), z ∈ C+, is analytic.

Remark 1. In this type of analysis, we only require the analyticity of the functiong(z, λ) over

a region in the complex domain which contains the non-negative real line. Hence, it is sufficient

to prove the analyticity ofg(z, λ) over a strip around the non-negative real line but we prove it

over the entire right half plane (see Appendix VII-G).

Since the analytical functiong(z, λ) is equal to a constant at the set of points of increase

of F opt

X̃
and since the set of points of increase ofF opt

X̃
has an accumulation point (by the

Bolzano Weierstrass Theorem [14]), by the Identity Theorem[14], we conclude thatg(z, λ) =

constant, ∀z ∈ C+. As the resultg(x, λ) = constant, ∀x ∈ R+. One solution, and theonly

April 16, 2018 DRAFT



11

solution due to invertibility of the kernelK(x, y) (see Appendix VII-H), forg(x, λ) to be a

constant and not to depend onx is that the function that multiplies the kernel in the integral

in (26a) is a constant (in which case
∫
y≥0

K(x, y) dy = 1 for all x ∈ R+). For this to happen,

we need

fỸ (y;F
opt

X̃
) = λe−λy, ∀y ∈ R+, (27)

or in other words, we need the outputY to be a zero-mean proper-complex Gaussian random

variable. Such an output in additive models is only possibleif the noise is Gaussian, which is

only possible ifI = 0. Therefore, unlessI = 0, is it impossible forF opt

X̃
to have an accumulation

point and thereforeF opt

X̃
must have finitely many masses in any bounded interval. Thus,we ruled

out case 1.

Rule out case 2 (F opt

X̃
has a finite number of points). We again proceed by contradiction. We

assume that the number of mass points is finite, say given by anintegerM < +∞, with optimal

masses located at0 ≤ x⋆
1 < . . . < x⋆

M < ∞ and each occurring with probabilityp⋆1, . . . , p
⋆
M ,

respectively. Note that the superscript⋆ is used to emphasize the optimality of the parameters.

Then the output pdf corresponding to this specific input distribution is

fỸ (y;F
opt

X̃
) =

M∑

i=1

p⋆iK(x⋆
i , y)

=
M∑

i=1

p⋆i

∫

|θ|≤π

e−(y+x⋆
i +I+2

√
x⋆
i I cos θ)

2π
· I0
(
2

√
y(x⋆

i + I+ 2
√

x⋆
i I cos θ)

)
dθ, (28)

where the expression in (28) is based on an equivalent way to write the kernel in (6) (see eq.(36b)

in Appendix VII-A). With (28), one can bound the marginal entropy in (11) as

−h(x;F opt

X̃
) =

∫

y≥0

K(x, y) log fỸ (y;F
opt

X̃
)dy (29a)

≤ − (x+I+1+log(2π))+log

(
M∑

i=1

p⋆i e
−(
√

x⋆
i+

√
I)2

)
(29b)

+

∫

y≥0

K(x, y)
(
2
√
y(
√

x⋆
M +

√
I)
)

dy, (29c)

where the second term in (29b) is independent ofx and hence we only need to deal with (29c).

The term in (29c) can be bounded as

E

[√
Ỹ
∣∣∣X̃ = x

]
≤
√

E

[
Ỹ
∣∣∣X̃ = x

]
=

√
1 + x+ I, (30)
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where (30) follows from Jensen’s inequality and by (16). With the bound in (29) back into the

KKT condition in (23) we get

−x+ c
√
x+ κ1 > −λx+ κ2, (31)

for some finite constantsc > 0, κ1, κ2 that are not functions ofx. However, asx → ∞, for

λ < 1 (by Proposition 1), the right-hand-side of (31) grows faster than the left-hand-side, which

is impossible. We reached a contradiction, which implies that the optimal number of mass points

can not be finite. Thus, we ruled out case 2.

Having ruled out the possibility thatF opt

X̃
has either infinitely many mass points in some

bounded interval or is discrete with finitely many mass points, the only remaining option is

thatF opt

X̃
has countably infinitely many mass points, but only a finite number of masses in any

bounded interval. This concludes the proof.

IV. CAPACITY AT HIGH INR

In this section, we prove that in the high INR regime, the communication system has only

1/2 the degrees of freedom compared to the interference-free system; which is a substantial

improvement from the zero rate achieved when communicationin presence of radar signal is

prohibited. We also show that the Gaussian input is asymptotically optimal asI → ∞.

Theorem 2. The capacity of channel(5) as I → ∞ is given by

lim
I→∞

C(S, I) =
1

2
log(1 + S).

Proof: We show that in the high INR regime, the mutual information between the input and

the output is upper bounded by1
2
log(1+S) for any input distribution subject to an average power

constraint. We then show that the Gaussian input can asymptotically achieve this upper bound

as I → ∞. We write:

I(X;Y) = h(Y)− h(W)

= h(Ỹ )− h(W̃ ) (32a)

≤
∫

y≥0

fỸ (y) log
1

R(y)
dy − h(W̃ ), (32b)
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where (32a) is becauseY andW are circularly symmetric, (32b) is due to non-negativity of

relative entropy and whereR(y) is an auxiliary output density function which is absolutely

continuous with respect tofỸ (y). Take

R(y) =
1

S + 1
e−(

y+I

S+1)I0

(
2

√
yI

S+ 1

)
, (33)

to be the auxiliary output distribution in (32b). The intuition behind this choice ofR(y) lies

behind our conjecture that the Gaussian input is optimal forlarge INR and the fact that (33) is

the induced distribution oñY by a proper-complex Gaussian input. Then by (32b) we have

lim
I→∞

I(X;Y) ≤ lim
I→∞

∫

x≥0,y≥0

K(x, y) log

(
(S+ 1)e

y+I

S+1

I0(2
√
yI

S+1
)

