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Abstract— In a large social network whose members har-
bor binary sentiments towards an issue, we investigate the
asymptotic accuracy of sentiment detection. We model the user
sentiments by an Ising Markov random field model and allow
the user sentiments to be biased by an external influence. We
consider a general supermajority sentiment detection problem
and show that the detection accuracy is affected by the network
structure, its parameters, as well as the external influence level.

I. INTRODUCTION

Social networks have become important sources for politi-
cians, sociologists, and financial analysts alike to detect,
predict and shape the sentiments of people. A practical
example can be a polling firm that predicts the outcome
of an election by detecting sentiments from Tweets, where
the underlying network can be Twitter follower/followee
relations. Sociology has long been fascinated by the power
of social networks, and asked questions about how social
networks can influence peoples’ sentiments [1], [2]. A variety
of empirical work has shown the effect of networks to
lead sentiments to the two different types of steady states:
consensus or dissent. At the same time, several models have
been proposed to theoretically explain why social networks
can lead to dramatically different behaviors.

We model the social network as an Ising Markov random
field, with members as vertices, relation between members
as edges, and sentiments as random variables taking the
values −1 or +1. We are interested in large social networks,
which we model by considering a sequence of graphs whose
size grows to infinity. This will allow us to describe macro-
behavior in the asymptotic limit of large social networks.
Ising models have been extensively studied in statistical
physics [3]–[5] as simple models that capture the essence
of atomic interactions where global properties emerge based
on local interactions of atoms with their neighbors. They
have been used to explain the phase transition phenomena in
materials such as iron, which turns into a permanent magnet
at suitably low temperatures (ferromagnetic phase) but is
unable to do so at higher temperatures (paramagnetic phase).

Previously, we had considered the problem of majority
sentiment detection without external influence and showed
that the detection error probability of such sentiment demon-
strates complex behaviors [6]. Using certain simple exam-
ples, we showed the counter-intuitive result that the er-
ror probability asymptotically decreases to zero for certain
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networks, but remains bounded positive for others. In this
paper, we generalize that problem in three ways. Firstly, we
consider supermajority sentiment detection as an important
problem in certain applications. Supermajority sentiment of
members towards an issue is the condition that one sentiment
predominates among the members, with a level of support
greater than the typical threshold of one-half used to define
majority sentiment. An example is the requirement for the
passage of constitutional amendments in the US, or the
decision by companies to develop expensive features if an
overwhelming fraction of its users demand it. Secondly, we
allow for an external influence that biases the sentiment of
the network members in the positive or negative direction.
We would like to investigate the interaction of supermajority
detection with the strength of the external influence. We
will recover the results in [6] as a special case of this
analysis. Finally, we present results that allow analysis of
the problem in certain graphs where closed form solutions
are not available (such as Lattice graphs).

In this paper, we attempt to answer the following ques-
tions:

• What is the relation between supermajority sentiment
detection and the distribution of average member senti-
ments?

• Given a supermajority threshold level S, do the average
sentiments concentrate near S or far from S?

• What is the asymptotic supermajority detection error
probability for various stylized social networks?

We show that the asymptotic performance of supermajority
sentiment detection is closely related to the asymptotic dis-
tribution of average member sentiments. In situations where
the average sentiments stay away from S, the detection is
asymptotically accurate, while if the average sentiments stay
near S, the detection is asymptotically inaccurate. In turn,
the distribution of average sentiments depends on the graph
structure, the external influence, and in some graphs, also on
the strength of the member connections to each other.

The paper is organized as follows. Section II introduces the
supermajority sentiment detection problem formally. Section
III presents the main results of the paper as a sequence of
theorems that allow analysis of the detection error probability
under various assumptions on the social network model.
Section IV uses the previous section’s results to calculate the
detection error probability for various examples of networks,
and shows that the error probability exhibits counter-intuitive
behavior in many cases. Section V presents numerical results
and Section VI concludes the paper.
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II. SYSTEM MODEL

The social network structure is modeled as an undirected
graph, as shown in Fig. 1. Let X = (X1, . . . , Xn)T ∈
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Fig. 1: Markov random field model of sentiment detection.

