
ar
X

iv
:1

60
1.

06
01

6v
1

 [c
s.

IT
]

22
 J

an
 2

01
6

Multi-Library Coded Caching
Saeid Sahraei∗, Michael Gastpar†

School of Computer and Communication Sciences, EPFL
Lausanne, Switzerland

Email: ∗saeid.sahraei@epfl.ch,†michael.gastpar@epfl.ch

Abstract—We study the problem of coded caching when the
server has access to several libraries and each user makes
independent requests from every library. The single-library
scenario has been well studied and it has been proved that coded
caching can significantly improve the delivery rate compared to
uncoded caching. In this work we show that when all the libraries
have the same number of files, memory-sharing is optimal and
the delivery rate cannot be improved via coding across files from
different libraries. In this setting, the optimal memory-sharing
strategy is one that divides the cache of each user proportional to
the size of the files in different libraries. As for the general case,
when the number of files in different libraries are arbitrary , we
propose an inner-bound based on memory-sharing and an outer-
bound based on concatenation of files from different libraries.

I. I NTRODUCTION

The peak traffic in Content Delivery Networks (CDNs) is
on the rise due to a growing demand from the users as well as
an increase in the number of companies who offer streaming
services. This is in contrast with the fact that during several
hours per day the data traffic is relatively low and the network
resources are not exploited at their full potentials. Coded
caching is a strategy proposed in [1] which alleviates the local
memories of the users in order to decrease and smoothen the
variability of network traffic over time. During the low traffic
period certain globally optimized functions of the files located
at the server are transferred and stored at the local caches of
the users. This content placement phase will help to decrease
the peak traffic of the network during the congestion period.

In this work we study the performance of a CDN which
has access to the data from several different companies, as
one naturally expects in practice. The model studied in [1]
considers a single collection which consists of all the files
required by the users. These files are of equal size and each
user is interested in precisely one such file. In this sense, the
model does not distinguish among heterogeneous data, and
does not take into account independent requests that a user
may make from different providers. Hence, for our purpose
we introduce a new model; we assume the CDN has access to
multiple collections of files which we refer to aslibraries. The
files on different libraries are not necessarily of equal size and
each user makes independent requests from different libraries.
Subsequently, our goal is to find the optimal caching strategy
for such a network. That is, we are interested in minimizing
the total delivery rateR assuming each user has a cache of
sizeM .

Our main contribution is to derive inner and outer bounds

for the delivery rate of the described network, and to show that
under certain constraints, the optimal caching strategy only
requires coding across files within the same library. In other
words, each user partitions her cache into several segments
and dedicates one segment to each library and ignores coding
opportunities across files from different libraries. The size of
each segment should be chosen proportional to the size of the
files in the corresponding library.

The optimality of this memory-sharing strategy has in-
teresting practical implications. Firstly, if one knows the
optimal caching strategy for the single-library problem, one
can simply extend it to multiple libraries. Secondly, although
CDNs receive their data from multiple different companies,big
software corporations such as Amazon and Netflix are moving
their traffic to their own CDNs and perform independently
from one another. This can be modeled as a network with
several servers each having access to distinct files and having
limited or no interactions among themselves. The optimality
of memory-sharing implies that there is no loss due to this
emigration from one centralized CDN to multiple isolated
ones. From another perspective, coding across files from dif-
ferent servers in the placement phase introduces vulnerability
to network failures; if one server goes down in the delivery
phase, the users will not be able to recover the files from any
other.

The basic coded caching strategy proposed in [1] has been
extended to a variety of other networking scenarios, among
which are decentralized [2], multi-server [3], hierarchical [4],
multi-request [5] and online coded caching [6], and caching
with heterogenous cache sizes [7]. Perhaps the most relevant to
our work is “multi-level coded caching” [8], [9] where several
popularity classes of files are served to the users via access
points that are in possession of local caches. The mathematical
model in [9] is similar to the model considered here, with
“popularity classes” taking the role of “libraries” in our
terminology. More precisely, the model in [9] is slightly more
general in that it allows multiple users to have access to each
cache, and is slightly less general in that it forces files on all
libraries to be of the same size. The more important difference
between [9] and the present paper concerns the results: The
caching strategies are substantially different, and while[9]
establishes order-optimality (under specific constraints), the
present paper establishes an exact optimality result (under
certain other constraints).