)
dy dFX̃(x)−

1

2
log(4πeI) (34a)

= log(S+ 1) + lim
I→∞

{
S+ 2I+ 1

S+ 1
−
∫

x≥0,y≥0

K(x, y) log


 e

2
√

yI
S+1

√
4π

√
yI

S+1


 dy dFX̃(x)

}
− 1

2
log(4πeI)

(34b)

=
1

2
log(S+ 1) + lim

I→∞

{
S + 2I+ 1

S+ 1
− 2

√
I

S+ 1
E[
√

Ỹ ] +
1

4
log(I) +

1

4
E[log(Ỹ )]− 1

2
log(eI)

}

≤ 1

2
log(S+ 1) +

1

2
+ lim

I→∞

{ 2I

S+ 1
− 2

√
I

S+ 1

[√
I+

S+ 1

4
√
I
+O(

1

I
)

]}
(34c)

=
1

2
log(S+ 1), (34d)

where (34a) is by calculating the entropy of a non-central Chi-square distribution with 2 degrees

of freedom as the non-centrality parameterI goes to infinity [15, eq. (9)] and where (34b)

and (34c) are proved in Appendix VII-I and Appendix VII-J, respectively. Next, a Gaussian

input can achieve the upper bound given in (34d), as follows

lim
I→∞

I(XG;Y) = lim
I→∞

h(Y)− h(W) (35a)

= lim
I→∞

log(1 + S) + h

(√
I

1 + S
ejΘI + Z

)
− h

(√
IejΘI + Z

)

= lim
I→∞

log(1 + S) +
1

2
log

(
1 +

I

1 + S

)
− 1

2
log (1 + I) (35b)

=
1

2
log(1 + S) + lim

I→∞

1

2
log

(
1 +

S

1 + I

)

=
1

2
log(1 + S),

wherXG is the proper-complex Gaussian input and where (35b) is again by [15, eq. (9)].
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V. NUMERICAL EVALUATIONS

In this section, we numerically find a sub-optimal input for fixed S = 5 and three different

values of I in the regime0 < α :=
I(dB)

S(dB)
< 2 and we compare the achieved rates with that

of a proper-complex Gaussian input. We also evaluate different achievable rates in the regime

−1 ≤ α ≤ 2.5 and compare them with the bound in Section II-C.

Numerically finding the optimal input for the channel considered in this paper is more

challenging compared to channels with finite dimensional capacity achieving inputs such as

the ones considered in [5] and [6]. In [5], for example, the optimization was initially performed

for a very low SNR where an input with two mass points was proved to be optimal. As SNR

increased, more mass points were added to the optimization problem in order to satisfy the KKT

conditions and guarantee the optimality of the input. In thechannel considered here however,

a finite number of mass points is sub-optimal atany SNR. Hence, in the rest of this section,

we find sub-optimal inputs with a finite number of mass points and solving the corresponding

constraint optimization problem. We increase the number ofmass points until the achieved rate

remains unchanged after the3rd digit after the decimal point. Figure 1 shows the locationof

the mass points for each sub-optimal input as a function of SNR. We note that we do not claim

the rates achieved with these inputs to be optimal, nor do we claim that these input distributions

are capacity-optimal. It is however interesting to note that they can outperform Gaussian inputs.

SNR
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Fig. 1: Location of mass points for sub-optimal input as a function of SNR for fixed INR=5.
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Optimized finite dimensional input
Gussian input
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log(1+snr)
Treat interference as Gaussian noise
Ihara's Upper bound

Fig. 2: Lower and upper bounds to the capacity vsI for fixed S = 5 = 6.9897dB.

We find the achievable inputs for fixedS = 5 and three different values ofI = [3.6239, 9.5183, 25]

which correspond toα = [0.8, 1.4, 2], by solving a finite dimensional constraint optimization

problem. The achievable rates obtained by a Gaussian input and optimized finite dimensional

inputs are given in Table I. As it can be seen, the optimized finite dimensional inputs achieve

marginally better rates than the Gaussian input.

TABLE I: Achievable rates for Gaussian and optimized finite dimensional input,S = 5.

❛
❛
❛
❛
❛
❛
❛
❛
❛
❛
❛❛

Input

INR
S
0.8 = 3.6239 S

1.4 = 9.5183 S
2 = 25

Gaussian 1.2905 1.1910 1.2470

Optimized finite dimension 1.2927 1.1922 1.2480

TABLE II: Achievable rates for Gaussian and optimized finitedimensional input,S = 10.

❛
❛

❛
❛
❛
❛
❛
❛
❛
❛
❛❛

Input

INR
S
0.8 = 6.3096 S

1.4 = 25.1189 S
2 = 100

Gaussian 1.6986 1.6393 1.7100

Optimized finite dimension 1.7108 1.6398 1.7102

In Fig.2 we plot achievable rates as function ofI for fixed S = 5:

• (yellow solid line) an equally likely4-QAM constellation,

• (purple solid line) a distribution with uniform phase and only one mass point at
√
S for the

modulo,
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• (orange solid line) a proper-complex Gaussian input,

• (blue solid line) treat the radar interference as Gaussian noise as given in (17), and

• (stared cyan points) optimized finite dimensional input.

