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Abstract— We represent the Ising model of statistical physics
by normal factor graphs in the primal and in the dual domains.
By analogy with Kirchhoff’s voltage and current laws, we
show that in the primal normal factor graphs, the dependency
among the variables is along the cycles, whereas in the dual
normal factor graphs, the dependency is on the cutsets. In
the primal (resp. dual) domain, dependent variables can be
computed via their fundamental cycles (resp. fundamental
cutsets). Using Onsager’s closed form solution, we illustrate
the opposite behavior of the uniform sampling estimator for
estimating the partition function in the primal and in the dual
of the homogeneous Ising model on a two-dimensional torus.

I. INTRODUCTION

We relate some properties of the normal/Forney factor
graph (NFG) [1] representation of the Ising model [2], [3]
in the primal and in the dual domains to pertinent results
in algebraic graph theory. The focus is on Ising models
with arbitrary topology, with pairwise (nearest-neighbor)
interactions, and without an external magnetic field.

Here, the NFG is a simple, finite, and connected graph
G = (V,E), where V is the set of vertices and E the
set of edges. In our analysis, we use partitionings of G
into G = T ∪ T , where T is a spanning tree and T is the
corresponding cospanning tree. The edges of T are called
the branches and the edges of T are called the chords of G
with respect to T , or simply the chords of T . Since G is
connected, |E| ≥ |V | − 1 and

|T | = |V | − 1 (1)
|T | = |E| − |V |+ 1, (2)

where | · | denotes the cardinality of a set.
We prove that the sum (modulo 2) of variables along any

cycle in the primal NFG is zero. In the dual NFG, we prove
that the sum (modulo 2) of variables on any cutset is zero. We
then propose a uniform sampling algorithm for estimating
the partition function in the primal and in the dual domains.
For the homogeneous Ising model on a two-dimensional
(2D) torus, we employ Onsager’s analytical solution [3], [4]
to illustrate the opposite behavior of the uniform sampling
estimator in the primal and in the dual domains.

For more details on the cycle space, the cutset space,
and their duality in the context of algebraic graph theory,
see [5, Chapter 2], [6, Chapter 14]. The topic of the Kramers–
Wannier duality (which relates the partition function of the
2D Ising model at high and at low temperatures) is discussed
in the context of NFG duality in [7], [8]. Finally, we would
like to point out that David Forney has recently developed

and generalized some of the results of this paper in the
context of algebraic topology. For more details, see [9].

The paper is organized as follows. In Section II, we review
the Ising model and its graphical model representation in
terms of NFGs. In Sections III and IV, we describe the
uniform sampling algorithm in the primal domain and derive
its variance for the Ising model on a 2D torus. The dual NFG
of the model is discussed in Section V, and an analogous
estimator based on uniform sampling in the dual NFG is
presented in Section VI. The variance of the estimator in
the dual NFG is discussed in Section VII. The scale factor
between the partition functions of the primal and the dual
NFGs is derived in the Appendix.

II. THE ISING MODEL IN THE PRIMAL DOMAIN

Let X = (X1, X2, . . . , XN ) be a collection of N inter-
acting discrete random variables taking values in a finite
alphabet X , which in this context is equal to the binary field
F2 and let xi represents a possible realization of Xi. The
vectors x ∈ XN will be called configurations.

The variables X1, X2, . . . , XN are associated with the
vertices of a graph G = (V,E) with N vertices and
|E| edges. In the Ising model, each variable is assigned a
spin, which represents the two possible states of a particle.
Two variables interact if their corresponding vertices are
connected by an edge in G. Each edge has an associated
coupling parameter Jk,`, which measures the strength of the
interaction between neighboring pair (Xk, X`).

Let f : XN→ R≥0 be a non-negative real function which
factors into a product of local factors υk,`(·) as

f(x) =
∏

(k, `) ∈ E

υk,`(xk, x`), (3)

where E contains all the unordered distinct interacting pairs
(k, `), and υk,` : X 2→ R≥0 is given by

υk,`(xk, x`) =

{
eβJk,` , if xk = x`
e−βJk,` , if xk 6= x`,

(4)

where β is the inverse temperature. The Ising model is called
ferromagnetic (resp. antiferromagnetic) if Jk,` > 0 (resp.
Jk,` < 0) for all (k, `) ∈ E.