We continue this paper by providing a motivating example
in Section II. Next, we will formally define our problem in

http://arxiv.org/abs/1601.06016v1

Section III and express our main achievability and converse
results in Section IV. In Section V we will find the optimal
memory-sharing strategy and will prove that it is globally
optimal when the number of files are equal in different
libraries.

II. M OTIVATING EXAMPLE

Assume we have two libraries. Library1 consists of two
files A andB each of sizeF1 and in Library2 there are two
other filesC andD each of sizeF2 = 1.5F1. Suppose we
have two users each with a cache of sizeM = F1 + F2. We
plan to perform memory-sharing, that is to divide the cache
of each user into two segments and assign each segment to
one library. Let us assume we assignλM of each cache to
Library 1 and the rest to the Library 2, for some0 ≤ λ ≤ 1.
In the delivery phase, each user will request one file from
each library. In other words, each user will request either of
{A,C}, {A,D}, {B,C} or {B,D}.

For each library we know the optimal coded caching strat-
egy from [1]. Therefore, for eachλ we know the minimum

value ofR(λ)
△
= R1(λM) + R2((1 − λ)M). This curve is

plotted in Figure 1 and can be described by the following set
of equations

R(λ) =

9
10 −

3
2λ if 0 ≤ λ < 1

5 ,
7
10 −

1
2λ if 1

5 ≤ λ <
2
5 ,

3
10 + 1

2λ if 2
5 ≤ λ <

7
10 ,

− 2
5 + 3

2λ if 7
10 ≤ λ <

4
5 ,

− 4
5 + 2λ if 4

5 ≤ λ ≤ 1.

Evidently, the minimum ofR1 + R2 is 1
2 and is attained for

λ = 2
5 . This is the same point that we obtain if we divide

the cache size proportional to the size of the files on the two
libraries, i.e.λ = F1

F1+F2
. As we will see in Section V-A, this

is always the case, regardless of the number of libraries, the
number of users or the size of the cache. As long as all libraries
have the same number of files, the optimal memory-sharing
strategy is one that divides the cache among different libraries
proportional to their size of the files. More importantly, we
will see that this strategy is globally optimal. That is, coding
across files from different libraries cannot help in reducing the
total delivery rate.

III. STATEMENT OF THE PROBLEM

Our problem statement closely follows that of [1] with
the difference that we classify the files into several libraries;
allow the size of the files on different libraries to be different,
and allow the users to request files from every library. More
formally, suppose we haveL libraries each consisting of
Nℓ files, ℓ ∈ [L]. We denote byW (ℓ)

n the n’th file on
the ℓ’th library and assume all the files are independent.
Furthermore, we assume then’th file on the ℓ’th library is
of size F (ℓ)

n = α
(ℓ)
n F where

∑L

ℓ=1
1
Nℓ

∑Nℓ

n=1 α
(ℓ)
n = 1. We

impose this last normalization constraint in order to make our
definition of rate and cache size compatible with the single-
library case with equal file sizes. It is important to note that

λ
0 0.2 0.4 0.6 0.8 1

R
1+

R
2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
R

1
+R

2
 vs λ for M = 1 (both normalized by 2.5F

1
)

Fig. 1. The sum of the delivery rates of Library 1 and Library 2vs λ, the
fraction of the cache dedicated to Library1. Library 1 consists of2 files each
of sizeF1 and Library2 has two files each of sizeF2 = 1.5F1. The cache
size of each of the two users isM = F1 + F2.

in this paper we are mostly interested in the the scenario
where the size of the files within each library are equal. In
other words,F (ℓ)

n = F (ℓ) for n ∈ [Nℓ] and ℓ ∈ [L]. This
more general notation is introduced in order to facilitate the
statement of our converse results in their full generality.We
haveK users each with a cache of normalized sizeM . The
caching scheme consists of two phases, the placement phase
and the delivery phase. In the placement phase each user has
access to all the files and stores an arbitrary function of them
of sizeMF in her cacheZk. Following the notations in [1],
we call thesecaching functions

φk :

L
∏

ℓ=1

Nℓ
∏

n=1

[2F
(ℓ)
n]→ [2⌊FM⌋], ∀k ∈ [K]. (1)