We also show the outer bound in (19) (green dashed line) and the one in (18) (red dashed line).

The Gaussian input performs very well forα :=
I(dB)

S(dB)
< 1, where it closely follows the

upper in (19), in comparison to the discrete4-QAM input and a distribution with uniform phase

and only one mass point at
√
S for the modulo. Although this behavior was expected forI ≪ 1

(actually a Gaussian input is optimal forI = 0), it is very pleasing to see that it actually performs

very well for the whole regimeI ≤ S.

We note that the equally likely4-QAM and the distribution with uniform phase and only one

mass at
√
S for the modulo are only a ‘constant gap’ away from the the upper bound in (20)

for the simulatedS = 5, which shows that capacity can be well approximated by inputs with a

finite number of masses. The rate achieved by optimized finitedimensional input atI = S0.8, S1.4

andS2 is only slightly higher than the rate achieved by a proper-complex Gaussian input.

VI. CONCLUSION

In this paper we studied the structural properties of the optimal (communication) input of a

new channel model which models the impact of a high power, short duty cycle, wideband, radar

interference on a narrowband communication signal. In particular, we showed that the optimal

input distribution has uniform phase independent of the modulo, which is discrete with countably

infinite many mass points. We also argue that for large radar interference there is a loss of half

the degrees of freedom compared to the interference-free channel.
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VII. A PPENDICES

A. Derivation of the kernelK(x, y) in (6)

By (4) and by passing to polar coordinates we have

K(x, y) := f
Ỹ

∣∣X̃(y|x)

=

∫ 2π

0

dφ

∫ 2π

0

dα

2π
· e

−|√yejφ−√
xejα|2−I

2π
· I0
(
2
√
I|√yejφ −

√
xejα|

)

=

∫

|θ|≤π

e−(y+x+I−2
√
yx cos(θ))

2π
I0

(
2
√
I

√
y + x− 2

√
yx cos(θ)

)
dθ (36a)

=

∫

|θ|≤π

e−(y+x+I+2
√
xI cos(θ))

2π
I0

(
2
√
y

√
x+ I+ 2

√
xI cos(θ)

)
dθ, (36b)

where (36a) and (36b) correspond to solving for the two integrals in different orders.

B. The mapFX̃ → h(Ỹ ;FX̃) is weak⋆ continuous

To prove the weak⋆ continuity of theh(Ỹ ;FX̃) in (10), we show that for any sequence of

distribution functions{Fn}∞n=1 ∈ F if Fn
w∗

→ FX̃ thenh(Ỹ ;Fn) → h(Ỹ ;FX̃). We have

lim
n→∞

h(Ỹ ;Fn) = lim
n→∞

∫

y≥0

fỸ (y;Fn) log
1

fỸ (y;Fn)
dy

=

∫

y≥0

lim
n→∞

fỸ (y;Fn) log
1

fỸ (y;Fn)
dy (37a)

= h(Ỹ ;FX̃), (37b)

where the exchange of limit and integral in (37a) is due to theDominated Convergence Theo-

rem [16], and equality in (37b) is due to continuity of the mapFX̃ → fỸ (y;FX̃) log fỸ (y;FX̃).

This last assertion is true by noting thatx → x log x is a continuous function ofx ∈ R+ and

fỸ (y;FX̃) in (7) is a continuous function ofFX̃ sinceK(x, y) in (6) is a bounded continuous

function of x for all y ∈ R+.

Back to (37a), to satisfy the necessary condition required in the Dominated Convergence

Theorem, we have to show that there exists an integrable function g(y) such that

| fỸ (y;Fn) log fỸ (y;Fn) |< g(y), ∀y ∈ R+. (38)

We state the following Lemma which is a generalization of theone given in [17, Lemma A.2].
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Lemma 1. For any δ1 > 0 and 0 < x ≤ 1

0 ≤ −x log x ≤ e−1

δ1
x1−δ1 . (39)

Proof. Fix a δ1 > 0; the fuctionx → −xδ1 log x is concave in0 < x ≤ 1, and is maximized at

x = e−1/δ1 . Hence−xδ1 log x ≤ e−1

δ1
and (39) follows.

According to Lemma 1 we can write

| fỸ (y;Fn) log fỸ (y;Fn) |≤
e−1

δ1
fỸ (y;Fn)

1−δ1 .

We next need to findΦ(y) : fỸ (y;Fn) ≤ Φ(y) which would then lead to

g(y) =
e−1

δ1
Φ(y)1−δ1, (40)

which is integrable for some0 < δ1. Similarly to [18, eq. A9] we can show that for anyδ2 > 0

Φ(y) =





1 y ≤ 16I

M
y1.5−δ2

y > 16I
, (41)

is such a desirable upper bound for someM < ∞. The proof is as follows. Fory > 16I we

write

fỸ (y;FX̃) =

∫ (
√
y/4−

√
I)2

0

K(x, y)dFX̃(x) +

∫ ∞

(
√
y/4−

√
I)2

K(x, y)dFX̃(x). (42)

The first term in (42) can be upper bounded as
∫ (

√
y/4−

√
I)2

0

K(x, y)dFX̃(x)

