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Abstract—We conduct a study of graphical models and discuss
the quality of model selection approximation by formulating the
problem as a detection problem and examining the area under the
curve (AUC). We are specifically looking at the model selection
problem for jointly Gaussian random vectors. For Gaussian ran-
dom vectors, this problem simplifies to the covariance selection
problem which is widely discussed in literature by Dempster
[1]. In this paper, we give the definition for the correlation
approximation matrix (CAM) which contains all information
about the model selection problem and discuss the pth order
Markov chain model and the pth order star network model for
the a Gaussian distribution with Toeplitz covariance matrix. For
each model, we compute the model covariance matrix as well
as the KL divergence between the Gaussian distribution and its
model. We also show that if the model order, p, is proportional to
the number of nodes, n, then the model selection is asymptotically
good as the number of nodes, n, goes to infinity since the AUC in
this case is bounded away from one. We conduct some simulations
which confirm the theoretical analysis and also show that the
selected model quality increases as the model order, p, increases.

I. INTRODUCTION

In signal processing and machine learning a fundamental
problem is to balance performance quality (i.e. minimizing
cost function) with computational complexity. A powerful tool
in order to address this trade-off is graphical model selection.
Model selection methods provide approximated models with
desired accuracy as needed for different applications. Given
data, different model selection algorithms impose different
structure to model data. In the case of jointly Gaussian data,
covariance selection problem is presented and studied in [1]
and [2]. The purpose of the covariance selection problem is
to reduce the computation complexity in various applications.

Some of the model selection algorithms to impose structure
are the Chow-Liu minimum spanning tree (MST) [3], the
first order Markov chain approximation [4] and penalized
likelihood methods such as LASSO [5] and graphical LASSO
[6] that can be used to approximate the correlation matrix
and inverse correlation matrix with a more sparse graph while
retaining good accuracy. The Chow-Liu MST algorithm for
Gaussian distribution is to find the optimal tree structure using
a Kullback-Leibler (KL) divergence cost function [1]. The
Chow-Liu algorithm utilizes the Kruskal algorithm [7]. The
first order Markov chain approximation uses a regret cost func-
tion to output a chain structured graph [4]. Penalized likelihood
methods specify the graph representation by eliminating some
of the edges.

In this paper we extend work of [8] where we formulated
a covariance model selection paper using a detection problem
formulation. The [8] focused on examples where approxima-
tion were trees. Here we extend approximations to clique
graphs with junction trees. We consider a simple example
where the covariance matrix is a Toeplitz covariance matrix
with ones along the diagonal and correlation coefficient ρ
on the off-diagonals. This covariance matrix is interesting
and arise in different applications1. Given this covariance
matrix, we ask the following question, ”when is a covariance
selection approximation good?” To answer this question we
use the detection problem formulation proposed in [8]. The
detection problem for Gaussian data leads to calculation of
the log-likelihood ratio test (LLRT), the receiver operating
characteristic (ROC) curve, the KL divergence and the reverse
KL divergence as well as the area under the curve (AUC)
where the AUC is used as the accuracy measure for the
detection problem on average. We also present the correlation
approximation matrix (CAM) as the product of the original
correlation matrix and the inverse of the model approximation
correlation matrix. For Gaussian data this matrix contains
all the information needed to compute the information diver-
gences, the ROC curve and the area under this curve, i.e. the
AUC. We present an analytical expression to compute the KL
divergence between the original distribution and the model
covariance matrix of order, p. We show that if we pick a model
order, p, proportional to the number of nodes, n, the AUC is
asymptotically bounded away from one as n goes to infin-
ity. Moreover, we present some simulation results. We pick
different values as the order of the approximation model and
compare the pth order Star approximation model with the pth
order Markov chain approximation model. Simulation results
show that the pth order star approximation model has smaller
AUC than the pth order Markov chain approximation model
and thus has better performance. Also, through simulations
we confirm our theoretical results showing that the AUC is
bounded away from one when model order, p, is proportional
to the number of nodes, n.