{−1, 1}n denote the vector of binary sentiments of n mem-
bers, where 1 and −1 denote positive or negative sentiments,
respectively. We adopt a homogeneous Ising Markov random
field (MRF) prior on X as:

p(x) =
exp(βxTAnx + h1Tx)

Zn(β, h)
. (1)

Here 1 is the vector of all-ones. An denotes the symmetric
adjacency matrix of the graph, with [An]ij = 0/1 repre-
senting absence/presence of an edge between members i, j.
β > 0 is the inverse temperature parameter, characterizing
the connection strength, i.e., connected members are more
probable to share the same sentiment if β is larger. h is the
external influence strength, i.e., sentiments are biased to be
positive (negative) by an external influence source if h > 0
(h < 0). h can be used to model, for example, the societal
bias of the network users towards the topic of interest (such
as liberal societies generally favoring liberal policies). The
normalizer Zn(β, h) =

∑
x∈{−1,1}n exp(βxTAnx+h1Tx)

is called the partition function. As a special case, the Empty
graph (no edges) is equivalent to assuming that sentiments
are independent and identically distributed (i.i.d.) random
variables, which is assumed in typical polling analysis. The
key results in this paper will be asymptotic, for which we
assume that in a given network example, increasing n results
in a sequence of graphs, with associated adjacency matrices
An.

In the paper, we denote Xn = 1
n

∑n
i=1Xi as the sample

average (equivalently, the average member sentiments), E[·]
and V[·] as the mean and variance, and d−→ as convergence
in distribution.

A. Supermajority Sentiment Detection

Given a supermajority threshold level S ∈ (−1, 1), the
supermajority sentiment is defined as the Bernoulli variable

m = sign(Xn − S), (2)

Thus, the supermajority sentiment is considered to be posi-
tive if more than (1+S)/2 fraction of sentiments are positive.
Here we assume that n(1 + S)/2 is not integer to avoid
trivial ambiguity. For example, if S = 0, this degenerates
to the typical majority sentiment variable (more than one-
half the sentiments are positive), while if S = 1/3, we
are considering a supermajority of two-thirds (such as the
fraction of votes needed in the US Congress to over-ride a
Presidential veto).

Since sentiments X are unknown to observers, we hope
to estimate the supermajority sentiment by using noisy
observations of X , called measured sentiments Y . Y =
(Y1, . . . , Yn)T ∈ {−1, 1}n is modeled as conditionally
independent binary measurements of X each with cross-
over probability p, i.e., the output of a binary symmetric
channel with input X . We assume that p < 1/2. The
error in the measured sentiment could arise due to error in
automatic language analysis (as in the case of automated
Twitter tweet analysis) or due to intentional prevarication by
users in responding to a pollster.

The Maximum Aposteriori (MAP) detector of the su-
permajority sentiment is difficult to calculate due to the
curse of dimensionality, and is even harder to analyze.
Therefore, we will use a naive (but reasonable) detector for
the supermajority sentiment:

m̂ = sign(Yn − (1− 2p)S). (3)

This detector estimates the supermajority sentiment as the
supermajority of noisy measurements with level (1− 2p)S.
The detector is called ‘naive’ because it does not use the
knowledge of the network, neither the adjacency matrix An
nor parameters β, h. The detector is based on the result that
E[Yn|X] = (1 − 2p)Xn, so that Xn ≷ S is equivalent to
E[Yn|X] ≷ (1 − 2p)S. Further, this can be proved to be
the MAP detector in the case of Empty graph (i.e., i.i.d.
sentiments) in the limit of large n. Also, note that in the more
common case of majority sentiment detection (S = 0), this
detector reduces to deciding whether the sum of sentiments
is positive by simply checking whether the sum of measured
sentiments is positive. In general, it is not the optimal MAP
detector. However, it will be sufficient to illustrate the key
insights of this paper.

