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Integer-Forcing Architectures for

Uplink Cloud Radio Access Networks
Islam El Bakoury and Bobak Nazer,

Abstract—Consider an uplink cloud radio access network
where users are observed simultaneously by several base stations,
each with a rate-limited link to a central processor, which
wishes to decode all transmitted messages. Recent efforts have
demonstrated the advantages of compression-based strategies
that send quantized channel observations to the central processor,
rather than attempt local decoding. We study the setting where
channel state information is not available at the transmitters,
but known fully or partially at the base stations. We propose
an end-to-end integer-forcing framework for compression-based
uplink cloud radio access, and show that it operates within a
constant gap from the optimal outage probability if channel state

information is fully available at the base stations. We demonstrate
via simulations that our framework is competitive with state-of-
the-art Wyner-Ziv-based strategies.

I. INTRODUCTION

Cloud radio access networks (C-RANs) have emerged as a

promising framework for next-generation wireless communi-

cation systems [2], [3], since they have the potential to reduce

the decoding complexity, energy consumption, and interfer-

ence caused by the growing density of mobile devices [4],

[5] as well as the sharply-increasing demand for higher data

rates [6]. The basic architecture of a C-RAN consists of

many users that communicate to several basestations (BSs)

over a shared wireless channel. Each BS has a finite-capacity

fronthaul link to a central processor (CP). For uplink commu-

nication, the BSs send functions of their observations to the

C-RAN, which employs a joint decoding strategy to recover

the users’ messages. Conversely, for downlink communication,

the CP utilizes a joint encoding strategy to generate the signals

to be sent by the BSs, which are then sent over the finite-

capacity fronthaul, emitted on the wireless channel by the BSs,

and finally decoded by the individual users. In this paper, we

focus exclusively on the uplink C-RAN scenario.

Since an uplink C-RAN can be viewed as a particu-

lar instance of a two-hop relay network, we can design a

transceiver architecture by drawing upon powerful relaying

strategies such as decode-and-forward [7]–[10], compress-and-

forward [9]–[11] and, more recently, compute-and-forward

[12]–[14]. Recall, that, in the decode-and-forward strategy, the

relays recover the individual codewords, in the compute-and-

forward strategy, they recover integer-linear combinations of

the codewords, and, in the compress-and-forward strategy, they
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quantize their analog observations. In our C-RAN context,

decode-and-forward amounts to each BS recovering one or

more codewords while treating the rest as noise, and does not

benefit from the joint processing power of the CP. Compute-

and-forward can attain higher rates by decoding integer-linear

combinations that closely match the channel realization at each

BS, and sending these linear combinations to the CP to solve

for the users’ messages. In contrast, compress-and-forward

offloads most of the decoding process to the CP, which has

access to the quantized channel output from each BS. This

transforms the challenging relaying problem into a virtual

multiple-access channel (MAC), and enables us to employ

“off-the-shelf” equalization and decoding techniques. While

compute-and-forward can outperform compress-and-forward

for certain channel realizations [15], the ensemble average

performance of compress-and-forward is superior, especially

for moderate-to-high fronthaul rates. Furthermore, the BSs do

not need to know the users’ codebooks, and can instead just

forward their quantized channel observations to the CP [16] in

an oblivious fashion. Finally, from a theoretical perspective,

compress-and-forward can be used to establish a “constant-

gap” capacity approximation for C-RANs [17]. For these

reasons, we focus exclusively on compression-based C-RAN

architectures in this paper.

Clearly, the highest possible rates can be attained by

employing simultaneous (or joint) decoding for both the

decompression and channel decoding stages. However, the

implementation complexity of simultaneous decoding scales

exponentially with the number of users, and thus there has

been significant interest in developing low-complexity archi-

tectures with comparable performance. In particular, a series of

recent papers [17]–[22] have proposed a sequential decoding

architecture based on Wyner-Ziv (WZ) compression [23] as

well as optimization algorithms for the associated parame-

ters. Through extensive simulations, this line of work has

demonstrated the performance advantages of WZ compres-

sion over “single-user” compression strategies that ignore the

correlations between the BSs’ observations. Moreover, if the

BSs and CP have perfect channel state information (CSI)

and the users have enough information to set their rates,

then it can be shown that WZ compression combined with

successive interference cancellation (SIC) channel decoding

can attain the same sum rate as simultaneous source and

channel decoding, and operates within a constant gap of the

sum capacity [22]. Thus, sequential compression and channel

decoding architectures are a compelling framework for C-RAN

implementations.

In this paper, we introduce an alternative uplink C-RAN

http://arxiv.org/abs/2001.00607v2


2

architecture based on integer-forcing (IF) source [24] and

channel coding [25], and demonstrate that it can sometimes

outperform the sequential decoding architectures mentioned

above. The underlying principle of integer-forcing is that

lattice codebooks are closed under addition, and therefore

any integer-linear combination of lattice codewords is itself

a codeword. Recall that, for single-user compression, the

quantization rate to attain a fixed distortion depends on the

source variance. For integer-forcing source coding, the rate

depends instead on the variance of the selected integer-linear

combination of the sources. Specifically, the BSs employ

(oblivious) lattice quantization and the CP takes integer-

linear combinations of its received codewords to minimize

the effective source variance prior to reconstruction, and only

afterwards solves the resulting system of linear equations

for the desired quantized sources. Integer-forcing channel

coding is quite similar: the CP first decodes integer-linear

combinations of the codewords, chosen to minimize the noise

variance, and afterwards solves for the transmitted codewords,

thus revealing the users’ messages. We join these two integer-

forcing strategies end-to-end as the basis for our integer-

forcing uplink C-RAN architecture. For the important special

case of symmetric rates, this architecture admits a simple

realization with a single quantization codebook shared by all

the BSs and a single channel codebook shared by all the users,

which can be nearly parallelized, except for the final step

to solve the linear equations. A more sophisticated variation

employs a different codebook at each BS, thus allowing us to

tune the rates based on CSI as well as benefit from sequential

decoding.

The primary motivation for this paper is to evaluate the

performance of integer-forcing for uplink C-RANs and com-

pare it to that of WZ strategies. Although prior IF work has

explored its performance for source coding and channel coding

separately, they must be examined jointly in the context of

compression-based C-RANs. One of our main contributions

are derivations of the end-to-end rate expressions for integer-

forcing, along with algorithms for selecting the associated pa-

rameters. In particular, we explore both parallel and sequential

decoding architectures for integer-forcing source coding.

We evaluate the performance of WZ and IF architectures

via numerical simulations and demonstrate that, in certain

regimes, IF can outperform WZ. Specifically, we consider

scenarios where there is no CSI at the transmitters (CSIT)

and CSI at the receivers (CSIR) is either global (i.e., available

to both BSs and CP) or local (i.e., fully available to the CP

but each BS only knows its own channel coefficients). For

the latter scenario, we propose an opportunistic IF strategy

that helps to mitigate the performance loss due to the lack of

global CSIR. The advantage of IF can be partially attributed

to the fact that it performs well when the rates are symmetric,

whereas WZ attains the highest sum rates when the individual

rates are set to attain a corner point of the capacity region

(which would require CSIT).

To complement our numerical studies, we bound the gap

between the performance of our IF architecture and the outage

capacity, drawing upon recent IF source [26] and channel

coding [27] bounds of the same nature. Overall, this bound

and our simulations show that IF is competitive with respect

to WZ in terms of end-to-end rates on uplink C-RANs. This

observation, combined with the fact that IF is parallelizable

(save for a final matrix multiplication), makes it an appealing

alternative to WZ C-RAN architectures.

A. Paper Organization

The rest of the paper is organized as follows. Section II

gives a problem statement. Section III reviews conventional

techniques for distributed compression and Section IV de-

scribes techniques for IF source coding. Next, Section V

reviews both conventional and IF channel coding, Section VI

presents our IF architecture for uplink C-RANs, Section VII

provides a constant gap result for the outage of the proposed

IF architecture and Section VIII gives algorithms to optimize

the associated parameters. Finally, Section IX presents our

simulation results and Section X concludes the paper.

B. Notation

We denote column vectors by boldface lowercase (e.g., x)

and matrices by boldface uppercase (e.g., X). Let ‖x‖ denote

the Euclidean norm of the vector x. For a matrix X, let X†

denote its transpose, |X| its determinant, X−1 its inverse, and

X⊙X as the elementwise square. Furthermore, let XA,B be

the submatrix of X composed of the rows and columns whose

indices fall the sets A and B, respectively. If A = B, we write

XA,B as XA. All logarithms are taken to base 2 and we define

log+(x) , max(0, log(x)).

II. PROBLEM STATEMENT

A. System Model

w1

wK

Tx 1

...

Tx K xK

x1

yL

y1 BS 1

...

BS L

Csym

Csym

CP
...

ŵ1

ŵK

Fig. 1: C-RAN architecture with K users and L BSs.

Consider the uplink C-RAN scenario illustrated in Figure 1,

where a set K , {1, . . . ,K} of single-antenna users commu-

nicate to a set L , {1, . . . , L} of single-antenna base stations1.

