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Abstract—We investigate the spectral norms of symmetric
N ×N matrices from two pseudo-random ensembles. The first
is the pseudo-Wigner ensemble introduced in “Pseudo-Wigner
Matrices” by Soloveychik, Xiang and Tarokh and the second is
its Sample Covariance-type analog defined in this work. Both
ensembles are defined through the concept of r-independence
by controlling the amount of randomness in the underlying
matrices, and can be constructed from dual BCH codes. We
show that when the measure of randomness r grows as Nρ,
where ρ ∈ (0, 1] and ε > 0, the norm of the matrices is

almost surely within o
(

log1+εN

Nmin[ρ,2/3]

)

distance from 1. Numerical

simulations verifying the obtained results are provided.

Index Terms—Pseudo-random matrices, spectral norm,
Wigner ensemble, sample covariance matrices.

I. INTRODUCTION

Random matrices have been a very active area of research

for the last few decades and found enormous applications in

various areas of modern mathematics, physics, engineering,

biological modeling, and other fields [1]. In this article, we

focus on two types of square symmetric matrices: 1) sign

(+−1) matrices and 2) Sample Covariance Matrices (SCM)

of sign vectors.

Random square symmetric sign matrices were originally

examined by Wigner [2]. He proved that if the elements of

the upper triangle of an N×N symmetric matrix (including

the main diagonal) are independent Rademacher (+−1 with

equal probabilities) random variables, then as N → ∞ a

properly scaled empirical spectral measure converges to the

semicircular law. Wigner originally showed convergence in

expectation, which was later improved to convergence in

probability [3] and to almost sure weak convergence [4].

The spectral behavior of SCMs formed from p independent

N dimensional vectors with independent entries and p
N →

γ ∈ (0, 1), was for the first time rigorously investigated by

Marchenko and Pastur [5]. They showed that (actually, under

weaker conditions on dependencies among vector entries)

the limiting spectrum converges to a non-random law.

In many engineering applications, one needs to simulate

random matrices. The most natural way to generate an

instance of a random N×N sign matrix is to toss a fair coin
N(N+1)

2 times, fill the upper triangular part of a matrix with

the outcomes and reflect the upper triangular part into the

lower. Similarly, to get a random SCM matrix one would

need to toss a coin pN ≈ γN2 times. Unfortunately, for

large N such approach would require a powerful source

of randomness due to the independence condition [6]. In

addition, when the data is generated by a truly random

source, atypical non-random looking outcomes have non-

zero probability of showing up. Yet another issue is that any

experiment involving tossing a coin would be impossible to

reproduce. All these reasons stimulated researchers and en-

gineers from different areas to seek approaches of generating

random-looking data usually referred to as pseudo-random

sources or sequences of binary digits [7, 8]. A wide spectrum

of pseudo-random number generating algorithms have found

applications in a large variety of fields including radar, digi-

tal signal processing, CDMA, error correction, cryptographic

systems, and Monte Carlo simulations, navigation systems,

scrambling, coding theory, etc. [7].

The term pseudo-random is used to emphasize that the

binary data at hand is indeed generated by an entirely de-

terministic causal process with low algorithmic complexity,

but its statistical properties resemble some of the properties

of data generated by tossing a fair coin. Remarkably, most

efforts were focused on one dimensional pseudo-random

sequences [7, 8] due to their natural applications and to the

relative simplicity of their analytical treatment. The study

of pseudo-random arrays and matrices was launched around

the same time [9–12]. Among the known two dimensional

pseudo-random constructions the most popular are the so-

called perfect maps [9, 13, 14] and two dimensional cyclic

codes [11, 12]. However, none of these works considered

spectral properties as the defining statistical features for their

constructions.

Specific pseudo-random constructions usually develop

from a set of properties mimicking truly random data, and

attempt to come up with deterministic ways of reproduc-

ing these properties. Following this approach, in [15] we

proposed a framework allowing construction of symmetric

sign matrices of low Kolmogorov complexity with spectra

converging to the semicircular law. Here we extend the ideas

of [15] to the construction of low complexity SCMs with

spectra converging to Marchenko-Pastur law. In a related

work [16], the authors show that if the columns of matrices

are randomly chosen from a properly designed binary code,

their spectra converge to Marchenko-Pastur law as is the

case for our construction. However all these works do not

examine finer characteristics of the proposed matrices. In the

present article we go beyond limiting spectral measures. We

require more moments of the pseudo-random construction

to match those of the truly random ensembles which en-
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ables us to capture the behavior of the extreme eigenvalues

(spectral norm). As a tradeoff, we pay a penalty for that

by increased Kolmogorov complexity. We also provide an

explicit construction of both Wigner-type and SCM-type

ensembles from dual BCH codes and support our theoretical

results by numerical simulations.