The rest of this paper is organized as follows. In section
II we give the detection problem framework, the sufficient
test statistic and the log-likelihood ratio test. Moreover, the

1Looking at the solar irradiation datasets [9], we can see that sensors that
are distributed in small geographical areas are highly correlated and have
approximately the same correlations.
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sufficient test statistic for Gaussian data as well as its dis-
tribution under both hypotheses are also presented in this
section. The ROC curve and the definition of AUC as well as
analytical expression for the AUC are presented in this section.
Section III provides the theoretical analysis of the Toeplitz
covariance matrix with ones along the diagonal and correlation
coefficient ρ’s on the off-diagonals. The model covariance
matrix for a given order, p, as well as the KL divergence
between the original distribution and the model distribution
are also presented in this section. Moreover, asymptotic upper
bounds for KL divergence and the AUC are also presented in
this section. In section IV we present some simulation results
for approximation model with different orders and investigates
the quality of different model approximations based on the
numerically evaluated AUC and also its analytical upper and
lower bounds. Finally, Section V summarizes results of this
paper and discuss further research directions.
Notation remark: In the rest of this paper, with abuse of
notion, when we use the KL divergence between random
vectors it means the KL divergence between their associated
distributions.

II. DETECTION PROBLEM FRAMEWORK

A. Preliminaries

Let X „ N p0,ΣXq, i.e. jointly Gaussian with mean
0 and covariance matrix ΣX , where X P Rn. We want
to approximate the random vector X , with another random
vector, XM P Rn which has a zero-mean jointly Gaussian
distribution with the covariance matrix ΣXM

associated with
the desired model2, i.e. X „ N p0,ΣXM

q. Note that the model
covariance matrix is also positive-definite, ΣXM

ą 0. Also,
let G “ pV, EMq be the graph representation of the model
random vector XM where sets V and EM Ď ψ are the set of
all vertices and the set of all edges of the graph representing of
XM, respectively where ψ is the set of all edges in complete
graph with vertex set V .

We define the correlation approximation matrix (CAM)
associated with the model selection problem as follows.

Definition 1. Correlation approximation matrix [8]. The
CAM for the model is defined as ∆ fi ΣXΣ´1

XM
. �

Remark: The CAM is a positive definite matrix and its
eigenvalues contains all information necessary to compute cost
functions associated with the model selection problem.

B. General Framework

A common measure to compare two probability distribu-
tions is the KL divergence. Here we expand the comparison
by considering a detection problem where the null hypothesis
represents the original random vector, X and the alternate
hypothesis represents the approximate random vector XM.
We need to define a test statistic to quantify the detection
problem. The likelihood ratio test (the Neyman-Pearson (NP)

2Examples of possible models: star structure and Markov chain.

Lemma [10]) is the most powerful test statistic where we first
define the log-likelihood ratio test (LLRT) as

lpxq “ log
fXpx|H1q

fXpx|H0q

where fXpx|H0q is the distribution of random vector X under
the null hypothesis while fXpx|H1q is the distribution of
random vector X under the alternative hypothesis. Moreover,
let LpXq be the LLRT random variable. Also, let random
variables

L0 fi LpXq|H0

and
L1 fi LpXq|H1

be the LLRT statistics under hypothesis H0 and hypothesis
H1, respectively. We then define the false-alarm probability
and the detection probability by comparing the LLRT statistic
under each hypothesis with a given threshold, τ, and comput-
ing the following probabilities

- The false-alarm probability, P0pτq, under the null hypoth-
esis, H0: P0pτq “ PrpL0 ě τq,

- The detection probability, P1pτq, under the alternative
hypothesis, H1: P1pτq “ PrpL1 ě τq.

The most powerful test is defined by setting the false-alarm
rate P0pτq “ P̄0 and then computing the threshold value τ0

such that PrpL0 ě τ0q “ P̄0.

Definition 2. The KL divergence between two multivariate
continuous distributions ppXq and qpXq is defined as

D
`

pXpxq||qXpxq
˘

“

ż

X
pXpxq log

pXpxq

qXpxq
dx

where X is the feasible set. �

Throughout this paper we may use other notations such
as the KL divergence between two random vectors or the
KL divergence between two covariance matrices for zero-
mean Gaussian distribution case in order to present the KL
divergence between two distributions.

Proposition 1. Expectation of the LLRT statistic under each
hypothesis is

- E pL0q “ ´DpfXpx|H0q||fXpx|H1qq,
- E pL1q “ DpfXpx|H1q||fXpx|H0qq.