Each BS is connected to the CP via a noiseless fronthaul

links with capacity Csym. The kth user encodes its message

wk ∈ {1, 2, . . . , 2TR}, with symmetric rate R, into a length-

T codeword xk , [xk(1) · · · xk(T )]
† ∈ R

T satisfying the

standard power constraint ‖xk‖2 ≤ TP . The ℓth BS receives

1For simplicity, we assume single-antenna BSs, however, the proposed
schemes can be extended directly to deal with multiple-antenna BSs [1].
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yℓ(t) ∈ R at time t and the vector of all received signals

y(t) , [y1(t) · · · yL(t)]
† at time t can be expressed as

y(t) = Hx(t) + z(t)

where H ∈ R
L×K is the channel matrix, x(t) =

[x1(t) · · · xK(t)]† is the vector of transmitted symbols at

time t, and z(t) is i.i.d. N (0, 1). For simplicity, we focus on

real-valued channels and note that complex-valued channels

can be handled via their real-valued decompositions [25].

We focus on the slow fading setting where the channel

matrix is generated randomly and held fixed across all T
symbols. We assume that no CSI is available at the transmitters

and that CSI at the receivers (CSIR) may be either global or

local. In the global CSIR scenario, the channel matrix H is

known to the CP and all the BSs. In the local CSIR scenario,

H is only fully known to the CP and the ℓth BS only knows the

ℓth row of H (i.e. the channel from all users to itself). This

scenario may be encountered in delay-sensitive applications

where sending H back to the BSs through the fronthaul links

is not feasible.

The ℓth BS maps its observation yℓ , [yℓ(1) · · · yℓ(T )]
†

to an index vℓ ∈ {1, . . . , 2TCsym} and forwards it to the CP

through the fronthaul link. Upon receiving indices v1, . . . , vL,

the CP uses these indices to make estimates ŵ1, . . . , ŵK of

the transmitted messages.

We say that a symmetric rate R is achievable if, for any

ǫ > 0 and T large enough, there exists encoders and decoders

that can attain average probability of error at most ǫ. Since we

assume that H is only known to the receivers, each user has

to tolerate some outage probability.

Definition 1: For a target symmetric rate R, we de-

fine the outage probability of a scheme as pscheme(R) ,

P
(
Rscheme(H) < R

)
where Rscheme(H) is the achievable

symmetric rate under H for this particular scheme. Similarly,

for a target outage probability ρ, we define the symmetric

outage rate as Rscheme,out(ρ) , sup
{
R : pscheme(R) ≤ ρ

}
.

B. Compression-Based Strategies

In compression-based strategies, each BS uses the fronthaul

link to send a compressed version of its observation to the

CP rather than decoding locally, and can thus be oblivious

to the codebooks employed by the users. Specifically, the

ℓth BS maps its received signal yℓ , [yℓ(1) · · · yℓ(T )]
† to

an index vℓ ∈ {1, . . . , 2TRs
ℓ}, where Rs

ℓ is the compression

rate, and forwards it to the CP through a fronthaul link

with capacity Csym. Upon receiving indices v1, . . . , vL, the

CP first reconstructs the signals ŷ1, . . . , ŷL where ŷℓ ,

[ŷℓ(1) · · · ŷℓ(T )], then uses these reconstructions to make

estimates ŵ1, . . . , ŵK of the transmitted messages. Due to the

limited fronthaul capacity, each decompressed signal ŷℓ(t) =
yℓ(t) + qℓ(t), ∀ℓ ∈ L suffers from a quantization noise

qℓ(t), which is characterized via its mean-squared error (MSE)

(i.e., distortion level) 1
T E
[ T∑
t=1

(qℓ(t))
2
]
, which depends on the

fronthaul link capacity Csym and the compression strategy. We

assume that the ŷℓ(t) are unbiased estimates of yℓ(t), since this

facilitates the interface between source and channel coding by

allowing the latter to assume that the quantization noise is

uncorrelated with the transmitted codewords.

The end-to-end effective channel can be written as

ŷ(t) = Hx(t) + z(t) + q(t),

where ŷ(t) , [ŷ1(t) · · · ŷL(t)]
† and q(t) ,

[q1(t) · · · qL(t)]
†.

Remark 1: Recall that the end-to-end symmetric trans-

mission rate is denoted by Rscheme(H). To avoid confusion,

we write the compression rates required to convey the BSs

observations to the CP with distortion levels d1, . . . , dL via a

particular scheme by Rs
scheme,ℓ(H, d1, . . . , dL).

We say that the compression rates

Rs
scheme,ℓ(H, d1, . . . , dL) ≤ Csym for ℓ ∈ L are

achievable for distortions d1, . . . , dL, if for any ǫ > 0
and T large enough, there exist encoders and a decoder

such that 1
T E
[∑T

t=1

(
qℓ(t)

)2]
≤ dℓ + ǫ for ℓ ∈ L.

We also consider schemes with symmetric distortion

levels d1 = · · · = dL = d and symmetric rates

Rs
scheme,1(H, d) = · · · = Rs

scheme,L(H, d) = Rs
scheme(H, d).

C. Local CSIR vs Global CSIR

For global CSIR, the BSs can set the distortion levels

d1, . . . , dL such that the required quantization rates match the

fronthaul capacity, Rs
scheme,ℓ(H, d1, . . . , dL) = Csym, ∀ℓ ∈ L.

However, for the case of local CSIR, this approach is not viable

since the BSs do not know the correlations between their

observations. We suggest two possible workarounds. In the

first, we apply “single-user” compression so that the quantized

observation from the ℓth BS can be reconstructed directly

from the index vℓ. Unfortunately, this compression scheme

does not exploit the correlation between BSs observations.

In the second workaround, the BSs fix the distortion levels

(regardless of H) so that the CP can recover ŷ1(t), . . . , ŷL(t)
with some positive probability. Specifically, define the com-

pression outage probability of a scheme, for a target distortion

dt as psscheme(dt) , P

(
maxℓ R

s
scheme,ℓ(H, dt) > Csym

)
where

the probability is taken with respect to the channel matrix

H. Note that we opt to use a symmetric distortion level dt
for local CSIR, since it is not clear how to set d1, . . . , dL to

obtain a given outage probability. For a target compression

outage probability ρs < ρ, where ρ is the end-to-end outage

probability, the distortion achievable by a compression scheme

is given by dscheme(ρs) , inf {d : psscheme(d) ≤ ρs}.

III. CONVENTIONAL DISTRIBUTED COMPRESSION

We now review conventional schemes for compressing the

BSs observations’ y1, . . . ,yL.

A. “Single-User” Compression

The simplest compression strategy is to ignore any correla-

tions between y1, . . . ,yL. The ℓth BS quantizes its observation

yℓ and sends its index vℓ to the CP through the fronthaul

link. Then, the CP independently recovers ŷℓ using vℓ for

ℓ = 1, . . . , L. Using i.i.d. Gaussian codebooks, the following

rates are achievable.
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Lemma 1 ( [21, Equation (8)]): The achievable compression

rates for single-user compression (SUC) are

Rs
SU,ℓ(Hℓ,K, dℓ) =

1

2
log

(
1 +

P‖Hℓ,K‖2 + 1

dℓ

)
, ∀ℓ ∈ L

where Hℓ,K denotes the ℓth row of the channel matrix H and

dℓ is the ℓth distortion level.

Note that the “1 +” appears inside the logarithm since we

insist upon unbiased estimates.

For symmetric fronthaul constraints Rs
SU,ℓ(Hℓ,K, dSU,ℓ) ≤

Csym, the optimal distortions dSU,ℓ under SUC are

dSU,ℓ =
‖Hℓ,K‖2P + 1

22Csym − 1
, ∀ℓ ∈ L. (1)

B. Wyner-Ziv Compression

Since the received signals y1, . . . ,yL are correlated, we can

use a Wyner-Ziv (WZ) compression strategy [23] to exploit

this correlation using successive decompression [17]–[22].

Assume the decompression order is specified by a permutation

πs : L → L. The basic idea behind WZ strategy is for the CP

to use previously decompressed signals ŷπs(1), . . . , ŷπs(ℓ−1)

as side information while recovering ŷπs(ℓ) to obtain a finer

reconstruction.

Lemma 2 ( [21, Equation (28)]): The achievable compres-

sion rates under Wyner-Ziv compression are given by

Rs
WZ,πs(ℓ)

(H,DTℓ
) = (2)

1

2
log

( ∣∣PHTℓ,K(HTℓ,K)
† + I+DTℓ

∣∣
∣∣PHTℓ−1,K(HTℓ−1,K)

† + I+DTℓ−1

∣∣

)
−

1

2
log(dπs(ℓ))

for ℓ ∈ L where Tℓ , {πs(1), . . . , πs(ℓ)} and D ,

diag(d1, . . . , dL).
See [21] for a proof.

Remark 2 (Global CSIR): It can be shown that, for a

fixed DTℓ−1, Rs
WZ,πs(ℓ)

(H,DTℓ
) is monotonically decreasing

in dπs(ℓ). This means that the optimal dWZ,πs(ℓ) for the

global CSIR case can be obtained successively for ℓ =
1, . . . , L (e.g., using a bisection search method) such that

Rs
WZ,πs(ℓ)

(H,DTℓ
) = Csym.

Remark 3 (Local CSIR): Under local CSIR, H is only

known to the CP. Thus, the rates in (2) are not known to

the BSs and we cannot set the distortion levels accordingly.