The outline of this paper is given next. Section II provides

the original truly random ensembles and their properties.

In Section III, we introduce our pseudo-random ensembles

through the concept of r-independence and demonstrate

that by increasing the amount of randomness involved in

their construction, we can mimic finer properties of the true

random matrices. The main results about the spectral norms

are presented in Section IV followed by numerical tests in

Section VI.

Notation. For a real x, ⌊x⌋ stands for the largest integer

not exceeding x. For a real random variable X , we write

FX(x) for its cumulative distribution function (c.d.f.) and

fX(x) for its probability density function (p.d.f.). For two

real functions g(x) and f(x) of a real or natural argument,

we say g(x) = o(f(x)) if lim
x→+∞

g/f = 0 and g(x) =

O(f(x)) if lim
x→+∞

g/f < +∞.

II. RANDOM MATRIX ENSEMBLES

Denote the spectrum of a symmetric real matrix SN by

λ1(SN ) 6 · · · 6 λN (SN ), (1)

the c.d.f. associated with it by

FSN (x) =
1

N

N
∑

i=1

θ(x − λi(SN )), (2)

where θ(x) is the unit step function at zero, and the spectral

norm by

‖SN‖ = max[|λ1(SN )|, |λN (SN )|]. (3)

The l-th empirical moment of SN reads as
∫

xldFSN =
1

N
Tr

(

S
l
N

)

. (4)

Next, we introduce two random ensembles. We will mimic

their spectral properties by pseudo-random constructions in

Section III.

A. Wigner Matrices and the Semicircular Law

The first rigorous study of a random matrix ensemble

was performed by Wigner in his seminal work [2, 17].

Wigner’s ensemble WN is the set SN of all N×N matrices

with +− 1
2
√
N

entries endowed with the uniform probability

measure.

Let FW be the c.d.f. of the standard semicircular law with

the p.d.f.

fW (x) =

{

2
π

√
1− x2, −1 6 x 6 1,

0, otherwise.
(5)

The moments of this distribution read as

µW (s) =

∫ +∞

−∞
xsdFW =

{

1
2sCs/2, s even,

0, s odd,
(6)

where

Cs/2 =
s!

(

s
2

)

!
(

s
2 + 1

)

!
(7)

are Catalan numbers. Stirling’s approximation yields

1

2s
Cs/2 =

√

8

πs3
(1 + o(1)), s → +∞. (8)

Using the so-called method of moments, Wigner demon-

strated [2] that the empirical spectral measures of matrices

from WN converge in expectation to the semicircular law

(5). In a follow up article he improved this result to con-

vergence in probability [17]. Almost sure weak convergence

[4] and other asymptotic results were obtained later [18].

Here we focus on a series of results obtained by Soshnikov

and Sinai [19–21]. These papers developed a combinatorial

technique enabling exact quantification of the high-order

expected moments of Wigner matrices, and led to the

proof of universality of the joint distribution of their largest

eigenvalues.

Lemma 1 (Corollary of Main Theorem from [19]). Let

WN ∈ WN and sN = o
(

N2/3
)

, then

E [Tr (WsN
N )] =

{
√

8
πs3N

N(1 + o(1)), sN even,

0, sN odd,
(9)

as N → +∞, and the random variables

Tr (WsN
N )− E [Tr (WsN

N )] (10)

converge in distribution to the normal law N
(

0, 1
π

)

.

This result in particular implies almost sure weak conver-

gence of the empirical spectra of matrices from Wigner’s

ensemble to the semicircular law [18]. Below we also use

the following variation of a result proven in [21].

Lemma 2 (Corollary of Theorem 2 from [21]). Let WN ∈
WN , then for any sequence sN = O

(

N2/3
)

,

E [Tr (WsN
N )] 6 cW (sN )N, (11)

where cW (sN ) is bounded uniformly over N .