We will find it convenient to set β = 1 and to work with
varying values of the coupling parameters. In this setup, large
values of |Jk,`| correspond to the low-temperature regime,
and small values of |Jk,`| correspond to the high-temperature
regime. In particular, Jk,` = 0 for all (k, `) ∈ E corresponds
to infinite temperature.
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From (3), the Boltzmann distribution is defined as [3]

pB(x)
4
=
f(x)

Z
· (5)

Here, Z is the partition function, which makes pB(·) a
probability mass function over XN , and is given by

Z =
∑
x

f(x), (6)

where the summation runs over all configurations.
The factorization in (3) can be represented by an NFG

G = (V,E), in which vertices represent the factors and
edges represent the variables. The edge that represents some
variable x is connected to the vertex representing the factor
υ(·) if and only if x is an argument of υ(·). If a variable (an
edge) appears in more than two factors, such a variable is
replicated using an equality indicator factor [1].

The primal NFGs of the Ising model on a chain (1D
graph with periodic boundaries), a 2D lattice, and a fully-
connected graph are shown in Fig. 1, where the unlabeled
boxes represent (4) and boxes labeled “=” are equality
indicator factors. For example, in Fig. 1–left the equality
indicator factor Φ=(·) involving variables x2, x′2, and x′′2 is
given by

Φ=(x2, x
′
2, x
′′
2) = δ(x2 − x′2) · δ(x2 − x′′2), (7)

where δ(·) is the Kronecker delta function.
We note that each factor (4) is only a function of xk + x`.

(Recall that arithmetic manipulations are done modulo 2.) We
can thus represent υk,`(·) using only one variable ye, as

υe(ye) =

{
eJe , if ye = 0
e−Je , if ye = 1. (8)

Let Y denote (Y1, Y2, . . . , Y|E|), where |Y| = |E|.
Following the above observation, we construct the “mod-

ified” primal NFGs of the Ising models illustrated in Fig. 2,
where the unlabeled boxes represent (8) and boxes labeled
“+” are zero-sum indicator factors, which impose the con-
straint that all their incident variables sum to zero. For
example, in Fig. 2–left the zero-sum indicator factor Φ+(·)
involving x1, x2, and y1 is given by

Φ+(y1, x1, x2) = δ(y1 + x1 + x2). (9)

In the sequel, we drop the adjective “modified” and refer
to the NFGs in Fig. 2 as the primal NFGs of the Ising model,
when it causes no confusion.

By analogy with Kirchhoff’s voltage law, we prove:

Lemma 1. Consider a cycle in the primal NFG of the Ising
model. If the variables attached to the zero-sum indicator
factors along the cycle are Y1, Y2, . . ., it holds that∑

m ∈ Cycle

Ym = 0 (10)

Proof. We write each Ym as the addition of its corresponding
edges (Xk, X`) attached to the zero-sum indicator factors
along the cycle (see (9)). Each variable, say Xk, will appear
twice in the summation. Thus

∑
m ∈ Cycle Ym = 0. �

= = =

X1 X2

X ′′
2

X ′
2= = =

= = =

= = = = =

==

=

Fig. 1: The Primal NFG of the Ising model on a (top) chain
(left) 2D lattice (right) fully-connected graph. The unlabeled
boxes represent (4) and boxes containing “ = ” symbols are
given by (7).
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Fig. 2: Modified primal NFGs of the Ising models on a
(top) chain (left) 2D lattice (right) fully-connected graph..
The unlabeled boxes represent (8), boxes containing “ + ”
symbols are as in (9), and boxes containing “ = ” symbols
are given by (7). In each NFG, the branches of a spanning
tree are marked by thick black edges.

An example of a cycle is shown by thick edges in Fig. 3,
where the variables Y1, Y2, . . . attached to the zero-sum
indicator factors along the cycle are marked blue.

Let us partition G into G = T ∪T , where T is a spanning
tree in the primal NFG. Thus Y will also be partitioned
into YT ∪YT . Examples of such partitionings are shown
in Fig. 2, where spanning trees are marked by thick black
edges, edges attached to the unlabeled boxes and to the zero-
sum indicator factors on the branches represent YT , and
edges attached to the unlabeled boxes and to the zero-sum
indicator factors on the chords represent YT .