The detection error probability (equivalently, classification
error probability of the two sentiment class problem) is

P (n)
e = P(m 6= m̂). (4)

We hope to investigate whether the supermajority sentiment
detection is asymptotically accurate, i.e., whether P (n)

e be-
comes arbitrarily small when n is sufficiently large.

III. ERROR PERFORMANCE OF SUPERMAJORITY
SENTIMENT DETECTION

In [6], we showed the surprising result that majority sen-
timent detection without external influence is not necessarily
accurate, even in the limit of large n. In fact, in certain
graphs, that problem shows subtle behavior, switching from
asymptotic accuracy to bounded accuracy as the connection



strength between the social network members decreases.
Thus, it is not apriori obvious when supermajority sentiment
detection in the presence of external influence, as considered
in this paper, will be accurate. In this section, we analyze the
asymptotic accuracy of supermajority sentiment detection.
Since it is difficult to find closed form results on the error
performance of such detection, we present a set of theorems
that allow us to analyze the performance for different types
of graphs. These theorems show that the asymptotic per-
formance of the detection error probability is related to the
asymptotic distribution of Xn as n→∞. These results will
allow us to analyze the error behavior for various interesting
network examples in Section IV.

We begin by first obtaining an upper bound on the error
probability that applies to any fine n, as below.

Theorem 1 An upper bound on the detection error proba-
bility is:

P (n)
e ≤ E

[
exp

(
−Cp(

√
n(Xn − S))2

)]
,

where Cp = 1
2 (1− 2p)2.

Proof: Let Zi = Yi − (1 − 2p)Xi. Since Zis are
conditionally independent given X, with E[Zi|X] = 0 and
maxZi − minZi ≤ 2, Hoeffding’s inequality tells us that
average Zn satisfies P(Zn > ε | X) ≤ exp

(
− 1

2nε
2
)

and
P(Zn < −ε | X) ≤ exp

(
− 1

2nε
2
)

for any ε > 0. By
definition (4):

P (n)
e = P((Xn − S)(Yn − (1− 2p)S) < 0)

= P((Xn − S)Zn < −(1− 2p)(Xn − S)2)

= E[P((Xn − S)Zn < −(1− 2p)(Xn − S)2 | X)]
(5)

≤ E[exp(−Cp(
√
n(Xn − S))2)].

In some applications, we may want to estimate the super-
majority sentiment by using only partial observations. For
example, in large graphs, we may want to poll only a subset
of members to save on cost. Define partial observations

Yi;δ =

{
Yi, w.p. δ

0, w.p. 1− δ
, which means that the ith member’s

sentiment is measured independently with probability δ. The
detector based on partial observations is m̂δ = sign(Yn;δ −
(1−2p)S). An upper bound on its detection error probability
is as below.

Corollary 1 P
(n)
e;δ ≤ E

[
exp

(
−δ2Cp(

√
n(Xn − S))2

)]
.

This corollary shows that the effect on error performance
of polling only a fixed fraction of members is no worse
than polling all members but increasing each member’s
measurement error probability from p to ((1− δ)(1− 2p) +
p)/((1− δ)(1− 2p) + 1).

While the previous theorem can be used to bound the
error probability for finite n, it is difficult to calculate the
bound in large graphs. However, in an sequence of graphs of

increasing size, it may be possible to calculate the asymptotic
behavior of Xn. Therefore, we derive asymptotic upper and
lower bounds on error probability in Theorem 2. This will
follow from a conditional central limit theorem given in
Lemma 1, whose proof can be found in [6].

Lemma 1 For all X,
√
n(Yn − (1− 2p)Xn) | X d−→ N(0, 4p(1− p)).

Theorem 2 The superior and inferior limit of the detection
error probability is:

lim inf
n→∞

P (n)
e = lim inf

n→∞
E
[
Q
(
Dp

√
n|Xn − S|

)]
lim sup
n→∞

P (n)
e = lim sup

n→∞
E
[
Q
(
Dp

√
n|Xn − S|

)]
,

where Dp = 1−2p√
4p(1−p)

, Q(·) is the tail probability of stan-

dard normal distribution: Q(x) = 1√
2π

∫∞
x

exp(−t2/2)dt.