≤ e−y

∫ (
√
y/4−

√
I)2

0

∫ 2π

0

e−(x+I+2
√
xI cos θ)

2π
· I0
(
2
√
y(
√
x+

√
I)
)
dθ dFX̃(x)

≤ e−yI0

(
2
√
y

√
y

4

)∫ (
√
y/4−

√
I)2

0

∫ 2π

0

e−(x+I+2
√
xI cos θ)

2π
dθ dFX̃(x)

≤ e−yI0 (y/2) · 1 ≤ e−y/2, (43)

while the second term in (42) can be upper bounded as
∫ ∞

(
√
y/4−

√
I)2

K(x, y)dFX̃(x) ≤ P[X̃ > (
√
y/4−

√
I)2] · e

−y

2π

∫ 2π

0

sup
xθ>0

{
e−xθI0 (2

√
y
√
xθ)
}
dθ

≤ e−y

2π

∫ 2π

0

S

supxθ>0

{
e−xθI0

(
2
√
y
√
xθ

) }

(
√
y/4−

√
I)2

dθ (44a)

≤ e−y 3

2

ey√
4πy

[1 +O(1/y)]
S

(
√
y/4−

√
I)2

, (44b)
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wherexθ := x + I + 2
√
xI cos(θ), the inequality in (44a) is from Markov’s inequality, and the

one in (44b) is by [19, eq.(E.6)]. By (43) and (44b), we have

fỸ (y;Fn) ≤
12S√
π

[
1

y1.5
+O(

1

y2.5
)

]
.

Hence, for any0 < δ2 < 1 there exists someM < ∞ andy∗δ2, such that

fỸ (y;Fn) <
M

y1.5−δ2
, (45)

for all y ≥ y∗δ2 . We fix δ2 now. Due to continuity of thefỸ (y;Fn) for y ∈ [16I, y∗δ2], there exists

anM < ∞ such that (45) holds for ally > 16I. The bound in (45) together with the one in (13)

gives

fỸ (y;Fn) ≤ Φ(y),

for any 0 < δ2 < 1 and someM < ∞ and whereΦ(y) was defined in (41). Finally, one can

find small enoughδ1 andδ2 such thatg(y) given in (40) is integrable.

C. The mapFX̃ → h(Ỹ ;FX̃) is strictly concave

The functionh(Ỹ ;FX̃) in (9) is concave infỸ (y;FX̃) in (7) (becausex → −x log(x) is).

SincefỸ (y;FX̃) is an injective function ofFX̃ (due to invertibility of the kernel as proved in

Appendix VII-H), we conclude thath(Ỹ ;FX̃) is a strictly concave function ofFX̃ .

D. The functionalh(Ỹ ;FX̃)− L(FX̃), is weakly* differentiable atF opt

X̃

By using the definition of the functional derivative, we showthath′
F

opt

X̃

(Ỹ ;FX̃) andL′
F

opt

X̃

(FX̃)

exist for allFX̃ , F
opt

X̃
and henceh(Ỹ ;FX̃)− L(FX̃) is weak⋆ differentiable.

First, for θ ∈ [0, 1], we defineFθ := (1− θ)F opt

X̃
+ θFX̃ and then we find the weak⋆ derivative

of h(Ỹ ;FX̃) at F opt

X̃
as follows

h′
F

opt

X̃

(Ỹ ;FX̃) = lim
θ→0+

1

θ

[
h(Ỹ ;Fθ)− h(Ỹ ;F opt

X̃
)
]

= lim
θ→0+

1

θ

∫

x≥0

∫

y≥0

K(x, y) log
1

fỸ (y;Fθ)
dy dFθ(x)

− lim
θ→0+

1

θ

∫

x≥0

∫

y≥0

K(x, y) log
1

fỸ (y;F
opt

X̃
)
dy dF opt

X̃
(x)

=

∫

x≥0

h(x;F opt

X̃
)dFX̃(x)− h(Ỹ ;F opt

X̃
)

−
∫

y≥0

lim
θ→0+

1

θ
fỸ (y;Fθ) log

fỸ (y;Fθ)

fỸ (y;F
opt

X̃
)
dy, (46)
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where the interchange of limit and integral in (46) is due to Dominated Convergence Theorem.

By [20, Lemma 6], we can write
∣∣∣fỸ (y;Fθ)

θ
log

fỸ (y;Fθ)

fỸ (y;F
opt

X̃
)

∣∣∣ ≤ fỸ (y;FX̃) + fỸ (y;F
opt

X̃
)

− fỸ (y;FX̃) log fỸ (y;FX̃)− fỸ (y;FX̃) log fỸ (y;F
opt

X̃
)

≤ fỸ (y;FX̃) + fỸ (y;F
opt

X̃
) + 2fỸ (y;FX̃)(y + I+ S), (47)

where the right hand side of (47) is integrable. In addition,the term given in (46) is vanishing

by L’Hospital’s Rule. Hence, the weak⋆ derivative is given by

h′
F opt

X̃

(Ỹ ;FX̃) =

∫

x≥0

h(x;F opt

X̃
)dFX̃(x)− h(Ỹ ;F opt

X̃
). (48)

It is also easy to show that

L′
F

opt

X̃

(FX̃) = L(FX̃)− L(F opt

X̃
), (49)

exists because of the linearity of the power constraint.