Furthermore, it is not clear how to optimize for the asym-

metric distortion levels to satisfy a certain outage probabil-

ity ρs. Hence, we set a symmetric distortion dt such that

P

(
maxℓR

s
WZ,ℓ(H, dtI) > Csym

)
≤ ρs.

C. Symmetric Berger-Tung Compression

The rate region for distributed Gaussian source coding

remains an open problem. However, the Berger-Tung (BT)

quantize-and-bin strategy [28] is known to be optimal for two

(scalar) sources [29]. Here, following the example of [24], we

take the BT rate region, evaluated for Gaussian test channels

and with a symmetric distortion constraint, as a benchmark for

our compression schemes. This strategy relies upon simulta-

neous joint typicality decoding, which has substantially higher

implementation complexity than the sequential decoding used

for WZ compression.

Lemma 3: The achievable symmetric compression rate using

the BT compression scheme is

Rs
BT(H, dBT) =

1

2L
log

∣∣∣∣I+
1

dBT

KY Y

∣∣∣∣

where KY Y = PHH†+ I is the covariance matrix of the BS

observations and dBT is the symmetric distortion level.

See [24, Sec. II] for further details.

Remark 4 (Global CSIR): Similar to the WZ scheme,

Rs
BT(H, dBT) is monotonically decreasing in dBT, thus we

can use a bisection search method to choose dBT such that

Rs
BT(H, dBT) = Csym.
Remark 5 (Local CSIR): For local CSIR, one can still

implement the BT quantize-and-bin strategy by fixing dBT,

independent of the channel H, to the smallest value that

satisfies psBT ≤ ρs.

IV. LATTICE DISTRIBUTED COMPRESSION

We now describe schemes for lattice quantization for both

global and local CSIR scenarios. We start with definitions

and coding theorems for lattices that will be useful in our

strategies.

A. Lattice Preliminaries

A lattice Λ is a discrete additive subgroup of R
T that is

closed under addition and reflection, and can be expressed as

Λ = {Fw : w ∈ Z
T } for some (non-unique) generator matrix

F ∈ R
T×T . The lattice quantizer maps any point in R

T to

the nearest point in Λ (breaking ties systematically),

QΛ(x) , argmin
λ∈Λ

‖x− λ‖2,

which in turn defines the Voronoi region V(Λ) as the subset

of RT that quantizes to the zero vector. The mod Λ operator

returns the lattice quantization error [x] mod Λ , x−QΛ(x)
and the second moment of a lattice is σ2(Λ) , 1

T E‖x‖
2 for

x ∼ Unif (V (Λ)). We also define the dual lattice as Λ∗ ,

{F−†a : a ∈ Z
K}.

Let B(0, r) , {x ∈ R
K : ‖x‖ ≤ r} be the ball centered at

the origin with radius r. For a lattice Λ = {Fa : a ∈ Z
K},

the mth successive minima is

λm(F) , inf{r > 0 : Λ∩B(0, r) contains m linearly

independent lattice points}

for m = 1, . . . ,K . The following transference theorem due to

Banaszczyk allows us to connect the successive minima of a

lattice to those of its dual.

Lemma 4 ( [30, Theorem 2.1]): For m = 1, . . . ,K , we have

that λm(F)λK−m+1(F
−†) ≤ K .

Lemma 5 (Crypto Lemma): For y ∈ R
T and a dither u ∼

Unif(V(Λ)) independent of y, we have that q = [y + u] mod
Λ is independent of y and q ∼ Unif(V(Λ)). See [31] for a

proof.

We say that the lattice ΛC is nested in the lattice ΛF if

ΛC ⊂ ΛF . A nested lattice codebook ΛF ∩V(ΛC) consists of
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all the fine lattice points inside the fundamental Voronoi region

of the coarse lattice. Note that nested lattices ΛC ⊂ ΛF satisfy

a distributive law, i.e., for any x,y ∈ R
T and a, b ∈ Z,

[a [x] mod ΛC + b [y] mod ΛC ] mod ΛF

= [ax+ by] mod ΛF .

The following lemma encapsulates some of the nested lattice

existence results from [32] in a form suitable for establishing

our integer-forcing source coding results.

Lemma 6 ( [32, Theorem 2]): For θ1, . . . , θK ∈ R, ǫ > 0,

and T large enough, there exist a nested lattice chain ΛK ⊆
. . . ⊆ Λ1 (generated using Construction A from a p-ary linear

code for a large enough prime p) such that for m = 1, . . . , L,

1. The second moment satistfies θm ≤ σ2(Λm) < θm + ǫ.
2. A mixture of Gaussian and lattice quantization noise will

remain in the Voronoi cell w.h.p. if its second moment is

below θm. Specifically, if zeff = β0z0 +
K∑

k=1

βnzk where

β0, . . . , βK ∈ R, z0 ∼ N (0, I), zk ∼ Unif(V(Λk)) and if

β2
0+

K∑
k=1

β2
kθk < θm, then Pr ([zeff] mod Λm 6= zeff) ≤ ǫ.

3. The rate of the codebook formed by intersecting Λm with

V(Λℓ) satisfies

1

2
log

(
θℓ
θm

)
≤

1

T
log
∣∣Λm∩V(Λℓ)

∣∣ < 1

2
log

(
θℓ
θm

)
+ ǫ.

B. Integer-Forcing Source Coding with Global CSIR

The integer-forcing source coding (IFSC) strategy exploits

the correlation between y1, . . . ,yL by first recovering integer-

linear combinations

vs,m ,

L∑

ℓ=1

as,m,ℓ ŷℓ, as,m,ℓ ∈ Z, ∀m ∈ L.

As we will see, by optimizing over the choices of these

integers, we can reduce the variances of the linear com-

binations vs,1, . . . ,vs,L, thus relaxing the requirements on

the second moment of the coarse lattice and decreasing the

compression rate. If we recover L linearly independent integer

combinations, we can solve them for the quantized sources

ŷ1, . . . , ŷL.

Let As be the L×L integer matrix whose (m, ℓ)th entry is

as,m,ℓ and note that we can solve for the quantized sources if

As is full rank.
Codebook: We use a nested lattice codebook C , ΛF ∩

V(ΛC) comprised of nested lattices ΛC ⊂ ΛF selected using

Lemma 6 with rate Csym and parameters θF = d and θC =
d 22Csym where d is the achievable symmetric distortion to be

set later.
Compression: The ℓth BS adds a random dither uℓ ∼

Unif(V(ΛF )), then computes

λℓ = [QΛF (yℓ + uℓ)] mod ΛC .

Note that the random dithers u1, . . . ,uL are independent and

known to the CP2. The ℓth BS then sends the index vℓ ∈

2The availability of random dithers at the transmitters and receivers is a
standard assumption made to streamline achievability proofs for nested lattice
codes. It is straightforward to show that the same rates are achievable by
replacing these random dithers with deterministic ones. See, for instance, [12,
App. C] for more details.

{
1, . . . , 2TCsym

}
of the codeword λℓ to the CP through the

fronthaul link.

Decompression: For each ℓ ∈ L, the CP first recovers λℓ

from vℓ, then removes the dithers to recover

ỹℓ = [λℓ − uℓ] mod ΛC

(a)
= [QΛF (yℓ + uℓ)− uℓ] mod ΛC

(b)
= [yℓ + qℓ] mod ΛC

where (a) holds due to the distributive law, (b) holds from

qℓ = −[yℓ + uℓ] mod ΛF which is independent of yℓ and

uniformly distributed over V(ΛF ) by the Crypto Lemma.

The CP then estimates the integer-linear combinations

v̂s,m =

[
L∑

ℓ=1

as,m,ℓỹℓ

]
mod ΛC

(a)
=

[
L∑

ℓ=1

as,m,ℓ (yℓ + qℓ)

]
mod ΛC

w.h.p.
=

L∑

ℓ=1

as,m,ℓ (yℓ + qℓ)

where (a) holds from the distributive law and the last

equality holds with high probability by the second prop-

erty of Lemma 6 if the effective variance satisfies

1
T E
[
‖

L∑
ℓ=1

as,m,ℓ (yℓ + qℓ) ‖2
]
< θC for ℓ = 1, . . . , L. This

can be guaranteed by choosing d such that

max
ℓ

a
†
s,ℓ (KY Y + dI) as,ℓ + ǫ = θC = d 22Csym

where KY Y , 1
T E
[
YY†

]
= PHH† + I is the effective

covariance of Y , [y1 · · · yL]
†, 1

T E‖qℓ‖2 = d, as,m ,

[as,m,1 · · · as,m,L]
†, and ǫ > 0 (and will be sent to 0 as the

block length T tends to infinity).

Assuming correct recovery v̂s,m = vs,m for m = 1, . . . , L,

the CP forms the matrix

Vs , [vs,1 · · · vs,L]
† = As (Y +Q)

where Q , [q1 · · · qL]
†, then applies the inverse of As to

obtain Ŷ , A−1
s Vs = Y +Q.