For a given configuration yT , adding a chord c ∈ T to
T will create a unique cycle called the fundamental cycle
associated with c, which contains exactly one chord that does
not appear in any other fundamental cycle1. Furthermore,

1Indeed, the set of all fundamental cycles generates a vector space over
F2 with dimensionality |T |; see [5, Chapter 2], [6, Chapter 14].
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Fig. 3: Thick edges show a cycle in the primal NFG of the
2D Ising model, where variables attached to the zero-sum
indicator factors along the cycle are marked blue.

according to Lemma 1, for each c ∈ T we can compute yc
as a linear combination of yT .

Remark 1. In the primal NFG, we can freely choose a
configuration yT , and therefrom deterministically compute
each component of yT via its fundamental cycle. As a result,
computing the exact value of Z in the primal NFG requires
a sum with |X ||T | = |X |N−1 terms.

Accordingly, let

Υ(y) =
∏
e∈E

υe(ye). (11)

The global probability mass function in the modified
primal NFG can then be defined as

pM(y)
4
=

Υ(y)

ZM
, (12)

where the partition function ZM is given by

ZM =
∑

valid y

Υ(y). (13)

Lemma 2. The partition functions Z and ZM are related by

Z = 2ZM (14)

Proof. Let ¬x be the component-wise addition of x and
the all-ones vector, i.e., in ¬x, components of x that are 0
become 1, and those that are 1 become 0. There are |X |N
configurations x that contribute to Z in (6). Let us partition
XN into X1 and X2, where for each x ∈ X1, we have ¬x ∈
X2, and vice-versa. Note that |X1| = |X2| = |X |N−1.

There are |X |N−1 configurations y with non-zero contri-
butions to ZM in (13). From one such configuration y, we
can compute exactly two corresponding configurations x and
¬x in the primal NFG (e.g., by setting x1 = 0 and x1 = 1
to solve a system of equations for x and for ¬x). However,
due to symmetry in the factors (4), the contribution of x and
of ¬x to Z is exactly Υ(y). �

For 2D lattices, Lemmas 1 and 2 have already been ob-
served in [10]. However, as was shown, their generalizations
to models with arbitrary topology is straightforward.

Similar results can be obtained for the q-state Potts
model, in which υk,`(·) is only a function of xk − x` (with
arithmetic manipulations done modulo q). It can be shown
that, for this model, Z = qZM and dependency among the
variables is along the cycles of a directed NFG.

We next propose a uniform sampling algorithm to compute
an estimate of ZM, and hence of Z itself.

III. UNIFORM SAMPLING IN THE PRIMAL NFG
In uniform sampling, we first draw independent samples

y
(1)
T ,y

(2)
T , . . . uniformly over X |T |, i.e., according to

uT (yT ) =
1

|X ||T |
, (15)

and therefrom compute y
(1)

T
,y

(2)

T
, . . .. The created samples

are then used in

ẐM =
|X ||T |

L

L∑
`=1

Υ(y(`)), (16)

which is an unbiased estimator of ZM, i.e., EuT
[ ẐM ] = ZM.

The variance of (16) can be computed as

V[ẐM] = E
[
Ẑ2

M

]
− E

[
ẐM
]2
, (17)

=
|X |2|T |

L

(∑
y

uT (y)Υ(y)2

)
− Z2

M

L
, (18)

=
Z2

M

L

(∑
y

pM(y)2

uT (y)
− 1

)
. (19)

We thus obtain
L

Z2
M
V[ẐM] = χ2

(
pM, uT

)
, (20)

where χ2(·, ·) denotes the chi-square distance, which is
non-negative, with equality to zero if and only if its two
arguments are equal [11, Chapter 4].

Suppose the model is homogeneous (i.e., with constant
coupling parameter J). In the limit J → 0, Υ(·) becomes
a constant factor (cf. (8), (11)), therefore we expect the
uniform sampling estimator to perform well when coupling
parameters are small (i.e., at high temperature).