E. Equaivalence of KKT conditions in(23) to (22)

Let Eopt be the set of points of increase of the optimal input distribution F opt

X̃
. Then

∫

x≥0

(
h(x;F opt

X̃
)− λx

)
dFX̃(x) ≤ h(Ỹ ;F opt

X̃
)− λS (50)

for all FX̃ ∈ F if and only if

h(x;F opt

X̃
) ≤ h(Ỹ ;F opt

X̃
) + λ(x− S), ∀x ∈ R+, (51)

h(x;F opt

X̃
) = h(Ỹ ;F opt

X̃
) + λ(x− S), ∀x ∈ Eopt. (52)

The if direction is trivial since the derivative given in (48) has to be non-positive. To prove the

only if direction, assume that (51) is false. Then there exists anx̃ such that

h(x̃;F opt

X̃
) > h(Ỹ ;F opt

X̃
) + λ(x̃− S).

If F opt

X̃
is a unit step function at̃x, then

∫

x≥0

(
h(x;F opt

X̃
)− λx

)
dFX̃(x) = h(x̃, F opt

X̃
)− λx̃ > h(Ỹ ;F opt

X̃
)− λS,
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which contradicts (50). Assume that (51) holds but (52) doesnot, i.e., there exists̃x ∈ Eopt:

h(x̃;F opt

X̃
) < h(Ỹ ;F opt

X̃
) + λ(x̃− S). (53)

Since all functions in (53) are continuous inx, the inequality is satisfied strictly on a neighbor-

hood of x̃ indicated asEx̃. Sincex̃ is a point of increase, the setEx̃ has nonzero measure, i.e.,
∫
Ex̃

dF opt

X̃
(x) = δ > 0; hence

h(Ỹ ;F opt

X̃
)− λS =

∫

x≥0

(
h(x;F opt

X̃
)− λx

)
dF opt

X̃
(x)

=

∫

Ex̃

(
h(x;F opt

X̃
)− λx

)
dF opt

X̃
(x)

+

∫

Eopt\Ex̃

(
h(x;F opt

X̃
)− λx

)
dF opt

X̃
(x)

<δ(h(Ỹ ;F opt

X̃
)− λS) + (1− δ)(h(Ỹ ;F opt

X̃
)− λS),

which is a contradiction.

F. Proof of Proposition 1

We prove thatλ can not be equal to0 or greater than or equal to1. By the Envelope

Theorem [21] and the upper bound in (18), havingλ ≥ 1 is not possible. The caseλopt(S) = 0

is unfeasible; if otherwise, the unique solution of (23) (uniqueness follows by invertibility of the

integral transform in (7) as proven in Appendix VII-H) wouldinduce the output pdf

fỸ (y;F
opt

X̃
) = exp{−h(Ỹ ;F opt

X̃
)}, ∀y ∈ R+, (54)

which is not a valid pdf since it does not integrate to one. Therefore we conclude that we must

have0 < λopt(S) < 1.

G. The functionz → g(z, λ) is analytic

The analyticity ofg(z, λ), z ∈ C+, follows from the analyticity ofh(z;FX̃) on the same

domain, whereh(x;FX̃) was defined in (11). In other words, we want to show that the function

h(z;FX̃) =

∫

y≥0

K(z, y) log
1

fỸ (y;FX̃)
dy, z ∈ C+, (55)

is analytic. Note that the integrand in (55) is a continuous function on{z ∈ C+} × {y ∈ R+}
and analytic for eachy so we use the Differentiation Lemma [14] to prove the analyticity by
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proving thath(x;FX̃) is uniformly convergent for any rectangleK := {z ∈ C : 0 ≤ a ≤ ℜ(z) ≤
b,−b ≤ ℑ(z) ≤ b} (since any compact setK ∈ C is closed and bounded in the complex plane).

By (13) we have
∣∣log fỸ (y;FX̃)

∣∣ ≤ y + I+ βF
X̃
,, and as a result we have

|h(z;FX̃)| ≤
∫

y≥0

|K(z, y)| | log fỸ (y;FX̃)| dy

≤
∫

y≥0

1

2π

∫

|θ|≤π

∣∣e−(z+y−2
√
zy cos θ+I)

∣∣ ·
∣∣∣∣I0
(
2
√
I(z + y − 2

√
zy cos θ)

)∣∣∣∣ ·
∣∣y + I+ βF

X̃

∣∣ dθ dy

≤
∫

y≥0

1

2π

∫

|θ|≤π

e−ℜ(z+y−2
√
zy cos θ+I) · I0

(
2ℜ
{√

I(z + y − 2
√
zy cos θ)

}) (
y + I+ βF

X̃

)
dθ dy

≤
∫

y≥0

1

2π

∫

|θ|≤π

e−ℜ(y+z−2
√
zy cos θ+I) · e2ℜ{

√
I(z+y−2

√
zy cos θ)} (y + I+ βF

X̃

)
dθ dy

=

∫

y≥0

1

2π

∫

|θ|≤π

e−(
√

ℜ(y+z−2
√
zy cos θ)−

√
I)2 ·
(
y + I+ βF

X̃

)
dθ dy. (56)

Since (56) is exponentially decreasing iny ∈ R+, the integral is bounded, concluding the proof.

H. Invertibility of the integral transform in(7)

To prove the invertibility of the transform

ğ(y) =

∫

x≥0

K(x, y)g(x) dx, y ∈ R+, (57)

we will show that if ğ(y) ≡ 0 for all y ∈ R+, then g(x) ≡ 0 for all x ∈ R+. From the

invertibility of (57), also the integral transform
∫
y≥0

K(x, y)g(y)dy is invertible due to the

symmetry of the kernelK(x, y) in x andy.