Lemma 7 ( [24, Theorem 1]): The IFSC symmetric rate for

symmetric distortion d is

Rs
IFSC(H, d) = min

As∈ZL×L
max

ℓ=1,...,L

1

2
log+ ‖Fsas,ℓ‖

2 (3)

where Fs is any matrix satisfying F†
sFs =

1
dKY Y +I, KY Y =

PHH† + I is the effective covariance matrix of Y and the

minimization is over all full-rank As ∈ Z
L×L.

Remark 6: It may seem that the lattice codebook C depends

on the channel realization H, since θF = d and d should

be set such that Rs
IFSC(H, d) = Csym. However, we can fix

a codebook C with arbitrary d′ > 0, independent of H, and

scale it (i.e., scale both ΛF and ΛC) using a parameter β
that depends on H, such that d = β2d′. It is also worth

noting that with asymmetric scaling parameters β1, . . . , βL and

setting As = I, we can recover the SUC performance of the

i.i.d. Gaussian codebooks from (III-A).
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C. Asymmetric Integer-Forcing Source Coding with Global

CSIR

We now recall the asymmetric IFSC strategy introduced in

[33].

Codebook: Without loss of generality, assume we have 2L
nested lattices ΛC,L ⊆ · · · ⊆ ΛC,1 ⊆ ΛF,L ⊆ · · · ⊆ ΛF,1

generated using Lemma 6 with parameters θC,1 ≤ · · · ≤
θC,L ≤ θF,1 ≤ · · · ≤ θF,L that each pair forms a codebook

Cℓ , ΛF,ℓ ∩ V(ΛC,ℓ) with rate 1
2 log

(
θC,ℓ

θF,ℓ

)
= Csym.

Compression: The ℓth BS maps yℓ to a lattice codeword

λℓ ∈ Cℓ

λℓ =
[
QΛF,ℓ

(yℓ + uℓ)
]
mod ΛC,ℓ, ∀ℓ ∈ L

where uℓ is a random dither uniformly distributed over

V(ΛF,ℓ) and independent of yℓ.

Algebraic Successive Decompression: For a full-rank

integer matrix As, assume that the recovered combinations

vs,1, . . . ,vs,L have been re-indexed (i.e., the rows of As)

such that their effective variances are monotonically increasing

(i.e., E‖vs,1‖2 ≤ · · · ≤ E‖vs,L‖2). Furthermore, assume that

the BSs are re-indexed (i.e., the columns of As, columns

and rows of KY Y as well as the diagonal elements of D)

such that the full-rank integer matrix As has full-rank sub-

matrices As,[1:m], for m = 1, . . . , L. Finally, note that for the

symmetric rate constraint Csym, the monotonically increasing

effective variances E‖vs,1‖2 ≤ · · · ≤ E‖vs,L‖2 induces the

monotonically increasing distortion levels d1 ≤ · · · ≤ dL.

Given the lattice codewords λ1, . . . ,λL, the CP removes

the dithers to get

ỹℓ = [λℓ − uℓ] mod ΛC,ℓ
(a)
= [yℓ + qℓ] mod ΛC,ℓ

where (a) follows from the distributive law, and qℓ =
−[yℓ + uℓ] mod ΛF,ℓ is uniformly distributed over V(ΛF,ℓ)
and independent of yℓ by the Crypto lemma.

For m = 1, . . . , L, we attempt to recover the mth inte-

ger linear combination vs,m =
∑L

ℓ=1 as,m,ℓ (yℓ + qℓ) using

vs,1, . . . ,vs,m−1 as side information. The main technical

obstacle is that the CP has ỹℓ = [yℓ + qℓ] mod ΛC,ℓ, whereas

we need ỹℓ = [yℓ + qℓ] mod ΛC,m for ℓ ∈ L to form[∑L
ℓ=1 as,m,ℓ (yℓ + qℓ)

]
mod ΛC,m. If ΛC,ℓ ⊆ ΛC,m, then

[[yℓ + qℓ] mod ΛC,ℓ] mod ΛC,m = [yℓ + qℓ] mod ΛC,m.

However, this relation does not hold for ΛC,ℓ ⊃ ΛC,m.

However, as shown in Lemma 16 of Appendix A, we can

use vs,1, . . . ,vs,m−1 to recover

tm,ℓ , [yℓ + qℓ] mod ΛC,m, ∀ℓ ∈ L.

The CP then estimates

v̂s,m =

[
L∑

ℓ=1

as,m,ℓtm,ℓ

]
mod ΛC,m

(a)
=

[
L∑

ℓ=1

as,m,ℓ (yℓ + qℓ)

]
mod ΛC,m

(b)
= vs,m

where (a) holds from the distributive law and (b) holds with

high probability if

a†s,m (KY Y +D)as,m < θC,m

where KY Y = PHH† + I and D , diag(d1, . . . , dL).
Finally, by setting θF,m = dm and θC,m =

a†s,m (KY Y +D)as,m + ǫ for some ǫ that tends to zero

as the blocklength goes to infinity, the CP recovers

Vs = As (Y +Q) with high probability where Vs ,

[vs,1 · · · vs,L]
†. Finally, it applies the inverse A−1

s to obtain

Ŷ , Y +Q.

Lemma 8 ( [33, Theorem 3]): The achievable asymmetric

rates for IFSC with algebraic successive cancellation are

Rs
IFSC,ℓ(H,D) = min

As∈Z
L×L

1

2
log+

(
a
†
s,ℓ (KY Y +D) as,ℓ

dℓ

)

(4)

for ℓ = 1, . . . , L where the minimization over all integer

matrices As such that Rank(As,[1:m]) = m for m = 1, . . . , L

and a
†
s,1 (KY Y +D)as,1 ≤ · · · ≤ a

†
s,L (KY Y +D) as,L.

Remark 7: Note that, to achieve the rates in (7) or (8), all

BSs need to know KY Y = PHH†+I, and thus require global

CSIR. Furthermore, for asymmetric IFSC, the second moment

of the fine lattices define the distortion levels directly. This

means that the BSs must maintain a collection of codebooks

in order to match their distortion levels dℓ to the realization

of H.

Next, we turn to discuss compression schemes suitable for

local CSIR.

D. Integer-Forcing Source Coding with Local CSIR

In the local CSIR setting, the BSs must tolerate some

probability of outage in order to exploit the correlations

between y1, . . . ,yL. Specifically, to ensure that the CP can

successfully recover ŷ1, . . . , ŷL with probability approaching

1−ρs, we use the IFSC scheme from Section IV-B with a fixed

symmetric distortion dt chosen (e.g., using bisection search)

such that psoutage(dt) = ρs.

The compression and decompression processes are similar

to the IFSC in Section IV-B. However, for local CSIR, we do

not adapt the fine and coarse lattices according to the channel

matrix H. Rather, we select a fixed codebook to attain the

desired outage probability ρs.

Remark 8: It is worth noting that the end-to-end outage

event is the union of two events, namely, the event that the

CP fails to recover ŷ1, . . . , ŷL successfully (i.e., compression

outage) and the event that the CP fails to decode the messages

w1, . . . , wL, even with a successful recovery of ŷ1, . . . , ŷL

(i.e., channel coding outage). Hence, the target compression

outage probability ρs and the channel coding outage should

be set such that the end-to-end outage probability does not

exceed ρ. In our work, we simply take ρs =
ρ
2 .

E. Opportunistic IFSC for Local CSIR

For some channel realizations H, the achievable distortion

levels under SU compression dSU,ℓ in (III-A) may in fact be
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smaller than the fixed symmetric distortion dt that attains the

desired outage probability ρs. This observation suggests the

following opportunistic scheme that combines the IFSC and

SUC schemes. First, we choose a lattice codebook with a fine

lattice that induces a distortion level dt as in Section IV-D.

Then, for ℓ such that dSU,ℓ < dt, the ℓth BS scales its observa-

tion using a parameter βℓ such that the CP reconstructs yℓ up

to distortion dSU,ℓ before forming the linear combinations as in

the IFSC scheme. For the remaining ℓ such that dSU,ℓ > dt, we

proceed as in the basic IFSC scheme. Note that the effective

variance of the combinations will be reduced. Next, we present

the opportunistic scheme in detail.

Codebook: Select a nested lattice pair ΛF ⊆ ΛC using

Lemma 6 with parameters θF = dt and θC = dt2
2Csym , where

dt is the target symmetric distortion. The nested lattice pair

forms the lattice codebook C , ΛF ∩ V(ΛC) with rate Csym.

Compression: Using the codebook C, ℓth BS maps its

observation yℓ to the lattice codeword

λℓ = [QΛF (βℓyℓ + uℓ)] mod ΛC

where uℓ is a random dither uniformly distributed over V(ΛF )
and βℓ = 1 whenever dSU,ℓ > dt. However, when dSU,ℓ < dt
we have

Rs
SU,ℓ(H, dt) ,

1

2
log

(
P‖Hℓ,K‖2 + 1 + dt

dt

)
< Csym

and we can better utilize the ℓth fronthaul link by scaling up

yℓ using βℓ > 1 such that

βℓ =

√
dt (22Csym − 1)− ǫ

P‖Hℓ,K‖2 + 1
. (5)

where ǫ goes to zero as the blocklength goes to infinity.