Note that the requests are unknown in this phase and hence
φk does not depend on them. In the delivery phase, every user
requests exactly one file from each library1. The requests
made to theℓ’th library are represented by a vectord(ℓ)[K] for

everyℓ ∈ [L] whered(ℓ)k ∈ [Nℓ] for everyk ∈ [K]. Based on
this request vector an update messageX

{d
(ℓ)

[K]
}L
ℓ=1

of sizeRF

is then broadcast by the server to all the users. This update
message naturally depends on the requests and the files

X
{d

(ℓ)

[K]
}L
ℓ=1

= ψ
{d

(ℓ)

[K]
}L
ℓ=1

({W
(ℓ)
[Nℓ]
}Lℓ=1)

whereψ
{d

(ℓ)

[K]
}L
ℓ=1

are called theencoding functions

ψ
{d

(ℓ)

[K]
}L
ℓ=1

:

L
∏

ℓ=1

Nℓ
∏

n=1

[2F
(ℓ)
n]→ [2⌊FR⌋]. (2)

1It is perhaps more realistic to assume each user ordersat mostone file
from each library. However, since we are studying the worst case analysis,
this will not change the results.

Each user reconstructs her desired files as a function of the
content of her cacheZk and the update message.

Ŵ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

=µ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

(X
{d

(ℓ)

[K]
}L
ℓ=1

, Zk),

∀k ∈ [K], i ∈ [L]

whereµ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

are called thedecoding functions

µ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

: [2⌊RF⌋]× [2⌊FM⌋]→ [2
F

(i)

d
(i)
k]. (3)

We say that a memory-rate pair(R,M) is achievable for a
network with parameters(L, {α(ℓ)

[Nℓ]
}Lℓ=1, N[L]) if there exists

a caching strategy such that for any request vector{d
(ℓ)
[K]}

L
ℓ=1

each user is able to recover all her desired files. In other words,
if for any ǫ > 0 and F large enough, there exist caching,
encoding and decoding functions for which the probability of
error

max
{d

(ℓ)

[K]
}L
ℓ=1∈

∏
L
ℓ=1[Nℓ]K

max
k∈[K],i∈[L]

P(Ŵ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

6=W
(i)

d
(i)
k

)

can be upper bounded byǫ. For a network with parameters
(L, {α

(ℓ)
[Nℓ]
}Lℓ=1, N[L]) the memory-rate tradeoff is defined as

R∗(L,M, {α
(ℓ)
[Nℓ]
}Lℓ=1, N[L])

△
=

inf {R : (M,R) is achievable} . (4)

Whenever the size of the files within each library are equal,
that is α(ℓ)

n = α(ℓ) for n ∈ [Nℓ] and ℓ ∈ [L], we use
the simplified notationR∗(L,M, {α(ℓ)}Lℓ=1, N[L]) instead of

R∗(L,M, {α
(ℓ)
[Nℓ]
}Lℓ=1, N[L]). Our goal is to characterize the

memory-rate tradeoff of a network withL libraries in terms
of the memory-rate tradeoffs of networks with single libraries.
To this aim we find outer and inner-bounds for theL-library
network and prove that the two bounds match in special cases.

IV. GENERAL RESULTS: ACHIEVABILITY AND CONVERSE

BOUNDS

A. Achievability

Our achievability results are based on a memory-sharing
strategy. We divide the cache of each user intoL segments
and assign one segment to each library. We ignore coding
opportunities across files from different libraries. Note that as
pointed out in the previous section we are only expressing
our results for the scenario whereF (ℓ)

n = F (ℓ), that is the
files within each library are of the same size. We have the
following theorem.

Theorem 1. Let R∗(L,M, {α(ℓ)}Lℓ=1, N[L]) describe the

memory-rate tradeoff as defined in(4) whereα(ℓ)
n = α(ℓ) for

n ∈ [Nℓ] and for ℓ ∈ [L]. Then, we have

R∗(L,M, {α(ℓ)}Lℓ=1, N[L]) ≤

L
∑

ℓ=1

α(ℓ)R∗(1,
Mℓ

α(ℓ)
, 1, Nℓ)

where Mℓ’s are arbitrary non-negative numbers satisfying
∑L

ℓ=1Mℓ =M .