Proof: Start with equation (5). Define εn(X) =
P(
√
n(Xn − S)

√
nZn < −(1 − 2p)(

√
n(Xn − S))2 |

X)−Q
(
Dp
√
n|Xn − S|

)
. From the asymptotic distribution

in Lemma 1, lim
n→∞

εn(X) = 0,∀X. So,

lim inf
n→∞

P (n)
e = lim inf

n→∞
E[P(
√
n(Xn − S)

√
nZn <

− (1− 2p)(
√
n(Xn − S))2 | X)]

= lim inf
n→∞

E
[
Q
(
Dp

√
n|Xn − S|

)
+ εn(X)

]
= lim inf

n→∞
E
[
Q
(
Dp

√
n|Xn − S|

)]
.

Here lim inf
n→∞

E [εn(X)] = E
[
lim inf
n→∞

εn(X)
]

= 0 by
Lebesgue’s dominated convergence theorem [7], since
|εn(X)| ≤ 1. Use the same technique for ‘lim sup’ case.

The asymptotic error probability can be exactly obtained
if the exact asymptotic distribution of Xn can be obtained,
as shown below. Section IV shows the productive use of this
result in various graphs of interest.

Corollary 2 (a) If
√
n(Xn − S)

d−→ Φ, where Φ is a
distribution, then

lim
n→∞

P (n)
e =

∫ ∞
−∞

Q (Dp |x|) Φ(dx).

(b) Specifically, if
√
n(Xn − S)

d−→ N(0, σ2), then

lim
n→∞

P (n)
e =

1

π
arccot (Dpσ) > 0.

The above results on asymptotic error probability are
difficult to use if the corresponding expectations are difficult
to calculate. On the other hand, a critical question in such
error analysis is not necessarily the exact value of the error
probability, but instead, whether this probability becomes
arbitrarily small for large n, or whether it is bounded below
even with infinite number of members. Based on Theorems 1
and 2, we show in Theorem 3 that the question of whether



the detection error probability tends to 0 or not, is exactly
determined by whether Xn asymptotically stays away from
S or not. Intuitively, if the probability of Xn being near
S decays to 0, then the error probability tends to zero; if
it decays to 0 exponentially fast, then the error probability
tends to zero exponentially fast. On the other hand, if the
probability of Xn being near S remains asymptotically
positive, so does the error probability.

Theorem 3 (a) If ∀B > 0, lim
n→∞

P(
√
n|Xn−S| ≤ B) = 0,

then lim
n→∞

P
(n)
e = 0.

(b) If ∃B > 0 s.t. lim inf
n→∞

P(
√
n|Xn − S| ≤ B) > 0, then

lim inf
n→∞

P
(n)
e > 0.

(c) If ∃b > 0, αb > 0, s.t. lim sup
n→∞

1
n logP (|Xn−S| ≤ b) ≤

−αb, then lim sup
n→∞

1
n logP

(n)
e ≤ −min{αb, Cpb2}.

Proof: For part (a), given any ε > 0, choose B large
enough such that exp

(
−CpB2

)
≤ ε/2, then choose n large

enough such that P(
√
n|Xn − S| ≤ B) ≤ ε/2. Theorem 1

tells that

P (n)
e ≤ E

[
exp

(
−Cp(

√
n(Xn − S))2

)]
≤ P(

√
n|Xn − S| ≤ B) + exp

(
−CpB2

)
≤ ε.

Thus lim
n→∞

P
(n)
e = 0.

For part (b), choose a B > 0, satisfying that
lim inf
n→∞

P(|
√
n(Xn − S)| ≤ B) > 0. Theorem 2 tells that

lim inf
n→∞

P (n)
e = lim inf

n→∞
E
[
Q
(
Dp

√
n|Xn − S|

)]
≥ lim inf

n→∞
P(
√
n|Xn − S| ≤ B)Q (DpB) > 0.