Proof: Proof is based on the KL divergence definition. �

The NP decision rule in a regular detection problem frame-
work is to accept the hypothesis H1 if the LLRT statistic,
Lpxq, exceeds a critical value which is set based on the false-
alarm probability, and reject it otherwise. As it is mentioned in
[8], we pursue a different goal in the approximation problem
scenario. We approximate a model distribution, fXM

pxq, as
close as possible to the given distribution, fXpxq. In ideal
case where there is no approximation error, the detection
probability must be equal to the false-alarm probability for
the optimal detector at all possible thresholds, i.e. the receiver
operating characteristic (ROC) curve [11] that represents best



detectors for all threshold values should be a line of slope 1
passing through the origin.

C. Multivariate Gaussian distribution

Let the random vector X have a multivariate Gaussian
distribution with covariance matrix ΣX . In this paper, the null
hypothesis, H0, is the hypothesis that the parameter of interest,
which is the covariance matrix of the random vector X , is
known and is equal to ΣX while the alternative hypothesis,
H1, is the hypothesis that the random vector X is replaced by
the model random vector XM which means that the random
vector X has the model approximation distribution with the
covariance matrix, ΣXM

. Thus, we can rewrite the LLRT
statistic as

lpxq “ log
fXM

pxq

fXpxq

The LLRT statistic can be simplified for the multivariate
Gaussian distributed random vectors as

lpxq “ log
N p0,ΣXM

q

N p0,ΣXq
“ ´c` kpxq (1)

where c “ ´ 1
2 log p|∆|q is a constant and kpxq “ xTKx

where K “ 1
2 pΣ

´1
X ´Σ´1

XM
q is an indefinite matrix with both

positive and negative eigenvalues.

Theorem 1. Covariance Selection [1]. Given a multivari-
ate Gaussian distribution with covariance matrix ΣX ą 0,
fXpxq, and a model M, there exists a unique approximated
multivariate Gaussian distribution with covariance matrix
ΣXM

ą 0, fXM
pxq, that minimize the KL divergence,

DpfXpxq||fXM
pxqq and satisfies the covariance selection

rules, i.e. the model covariance matrix satisfies the following
covariance selection rules

- ΣXM
pi, iq “ ΣXpi, iq, @ i P V

- ΣXM
pi, jq “ ΣXpi, jq, @ pi, jq P EM

- Σ´1
XM

pi, jq “ 0, @ pi, jq P EcM
where the set EcM “ ψ ´ EM represents the complement of
the set EM.

Proof: Proof for Gaussian distributions is given in Demp-
ster 1972 paper [1]. �

Remark: From theorem 1 and definition of the KL divergence
for Gaussian distributions, we have c “ DpfXpxq||fXM

pxqq,
since given any covariance matrix and its model covariance
matrix satisfying theorem 1, we have trp∆q “ n.

D. Distribution of the LLRT statistic

The random vector X has Gaussian distribution under both
hypotheses H0 and H1. Thus under both hypotheses, the real
random variable, KpXq fi XTKX has a generalized chi-
squared distribution, i.e. the random variable, KpXq, is equal
to a weighted sum of chi-squared random variables with both
positive and negative weights under both hypotheses. Let us
define W “ Σ

´ 1
2

X X under H0 and Z “ Σ
´ 1

2

XM
X under

H1, where Σ
1
2

X and Σ
1
2

XM
are the square root of covariance

matrices ΣX and ΣXM
, respectively. Then let random vectors

W „ N p0, Iq and Z „ N p0, Iq have zero-mean Gaussian
distributions with the same covariance matrices, I, where I is
the identity matrix of dimension n. Note that, the CAM is a
positive definite matrix with λi ą 0 where 1 ď i ď n. Thus,
the random variable KpXq, under both hypotheses H0 and
H1 can be defined as

K0 fi
1

2

n
ÿ

i“1

p1´ λiqW
2
i

and

K1 fi
1

2

n
ÿ

i“1

pλ´1
i ´ 1qZ2

i

respectively, where random variables Wi and Zi, are the i-th
element of random vectors W and Z, respectively. Moreover,
random variables W 2

i and Z2
i , follow the first order central

chi-squared distribution. Note that, L0 “ ´c`K0 and L1 “

´c`K1.
Remark: As a simple consequence of the covariance selection
theorem, the summation of weights for the generalized chi-
squared random variable, the expectation of KpXq, is zero
under the hypothesis H0, i.e. EpK0q “

1
2

řn
i“1p1 ´ λiq “ 0

[1], and this summation is positive under the hypothesis H1,
i.e. EpK1q “

1
2

řn
i“1pλ

´1
i ´ 1q ě 0.