Decompression: First, the CP recovers

ỹℓ , [λℓ − uℓ] mod ΛC

(a)
= [βℓyℓ + q̃ℓ] mod ΛC

(b)
=

{
[yℓ + q̃ℓ] mod ΛC if dSU,ℓ > dt

βℓyℓ + q̃ℓ if dSU,ℓ < dt

where q̃ℓ = − [βℓyℓ + uℓ] mod ΛF is independent of yℓ

and uniformly distributed over V(ΛF ) by the Crypto Lemma,

(a) holds from the distributive law and (b) holds with high

probability if β2
ℓ

(
P‖Hℓ,K‖2 + 1

)
+ dt < θC which holds by

choosing βℓ as in (IV-E).

Defining

tℓ , ỹℓ/βℓ =

{
[yℓ + qℓ] mod ΛC if dSU,ℓ > dt
yℓ + qℓ if dSU,ℓ < dt

where qℓ , q̃ℓ/βℓ and 1
T E‖qℓ‖2 = dt/β

2
ℓ , the CP then forms

linear combinations

v̂m =

[
L∑

ℓ=1

am,ℓtℓ

]
mod ΛC

(a)
=

[
L∑

ℓ=1

am,ℓ (yℓ + qℓ)

]
mod ΛC

(b)
=

L∑

ℓ=1

as,m,ℓ (yℓ + qℓ)

where (a) holds from the distributive law and (b) holds w.h.p.

if

1

T
E‖vm‖2 = a†m (KY Y +D) am < θC ,

where D = diag(d1, . . . , dL) is the effective covariance matrix

of Q and dℓ = dt/β
2
ℓ for ℓ ∈ L.

To guarantee correct recovery with probability at least 1−ρs,

dt should be chosen such that

P

(
max
m

a†m (KY Y +D)am ≥ θC

)
= ρs .

Finally, assuming correct recovery, the CP applies A−1 to

obtain Ŷ = A−1V = Y +Q.

Lemma 9: The symmetric compression rate for opportunistic

IFSC is

Rs
IFSC,op(H, dt) = (6)

min
A∈Z

L×L

Rank(A)=L

max
ℓ

1

2
log+

(
a
†
ℓ (KY Y +D)aℓ

dt

)

where

D = diag(dt/β
2
1 , . . . , dt/β

2
L)

βℓ =





1 if dt ≤
P‖Hℓ,K‖2 + 1

22Csym − 1√
22Csym − 1

P‖Hℓ,K‖2 + 1
dt if dt >

P‖Hℓ,K‖2 + 1

22Csym − 1

(7)

and dt is chosen such that P(Rs
IFSC,op(H, dt) > Csym) = ρs.

V. CENTRAL PROCESSOR CHANNEL DECODING

Once it has recovered the quantized observations

ŷ1, . . . , ŷL, the CP can act as the receiver in a virtual

MAC to decode the transmitted codewords x1, . . . ,xK . It

will be useful to write the recovered observations at the CP

as

Ŷ = Y +Q = HX+ Z+Q

where X , [x1 · · · xK ]†, Y , [y1 · · · yL]
†, Ŷ ,

[ŷ1 · · · ŷL]
†, Z , [z(1) · · · z(T )] and Q , [q1 · · · qL]

†

has a diagonal effective covariance matrix D , 1
T E
(
QQ†

)
.

Below, we present several decoding strategies and their achiev-

able symmetric rates for a given channel realization H and

distortion matrix D. This then yields the symmetric rate as

a function of H, which can be plugged into Definition 1

to determine the outage rate. For the uplink C-RAN, the

distortion levels in D are determined by the compression

schemes chosen amongst those in Section III.
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A. Conventional Decoders

1) Joint ML Decoding: The best performance is attained by

simultaneously decoding all codewords x1, . . . ,xK via a joint

maximum likelihood (ML) decoder. Although its implementa-

tion complexity scales exponentially with number of users K ,

we include it as a benchmark.

Lemma 10: For a given channel matrix H and distortion

matrix D, the achievable symmetric rate using joint ML

decoding is

RML(H,D) = min
S⊆K

1

2|S|
log




∣∣∣PHL,SH
†
L,S + I+D

∣∣∣
|I+D|


 .

Lemma 10 follows from using joint typicality analysis and can

be considered a special case of [17, Proposition 1].

Remark 9 (Local CSIR): Under local CSIR, the channel

outage probability constraint is reduced to half its value under

global CSIR (i.e., ρ
2 instead of ρ), since the other half is

reserved for the decompression outage event.

2) Single-User Decoding: Since the complexity of joint

ML decoding scales exponentially with the number of users,

it is often of interest to find suboptimal decoding algorithms

of lower complexity. For instance, the CP can apply a linear

equalizer B to its reconstructed observations to get Ỹ = BŶ

and then apply a single-user decoder to each row of Ỹ to

recover the individual codewords. Thus, each row of B should

be selected to maximize the SINR for the desired codeword,

which corresponds to the MMSE equalization vector.

Lemma 11: For a given channel matrix H and distortion

matrix D, the achievable symmetric rate using an MMSE

linear receiver is

RMMSE(H,D) =

1

2
min
k∈K

log


1 +

P (b†
kHL,k)

2

b
†
k(I+D)bk + P

∑
i6=k

(b†
kHL,i)2




where b
†
k = PH

†
L,k

(
P

K∑
j=1

HL,jH
†
L,j + I+D

)−1

is the ℓth

row of the MMSE equalization matrix B and HL,k is the kth

column of the channel matrix H.

See [34, Section 8.3.3] for more details on MMSE decoders.

3) Successive Interference Cancellation: As in Wyner-Ziv

compression, we can use recovered codewords as side informa-

tion. In order to improve the performance, consider a decoding

order defined by the permutation πc : K → K. The MMSE

decoder with successive interference cancellation (MMSE-

SIC) cancels out the effect of previously decoded codewords

xπc(1), . . . ,xπc(k−1) (assuming successful decoding) before

decoding the current codeword xπc(k), and then equalizes the

result to get

ỹ
†
k = b

†
k

(
Ŷ −

k−1∑

i=1

HL,πc(i)x
†
πc(i)

)
,

which is subsequently fed to a single-user decoder to recover

xπc(k).

Lemma 12: For a given channel matrix H and distortion

matrix D, the achievable symmetric rate using an MMSE-SIC

decoder is

RMMSE-SIC(H,D) =

1

2
max
πc

min
k∈K

log


1 +

P (b†
kHL,πc(k))

2

b
†
k(I+D)bk + P

∑
i>k

(b†
kHL,πc(i))

2




where b
†
k = PH

†
L,πc(k)

(P
∑
j≥k

HL,πc(j)H
†
L,πc(j)

+ I +D)−1

is the MMSE-SIC equalization vector. See [34, Section 8.3.3]

for more details on MMSE-SIC decoders.

B. Integer-Forcing Decoding

The idea behind an integer-forcing receiver is to switch the

usual order of eliminating interference and denoising. It first,

decodes integer-linear combinations of the transmitted code-

words, and then solves for the desired codewords. Specifically,

in order to decode the combinations

v†
c,m , a†c,mX, ∀m ∈ K

where ac,m ∈ Z
K , the CP first applies linear equalizers b†

c,m

to get effective channels

ỹ†
m = b†

c,mŶ

= a†c,m X
︸ ︷︷ ︸

lattice codeword

+(b†
c,mH− a†c,m)X+ b†

c,m(Z+Q)
︸ ︷︷ ︸

effective noise

= v†
c,m + z

†
eff,m, ∀m ∈ K

where z
†
eff,m = (b†

c,mH − a†c,m)X + b†
c,m(Z + Q) is the

effective noise due to the scaled AWGN b†
c,mZ, the scaled

quantization noise b†
c,mQ and the mismatch between the

equalized channel b†
c,mH and the integer vector a†c,m. The CP

then employs single-user decoders to decode vc,1, . . . ,vc,K ,

and finally solves for x1, . . . ,xK .

The effective variance of zeff,m is

σ2
eff,m ,

1

T
E‖zeff,m‖2 (8)

= ‖b†
c,mH− a†c,m‖2P + b†

c,m (I+D)bc,m

where D , diag(d1, . . . , dL) is the covariance matrix of the

quantization noise Q.

Using the MMSE equalizer that minimizes the noise vari-

ance in (V-B)

b†
c,m = Pa†c,mH†

(
PHH† + I+D

)−1
,

and applying Woodbury’s matrix identity, we can write (V-B)

as

σ2
eff,m = a†c,m

(
P−1I+H† (I+D)−1

H
)−1

ac,m

= ‖Fc ac,m‖2

where Fc is any matrix satisfies the decomposition F†
cFc =(

P−1I+H† (I+D)
−1

H
)−1

.
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Lemma 13: For a given channel matrix H and distortion

matrix D, the achievable symmetric rate for the integer-forcing

strategy with parallel channel decoding is

RIFCC(H,D) = max
Ac∈Z

K×K

rank(Ac)=K

min
m∈K

1

2
log+

(
P

‖Fc ac,m‖2

)
.

Remark 10: Similar to MMSE-SIC, successive decoding for

the combinations vc,1, . . . ,vc,K is possible and improves the

achievable symmetric rate for IF receivers on average. See [35]

for more details.