Proof: Consider Network A with parameters
(L, {α(ℓ)}Lℓ=1, N[L]) and L networks B(ℓ) with parameters
(1, 1, Nℓ), ℓ ∈ [L]. Suppose for everyℓ ∈ [L] a memory-rate
pair (FMℓ

F (ℓ) , Rℓ) = (Mℓ

α(ℓ) , Rℓ) is achievable for NetworkB(ℓ)

with files W
(ℓ)
n . We will prove that (M,

∑L
ℓ=1 α

(ℓ)Rℓ) is
achievable for NetworkA. Fix someǫ > 0. By definition of
achievability for NetworkB(ℓ), ℓ ∈ [L] there exist caching
functions

φ
(ℓ)
k : [2F

(ℓ)

]Nℓ → [2
⌊F (ℓ) Mℓ

α(ℓ)
⌋
] , ∀k ∈ [K]

encoding functions

ψ
(ℓ)

d
(ℓ)

[K]

: [2F
(ℓ)

]Nℓ → [2⌊F
(ℓ)Rℓ⌋] , ∀d

(ℓ)
[K] ∈ [Nℓ]

K

and decoding functions

µ
(ℓ)

d
(ℓ)

[K]
,k

: [2⌊F
(ℓ)Rℓ⌋]× [2

⌊F (ℓ) Mℓ

α(ℓ)
⌋
]→ [2F

(ℓ)

],

∀k ∈ [K], d
(ℓ)
[K] ∈ [Nℓ]

K

such that the estimates

Ŵ
d
(ℓ)

[K]
,k,ℓ

= µ
(ℓ)

d
(ℓ)

[K]
,k
(X

(ℓ)

d
(ℓ)

[K]

, Zk)

satisfy

max
d
(ℓ)

[K]
∈[Nℓ]K

max
k∈[K]

P(Ŵ
d
(ℓ)

[K]
,k,ℓ
6=W

(ℓ)

d
(ℓ)
k

) < ǫ

for F = F (ℓ)

α(ℓ) sufficiently large.
Now for NetworkA we define the caching functions

φk({W
(ℓ)
[Nℓ]
}Lℓ=1)

△
= [φ

(1)
k (W

(1)
[N1]

), . . . , φ
(L)
k (W

(L)
[NL])], ∀k

the encoding functions

X
{d

(ℓ)

[K]
}L
ℓ=1

= ψ
{d

(ℓ)

[K]
}L
ℓ=1

({W
(ℓ)
[Nℓ]
}Lℓ=1)

△
=

[ψ
(1)

d
(1)

[K]

(W
(1)
[N1]

), . . . , ψ
(L)

d
(L)

[K]

(W
(L)
[NL])], ∀{d

(ℓ)
[K]}

L
ℓ=1

and the decoding functions

µ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

(X
{d

(ℓ)

[K]
}L
ℓ=1

, Zk)

△
= µ

(i)

d
(i)

[K]
,k
(ψ

(i)

d
(i)

[K]

(W
(i)
[Ni]

), φ
(i)
k (W

(i)
[Ni]

)), ∀i, k, {d
(ℓ)
[K]}

L
ℓ=1.

The probability of error of this caching scheme is thus

max
{d

(ℓ)

[K]
}L
ℓ=1∈

∏
L
ℓ=1[Nℓ]K

max
k∈[K],i∈[L]

P(Ŵ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

6=W
(i)

d
(i)
k

)

= max
i∈[L]

max
d
(i)

[K]
∈[Ni]K

max
k∈[K]

P(Ŵ
d
(i)

[K]
,k,i
6=W

(i)

d
(i)
k

)

≤ ǫ.

Furthermore, this scheme has a rate equal to
1
F

∑L

ℓ=1 F
(ℓ)Rℓ =

∑L

ℓ=1 α
(ℓ)Rℓ and a memory of size

1
F

∑L

ℓ=1
F (ℓ)Mℓ

α(ℓ) = M . Therefore, the memory-rate pair
(M,

∑L

ℓ=1 α
(ℓ)Rℓ) is achievable for NetworkA which proves

the theorem.

B. Converse

Consider NetworkA with L libraries. Roughly speaking, we
will prove that any caching strategy for NetworkA can also
be used for NetworkB which has a single library consisting of
files that are concatenation of files from different libraries of
A. Intuitively, this is done by breaking each file on Network
B into its subfiles and assuming that each subfile belongs to
a separate library. This is formally stated in the next theorem.