E. Area under the curve

As we mentioned before, in approximation set up the
desired goal is that the ROC curve is as close as possible to
the line of slope 1 passing through the origin in comparison to
the step function in the hypothesis testing problem [8]. Area
under the curve is defined as the integral of the ROC curve.
Note that in approximation problem presented here we want
it to be around half. Area under the curve (AUC) is defined
as the integral of the ROC curve (figure 1) and is a measure
of accuracy in decision problems.

AUC

1

1

𝑧 = 𝑃0 𝜏

𝑃1 𝜏

ROC curve: ℎ 𝑧 = P1(P0
−1(z))
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Fig. 1: The ROC curve and the area under the ROC curve.
Each point on the ROC curve indicates a detector with given
detection and false-alarm probabilities.

Definition 3. The area under the ROC cure (AUC) is defined
as

AUC “

ż 1

0

hpzq d z “

ż 1

0

P1pτq dP0pτq (2)



where τ is the detection problem threshold. �

Remark: The AUC is a measure of accuracy for the detection
problem and 1{2 ď AUC ď 1. Note that, in conventional
decision problems, the AUC is desired to be as close as
possible to 1 while in approximation problem presented here
we want the AUC to be close to 1{2.

Theorem 2. Statistical property of AUC [12]. The AUC for
the LLRT statistic, LpXq, and two hypotheses, H0 and H1 is

AUC “ Pr pL∆ ą 0q .

where L∆ fi L1 ´ L0. �

III. TOEPLITZ COVARIANCE MATRIX

Here, we assumed that the n by n covariance matrix ΣX

has a Toeplitz structure with ones on the diagonal and the
correlation coefficient ρ as off diagonal elements

ΣX “

»

—

—

—

—

–

1 ρ . . . ρ

ρ
. . . . . .

...
...

. . . . . . ρ
ρ . . . ρ 1

fi

ffi

ffi

ffi

ffi

fl

.

Definition 4. Clique. A maximal subset of the nodes which
defines a complete subgraph is the clique subgraph. �

In other words, all pairs of nodes are connected in the clique
subgraph.

Definition 5. Junction tree. A junction tree is a clique tree
[13] such that for each pair of cliques C1 and C2 in the
graph, all cliques on the path between C1 and C2 contain
their intersection, C1 X C2. �

In this example, we are interested in models which can be
represented using junction trees whose vertices are cliques
of the size at most p. 3 Going back to the model selection
problem for the example, we are investigating the following
two generalizations of the chain and the star networks. Note
that, we can cunstruct a junction tree for these two special
models.

A. pth order star network

The model covariance matrix for the pth order star network
where all nodes are connected to the first p nodes which all
are connected together is as follow

Σpth´star
XM

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ρ . . . . . . . . . . . . ρ

ρ
. . . . . .

...
...

. . . 1 ρ . . . . . . ρ
... ρ 1 ρ1 . . . ρ1

...
... ρ

1

. . . . . .
...

...
...

...
. . . . . . ρ

1

ρ . . . ρ ρ1 . . . ρ1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

3We avoid cycles by turning subsets of the nodes into supernodes.

where

ρ1 “
pρ2

pp´ 1qρ` 1
.

B. pth order Markov chain network

The model covariance matrix for the pth order Markov chain
network is as follow

Σpth´chain
XM

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 ρ . . . ρ ρ1 . . . ρn´p´1

ρ
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . ρ1

ρ
. . . . . . . . . ρ

ρ1

. . . . . . . . . . . .
...

...
. . . . . . . . . ρ

ρ
n´p´1

. . . ρ
1

ρ . . . ρ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

To satisfy Theorem 1 we have that ρi for i P t1, . . . , n´p´1u
can be computed through the following recursive equation

ρi “ ρT
i´1

vi
ρ

pp´ 1qρ` 1
(3)

where vi “ r

p
hkkikkj

1, . . . , 1, 0, . . . , 0sT is a vector of length n and

ρ
i
“ rρi , . . . , ρ1 ,

p
hkkikkj

ρ, . . . , ρsT where ρ
0
“ r

p
hkkikkj

ρ, . . . , ρsT is the
initialization step.

Lemma 3. The KL divergence for the pth order star network
and the pth order Markov chain network can be calculated as

DpX||Xpth´chainq “
1

2
pn´ pq log

ˆ

pρ` 1

pp´ 1qρ` 1

˙

`
1

2
log

ˆ

pp´ 1qρ` 1

pn´ 1qρ` 1

˙

and
DpX||Xpth´starq “ DpX||Xpth´starq.