VI. INTEGER-FORCING C-RAN ARCHITECTURE

The end-to-end integer-forcing architecture for C-RAN is

illustrated in Figure 2. It employs one of the integer-forcing

source coding schemes in Section IV to convey the channel

observations to the CP, which then recovers the transmitted

messages via integer-forcing channel decoding discussed in

Section V-B.

Theorem 1: The achievable symmetric rate for the IF C-

RAN strategy with global CSIR, parallel decompression, and

parallel channel decoding is

RIF-CRAN(H) = max
d,Ac∈ZK×K

min
m∈K

1

2
log+

(
P

‖Fc ac,m‖2

)

subject to Rank(Ac) = K

and Rs
IFSC(H, d) ≤ Csym

(9)

where Rs
IFSC(H, d) is from (7) and Fc is any matrix satisfying

F†
c Fc =

(
P−1I+ 1

d+1H
†H
)−1

. Furthermore, the end-to-end

performance can be enhanced by using asymmetric distortions

for IFSC through algebraic successive decompression.

Theorem 2: The achievable symmetric rate for the IF C-

RAN strategy with global CSIR, algebraic SIC decompression,

and parallel channel decoding is

RIF-CRAN(H) = max
D,Ac∈ZK×K

min
m∈K

1

2
log+

(
P

‖Fc ac,m‖2

)
(10)

subject to Rank(Ac) = K

and Rs
IFSC,ℓ(H,D) ≤ Csym, ∀ℓ ∈ L

where Rs
IFSC,ℓ(H,D) is from (8) and Fc satisfies F†

cFc =(
P−1I+H† (I+D)

−1
H
)−1

.

Theorem 3: The achievable symmetric rate for the IF

C-RAN strategy with local CSIR, opportunistic IFSC, and

parallel channel decoding is

RIF-CRAN(H) = max
dt,Ac∈ZK×K

min
m∈K

1

2
log+

(
P

‖Fc ac,m‖2

)

subject to Rank(Ac) = K

where Fc is any matrix that satisfies

F†
cFc =

(
P−1I+H† (I+D)

−1
H
)−1

, D =

diag(dt/β
2
1 , . . . , dt/β

2
L), βℓ is given by (9) and dt is

chosen such that P

(
Rs

IFSC,op(H, dt) > Csym

)
= ρs where

Rs
IFSC,op(H, dt) is given by (9) and ρs is the compression

outage probability.

The optimization problems in Theorems 1, 2, and 3 are quite

challenging due to the maximization over full-rank integer

matrices as well as the non-convex objective of selecting

the distortion levels. We propose (sub-optimal) algorithms for

choosing the integer matrices as well the distortion levels in

Section VIII.

VII. IF OUTAGE UPPER BOUND

As noted in [25], for some channel realizations H, the

achievable rate of IF channel coding can be far from the

MIMO capacity. However, [27] quantifies the measure of such

channels H for the important special case of Gaussian fading

(i.e., H ∼ N (0, I)). A similar story holds for IF source

coding as shown in [26]: for certain covariance matrices of

the form PHH† + I, the performance falls short of BT

compression, but, for i.i.d. Gaussian H, the measure of such

“difficult” channels can be bounded. Here, we combine ideas

from the proofs in [26], [27] to bound the measure of channels

for which our IF-CRAN scheme falls significantly below the

uplink C-RAN capacity.

To this end, we first express the IF rate in (1) in terms of

the K th successive minima of the lattice S
− 1

2
2 U†

Z
K where the

diagonal matrix S2 and the orthogonal matrix U stem from

the eigenvalue decomposition US2U
† = P

d+1H
†H + I. We

then lower bound this rate expression using Lemma 4:

RIF-CRAN(H) =
1

2
log

(
1

λ2
K

(
S
− 1

2
2 U†

)

)

≥
1

2
log

(
λ2
1

(
S

1
2
2 U

†
)

K2

)

=
1

2
log

(
min
a∈Z

K

a 6=0

‖S
1
2
2 U

†a‖2

K2

)
. (11)

We now recall a result from [27] that provides a bound on

the outage probability for integer-forcing over i.i.d. Gaussian

fading. We make a slight modification to the original proof by

using the Banaszczyk transference theorem from Lemma 4 to

exchange α(K) in [27, Equation 36] with K2, which yields

the following lemma, whose form is more convenient for our

analysis.

Lemma 14 ( [27, Theorem 1]): For the Gaussian MAC (i.e.,

Csym = ∞ and d = 0) and any constant ∆CMAC > 0, we have

P


min

a∈Z
K

a 6=0

‖S
1
2
1 U

†a‖2 < 2
2(C−∆CMAC)

K K2


 ≤ γ(K)2−∆CMAC

where the orthogonal matrix U and the diagonal matrix

S1 comes from the eigenvalue decomposition US1U
† =

PH†H+ I, C = 1
2 log |S1| is the MAC capacity and γ(K) is

defined in [27, Equation (59)] as c(K) with replacing α(K)
by K2.

Let us define the probability that the difference between the

IF C-RAN achievable rate and a cut-set bound on the sum

capacity is larger than some positive constant ∆C as

Pdiff(∆C) , P (KRIF-CRAN(H) < Cupper(H)−∆C)
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Fig. 2: Integer-forcing architecture for C-RAN with symmetric distortion.

where ∆C > 0 is some constant and Cupper(H) ,

min
{
LCsym,

1
2 log

(∣∣PH†H+ I
∣∣)} is a cut-set bound for the

sum capacity and the probability is taken with respect to

H ∼ N (0, I).
Lemma 15: For the uplink C-RAN channel with i.i.d. Gaus-

sian fading, H ∼ N (0, I), the probability that the rate of the

integer-forcing strategy with global CSIR, parallel decompres-

sion, and parallel channel decoding is not within ∆C of the

sum-capacity is upper bounded by

Pdiff(∆C) ≤ γ(max{K,L}) 2−∆C/3

where γ(max{K,L}) is defined in [26, Equation (45)] as

c(max{K,L}).
Proof: The proof closely follows that of [27, Theorem 1].

We start by bounding Pdiff(∆C) as

Pdiff(∆C)

≤ P
(
KRIF-CRAN(H) < Cupper(H)−∆C

∣∣A
)

︸ ︷︷ ︸
(i)

+P (Ac)︸ ︷︷ ︸
(ii)

.

where A , {Rs
IFSC(H, d∗) < Rs

BT(H, d∗) + ∆R} is the

event that the IFSC rate is within a constant ∆R > 0 (to

be chosen later) from the BT compression rate and d∗ > 0
is the distortion that saturates the fronthaul rate constraint

Rs
IFSC(H, d∗) = Csym. For the rest of the proof, we will

omit d∗ from Rs
IFSC(H, d∗) and Rs

BT(H, d∗) for the sake of

conciseness.

Using [26, Theorem 1], we immediately have the upper

bound (ii) ≤ γ(L)2−∆R where γ(L) is defined in [26,

Equation (45)]. Next, to bound (i), we use (VII) to get

(i) ≤ PU,S1

(
min
a

‖S
1/2
2 U†a‖2 < K222(Cupper(H)−∆C)/K

∣∣A
)

= PS1

[
PU|S1

(
min
a

‖S
1/2
2 U†a‖2

< K22−2∆C/K min{|S1|
1/K , 22LCsym/K}

∣∣A
)]

= PS1

[
PU|S1

(
min
a

‖S̃
1/2
2 U†a‖2 (12)

< K22−2∆C/K min

{(
|S1|

|S2|

)1/K

,
22LCsym/K

|S2|1/K

}∣∣∣∣A
)]

where the minimization is over all non-zero integer vectors

a ∈ Z
K\{0}, U, S1 and S2 come from the eigenvalue decom-

positions US1U
† = PH†H+I and US2U

† = P
d∗+1H

†H+I,

and S̃2 , S2

|S2|1/K
.

We now proceed to bound the RHS of the inequality inside

(15) for any value of S1 assuming that event A.

K22−2∆C/K min

{(
|S1|

|S2|

)1/K

,
22LCsym/K

|S2|1/K

}

(a)

≤ K22−2∆C/K min

{
(d∗ + 1)L/K ,

22LCsym/K

22R
s
BT
(H)/K

(
d∗ + 1

d∗

)L/K
}

(b)

≤ K22−2∆C/K min

{
(d∗ + 1)L/K , 22∆R/K

(
d∗ + 1

d∗

)L/K
}

(13)

where (a) holds from |S2| = | 1
d∗+1 (S1 + d∗I)| > | 1

d∗+1S1|

and Rs
BT(H) = 1

2 log
∣∣ 1
d∗KY Y + I

∣∣ = 1
2 log

∣∣∣d∗+1
d∗ S2

∣∣∣ and (b)

holds from Rs
BT(H) ≥ Rs

IFSC(H)−∆R = LCsym −∆R given

A.