We first define the following two integrals [22, eq(6.633) andeq(6.684)]
∫ ∞

0

e−αyIν(β
√
y)Jν(γ

√
y) dy =

1

2α
exp

(
β2 − γ2

4α

)
J0

(
βγ

2α

)
,

ℜ{α} > 0,ℜ{ν} > −1, (58)

∫ π

0

(sin θ)2ν
Jν

(√
α2 + β2 − 2αβ cos θ

)

(√
α2 + β2 − 2αβ cos θ

)ν dθ = 2ν
√
πΓ

(
ν +

1

2

)
Jν(α)

αν

Jν(β)

βν
,

ℜ{ν} > −1

2
, (59)

whereJν(.) andIν(.) are theν-th order Bessel function of the first kind andν-th order modified

Bessel function of the first kind, and whereΓ(.) is the Gamma function.
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We next use (58) and (59) as follows. Ifğ(y) = 0 for all y ≥ 0, then for allγ ≥ 0 we have

⇐⇒
∫ ∞

0

J0(γ
√
y)ğ(y) dy = 0

⇐⇒
∫ ∞

0

g(x)dx

∫ π

0

J0

(
γ

√
x+ I+ 2

√
xI cos θ

)
dθ = 0 (60)

⇐⇒
∫ ∞

0

g(x)J0(γ
√
x)J0(γ

√
I) dx = 0 (61)

⇐⇒
∫ ∞

0

g(z2)J0(γz)z dz = 0

⇐⇒ H{g(z2)} = 0, (62)

⇐⇒ g(z2) = 0, ∀z ∈ R+,

⇐⇒ g(x) = 0, ∀x ∈ R+,

where (60) follows by (58), (61) by (59), and whereH{g(z)} in (62) denotes the Hankel

transform [23] of the functiong(z).

I. Justification of (34b)

In order to show that

lim
I→∞

∫

x≥0,y≥0

K(x, y) log I0

(
2

√
yI

S+ 1

)
dy dFX′(x)

= lim
I→∞

∫

x≥0,y≥0

K(x, y) log


 e2

√
yI

S+1

√
4π

√
yI

S+1


 dy dFX̃(x),

we make the variable changeyI = z and prove

lim
I→∞

∫

x≥0,z≥0

K(x,
z

I
) log I0

(
2

√
z

S+ 1

)
dz

I
dFX̃(x)

= lim
I→∞

∫

x≥0,z≥0

K(x,
z

I
) log


 e2

√
z

S+1

√
4π

√
z

S+1


 dz

I
dFX̃(x).
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For B = max{1, I1/3}, we can write

− lim
I→∞

1

I

∫

x≥0

∫

z≥0

K(x,
z

I
) log

(
I0

(
2

√
z

S+ 1

))
dz dFX̃(x)

= − lim
I→∞

1

I

∫

x≥0

∫ B

z=0

K(x,
z

I
) log

(
I0

(
2

√
z

S+ 1

))
dz dFX̃(x)

− lim
I→∞

1

I

∫

x≥0

∫

z≥B

K(x,
z

I
) log

(
I0

(
2

√
z

S + 1

))
dz dFX̃(x)

= − lim
I→∞

1

I

∫

x≥0

∫ B

z=0

K(x,
z

I
) log

(
I0

(
2

√
z

S+ 1

))
dz dFX̃(x)

− lim
I→∞

1

I

∫

x≥0

∫

z≥B

K(x,
z

I
) log


 e2

√
z

S+1

√
4π

√
z

S+1


 dz dFX̃(x) (63a)

= lim
I→∞

1

I

∫

x≥0

∫ B

z=0

K(x,
z

I
) log


 e2

√
z

S+1

√
4π

√
z

S+1

.
1

I0

(
2

√
z

S+1

)


 dz dFX̃(x) (63b)

− lim
I→∞

1

I

∫

x≥0

∫

z≥0

K(x,
z

I
) log

e2
√

z

S+1

√
4π

√
z

S+1

dz dFX̃(x),

where (63a) holds by approximation of Bessel function with large arguments.

To this end, if we prove that the limit in (63b) is zero, then our proof is complete. In this

regard, we find an upper and lower bound on (63b) and show that they are both zero. We can

upper bound (63b) as

lim
I→∞

1

I

∫

x≥0

∫ B

z=0

K(x,
z

I
) log


 e2

√
z

S+1

√
4π

√
z

S+1

.
1

I0

(
2

√
z

S+1

)


 dz dFX̃(x)

≤ lim
I→∞

1

I

∫ B

z=0

log


 e2

√
z

S+1

√
4π

√
z

S+1

.
1

I0

(
2

√
z

S+1

)


 dz (64a)

≤ lim
I→∞

1

I

∫ B

z=0

log


 e2

√
z

S+1

√
4π

√
z

S+1


 dz (64b)

= lim
I→∞

1

I

∫ B

z=0

(
2

√
z

S+ 1
− log

√
4π

S+ 1
− 1

4
log(z)