Indeed

lim
J→0

χ2
(
pM, uT

)
= 0. (21)

IV. VARIANCE OF THE UNIFORM SAMPLING ALGORITHM
IN THE PRIMAL 2D ISING MODEL

We analyze the variance of the uniform sampling estimator
in the primal domain to estimate the partition function of the
Ising model on a 2D torus, with constant coupling parameter
J and in the thermodynamic limit (i.e., as N → ∞). The
choice of the model and the parameters is due to the fact that
the partition function is analytically available from Onsager’s
solution in this case [4], [3, Chapter 7]. In a 2D torus, it holds
that |T | = N − 1 and |T | = N + 1.



From (20), we have

L

ZM(J)2
V[ẐM] =

∑
valid y

pM(y)2

uT (y)
− 1, (22)

=
|X ||T |

ZM(J)2

∑
valid y

Υ(y)2 − 1, (23)

= |X |N−1ZM(2J)

ZM(J)2
− 1, (24)

where ZM(J) denotes the partition function evaluated at J ,
and the last step is due to the following identity

ZM(2J) =
∑

valid y

Υ(y)2. (25)

Thus, in the thermodynamic limit we obtain

lim
N→∞

1

N
ln
(

1 +
L

ZM(J)2
V[ẐM]

)
=

ln(2) + lim
N→∞

lnZM(2J)

N
− lim
N→∞

2 lnZM(J)

N
· (26)

We use the closed-form solution of the partition function
to evaluate (26) numerically as a function of J , which is
plotted by the solid black line in Fig. 6. As expected, we
observe that uniform sampling in the primal domain can
provide good estimates of the partition function when J is
small (i.e., at high temperature), while it is an inefficient
estimator for larger values of J (i.e., at low temperature).

V. THE ISING MODEL IN THE DUAL DOMAIN

The dual NFG has the same topology as the primal NFG,
but factors are replaced by the discrete Fourier transform
(DFT) of their corresponding factors in the primal NFG, and
variables are replaced by their corresponding dual variables,
which are denoted by the tilde symbol. The partition function
of the corresponding dual NFG is denoted by Zd.

According to the normal factor graph duality theorem [12],
Zd = α(G) ·Z, where the scale factor α(G) depends on the
topology of G and is given by

α(G) = |X ||E|−|V |. (27)

The proof of (27) is given in the Appendix. For example,
for a 2D torus |E| = 2N , and therefore α(G) = |X |N ; for
a chain |E| = |V |, and thus α(G) = 1.

Notice that from (2), (14), and (27), we obtain

Zd/ZM = α(G)/|X |, (28)

= |X ||T |. (29)

From the primal NFG of an Ising model, we can obtain
its dual by replacing each factor (8) by its 1D DFT, each
equality indicator factor by a zero-sum indicator factor, and
each zero-sum indicator factor by an equality indicator factor.

The dual NFGs of the Ising models in Fig. 2 are shown
in Fig. 4, where the unlabeled boxes represent factors as

γe(ỹe) =

{
2 cosh Je, if ỹe = 0
2 sinhJe, if ỹe = 1, (30)
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+ = + = +
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Ỹ1

Fig. 4: Dual NFGs of the Ising models in Fig. 2. The
unlabeled boxes represent (30), boxes containing “ + ”
symbols are as in (9), and boxes containing “ = ” symbols
are given by (7). In each dual NFG, the chords are marked
by thick blue edges.

boxes labeled “+” are zero-sum indicator factors as in (9),
and boxes containing “ = ” symbols are equality indicator
factors given by (7). For more details on constructing the
dual NFG of the Ising model, see [13]–[16].

By analogy with Kirchhoff’s current law, we prove:

Lemma 3. Consider a cutset in the dual NFG of the Ising
model. If the variables attached to the equality indicator
factors in the cutset are Ỹ1, Ỹ2, . . ., it holds that∑

m ∈ Cutset

Ỹm = 0 (31)

Proof. A cutset partitions G into G1∪ G2. In G1 (or in G2),
suppose we write down the equations associated with all the
zero-sum indicator factors. But the sum over all these equa-
tions in G1 (or in G2) is equal to zero, because each variable,
say Ỹk, appears twice in the summation. Furthermore, in G,
the same sums are equal to

∑
m ∈ Cutset Ỹm. �

An example of a cutset is shown by thick edges in Fig. 5,
where the variables Ỹ1, Ỹ2, . . . attached to the equality indi-
cator factors in the cutset are marked blue.