Next, we partition the space of possible values of S1 into

B and Bc, where B ,
{
1
2 log |S1| > LCsym − L/2−∆R

}

and bound d∗ depending on the event B as in Lemma 17 in

Appendix B. Using (15), we can upper bound (i) by

PS1

[
PU|S1

(
min
a

‖S̃
1/2
2 U†a‖2 < K22−2(∆C−∆R)/K

(
d∗ + 1

d∗

)L/K ∣∣∣∣A,B

)
1B

]

+ PS1

[
PU|S1

(
min
a

‖S̃
1/2
2 U†a‖2 < K22−2∆C/K(d∗ + 1)L/K

∣∣∣∣A,Bc

)
1Bc

]

(a)

≤ PS1

[
PU|S1

(
min
a

‖S̃
1/2
2 U†a‖2 < K22−2(∆C−∆R)/K22(∆R+L)/K

∣∣∣∣A,B

)
1B

]

+ PS1

[
PU|S1

(
min
a

‖S̃
1/2
2 U†a‖2 < K22−2∆C/K2L/K

∣∣∣∣A,Bc

)
1Bc

]

(b)

≤ γ(K)2−(∆C−2∆R)2L + γ(K)2−(∆C)2L/2 (14)

where 1 is the indicator function, (a) holds from Lemma 17

in Appendix B and (b) holds from Lemma 14 by substituting

∆CMAC = ∆C − 2∆R − L and ∆CMAC = ∆C − L/2,

respectively.

The rest of the proof follows by combining (i) and (ii) and

taking ∆R = ∆C
3 so that the exponential terms in (ii) and

(15) are ∆C
3 .

For a fixed sum rate R, define the optimal outage probability

as poptimal(R) , P (C(H) < R), where C(H) is the sum

capacity of the uplink C-RAN channel. The theorem below

shows that IF is approximately optimal in the following sense:

it can operate within a constant gap of the optimal tradeoff

between outage rate and probability.
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Theorem 4: For a positive constant ∆C, the outage prob-

ability for the integer-forcing C-RAN strategy with global

CSIR, parallel decompression, and parallel channel decoding

is bounded by

pIF-CRAN(R −∆C) ≤ poptimal(R) + γ(max{K,L}) 2−∆C/3.

Proof: Using the law of total probability, the IF-CRAN

outage probability can be written as

pIF-CRAN(R −∆C)

= P ({KRIF-CRAN ≤ R−∆C} ∩ {C(H) ≥ R})

+ P
(
KRIF-CRAN ≤ R−∆C

∣∣C(H) < R
)
P (C(H) < R)

≤ P (KRIF-CRAN ≤ C(H)−∆C) + P (C(H) < R)

≤ P (KRIF-CRAN ≤ Cupper(H)−∆C) + P (C(H) < R)

≤ γ(max{K,L}) 2−∆C/3 + poptimal(R)

where Cupper(H) , min
{
LCsym,

1
2 log

∣∣PH†H+ I
∣∣} is a cut-

set bound on the sum capacity of the uplink C-RAN channel

and we used Lemma 15 in the last step.

Remark 11: Recall that, if the transmitters have enough

CSIT to set their rates, then WZC with MMSE-SIC can

operate within a constant gap of the sum capacity of any

C-RAN channel [22]. In contrast, we cannot give such a

guarantee for IF, even with CSIT, since there are difficult

channel realizations for which the gap can be arbitrarily

large [25]. Yet, the theorem shows that, these channels have

small measure and that IF can operate within a constant gap of

the optimal outage rate-probability curve (without any CSIT).

VIII. OPTIMIZATION ALGORITHMS

In this section, we propose algorithms that can be used to

select the parameters of the IF-CRAN scheme proposed in

Section VI.

A. IF-CRAN with Symmetric Distortion

The optimization problems from Theorems 1, 2, and 3

are challenging due to the integer constraints on Ac and

As. Specifically, for a fixed distortion level d the problems

of finding the optimal integer matrix As to minimize the

symmetric compression rate or finding the optimal integer

matrix Ac to maximize the IF C-RAN symmetric transmission

rate are linked to the hard combinatorial problem of finding

the shortest set of linearly independent lattice vectors [36].

For a fixed matrix Ac, the overall rate in (1) is monotoni-

cally increasing in d. Using a bisection search, we can quickly

converge to the smallest d that meets the fronthaul constraint

(i.e., RIFSC(H, d) = Csym). During each iteration in the search,

As can be optimized using an LLL reduction [37] on the

induced lattice Fs, which provides an approximate guarantees.

A detailed algorithm is given in Algorithm 1. See Figure 3b

to see that d converges within a few iterations. Finally, once

we find a solution for As and d that meets the fronthaul

constraints using Algorithm 1, an approximate solution for the

integer matrix Ac can be obtained using an LLL reduction on

the basis Fc.

Algorithm 1 Symmetric IFSC

1: procedure SIFSC(P,H, Csym,tol)

2: Initialization: Set dmin = 0 and dmax = d large enough

such that RIFSC(H, d) < Csym.

3: while Csym − RIFSC(H, d) > tol or RIFSC(H, d) >
Csym do

4: if RIFSC(H, d) < Csym then

5: dmax = d/2.
6: else

7: dmin = d/2.
8: end if

9: d = (dmin + dmax)/2,
10: Fs = chol((1 + 1

d)I+
1
dPHH†)

11: As = LLL-reduction(Fs),
12: RIFSC(H, d) = 1

2 log
+(‖Fsas,L‖2)

13: end while

14: return d.

15: end procedure

B. IF-CRAN with Asymmetric Distortion

In the symmetric case, we were able to decouple the

problem of choosing the distortion level d from the problem

of choosing the integer matrix Ac. However, in the case of

asymmetric distortion levels in (2), both problems are more

tightly coupled. In order to tackle this problem, we initially

set all distortion levels to the symmetric value d such that

RIFSC,ℓ(H, dI) = Csym, fix the integer matrix As, then find

the distortion levels d1, . . . , dL such that RIFSC,ℓ(H,D) =
Csym, ∀ℓ ∈ L. With As fixed, this corresponds to solving L
linear equations for D. Finally, we need to permute the BSs

before and after solving for D to obtain full-rank sub-matrices

As,[1:m] for m = 1, . . . , L so that we can use the rates in (8).

Details are given in Algorithm 2.

Algorithm 2 Asymmetric IFSC

1: procedure AIFSC(KY Y , Csym)

2: Initialization: Fix dℓ = d, ∀ℓ and solve d =
SIFSC(H, Csym, tol).

3: Fix As and find permutation πIF s.t.

rank(As,[1:m],πIF([1:m])) = m, ∀m = 1, . . . , L.

4: Find distortion levels d1, . . . , dL satisfying

C[d1 · · · dL]† = e where C , 2Csym × I −As,L,πIF(L) ⊙

As,L,πIF(L) and eℓ , a
†
s,ℓKY Y as,ℓ, ∀ℓ ∈ L.

5: return D = diag(dπ−1
IF

(1), . . . , dπ−1
IF

(L)).
6: end procedure

Remark 12: The asymmetric distortion levels obtained from

Algorithm 2 are upper-bounded by the distortion level obtained

from Algorithm 1. This is because the symmetric distortion d
that satisfies RIFSC(H, d) = Csym (i.e., Algorithm 2 result)

also guarantees that RIFSC,ℓ(H, dI) ≤ Csym, ∀ℓ ∈ L, since for

both cases, the integer matrix As is the same and in IFSC with

parallel decoding, all rates are constrained by the combination

with the largest variance. Second, decreasing one distortion

level only increases the compression rate of the corresponding

BS and simultaneously decreases the rate of the other BSs.
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IX. SIMULATIONS

We now turn to numerical evaluations of the IF and WZ

rate expressions for both global and local CSIR in order to

gain insights as to the performance differences between these

two competing architectures. For each plot, we generated 1000
independent realizations for the channel matrix H, elemen-

twise i.i.d. N (0, 1). Ideally, we would also plot the exact

uplink C-RAN capacity expression as a benchmark. Since

the exact capacity is an open problem, we instead use BT

compression with symmetric distortion and joint ML decoding

as a benchmark, which is known to attain the capacity within

a constant gap [38].

A. Global CSIR

We start by assuming global CSIR, fixing SNR = 25
dB, and plotting the outage rate per user as the fronthaul

rate Csym varies. In Figure 3a, we consider a setting where

there are fewer users than BSs (K = 3, L = 6), and plot

the performance of various combinations of AIFSC, IFSC,

WZC, and SUC source coding strategies with IFCC, MMSE-

SIC, and MMSE channel decoding strategies. For WZC, we

plot two variants: one that selects the optimal decompression

order via exhaustive search and another that employs the

heuristic decompression order from [21]. In this setting, the

observations at the BSs are highly correlated and the source

coding component plays a more important role. Indeed, there is

little difference between the IFCC and MMSE-SIC versions of

each architecture, and MMSE loses about 1 bit per user. Here,

WZC coupled with MMSE-SIC (both sequential decoding

approaches) attains the best performance, but Symmetric IFSC

coupled with IFCC follows closely behind (for which the

decoding can be nearly parallelized).

In Figure 3b also provide a sample convergence path for

the symmetric distortion level as iteratively refined by Algo-

rithm 1. Recall that the asymmetric distortions are chosen in

a single pass by Algorithm 2, which seems to perform as well

as iterative algorithms in our experiments.