Proof: Note that, from [14] we have

|Σpth´chain
XM

| “
rppρ` 1qpρ´ 1qps

pn´pq

rppp´ 1qρ` 1qpρ´ 1qp´1s
pn´p´1q

and
|ΣX | “ ppn´ 1qρ` 1qpρ´ 1qn´1.

Inserting the values of these determinants into the KL diver-
gence

DpX||XMq “ ´
1

2
log

´

ΣXΣ´1
XM

¯

we conclude the result for the pth order Markov chain network.
To show that the KL divergence for the pth order star network
is exactly equal to the KL divergence for the pth order chain
network, we need to construct the corresponding junction tree
for each of these networks by grouping appropriate p nodes.
Note that, the KL divergence for the junction trees are equal
since the mutual information between the junction nodes are
exactly equal. �



Proposition 2. The KL divergence for the pth order star
network and the pth order Markov chain network is bounded
as n goes to infinity if for a given constant number, κ ą 1,
the order, p, is the integer number in interval,

DpX||Xpth´starq ă 8 as pnÑ8, n{pÑ κq.

Proof: Let p “
P

n{κ
T

be the smallest integer greater than
or equal to n{κ. The KL divergence can be bounded as follow

DpX||Xpth´starq “
pn´

P

n{κ
T

q

2
log

˜

1`
ρ

p
P

n{κ
T

´ 1qρ` 1

¸

`
1

2
log

˜

p
P

n{κ
T

´ 1qρ` 1

pn´ 1qρ` 1

¸

paq
ď
pn´ n{κq

2
log

ˆ

1`
ρ

pn{κ´ 1qρ` 1

˙

`
1

2
log

ˆ

ppn{κ` 1q ´ 1qρ` 1

pn´ 1qρ` 1

˙

pbq
ď
p1´ 1{κqn

2

ˆ

ρ

pn{κ´ 1qρ` 1

˙

`
1

2
log

ˆ

pn{κqρ` 1

pn´ 1qρ` 1

˙

Where (a) is true since for the integer order, p, we have n{κ ď

p ă n{κ ` 1 and (b) is true since logp1 ` zq ď z for z ě 0.
Then, in the limit we have

lim
nÑ8

DpX||Xpth´starq ď
p1´ 1{κq

2{κ
`

1

2
log p1{κq

ď
κ´ 1

2
´

logpκq

2
ă 8

which complete the proof. �

Proposition 3. The AUC of the pth order star network and
the pth order Markov chain network is bounded from 1 as n
goes to infinity if n “ κp and p “

P

n{κ
T

,

Pr pL∆ ą 0q ă 1.

Proof: We can conclude this result from the proposition 2
upper bound for the KL divergence combined with the upper
bound for the AUC,

Pr pL∆ ą 0q ď 1´ e´ limnÑ8DpX||Xpth´starq´1

ă 1

provided in [8]. �

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we consider the Toeplitz example presented
before as the covariance matrix for a Gaussian random vector.
We calculate different models such as the pth order Markov
chain and the pth order star networks for various values of p.
For a given order, both of the aforementioned models have
the same KL divergence values as calculated in lemma 3.
Moreover, we compute AUC and compare it with its lower
and upper bounds [8] for these cases.

Figure 2 plots (1 - AUC) in log-scale v.s. the dimension
of the graph, n, in linear-scale for star approximation (left)
and chain approximation (right) with different model orders,
p “ 1, p “ 3, p “ 5 and p “ 7 for correlation coefficient
ρ “ 0.9. As it is indicated in this figure, (1 - AUC) decreases
as the order of the model increases for both star and chain
models. Moreover, from this figure, we can conclude that
the pth order star network performs better than the pth order
Markov chain network since (1 - AUC) decay exponent is
smaller for the former model than the latter model. This can
also be seen by comparing the covariance matrix ΣX and the
model covariance matrix, ΣXM

where the model covariance
matrix associated with the pth order star network is more
similar to the covariance matrix ΣX than the model covariance
matrix associated with the pth order Markov chain network.
For example, even the quality of the first order star network
approximation is better than the quality of the fifth order
Markov chain approximation in the simulation results provided
in this figure.