Again, we partition G into G = T ∪ T , where T is a
spanning tree in the dual NFG. As a result, Ỹ = ỸT ∪ ỸT .
Fig. 4 shows examples of such partitionings, where cospan-
ning trees are marked by thick blue edges, edges attached
to the unlabeled boxes and to the equality indicator factors
on the branches represent ỸT , and edges attached to the
unlabeled boxes and to the equality indicator factors on the
chords represent ỸT . Although T is always cycle-free, T
may contain cycles (see Fig. 4–right).

Removing a branch b ∈ T partitions T = T1 ∪ T2.
The edges that connect T1 and T2 form a unique cutset
in G – called the fundamental cutset belonging to b. Each
fundamental cutset has exactly one branch of T that does
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Fig. 5: Thick edges show a cutset in the dual NFG of the 2D
Ising model, where variables on the cutset are marked blue.

not appear in any other fundamental cutset2. Moreover,
according to Lemma 3, for each b ∈ T we can compute
ỹb as a linear combination of ỹT .

Remark 2. In the dual NFG, we can freely choose a
configuration ỹT , and therefrom deterministically compute
each component of ỹT via its fundamental cutset. In the dual
NFG, computing the exact value of Zd (and thus the exact
value of ZM) requires a sum with |X ||T | terms. In particular,
computing Zd of a chain requires a sum with |X | terms.

Let

Γ(ỹ) =
∏
e∈E

γe(ỹe). (32)

Suppose the model is “ferromagnetic” (i.e., Jk,` > 0 for
all (k, `) ∈ E), thus Γ(·) is non-negative. We then define the
following global probability mass function in the dual NFG

pd(ỹ)
4
=

Γ(ỹ)

Zd
, (33)

where

Zd =
∑

valid ỹ

Γ(ỹ). (34)

Next, we propose a uniform sampling algorithm in the
dual NFG to estimate Zd.

VI. UNIFORM SAMPLING IN THE DUAL NFG

In uniform sampling in the dual domain, samples
y
(1)

T
,y

(2)

T
, . . . are drawn independently according to

uT (ỹT ) =
1

|X ||T |
, (35)

and completed to valid configurations y(1),y(2), . . .. Then L
created samples are used in the following estimator

Ẑd =
|X ||T |

L

L∑
`=1

Γ(ỹ(`)), (36)

2In the dual domain, the set of all fundamental cutsets generates a vector
space over F2 with dimensionality |T |; see [5, Chapter 2], [6, Chapter 14].

which is unbiased, that is, EuT
[ Ẑd ] = Zd (see [16]).

The variance of (36) is given by
L

Z2
d
V[Ẑd] = χ2

(
pd, uT

)
. (37)

In the low temperature limit pd becomes uniform over the
valid configurations (cf. (30), (32)). The estimator is thus
expected to perform well in the low-temperature regime (i.e.,
for large J). Indeed

lim
J→∞

χ2
(
pd, uT

)
= 0. (38)

VII. VARIANCE OF THE UNIFORM SAMPLING
ALGORITHM IN THE DUAL 2D ISING MODEL

In the dual domain, we provide upper and lower bounds
on the variance of the estimator. The derived bounds are not
necessarily tight for all values of J ; however, they are good
enough to illustrate the opposite behavior of (16) and (36).

From (37), we have

L

Zd(J)2
V[Ẑd] =

∑
valid ỹ

pd(ỹ)2

uT (ỹ)
− 1, (39)

=
|X ||T |

Zd(J)2

∑
valid ỹ

Γ(ỹ)2 − 1, (40)

=
2N+1

Zd(J)2
Sd − 1, (41)

where Sd
4
=
∑

valid ỹ Γ(ỹ)2.
From (27) and (14), we obtain Zd = 2N+1ZM, therefore

L

Zd(J)2
V[ẐUni

d ] =
2−N−1

ZM(J)2
Sd − 1. (42)

In the rest of this section, we will derive upper and lower
bounds on Sd. We first apply the obvious inequality

Sd ≤ Zd(J)2 (43)

in (41) to obtain

lim
N→∞

1

N
ln
(

1 +
L

Zd(J)2
V[ẐUni

d ]
)
≤ ln(2), (44)

which is plotted by the solid blue line in Fig. 6.
We next note that Sd is the partition function of a dual