For Part (c), given any ε > 0, choose n large enough
such that such that P(|Xn − S| ≤ b) ≤ exp(−n(αb − ε)).
Theorem 1 tells that

P (n)
e ≤ E

[
exp

(
−Cp(

√
n(Xn − S))2

)]
≤ P(|Xn − S| ≤ b) + exp

(
−Cpnb2

)
≤ exp(−n(αb − ε)) + exp

(
−nCpb2

)
.

Thus lim sup
n→∞

1
n logP

(n)
e ≤ −min{αb− ε, Cpb2}. Finally let

ε→ 0.
Theorem 3 is easier to apply than Theorems 1 and 2, because
it only needs the knowledge of the distribution of Xn near
S and avoids the need to calculate an expectation.

Finally, in complex cases such as the 2-dimensional Lattice
graphs, the asymptotic distribution of Xn is unknown, and
so, it may be difficult to apply Theorem 3. The state of
the art in statistical physics and information theory does
allow calculation of certain moments of Xn in some of these
graphs. Therefore, we present Theorem 4 below, where the
analysis of error probability depends only on the asymptotic
behavior of Xn near its mean.

Theorem 4 (a) If limn→∞ E[Xn] = µ 6= S and
lim
n→∞

V[Xn] = 0, lim
n→∞

P
(n)
e = 0.

(b) If lim
n→∞

E[Xn] = S and lim sup
n→∞

nV[Xn] < ∞,

lim inf
n→∞

P
(n)
e > 0.

(c) If lim
n→∞

E[Xn] = µ 6= S and ∃0 < b < |µ − S|, αb >
0, such that lim sup

n→∞
1
n logP(|Xn − µ| ≥ b) ≤ αb,

lim sup
n→∞

1
n logP

(n)
e ≤ −min{αb, Cp(|µ− S| − b)2}.

Proof: For part (a), given any B > 0, choose n large
enough such that B <

√
n|µ − S|, Chebyshev’s inequality

tells us that

P(
√
n|Xn − S| ≤ B) ≤ P(|Xn − µ| ≥ |µ− S| −B/

√
n)

≤ V[Xn]

(|µ− S| −B/
√
n)2

.

Since lim
n→∞

V[Xn] = 0, lim
n→∞

P(
√
n|Xn−S| ≤ B) = 0, and

by Theorem 3 part (a), lim
n→∞

P
(n)
e = 0.

For part (b), Chebyshev’s inequality tells us that

P(
√
n|Xn − S| ≤ B) = 1− P(

√
n|Xn − S| > B)

≥ 1− nV[Xn]

B2
.

Since lim sup
n→∞

nV[Xn] = V < ∞, choose B =
√

2V ,

lim inf
n→∞

P(
√
n|Xn − S| ≤ B) ≥ 1/2 > 0, and by Theorem 3

part (b), lim inf
n→∞

P
(n)
e > 0.

For part (c), since

P(|Xn − S| ≤ |µ− S| − b) ≤ P(|Xn − µ| ≥ b),

by Theorem 3 part (c), the statement holds.

IV. NETWORK EXAMPLES

In this section, we demonstrate the calculation of the
asymptotic error probability of supermajority sentiment de-
tection for various graphs, i.e., (sequence of) adjacency
matrices An, the connection strength β and external influ-
ence level h. The intent is to show the application of the
error analysis results of Section III; accurate analysis using
Theorems 1 and 2 is possible when the graph has a strongly
symmetric structure (such as Empty graph, Chain graph,
etc.). However, the weaker results of Theorems 3 and 4 apply
in more difficult cases, such as the 2-dimensional Lattice
graph. Besides demonstrating the value of the error analysis
of the previous section, we believe that it is of independent
interest to obtain the asymptotic error probability in these
network examples, since they show increasingly complex
error behavior.