)
dz

= lim
I→∞

1

I
×
(

4z3/2

3(S+ 1)
− z log(

√
4π

S + 1
) + z log(z)− z

)
∣∣B
z=0

= 0,
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where (64a) is by (12) and where (64b) is due to the fact that zero order modified Bessel function

is always larger than or equal to1. In addition, we can lower bound (63b) as

lim
I→∞

1

I

∫

x≥0

∫ B

z=0

K(x,
z

I
) log


 e2

√
z

S+1

√
4π

√
z

S+1

.
1

I0

(
2

√
z

S+1

)


 dz dFX̃(x)

≥ lim
I→∞

1

I

∫

x≥0

∫ B

z=0

K(x,
z

I
) log


 1√

4π
√
z

S+1


 dz dFX̃(x) (65a)

= lim
I→∞

1

4I

∫

x≥0

∫ B

z=0

K(x,
z

I
) log

(
1

z

)
dz dFX̃(x)

= lim
I→∞

1

4I

∫

x≥0

∫ 1

z=0

K(x,
z

I
) log

(
1

z

)
dz dFX̃(x) + lim

I→∞

1

4I

∫

x≥0

∫ B

z=1

K(x,
z

I
) log

(
1

z

)
dz dFX̃(x)

≥ lim
I→∞

1

4I

∫

x≥0

∫ B

z=1

K(x,
z

I
) log

(
1

z

)
dz dFX̃(x) (65b)

≥ lim
I→∞

1

4I

∫ B

z=1

log

(
1

z

)
dz (65c)

= lim
I→∞

1

I
× (−z log(z) + z)

∣∣B
z=1

= 0,

where (65a) is by the inequalityI0(x) ≤ ex, and where (65b) and (65c) are true for the choice

of B. Since both lower and upper bounds on (63b) are zero, our claim follows.

J. Justification of(34c): Calculation of limI→∞ E[
√

Ỹ ]

Here we calculate the expected value of the output modulo given by

lim
I→∞

E[
√

Ỹ ] = lim
I→∞

∫

x≥0

∫

y≥0

√
yK(x, y) dy dFX̃(x) = C1 + C2,

where

C1 = lim
I→∞

∫ A

x=0

∫

y≥0

√
yK(x, y) dy dFX̃(x),

C2 = lim
I→∞

∫

x≥A

∫

y≥0

√
yK(x, y) dy dFX̃(x),
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and where we takeA = I
(1−δ) for someδ > 0.

C1 = lim
I→∞

∫ A

x=0

∫ 2π

0

∫

y≥0

√
ye−(y+x+I+2

√
xI cos θ)I0

(
2
√
y

√
x+ I+ 2

√
xI cos θ

)
dy dθ dFX̃(x)

= lim
I→∞

∫ A

x=0

∫ 2π

0

e−(x+I+2
√
xI cos θ)Γ(3/2)

ex+I+2
√
xI cos θ

√
x+ I+ 2

√
xI cos θ

Γ(3/2)

·
[
1 +

(1
2
)(1

2
)

x+ I+ 2
√
xI cos θ

+O

(
1

I

)]
dθ dFX̃(x) (66)

= lim
I→∞

∫ A

x=0

∫ 2π

0

(√
x+ I+ 2

√
xI cos θ +

1

4
√

x+ I+ 2
√
xI cos θ

+O

(
1

I

))
dθ dFX̃(x)

= lim
I→∞

∫ A

x=0

(√
I+

x+ 1

4
√
I
+O

(
1

I

))
dFX̃(x) (67)

=
√
I+

S + 1

4
√
I
+O

(
1

I

)
, (68)

where (68) is by the Dominated Convergence Theorem. The equality in (66) is due to [22,

eq(6.631)]
∫

x≥0

√
xe−αxI0(2β

√
x)dx =

Γ(3
2
)

α3/2 1F1

(
3/2, 1,

β2

α

)
,

where 1F1(a, b, x) is the confluent hypergeometric function [24, Chapter 13]. The series expan-

sion of 1F1(a, c, x) for x → ∞ is given by [24, Section 13.7]

1F1(a, c, x) =
Γ(c)exxa−c

Γ(a)

∞∑

n=0

(c− a)n(1− a)n
n!

x−n

=
Γ(c)exxa−c

Γ(a)

[
1 +

(c− a)(1− a)

x
+O

(
1

x2

)]
,

where(a)n := a(a+ 1) . . . (a+ n− 1).

In addition, the equality in (67) is justified by [22]

2πEθ

[
2π

4(
√
x+ I+ 2

√
xI cos θ)

]
=

1

2(
√
I−√

x)
K

(
− 4

√
xI

x+ I− 2
√
xI

)
+

1

2(
√
I+

√
x)

K

(
4
√
xI

x+ I+ 2
√
xI

)
,

2πEθ

[√
x+ I+ 2

√
xI cos θ

]
= 2(

√
I−

√
x)E

(
− 4

√
xI

x+ I− 2
√
xI

)
+ 2(

√
I+

√
x)E

(
4
√
xI

x+ I+ 2
√
xI

)
,

where

K(k2) =
π

2

∞∑

n=0

[
(2n− 1)!!

(2n)!!

]2
k2n =

π

2

[
1 +

1

4
k2 +

9

64
k4 +

25

256
k6 + . . .

]
,

E(k2) =
π

2

[
1−

∞∑

n=1

[
(2n− 1)!!

(2n)!!

]2
k2n

2n− 1

]
=

π

2

[
1− 1

4
k2 − 3

64
k4 − 5

128
k6 − . . .