Theorem 2. Let R∗(L,M, {α(ℓ)}Lℓ=1, N[L]) describe the

memory-rate tradeoff as defined in(4) whereα(ℓ)
n = α(ℓ) for

n ∈ [Nℓ] and for ℓ ∈ [L]. Furthermore, assume without loss
of generality thatN1 ≤ N2 ≤ · · · ≤ NL. Then, we have

R∗(L,M, {α(ℓ)}Lℓ=1, N[L]) ≥

R∗(1,M, β[NL], NL).

The coefficientsβn for n ∈ [NL] are defined as

βn =

∑L
i=f(n) α

(i)

∑L

ℓ=1 α
(ℓ)Nℓ

NL

wheref(n) returns the smallestj ∈ [L] such thatn ≤ Nj .

Proof: Consider Network A with parameters
(L, {α(ℓ)}Lℓ=1, N[L]) and Network B with parameters
(1, β[NL], NL). Suppose a memory-rate pair(R,M) is
achievable for NetworkA. We will prove that the same
memory-rate pair(R,M) is also achievable for NetworkB.
We represent the files on NetworkB by Wn which are of

size βnF =
∑L

i=f(n) α
(i)

∑
L
ℓ=1 α(ℓ)Nℓ

FNL for n ∈ [NL]. We break each
Wn into disjoint subfiles

Wn = [W (f(n))
n ,W (f(n)+1)

n , . . . ,W (L)
n] (5)

where W (ℓ)
n is of size α(ℓ) F∑

L
ℓ=1 α(ℓ)Nℓ

NL. Fix some ǫ >

0. By definition of achievability for NetworkA with files
{W

(ℓ)
[Nℓ]
}Lℓ=1 there exist caching functionsφk, encoding func-

tions ψ
{d

(ℓ)

[K]
}L
ℓ=1

and decoding functionsµ
{d

(ℓ)

[K]
}L
ℓ=1,k,i

as in

equations (1),(2),(3) such that for any request vector{d
(ℓ)
[K]}

L
ℓ=1

and forF large enough, each user can recover her desired files
with probability of error bounded byǫ.

Now for NetworkB we define the caching functions

φ
′

k(W[NL])
△
= φk({W

(ℓ)
[Nℓ]
}Lℓ=1), ∀k ∈ [K]

the encoding functions

ψ
′

d′

[K]
(W[NL])

△
= ψ

{d
(ℓ)

[K]
}L
ℓ=1

({W
(ℓ)
[Nℓ]
}Lℓ=1), ∀d

′
[K] ∈ [NL]

K

and the decoding functions

µ
′

d′

[K]
,k

△
= (6)

[µ
{d

(ℓ)

[K]
}L
ℓ=1

,k,f(d′

k
)
, µ

{d
(ℓ)

[K]
}L
ℓ=1

,k,f(d′

k
)+1

, . . . , µ
{d

(ℓ)

[K]
}L
ℓ=1

,k,L
]

∀k ∈ [K], d′[K] ∈ [NL]
K

whered(ℓ)k

△
= min(d′k, Nℓ). Note that ifNℓ < d′k, thend(ℓ)k is a

dummy request and the reconstructedW (ℓ)

d
(ℓ)
k

will be discarded

as visible from equation (6). The probability of error of this
caching scheme is less thanLǫ

max
d
′

[K]
∈[NL]K

max
k∈[K]

P(Ŵ ′
d′
[K]

,k 6= Wd′
k
)

= max
(d

′

[K]
)∈[NL]K

d
(ℓ)
k

=min(d′
k
,Nℓ)

max
k∈[K]

P

L
∨

i=f(d′
k
)

(Ŵ
{d

(ℓ)
[K]

}L
ℓ=1

,k,i
6= W

(i)

d
(i)
k

)

≤ max
{d

(ℓ)
[K]

}L
ℓ=1

∈
∏

L
ℓ=1

[Nℓ]
K

max
k∈[K]

P

(

L
∨

i=1

(Ŵ
{d

(ℓ)
[K]

}L
ℓ=1

,k,i
6= W

(i)

d
(i)
k

)

)

≤ L max
{d

(ℓ)

[K]
}L
ℓ=1

∈
∏

L
ℓ=1

[Nℓ]
K

max
k∈[K],i∈[L]

P

(

Ŵ
{d

(ℓ)
[K]

}L
ℓ=1

,k,i
6= W

(i)

d
(i)
k

)

≤ Lǫ.