For several graphs where the partition function can be
calculated, the asymptotic distribution of Xn can be analyzed
thoroughly. A major role in this analysis is played by the free
entropy density, defined as

ψn(β, h) =
1

n
logZn(β, h). (6)

The mean and variance of Xn are the derivatives of the free



entropy density with respect to h:

E[Xn] =
∂

∂h
ψn(β, h) (7)

V[Xn] =
∂2

n∂h2
ψn(β, h). (8)

We are interested in the asymptotic property of free entropy
density. When the limit as n→∞ exists, define it as:

ψ(β, h) = lim
n→∞

1

n
logZn(β, h). (9)

Under some regularity conditions where the limits and the
derivatives in (7) and (8) can be exchanged, the limit mean
and variance can be obtained as

µβ,h = lim
n→∞

E[Xn] =
∂

∂h
ψ(β, h) (10)

σ2
β,h = lim

n→∞
nV[Xn] =

∂2

∂h2
ψ(β, h). (11)

Furthermore, two kinds of limit theorems, central limit
theorem and large deviation theorem, can be established
based on the free entropy density function. Firstly, when the
limit mean and variance exist, [8] shows that under some
regularity conditions, there exists a central limit theorem:

√
n(Xn − µβ,h)

d−→ N(0, σ2
β,h). (12)

Secondly, since ψ(β, h) is convex in h, we know that its
left and right derivative with respect to h always exist.
Denote them as µ+

β,h = ∂ψ(β,h)
∂h+ and µ−β,h = ∂ψ(β,h)

∂h− ,
respectively. The interval [µ−β,h, µ

+
β,h] is called the phase

transition interval. A large deviation theorem [9] tells us that
the probability of Xn falling outside the phase transition
interval is only exponentially small. Specifically, for any
b > 0,

lim sup
n→∞

1

n
logP(Xn − µ+

β,h ≥ b) < 0 (13)

lim sup
n→∞

1

n
logP(Xn − µ−β,h ≤ −b) < 0. (14)

In the case that ψ(β, h) is differentiable with respect to h,
the phase transition interval [µ−β,h, µ

+
β,h] shrinks to a point,

i.e., the mean µβ,h. Then, the probability that Xn deviates
from its mean is exponentially small. Specifically, for any
b > 0,

lim sup
n→∞

1

n
logP(|Xn − µβ,h| ≥ b) < 0. (15)

From convex analysis, we know that the h where ψ(β, h) is
not differentiable is at most countable, and in fact, is finite
in typical graphs. These points of non-differentiability must
be treated separately.

With these results, we can now analyze the supermajority
detection error performance in specific graphs. Table I lists
the free entropy density for the Empty graph (i.e., i.i.d.
sentiments) as well as the Star, Chain, Ring and Wheel
graphs. In the Empty, Chain and Ring graphs, the free
entropy density is twice differentiable for all h, while in the
Star and Wheel graphs, it is twice differentiable for all h 6= 0.

For these cases, the table lists the asymptotic mean µβ,h and
asymptotic variance σ2

β,h. In the Star and Wheel graphs, the
case h = 0 must be analyzed carefully, by considering the
asymptotic modes ±µ+

β,0.

A. Empty, Chain and Ring graphs

These graphs can represent a social community with sparse
ties to each other. The error probability behavior in these
graphs is relatively simple. In these graphs, Table I lists
the asymptotic mean and variance. Further, in the Empty
graph, since Xis are i.i.d., Hoeffding’s inequality tells us
that P(|Xn − µβ,h| ≥ b) ≤ 2 exp(−nb2/2). In the Chain
graph, Hoeffding’s inequality for Markov chain [10] tells
that P(|Xn − µβ,h| ≥ b) ≤ 2 exp(−nαb) for some αb > 0.
In the Ring graph, the same result as the Chain graph is
obtained by conditioning on one of the vertices. Therefore
by Theorem 4 and Corollary 2 we conclude that:

Proposition 1 In the Empty, Chain and Ring graphs,
(a) If S 6= µβ,h, lim

n→∞
P

(n)
e = 0. Furthermore lim sup

n→∞
1
n logP

(n)
e < 0.