In Figure 4a, we turn to a setting where the number of users

and BSs are equal (K = L = 6). Here, source and channel

coding are equally important. It is well-known [25] that IFCC

can significantly outperform MMSE-SIC for K = L, and this

is confirmed by the plot, where the best performance (other

than the BT+ML benchmark) is attained via IFCC. Note also

that MMSE channel decoding performs quite poorly. In terms

of source coding, WZC offers the best performance, but is

now nearly tied with Asymmetric IFSC and closely tracked

by Symmetric IFSC. These effects become more pronounced

if we decrease to L = 3 BSs. In Figure 4b, we see that

IFCC offers a larger advantage over MMSE-SIC (and an even

larger one over MMSE, which is not plotted). Again, WZC

and Asymmetric IFSC are nearly equal and Symmetric IFSC

can operate within a small gap.

Overall, we observe that IF source and channel coding offers

strong performance as well as the possibility of parallel rather

sequential decoding algorithms.

B. Local CSIR

In the local CSIR scenario, each BS knows the channel

gains to itself, and can therefore select a rate for SUC so that

no outage occurs. However, to further reduce the compression

rates, it must set a rate that may result in an outage, depending

on the channel realizations at the other BSs. The end-to-end

outage event is thus a union of the source and channel coding

outage events. In these plots, we will examine the 10% outage

rate, allocating 5% towards source coding outage and 5%
towards channel coding outage.

Again, we start with K = 3 users and L = 6 BSs

in Figure 5. Recall that the the opportunistic IF strategy

from Theorem 3 switches from IFSC to SUC, if it offers

a better distortion. In Figure 5a, we fix SNR = 25dB and

vary the fronthaul rate Csym. In this setting, opportunistic and

local IFSC have essentially the same performance, which is

quite close to the basic SUC strategy. Although it may seem

surprising, WZC is outperformed by all three strategies, as is

the case for all of our local CSIR plots. This is partly due to the

fact that, since we use a symmetric distortion target for WZC,

it cannot target an asymmetric corner point corresponding to

an optimal sum rate. (Selecting good asymmetric distortions

would require some knowledge of the channel quality order

across BSs, which is not available with local CSIR.) Morever,

SUC does not suffer any source coding outage, which provides

an additional edge over WZC. Moving to Figure 5b, we fix

the fronthaul rate Csym = 3 and vary SNR, where we observe

very similar phenomena, but note that opportunistic IFSC does

provide a slight advantage over local IFSC.

In Figure 6a, we take the number of users and BSs to be the

same (K = L = 6). The main change is that we now observe

that local IFSC falls behind the performance of SUC, while

opportunistic IFSC (which can select SUC when it is superior)

maintains an edge. This behavior continues to hold if we lower

the number of BSs to L = 3 as seen in Figure 6b. Thus,

even if the BSs only possess local CSIR, IF performs well

across various scenarios, especially if we opportunistically mix

between IFSC and SUC compression, in order to mitigate the

effects of source coding outage.

X. CONCLUSIONS

In this paper, we introduced an IF architecture for uplink C-

RANs that can operate within a constant gap from the optimal

tradeoff between outage rate and probability. We also proposed

algorithms for efficiently selecting good integer coefficient

matrices and distortion levels. We then demonstrated, via

simulations, that our IF architecture is competitive with state-

of-the-art C-RAN architectures based on WZC. Moreover, our

IF strategy can potentially be implemented using only parallel

decoding blocks, rather than the sequential decoding needed

for WZC.

APPENDIX

A. Recovering tm,1, . . . , tm,L

The proof of the lemma below corrects a slight error in

the proof of [33, Lemma 3], which is needed to establish the

achievable rate in Lemma 8 (i.e., [33, Theorem 3] with R = I).
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Fig. 3: Global CSIR with K = 3 users, L = 6 basestations, SNR = 25dB, and 5% outage.
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Fig. 4: 5% outage rate per user with global CSIR, K = 6 users, and SNR = 25dB.

Lemma 16: Given vk =
L∑

ℓ=1

as,k,ℓ (yℓ + qℓ) for k =

1, . . . ,m − 1 as well as ỹℓ = [yℓ + qℓ] mod ΛC,ℓ for

ℓ = 1, . . . , L, the CP can recover tm,ℓ = [yℓ+qℓ] mod ΛC,m

for ℓ = 1, . . . , L.

Proof : For ℓ ≥ m, since ΛC,ℓ ⊆ ΛC,m, we can directly

compute

[ỹℓ] mod ΛC,m = [[yℓ + qℓ] mod ΛC,ℓ] mod ΛC,m

(a)
= [yℓ + qℓ] mod ΛC,m

= tm,ℓ

where (a) follows from the distributive law.

For ℓ < m, we need more work to recover tm,ℓ. Specifi-

cally, we cancel out the contributions of tm,m, . . . , tm,L from

v1, . . . ,vm−1 then solve for tm,1, . . . , tm,m−1. To this end,

we remove the effects of the first m− 1 dithers

ṽk = vk +

m−1∑

ℓ=1

as,k,ℓuℓ

(a)
=

m−1∑

ℓ=1

as,k,ℓ (yℓ + uℓ − [yℓ + uℓ] mod ΛF,ℓ)

+
L∑

ℓ=m

as,k,ℓ (yℓ + qℓ)
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Fig. 5: 10% outage rate per user with local CSIR, K = 3 users, and L = 6 basestations.
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Fig. 6: 10% outage rate per user with local CSIR, K = 6 users, and SNR = 25dB.

=

m−1∑

ℓ=1

as,k,ℓQΛF,ℓ
(yℓ + uℓ) +

L∑

ℓ=m

as,k,ℓ (yℓ + qℓ) .(15)

where (a) holds since qℓ = −[yℓ + uℓ] mod ΛF,ℓ.

Now, for k = 1, . . . ,m−1, we use tm,m, . . . , tm,L to cancel

out the second sum to obtain

wk =

[
ṽk −

L∑

ℓ=m

as,k,ℓtm,ℓ

]
mod ΛC,m

=

[m−1∑

ℓ=1

as,k,ℓQΛF,ℓ
(yℓ + uℓ) +

L∑

ℓ=m

as,k,ℓ (yℓ + qℓ)

−
L∑

ℓ=m

as,k,ℓ [yℓ + qℓ] mod ΛC,m

]
mod ΛC,m

=

[
m−1∑

ℓ=1

as,k,ℓ
[
QΛF,ℓ

(yℓ + uℓ)
]
mod ΛC,m

]
mod ΛC,m

(16)

where the last step holds from the distributive law.

Collecting these vectors into matrices, we define Wm =
[w1 · · · wm−1]

†, T̃m = [̃tm,1 · · · t̃m,m−1]
†, and t̃m,k =[

QΛF,k
(yk + uk)

]
mod ΛC,m, so that we can write (16) as

Wm =
[
As,[1:m]T̃m

]
mod ΛC,m
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Next, we apply the inverse Ās,[1:m] of
[
As,[1:m]

]
mod p

over Zp to obtain

[
Ās,[1:m]Wm

]
mod ΛC,m

(a)
=
[([

Ās,[1:m]As,[1:m]

]
mod p

)
T̃m

]
mod ΛC,m

(b)
= T̃m

where (a) holds from applying [39, Lemma 3] and the

distributive law and (b) holds from the definition of Ās,[1:m].

Finally, we remove the dithers we added in (16) to obtain

[
t̃m,ℓ − uℓ

]
mod ΛC,m = [yℓ + qℓ] mod ΛC,m = tm,ℓ

for ℓ = 1, . . . ,m− 1.

B. Bounding d∗

Recall that S1 is the diagonal matrix of eigenvalues from

the eigenvalue decomposition of US1U
† = PH†H+ I.

Lemma 17: Conditioned on A, the distortion d∗ satisfying

RS
IFSC(H, d∗) = Csym also satisfies d∗ > 2−(2∆R/L+1) if S1 ∈

B and d∗ < 1 if S1 ∈ Bc where B = { 1
2 log |S1| > LCsym −

∆R− L/2} and A = {Rs
IFSC(H) < Rs

BT(H) + ∆R}.

Proof: For S1 ∈ B, assume for the sake of contradiction

that d∗ ≤ 2−(2∆R/L+1), then we have

LCsym −∆R−
L

2
= LRs

IFSC(H)−∆R−
L

2
(a)

≥ LRs
BT(H)−∆R −

L

2

=
1

2
log

∣∣∣∣
P

d∗
HH† +

d∗ + 1

d∗
I

∣∣∣∣−∆R−
L

2

>
1

2
log |S1| −

L

2
log d∗22∆R/L+1

(b)
>

1

2
log |S1|

where (a) holds from Rs
IFSC(H) ≥ Rs

BT(H) as shown in [24]

and (b) is a contradiction that holds if d∗ < 2−(2∆R/L+1).

Now, for S1 ∈ Bc, assume that d∗ ≥ 1 and note that

LCsym − L/2−∆R = LRs
IFSC(H)− L/2−∆R

(a)

≤ LRs
BT(H)− L/2

=
1

2
log

∣∣∣∣
PHH† + (d∗ + 1)I

2d∗

∣∣∣∣
(b)

≤
1

2
log

∣∣∣∣
P

2d∗
HH† + I

∣∣∣∣

<
1

2
log |S1|

where (a) holds from the fact that Rs
IFSC(H) ≤ Rs

BT(H)+∆R
and (b) follows from assuming d∗ ≥ 1, which is a contradic-

tion. Hence, we have d∗ < 1 if S1 ∈ Bc.
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