Since we are reusing the same caching, encoding and de-
coding functions, the memory-rate pair(R,M) is the same
for both NetworksA and B. Since this is one achievable
strategy for NetworkB, we haveR∗(1,M, β[NL], NL) ≤
R∗(L,M, {α(ℓ)}Lℓ=1, N[L]).

V. OPTIMALITY RESULTS

A. Libraries with Equal Number of Files

Suppose we haveNℓ = N for ℓ ∈ [L]. That is, all the
libraries keep hold of equal number of files. We will show
that if in Theorem 1 theMℓ’s are chosen proportional toF (ℓ),
our inner and outer bounds will match. This implies that the
simple memory-sharing strategy proposed in Theorem 1 is
indeed optimal and cannot be outperformed by coding across
files from different libraries.

Theorem 3. Let R∗(L,M, {α(ℓ)}Lℓ=1, N[L]) describe the

memory-rate tradeoff as defined in(4) whereα(ℓ)
n = α(ℓ) for

n ∈ [Nℓ] and for ℓ ∈ [L]. Suppose we haveNℓ = N for
ℓ ∈ [L] andMℓ = α(ℓ)M . Then

R
∗(L,M, {α(ℓ)}Lℓ=1, N[L]) =

L
∑

ℓ=1

α
(ℓ)

R
∗(1,

Mℓ

α(ℓ)
, 1, Nℓ). (7)

Proof: From Theorem 2 we have

R∗(L,M, {α(ℓ)}Lℓ=1, N[L]) ≥

R∗(1,M, β[NL], NL) = R∗(1,M, 1, N). (8)

On the other hand, from Theorem 1 we know that

R∗(L,M, {α(ℓ)}Lℓ=1, N[L]) ≤
L
∑

ℓ=1

α(ℓ)R∗(1,
α(ℓ)M

α(ℓ)
, 1, Nℓ) =

L
∑

ℓ=1

α(ℓ)R∗(1,M, 1, N) = R∗(1,M, 1, N). (9)

The claim follows from (8) and (9).

B. Libraries with Arbitrary Number of Files

In this section we find the optimal memory-sharing strategy
when the number of files in different libraries are not neces-
sarily equal. Whether this optimal memory-sharing strategy is
globally optimal or not, is a question that we have no answer
for at this point (but we conjecture that it is).

We know that the memory-rate tradeoff for a network
with one library is convex. We will further assume that it is
piecewise linear and has the following form

R∗(1,M, 1, N) =

ζ
(N)
0 − γ

(N)
0 M if 0 ≤M < θ

(N)
1

ζ
(N)
1 − γ

(N)
1 M if θ

(N)
1 ≤M < θ

(N)
2

. . .

ζ
(N)
r−1 − γ

(N)
r−1M if θ

(N)
r−1 ≤M < N

(10)
whereγ(N)

0 > · · · > γ
(N)
r−1 > 0 (due to convexity) andζ(N)

i−1 −

γ
(N)
i−1θ

(N)
i = ζ

(N)
i − γ

(N)
i θ

(N)
i for i ∈ [r] (due to continuity)

and r naturally depends onN but to simplify the notation
we have usedr = rN . Also defineγ(N)

−1 = ∞, γ(N)
r = 0,

ζ
(N)
−1 =∞, ζ(N)

r = 0, θ(N)
0 = 0, θ(N)

r = N andθ(N)
r+1 =∞.

Note that if R∗(1,M, 1, N) is not piecewise linear,
we can readily generalize our results by approximating
R∗(1,M, 1, N) with a piecewise linear function of arbitrarily
large number of pieces. We can now describe the optimal
memory-sharing strategy for theL-library setting.