200 400 600 800 1000 1200 1400 1600 1800 2000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ρ = 0.9 , Star Network

n

1 
−

 A
U

C

 

 

p = 1

p = 3

p = 5

p = 7

50 100 150 200 250 300 350 400 450 500
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ρ = 0.9 , Chain Network

n

1 
−

 A
U

C

 

 

p = 1

p = 3

p = 5

p = 7

Fig. 2: 1 - AUC (log-scale) v.s. the dimension of the graph
(linear-scale), n, for star approximation (left) and chain ap-
proximation (right) with different model orders, p “ 1, p “ 3,
p “ 5 and p “ 7 and correlation coefficient ρ “ 0.9.

Figure 3 plots KL divergence v.s ´ log (1 - AUC) for the
presented models. In this figure, the dimension n is set to 15,
the order p is set to 1 and 3 and the correlation coefficient ρ
is set to 0.9. Furthermore, the feasible region presented in [8]
and its asymptotic behavior are also plotted in this figure. For
both models, the KL divergence and the reverse KL divergence
are computed and are plotted on this figure. Note that, KL
divergences for both models are equal (see lemma 3) and are
connected in this figure. As it is shown in the figure, the third
order model has better performance than the first order model.

Figure 4 plots 1 - AUC v.s. the dimension of the graph, n for
the pth order star approximation of the Toeplitz example for
ρ “ 0.1 (left) and ρ “ 0.9 (right) while keeping the model
order proportional to the number of nodes in the graphical
model, n. More specifically, in this figure, we set the model
order p “

P

n{κ
T

where κ “ 10. Moreover, this figure plots the
lower bound and the upper bound for 1 - AUC4. From this
figure, we conclude that, pth order star approximation is a good
approximation model when the model order, p is proportional
to the number of nodes, n, since the AUC is bounded from

4Bounds are presented in [8].
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Fig. 3: KL divergence v.s. AUC and the AUC parametric
bound [8] v.s. for graph dimension, n “ 15 for the pth order
Markov chain approximation and pth order star network for
p “ 1 and p “ 3 with ρ “ 0.9.

one as nÑ8. Similarly, figure 5 plots 1 - AUC and its upper
and lower bounds v.s. the dimension of the graph, n for the
pth order Markov chain approximation of the Toeplitz example
for ρ “ 0.1 (left) and ρ “ 0.9 (right) with p “

P

n{κ
T

where
κ “ 10. Plots in this figure are not monotonicly decreasing
since both the order p and the dimension n are integers and
thus the ratio n{p is not exactly equal to κ for all values of
p and n. Furthermore, from the figure, the pth order Markov
chain approximation is a good approximation model when the
model order, p is proportional to the number of nodes, n, since
the AUC is bounded from one as nÑ8. Comparing the plots
in figure 4 and figure 5 we can clearly see that even though
the AUC for both approximation models are bounded from
one, the pth order star approximation model is a better model
than the pth order Markov chain approximation model.
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Fig. 4: 1 - AUC and its lower and upper bounds v.s. the
dimension of the graph, n for the pth order star approximation
of the Toeplitz example for ρ “ 0.1 (left) and ρ “ 0.9 (right)
with the model order p “

P

n{κ
T

where κ “ 10.

V. CONCLUSION

In this paper, we formulate a detection problem to in-
vestigate the quality of the graphical model approximation.
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Fig. 5: 1 - AUC and its lower and upper bounds v.s. the
dimension of the graph, n for the pth order Markov chain
approximation of the Toeplitz example for ρ “ 0.1 (left) and
ρ “ 0.9 (right) with the model order p “

P

n{κ
T

where κ “ 10.

We discuss the quality of model selection approximation by
examining the area under the curve (AUC). We consider jointly
Gaussian random vectors and give the definition for the cor-
relation approximation matrix (CAM). We discuss graphical
models with junction trees such as the pth order Markov chain
and the corresponding star network interpretation for a special
Toeplitz covariance matrix with ones along the diagonal and
correlation coefficient ρ’s on the off-diagonals. These models
has very short loops and has associated junction tree that
connects cliques of the same size. The model covariance
matrix as well as the KL divergence between the original
distribution and the model distribution are computed for the
presented Toeplitz covariance matrix. We also quantify the
goodness of the covariance selection problem for this Toeplitz
covariance matrix. For this covariance matrix, we show that
if the model order, p, is proportional to the number of nodes,
n, then the model selection is asymptotically good as nÑ8

since the AUC is asymptotically bounded away from one. We
conduct some simulations which show that the selected model
quality increases as the model order, p, increases and confirm
our theoretical results.
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