]
,
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are respectively the complete elliptic integral of the firstand second kind. Hence

Eθ

[√
x+ I+ 2

√
xI cos θ

]
=

1

2
(
√
I−

√
x)

[
1 +

√
xI

(
√
I−√

x)2
− 3

4

xI

(
√
I−√

x)4
+ . . .

]

+
1

2
(
√
I+

√
x)

[
1−

√
xI

(
√
I+

√
x)2

− 3

4

xI

(
√
I+

√
x)4

− . . .

]

=
1

2

[
√
I−

√
x+

√
xI√

I−√
x
− 3

4

xI

(
√
I−√

x)3
+ . . .

]

+
1

2

[
√
I+

√
x−

√
xI√

I+
√
x
− 3

4

xI

(
√
I+

√
x)3

+ . . .

]

=
1

2

[√
I+

x√
I−√

x
− 3

4

xI

(I
√
I− 3I

√
x+ 3

√
Ix− x

√
x)

+ . . .

]

+
1

2

[√
I+

x√
I+

√
x
− 3

4

xI

(I
√
I+ 3I

√
x+ 3

√
Ix+ x

√
x)

+ . . .

]

=
√
I+

x

4
√
I
+O

(
1

I

)
, (69)

and

Eθ

[
1

4(
√
x+ I+ 2

√
xI cos θ)

]
=

1

4

1

(
√
I−√

x)

[
1−

√
xI

(
√
I−√

x)2
+ . . .

]

+
1

4

1

(
√
I+

√
x)

[
1 +

√
xI

(
√
I+

√
x)2

+ . . .

]

=
1

4

[
1√

I−√
x
−

√
xI

(
√
I−√

x)3
+ . . .

]

+
1

4

[
1√

I+
√
x
+

√
xI

(
√
I+

√
x)3

+ . . .

]

=
1

4
√
I
+O

(
1

I

)
. (70)

Finally, given (69) and (70), forx ≪ I (which holds in the region0 ≤ x ≤ A,A = I(1−δ)) we

have

Eθ

[√
x+ I+ 2

√
xI cos θ +

1

4(
√
x+ I+ 2

√
xI cos θ)

]
=

√
I+

x+ 1

4
√
I
+O

(
1

I

)
.

As the result, and sinceC2 ≥ 0

E[
√

Ỹ ] ≥ C1 =
√
I+

S+ 1

4
√
I
+O

(
1

I

)
.
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K. Justification of(34c): Calculation of limI→∞ Eθ,X̃

[
log(X̃ + I+ 2

√
X̃ I cos θ)

]

lim
I→∞

Eθ,X̃

[
log(X̃ + I+ 2

√
X̃ I cos θ)

]
= lim

I→∞

∫

x≥0

∫ 2π

0

log(x+ I+ 2
√
xI cos θ)dθ dFX̃(x)

= C1 + C2,

where

C1 = lim
I→∞

∫
I

x=0

∫ 2π

0

log(x+ I+ 2
√
xI cos θ) dθ dFX̃(x),

C2 = lim
I→∞

∫

x≥I

∫ 2π

0

log(x+ I+ 2
√
xI cos θ) dθ dFX̃(x).

To calculateC1, we state the following lemma.

Lemma 2.
∫ 2π

0

log(1 + 2r cos(x) + r2) dx = 0, 0 ≤ r ≤ 1 (71)

Proof. Based on Cauchy’s integral formula

f(a) =
1

2πj

∮

γ

f(z)

z − a
dz,

for 0 ≤ r < 1, we can write
∫ 2π

0

log(1 + 2r cos(x) + r2) dx =

∫ 2π

0

log(1 + rejx) dx+

∫ 2π

0

log(1 + re−jx) dx

= 2

∮

γ

log(1 + z)

jz
dz = 0.

For r = 1, we have
∫ 2π

0

log(1 + 2r cos(x) + r2) dx = 4π log(2) + 4

∫ π

0

log (cos(θ)) dθ (72a)

= 4π log(2) + 4

∫ π
2

0

log (cos(θ)) dθ + 4

∫ π
2

0

log (sin(θ)) dθ

= 4π log(2) + 4

∫ π
2

0

log

(
sin(2θ)

2

)
dθ

= 2π log(2) + 2

∫ π

0

log (sin(θ)) dθ

= 2π log(2) + 2

∫ π

0

log (cos(θ)) dθ, (72b)
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which according to (72a) and (72b), results in

4π log(2) + 4

∫ π

0

log (cos(θ)) dθ = 2π log(2) + 2

∫ π

0

log (cos(θ)) dθ = 0.

Based on lemma 2, we see that

C1 = lim
I→∞

∫
I

x=0

∫ 2π

0

log(x+ I+ 2
√
xI cos θ) dθ dFX̃(x),

= lim
I→∞

∫
I

x=0

log(I) dFX̃(x) + lim
I→∞

∫
I

x=0

∫ 2π

0

log(1 + 2

√
x

I
cos θ +

x

I
) dθ dFX̃(x)

= log(I).

In addition,

C2 = lim
I→∞

∫

x≥I

∫ 2π

0

log(x+ I+ 2
√
xI cos θ) dθ dFX̃(x)

= lim
I→∞

∫

x≥I

log(x) dFX̃(x)

≤ lim
I→∞

∫

x≥I

x dFX̃(x),

which goes to zero asI → ∞ by Dominated Convergence Theorem. As the result

lim
I→∞

Eθ,X̃

[
log(X̃ + I+ 2

√
X̃I cos θ)

]
→ log (I) .
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