Theorem 4. Suppose the memory-rate tradeoff for a network
with parameters(1, 1, N) has the general form of(10) with
rN segments. Then there exists an optimal memory-sharing
strategy for a network with parameters(L, {α(ℓ)}Lℓ=1, N[L]),
i.e. a solution to

M∗
[L] = argmin

M[L],
∑

L
ℓ=1 Mℓ=M

L
∑

ℓ=1

α(ℓ)R∗(1,
Mℓ

α(ℓ)
, 1, Nℓ)

that satisfies the following. There exist an̂ℓ ∈ [L] and L

integers0 ≤ iℓ ≤ rNℓ
, ℓ ∈ [L] such that

M∗
ℓ =

{

θ
(Nℓ)
iℓ

α(ℓ) if ℓ 6= ℓ̂

θ
(Nℓ)
iℓ

α(ℓ) +Mrem if ℓ = ℓ̂.

where0 ≤Mrem< α(ℓ̂)(θ
(N

ℓ̂
)

i
ℓ̂
+1 − θ

(N
ℓ̂
)

i
ℓ̂

) and

γ
(Nℓ)
iℓ

α(ℓ)
≤
γ
(Nℓ′)
iℓ′−1

α(ℓ′)
, ∀ℓ, ℓ′ ∈ [L]

and

γ
(Nℓ)
iℓ

α(ℓ)
≤
γ
(N

ℓ̂
)

i
ℓ̂

α(ℓ̂)
, ∀ℓ ∈ [L]. (11)

Proof: Assume there existℓ, ℓ′ ∈ [L] such thatℓ 6= ℓ′ and
M∗

ℓ = θ
(Nℓ)
iℓ

α(ℓ) +Mrem andM∗
ℓ′ = θ

(Nℓ′)
iℓ′

α(ℓ′) +M ′
rem and

Mrem 6= 0 andM ′
rem 6= 0. Assume without loss of generality

that
γ
(Nℓ)

iℓ

α(ℓ) ≥
γ
(N

ℓ′
)

i
ℓ′

α(ℓ′) . Now we set

δ = min(α(ℓ)(θ
(Nℓ)
iℓ+1 − θ

(Nℓ)
iℓ

)−Mrem,M
′
rem),

M∗
ℓ ← M∗

ℓ + δ,

3xM∗
ℓ′ ← M∗

ℓ′ − δ.

This moves either ofM∗
ℓ or M∗

ℓ′ (or both) to a corner point
(that is, either ofMrem or M ′

rem will be zero). Furthermore,
this changes the total rate by

∆R = (
γ
(Nℓ′)
iℓ′

α(ℓ′)
−
γ
(Nℓ)
iℓ

α(ℓ)
)δ ≤ 0.

Therefore, there exists an optimal solution for which at most
one of the libraries hasMrem 6= 0. We call this library ℓ̂.
Next assume there exists a pairℓ 6= ℓ′ ∈ [L]\{ℓ̂} for which
γ
(Nℓ)

iℓ

α(ℓ) >
γ
(N

ℓ′
)

i
ℓ′

−1

α(ℓ′) . This time we defineδ = min(α(ℓ)(θ
(Nℓ)
iℓ+1 −

θ
(Nℓ)
iℓ

), α(ℓ′)(θ
(Nℓ′)
iℓ′

− θ
(Nℓ′)
iℓ′−1)). Again settingM∗

ℓ ← M∗
ℓ +

δ andM∗
ℓ′ ← M∗

ℓ′ − δ results in∆R < 0. Finally assume
γ
(Nℓ)

iℓ

α(ℓ) >
γ
(N

ℓ̂
)

i
ℓ̂

α(ℓ̂)
for someℓ. We can setδ = min(α(ℓ)(θ

(Nℓ)
iℓ+1 −

θ
(Nℓ)
iℓ

),Mrem) andM∗
ℓ ←M∗

ℓ + δ andM∗
ℓ̂
←M∗

ℓ̂
− δ which

results in∆R < 0 unless ifMrem = 0, in which case we

simply choose the library with the largest
γ
(Nℓ)

iℓ

α(ℓ) to be ℓ̂.
The solution described by Theorem 4 can be found in an

incremental way. Assume that initially the size of the cacheis
zero and we gradually increase it up toM =

∑L

ℓ=1 α
(ℓ)Nℓ. At

any point we must decide how much of the cache should be
allocated to each library. At the beginning it is advantageous

to assign all the cache to libraryℓ with the largestγ
(Nℓ)

0

α(ℓ) , since
this reduces the total delivery rate by the largest factor. This is
the library which is called̂ℓ in the theorem. This assignment
continues until this library reaches the corner pointM

ℓ̂
=

α(ℓ̂)θ
(N

ℓ̂
)

1 . At this pointℓ̂ is re-initialized as the library with the
largest right-slope and the process continues. This procedure
is summarized in Algorithm 1.