NFG (as in Fig. 4–left) with factors given by

ρ(ỹe) =

{
4 cosh(J)2, if ỹe = 0
4 sinh(J)2, if ỹe = 1. (45)

Thus

Sd =
∑

valid ỹ

∏
e∈E

ρ(ỹe), (46)

≤
(
4 cosh(J)2

)|T |∑
ỹT

∏
e∈T

ρ(ỹe), (47)

=
(
2 cosh(J)

)2(N−1)
ST . (48)

Here, ST is the partition function of a subgraph in the
dual NFG induced by T , which can be computed exactly as

ST =
(
ρ(0) + ρ(1)

)|T |
, (49)

=
(
4 cosh(2J)

)N+1
. (50)



Combining (42), (48), and (50) yields

lim
N→∞

1

N
ln
(

1 +
L

Zd(J)2
V[Ẑd]

)
≤ 3 ln(2)+

ln
(

cosh(2J) · cosh(J)2
)
− lim
N→∞

2 lnZM(J)

N
, (51)

which is plotted by the dotted blue line in Fig. 6.
To obtain the lower bound, we consider the corresponding

primal NFG (as in Fig. 2–left) with factors as in

κ(ye) =

{
2 cosh(2J), if ye = 0
2, if ye = 1. (52)

Notice that (52) is indeed the inverse Fourier transform
of (45). We denote the partition function of this primal NFG
by SM, where according to the NFG duality theorem

Sd = 2N+1SM, (53)

see (29). Hence

SM =
∑

valid y

∏
e∈E

κ(ye), (54)

≥ 2|T |
∑
yT

∏
e∈T

κ(ye), (55)

= 2N+1ST , (56)

where ST denotes the partition function of a subgraph in
the primal NFG induced by T (i.e., a spanning tree), which
again can be computed exactly as

ST =
(
κ(0) + κ(1)

)|T |
, (57)

=
(
2 cosh(J)

)2N−2
, (58)

see [3, Chapter 2], [13, Section III].
From (53), (56), and (58) we obtain

Sd ≥ 24N cosh(J)2(N−1). (59)

Combining (42) and (59) gives the following lower bound

lim
N→∞

1

N
ln
(

1 +
L

Zd(J)2
V[Ẑd]

)
≥

3 ln 2 + 2 ln
(

cosh(J)
)
− lim
N→∞

2 lnZM(J)

N
, (60)

which is shown by the dashed red line in Fig. 6.
From Fig. 6, we observe that uniform sampling in the

dual domain is inefficient for small values of J ; however,
compared to uniform sampling in the primal domain, it can
provide more reliable estimates of the partition function
when J is large. Alos, recall from Section VI that (37)
vanishes in the low-temperature limit (i.e., as J →∞).

Both estimators seem to be inefficient in the mid-
temperature regime and near criticality, which for this model
is located at Jc = 1

2 ln(1 +
√

2) ≈ 0.44 (see [3, Chapter 6]).
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0

0.2

0.4

0.6

0.8

J

li
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ln
( 1

+
L Z
2
V
Ẑ
)

Primal domain exact result (26)

Dual domain upper bound (44)

Dual domain upper bound (51)

Dual domain lower bound (60)

Fig. 6: Behavior of the variance of the uniform sampling
estimator in the primal and in the dual NFGs as a function
of the coupling parameter J , for a homogeneous 2D Ising
model in the thermodynamic limit. The solid black line
shows (26), the solid blue line shows the upper bound in (44),
the dotted blue line shows the upper bound in (51), and the
dashed red line shows the lower bound in (60).

VIII. CONCLUSION

We analyzed some properties of the Ising model (in the
primal and in the dual domains) in the context of alge-
braic graph theory. We showed that, in the primal domain,
variables can be freely chosen on a spanning tree, and the
remaining variables can be computed via their fundamental
cycles, whereas in the dual domain, we can choose the
variables arbitrarily on a cospanning tree, and compute the
remaining variables via their fundamental cutsets. In each
domain, a uniform sampling algorithm was proposed to
estimate the partition function, and its opposite behavior was
illustrated for the homogeneous Ising model on a 2D torus.