B. Sample Covariance Matrices and Marchenko-Pastur Law

Let XN,p be the set MN,p of N × p matrices with +− 1√
N

entries endowed with the uniform probability measure. Be-

low we consider a setting where the dimensions N and

pN = p(N) grow such that the limit

γ = lim
N→∞

pN
N

, (12)

exists. The spectra of the SCMs X
⊤
NXN with XN ∈ MN,p

are invariant under the replacement of XN with X
⊤
N up

to zero eigenvalues, therefore, without loss of generality we



assume γ 6 1. The Marchenko-Pastur distribution is defined

through its p.d.f. as

fMP (x) =

{

1
2πγx

√

(b − x)(x − a), a 6 x 6 b,

0, otherwise,
(13)

where

a = (1−√
γ)2, b = (1 +

√
γ)2. (14)

The moments of this distribution read as

µW (s) =

∫ +∞

−∞
xsfWdx =

s
∑

k=1

γk
N(sN , k), (15)

where

N(s, k) =
1

s

(

k

s

)(

k − 1

s

)

(16)

are Narayana numbers. Stirling’s approximation gives [22]

s
∑

k=1

γk
N(sN , k) =

γ1/4

2
√
π

N(1 +
√
γ)2s+1

s3/2
(1 + o(1)).

Marchenko and Pastur proved in [5] that the spectrum of

the product X⊤
NXN converges almost surely weakly to the

limiting distribution (13). Later this result was strengthened

in [23] and other works.

Péché proved [24] the universality of the joint distribution

of top eigenvalues of SCM for a rich family of marginal dis-

tributions by developing a tight bound on the expected high-

order moments. Adapted to our setup their main technical

result reads as follows.

Lemma 3 (Corollary from Propositions 2.4 and 2.5 from

[24]). Let XN ∈ XN,pN and sN = o
(√

N
)

, then

E

[

Tr

((

X
⊤
NXN

(1 +
√
γ)2

)sN)]

=
γ1/4(1 +

√
γ)

2
√
π

N

s
3/2
N

(1 + o(1)), (17)

as N → +∞, and the random variables

Tr

((

X
⊤
NXN

(1 +
√
γ)2

)sN)

− E

[

Tr

((

X
⊤
NXN

(1 +
√
γ)2

)sN)]

converge in distribution to the normal law N
(

0, 1
π

)

.

Below we utilize the following result from [24].

Lemma 4 (Corollary of Theorem 3.1 from [24]). Let XN ∈
XN,pN , then for any sequence sN = O

(

N2/3
)

,

E

[

Tr

((

X
⊤
NXN

(1 +
√
γ)2

)sN)]

6 cMP (γ, sN )N,

where cMP (γ, sN ) is bounded uniformly over N .

III. PSEUDO-RANDOM ENSEMBLES

A. Definitions

In this section, we recall some definitions from [15] and

introduce a family of pseudo- Marchenko-Pastur (pseudo-

MP) ensembles analogous to the pseudo-Wigner matrices.

Definition 1 ([15]). Let x = {Xi}Ni=1 be a sequence of sign-

valued random variables. x is r-independent if any r of its

elements Xi1 , . . . , Xir are statistically independent,

P [Xi1 = b1, . . . , Xir = br] =

r
∏

l=1

P [Xil = bl] , (18)

for any i1 6= · · · 6= ir in the range [1, N ] and bi ∈ {+−1}.

Definition 2 ([15]). Let a subset Ar
N ⊂ SN be endowed

with the uniform measure. We say that it is an r-independent

pseudo-Wigner ensemble of order N if the elements of the

upper triangular (including the main diagonal) parts of its

matrices form an r-independent sequence w.r.t. (with respect

to) the measure induced on them by Ar
N .

Definition 3 (r-independent Pseudo-MP Ensemble of order

N ). Let a subset Yr
N,p ⊂ MN,p be endowed with the uniform

measure. We say that the ensemble of matrices

{YNY
⊤
N | YN ∈ Yr

N,p} (19)

is an r-independent pseudo-MP ensemble of order N if

the elements of the matrices YN form an r-independent

sequence w.r.t. the measure induced on them by Yr
N,p.

Below, whenever probability measure over Ar
N or Yr

N,p

are considered, they are always assumed to be uniform as

in Definitions 2 and 3.

The last definition is justified by the following result.

Proposition 1. Let q < e, then for r 6 q log2N and any

α ∈ ( qe , 1) there exists N0 such that for any N > N0,

with probability at least 1 − r
N2(1−α) a matrix YN chosen

uniformly from M2r
N,pN

satisfies

∣

∣

∣
F
Y⊤

NYN
(x)− FMP (x)

∣

∣

∣
6

1

r
, ∀x ∈ R. (20)

Proof. The proof from [15] applies with minor changes.