As a final remark, we conjecture that this memory-sharing
strategy is again globally optimal and that our converse bound
is tight in this general. In other words, we conjecture

L
∑

ℓ=1

α(ℓ)R∗(1,
M∗

ℓ

α(ℓ)
, 1, Nℓ)=R

∗(1,M, β[NL], NL).

This would imply that even in the general case, there is no gain
from coding across files from different libraries and memory-
sharing suffices for minimizing the delivery rate.

VI. CONCLUSION

In this work we studied the problem of coded caching
when the server has access to several libraries. We proved
that if the number of files in different libraries are all equal,
memory-sharing is optimal and the delivery rate cannot be
improved via coding across different libraries. This optimality
has interesting practical implications regarding ContentDe-
livery Networks that receive their data from several different
companies. For the general scenario when the number of

Algorithm 1 Optimal Memory Allocation forL libraries
1: Set AllocM= 0.
2: SetMℓ = 0 for ℓ ∈ [L].
3: Set iℓ = 0, for ℓ ∈ [L].

4: while AllocM< M do
5: Find the libraryℓ̂ that has the largest right slope

ℓ̂ = argmax
ℓ∈[L]

γ
(Nℓ)
iℓ

α(ℓ)
.

6: Setδ =
γ
(N

ℓ̂
)

i
ℓ̂

α(ℓ̂)

(

θ
(N

ℓ̂
)

i
ℓ̂
+1 − θ

(N
ℓ̂
)

i
ℓ̂

)

.
7: if M ≥AllocM +δ then
8: M

ℓ̂
=M

ℓ̂
+ δ.

9: AllocM =AllocM + δ.
10: i

ℓ̂
= i

ℓ̂
+ 1.

11: else
12: M

ℓ̂
=M

ℓ̂
+M−AllocM.

13: AllocM=M .
14: end if
15: end while
16: OutputMℓ for ℓ ∈ [L].

files in different libraries are arbitrary, we found an inner-
bound based on memory-sharing and an outer-bound based on
concatenation of files from different libraries. Future work will
study the optimality of the proposed memory-sharing strategy
and aim at proving that our inner and outer bounds will match
regardless of the number of files on different libraries.

ACKNOWLEDGEMENT

This work was supported in part by the European ERC
Starting Grant 259530-ComCom.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[2] ——, “Decentralized coded caching attains order-optimal memory-rate
tradeoff,” IEEE/ACM Transactions on Networking, vol. 23, no. 4, pp.
1029–1040, 2015.

[3] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server coded
caching,”arXiv preprint arXiv:1503.00265, 2015.

[4] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi, “Hier-
archical coded caching,” inIEEE International Symposium on Information
Theory (ISIT). IEEE, 2014, pp. 2142–2146.

[5] M. Ji, A. Tulino, J. Llorca, and G. Caire, “Caching-aidedcoded mul-
ticasting with multiple random requests,” inIEEE Information Theory
Workshop (ITW). IEEE, 2015, pp. 1–5.

[6] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”
in IEEE International Conference on Communications (ICC). IEEE,
2014, pp. 1878–1883.

[7] S. Wang, W. Li, X. Tian, and H. Liu, “Fundamental limits ofheterogenous
cache,”arXiv preprint arXiv:1504.01123, 2015.

[8] J. Hachem, N. Karamchandani, and S. Diggavi, “Content caching
and delivery over heterogeneous wireless networks,”arXiv preprint
arXiv:1404.6560, 2014.

[9] ——, “Multi-level coded caching,” inIEEE International Symposium on
Information Theory (ISIT). IEEE, 2014, pp. 56–60.

	I Introduction
	II Motivating Example
	III Statement of the Problem
	IV General Results: Achievability and Converse Bounds
	IV-A Achievability
	IV-B Converse

	V Optimality Results
	V-A Libraries with Equal Number of Files
	V-B Libraries with Arbitrary Number of Files

	VI Conclusion
	References