APPENDIX
DETAILS OF THE SCALE FACTOR

For completeness, we prove that the scale factor between
the partition function Z of an NFG and the partition function
Zd of the corresponding dual NFG is

α(G) = |X ||E|−|V |, (61)

where α(G) = Zd/Z, which depends on the topology of G.
We will use the following concepts: a box is a collection

of factors as illustrated by the dashed lines in Fig. 7, and the
exterior function of such a box is the product of all factors
inside the box, summed over all variables inside the box [12].
For example, the exterior function of the inner dashed box
in Fig. 7 is given by

g(x1, x3, x5) =
∑
x2

f1(x1, x2, x5)f2(x2, x3), (62)
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Fig. 7: Boxes in an NFG.
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Fig. 8: Closing the inner box in Fig. 7.

and the exterior function of the outer dashed box in Fig. 7
is given by

Z =
∑

x1,...,x5

f1(x1, x2, x5)f2(x2, x3)f3(x3, x4, x5). (63)

Closing a box means replacing it by a single factor that
represents the exterior function of the box. Thus, closing the
inner box in Fig. 7 yields the NFG in Fig. 8. Opening a box
means the reverse process of expanding a factor into an NFG
of its own (with the same exterior function).

Remark. closing a box (by summing over the internal
variables) and opening a box do not change the partition
function.

For ease of exposition, we consider NFGs with pair-
wise interactions between the variables (but with arbitrary
topology). We demonstrate the dualization procedure by its
application to the NFG shown in Fig. 9, which shows an edge
of the NFG with factor fk,`(·) connected to two equality
indicator factors. To obtain the dual NFG, the dualization
procedure needs to be applied throughout the primal NFG.

The procedure consists of three steps. In the first step,
we insert an equality indicator factor into every edge, as
shown in Fig. 10. More precisely, we split each edge, say
X`, into two edges X` and X ′`, which we reconnect via
an equality indicator factor. Clearly, the partition function
remains unchanged (since configurations in which X` 6= X ′`
do not contribute to the partition function).

In the second step, we expand each of the newly inserted
equality indicator factors into the product of a (scaled)
Fourier kernel F and a (scaled) inverse Fourier kernel F∗,
as depicted in Fig. 11. We assume that all variables take on
values in a finite set X . Indeed

F(x`, x̃`) = e−i2πx`x̃`/|X |, (64)

and

F∗(x′`, x̃`) = ei2πx
′
`x̃`/|X |, (65)

where i is the unit imaginary number [17].

The exterior function of the right dashed box in Fig. 11 is∑
x̃`

c`F(x`, x̃`)c
′
`F∗(x′`, x̃`) = c`c

′
`|X | · δ(x` − x′`) (66)

and so forth.
An obvious choice for the constants c and c′ is such that

c`c
′
`|X | = 1. (67)

In the third step, we regroup the factors as illustrated in
Fig. 12. Closing the dashed boxes in Fig. 12 yields the dual
NFG in Fig. 13, where the factor fk,`(·) is replaced by its
Fourier transform f̃k,`(·), and the equality indicator factors
Φ=(·) are replaced by their inverse Fourier transforms, which
are zero-sum indicator factors Φ+(·) – up to scale.

As in the rest of this paper, we choose the scale factors
c` and c′` as

c` = c′` =
1

|X |1/2
· (68)

With this choice, the Fourier transform of (4) is indeed
equal to (30), and the inverse Fourier transform of an equality
indicator factor with degree d is

1

|X |d/2
∑

x′
`1
,...,x′

`d

Φ=(x′`1 , . . . , x
′
`d

)

d∏
i=1

F∗(x′`i , x̃`i), (69)

which is easily verified to be

|X |1−
d
2 · Φ+(x̃`1 , . . . , x̃`d). (70)

The (global) scale factor α(G) can then be computed by
multiplying all the local scale factors as

α(G) =

N∏
i=1

|X |
di
2 −1, (71)

= |X |
1
2
∑N

i=1 di−|V |, (72)
= |X ||E|−|V |, (73)

where di denotes the degree of the i-th equality indicator
factor, |V | is the number of vertices (which is equal to N ),
and |E| denotes the number of edges.

It should be emphasized that i) the scale factors c` and c′`
(which were introduced in the second step) can be chosen
differently, with a corresponding effect on α(G), and ii) the
sequence of F and F∗ on every edge is arbitrary; but the
choice will affect the resulting dual NFG.
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