B. High-Order Moments

Lemma 5. Let {βN}, {rN}, {sN} ⊂ N be such that sN =
o
(

N2/3
)

with sN 6 βNrN , and AN be chosen uniformly

from AβNrN
N , then for the expected moments we have

E [Tr (AsN
N )] =

{
√

8
πs3N

N(1 + o(1)), sN even,

0, sN odd,
(21)

as N → ∞. In addition, the first p = 1, . . . , 2βN moments

of the random variable

Tr (AsN
N )− E [Tr (AsN

N )] (22)

converge to the moments of the normal law N
(

0, 1
π

)

.



Proof. The proof follows that of Main Theorem of [19].

Lemma 6. Let {rN}, {sN} ⊂ N be such that sN =
O
(

N2/3
)

with sN 6 rN , and AN be chosen uniformly

from ArN
N , then

E [Tr (AsN
N )] 6 cW (sN )N, (23)

where cW (sN ) is bounded uniformly over N .

Proof. The proof is analogous to that of Theorem 2 from

[21].

Lemma 7. Let {βN}, {rN}, {sN} ⊂ N be such that sN =

o
(√

N
)

with sN 6 βNrN , and YN be chosen uniformly

from YβNrN
N,pN

, then

E

[

Tr

((

Y
⊤
NYN

(1 +
√
γ)2

)sN)]

=
γ1/4(1 +

√
γ)

2
√
π

N

s
3/2
N

(1 + o(1)), (24)

as N → ∞. In addition, the first p = 1, . . . , 2βN moments

of the random variable

Tr

((

Y
⊤
NYN

(1 +
√
γ)2

)sN)

− E

[

Tr

((

Y
⊤
NYN

(1 +
√
γ)2

)sN)]

converge to the moments of the normal law N
(

0, 1
π

)

.

Proof. The proof is analogous to those of Propositions 2.4

and 2.5 from [24].

Lemma 8. Let {rN}, {sN} ⊂ N be such that sN =
O
(

N2/3
)

with sN 6 rN , and YN be chosen uniformly

from YrN
N,pN

, then

E

[

Tr

((

Y
⊤
NYN

N(1 +
√
γ)2

)sN)]

6 cMP (γ, sN )N,

where cMP (γ, sN ) is bounded uniformly over N .

Proof. The proof is analogous to that of Theorem 3.1 from

[24].

IV. SPECTRAL NORMS

Here we present the main results of the article.

A. Pseudo-Wigner Matrices

Proposition 2. Let An ∈ ArN
N with lim inf rN

Nρ > 0 for

some ρ ∈ (0, 1], then for any ε > 0

‖AN‖ = 1 + o

(

log1+εN

Nmin[ρ,2/3]

)

, a.s. (25)

Proof. For simplicity, let us start with the case ρ 6 2
3 . Given

ε > 0, set

qN = 2

⌊

1

2

Nρ

logε/2N

⌋

. (26)

Using Markov’s inequality we obtain the following chain of

bounds,

P

{

‖AN‖ > 1 +
log1+εN

Nρ

}

(27)

6 P

{

Tr (AqN
N ) >

(

1 +
log1+εN

Nρ

)qN }

= P

{

Tr (AqN
N ) >

(

1 +
log1+εN

Nρ

)2

[

1
2

Nρ

logε/2N

]

}

6 P

{

Tr (AqN
N ) >

1

2
exp

(

log1+ε/2N
)

}

6
E [Tr (AqN

N )]

1
2 exp

(

log1+ε/2N
) = O

(

N exp
(

−log1+ε/2N
))

,

where the last line follows from Lemma 6. This implies

∞
∑

N=1

P

{

‖AN‖ > 1 +
log1+εN

Nρ

}

< +∞. (28)

It now follows from Borel-Cantelli lemma that

‖AN‖ 6 1 +
log1+εN

Nρ
, a.s. (29)

In order to get the opposite direction inequality, note that

Lemma 5 together with the linear algebraic relation

‖AN‖ 6 Tr (Aq
N )

1/q
6 N1/q‖AN‖, (30)

give

E [‖AN‖] = 1 + o

(

1

Nκ

)

, (31)

for any fixed positive κ and therefore,

‖AN‖ > 1 +
log1+εN

Nρ
, a.s. (32)

which together with (29) implies the desired statement.

Assume now that ρ > 2
3 . We know from [21] that Lemma

3 is no longer valid in this case and the expected traces can

grow faster that O(N). Therefore, to keep the first ratio in

the last line of (27) bounded by a summable sequence, the

largest (in order) possible choice for qN is

qN = 2

⌊

1

2

N2/3

logε/2N

⌋

. (33)

Now the same reasoning as above together with Lemma 6

complete the proof.

B. Pseudo-Wishart Matrices

Proposition 3. Let YN be chosen uniformly from YrN
N,pN

for some ρ ∈ (0, 1], then for any ε > 0
∥

∥

∥

∥

Y
⊤
NYN

(1 +
√
γ)2

∥

∥

∥

∥

= 1 + o

(

log1+εN

Nmin[ρ,2/3]

)

, a.s. (34)

Proof. The proof of Proposition 2 works verbatim with

Lemmas 7 and 8 replacing Lemmas 5 and 6, correspond-

ingly.



V. A CONSTRUCTION FROM DUAL BCH CODES

Next we provide an explicit constructions of the pseudo-

Wigner and pseudo-MP ensembles from dual BCH codes.

The idea was presented in [15] for the r-independent pseudo-

Wigner matrices with r of the order of log2N . Here we focus

on higher levels of independence with r ∝ Nρ, ρ > 0.

For m ∈ N, a primitive narrow-sense binary BCH code

Cδ
m of length n = 2m − 1 and designed minimum distance

δ > 3 is a cyclic code generated by the lowest degree binary

polynomial having roots α, α2, . . . , αδ−1, where α is a

primitive element of GF (2m).

Lemma 9 (Theorem 9.1.1, Theorem 9.2.6 from [25]). A

primitive narrow-sense binary BCH code Cδ
m of length n =

2m − 1 and designed distance δ has

• minimum distance d such that δ 6 d 6 2δ − 1, and

• dimension at least n−mt.

Under the same assumptions as in Lemma 9, the dual

BCH code is a cyclic code of dimension k⊥ 6 mt [25].

Lemma 10 (Lemma 3.2 from [16]). If a code C has

minimum distance d, then its dual code C⊥ is (d − 1)-
independent (see Definition 2) w.r.t. to the uniform measure

over its codewords.

Given these results, the pseudo-Wigner matrices are built

as explained in Section as IV of [15]. Pseudo-MP matrices

are constructed analogously, by first packing the codewords

of the dual BCH code row by row into rectangular N × p
matrices YN scaled by 1√

N
. Then the desired SCMs are

obtained as Y
⊤
NYN .

VI. NUMERICAL SIMULATIONS

To illustrate the results obtained in Section IV, we con-

structed a BCH code of length n = 214 − 1 = 16383 and

minimum distance 15 (the generating polynomial was com-

puted by calling bchgenpoly(16383,16173) function

of MATLAB). Using the obtained polynomial, we calculated

the generating polynomial of the dual code as explained in

[15] and randomly chose 105 words from the dual code.

These codewords were packed into 180 × 180 symmetric

sign matrices as described in Section as IV of [15]. In

Figure 1 the empirical distribution of the spectral norms of

the obtained pseudo-Wigner matrices (dBCH curve in the

picture) is compared to the theoretical limit for the truly

random matrices, the so-called Tracy-Widom distribution

[26].

VII. CONCLUSIONS

In this article, we extend the framework of pseudo-Wigner

matrices introduced in [15] to a new family of pseudo-

Marchenko-Pastur ensembles. The definitions of both classes

of matrices are based on the concept of r-independence of

the matrix entries to mimic the behavior of the truly random

Wigner and sample covariance ensembles, correspondingly.

The designed properties of these pseudo-random ensembles

0.94 0.96 0.98 1 1.02 1.04 1.06

dBCH
TW

Fig. 1: Distribution of norms of pseudo-Wigner matrices

constructed from a dual BCH code, N = 180, m = 14, d =
15 versus Tracy-Widom law.

allow us to derive approximations of the expected moments

similar to those for corresponding truly random matrices,

which further enables us to achieve bounds on the spectral

norms of the pseudo-Wigner and pseudo-MP ensembles as

functions of the level of independence r. We also provide

explicit constructions of pseudo-Wigner and pseudo-MP

ensembles from dual BCH codes.
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