(b) If S = µβ,h, lim
n→∞

P
(n)
e = 1

π arccot(Dpσβ,h) > 0.

In particular, notice that for majority sentiment detection
(i.e., S = 0), which is the most common application of vote
polling, in the absence of an external influencing field (so
that µβ,0 = 0), the error probability is bounded away from
zero. Thus, even if infinite users are polled, we cannot always
predict an election’s result!

B. Star and Wheel graphs

The error probability behavior in these graphs is relatively
simple, but exhibits the strong influence of the center vertex.
The Star graph is composed of an Empty graph on X\c along
with a center vertex Xc connected to all the other vertices.
The Wheel graph is composed of a Ring graph on X\c along
with a center vertex Xc connected to all the other vertices.
The center vertex may represent, for example, a celebrity
member of the social network. Table I lists the free entropy
density in these cases and also the asymptotic mean and
variance when h 6= 0.

Now consider the case h = 0. In the Star graph, by
symmetry we know that Xn is distributed as in an Empty
graph with parameters (β, β) or with parameters (β,−β)
each with one-half probability. The former parameters result
in the positive mode µ+

β,0 shown in Table I (which is the
mean of the corresponding Empty graph), while the latter
parameters result in the negative mode −µ+

β,0.
Similarly, for h = 0, in the Wheel graph, by symmetry

we know that Xn is distributed as in a Ring graph with
parameters (β, β) or with parameters (β,−β), each with one-
half probability, resulting in the modes ±µ+

β,0 shown in Table
I (which are the means of the corresponding Ring graphs).

Thus, when h = 0, Hoeffding’s inequality tells us that in
the Star and Wheel graphs, we have

P(|Xn−µ+
β,0| ≤ b) = P(|Xn+µ+

β,0| ≤ b) ≥
1

2
−exp(−nαb)



Graph ψ(β, h) µβ,h, h 6= 0 µ+
β,0 σ2

β,h

Empty log(2 cosh(h)) tanh(h) 0 1
cosh2(h)

Star log(2 cosh(β + |h|)) tanh(β + |h|)sign(h) tanh(β) 1
cosh2(β+|h|)

Chain/Ring

β + log (cosh(h)+√
sinh2(h) + exp(−4β)

)
sinh(h)√

sinh2(h)+exp(−4β)
0 exp(−4β) cosh(h)

(sinh2(h)+exp(−4β))3/2

Wheel

β + log (cosh(β + |h|)+√
sinh2(β + |h|) + exp(−4β)

)
sinh(β+|h|)sign(h)√

sinh2(β+|h|)+exp(−4β)
sinh(β)√

sinh2(β)+exp(−4β)
exp(−4β) cosh(β+|h|)

(sinh2(β+|h|)+exp(−4β))3/2

TABLE I: Free entropy density ψ(β, h), asymptotic mean µβ,h (for h 6= 0 case), asymptotic positive mode µ+
β,0, and

asymptotic variance σ2
β,h in certain graphs. In the Empty, Chain and Ring graphs, µ+

β,0 is mean value µβ,0. In the Star and
Wheel graphs, for h = 0, σ2

β,0 denotes the asymptotic variance conditioned on the center vertex being positive.

for some αb > 0.
Therefore, all cases are covered by using Theorem 4 and

Corollary 2 to conclude that:

Proposition 2 In the Star and Wheel graphs,
• When h 6= 0:
(a) If S 6= µβ,h, lim

n→∞
P

(n)
e = 0. Furthermore lim sup

n→∞
1
n logP

(n)
e < 0.

(b) If S = µβ,h, lim
n→∞

P
(n)
e = 1

π arccot(Dpσβ,h) > 0.

• When h = 0:
(a) If S 6= ±µ+

β,0, lim
n→∞

P
(n)
e = 0. Furthermore lim sup

n→∞
1
n logP

(n)
e < 0.

(b) If S = µ+
β,0 or S = −µ+

β,0, lim
n→∞

P
(n)
e =

1
2π arccot (Dpσβ,0) > 0.

Note that in the h = 0 case, the critical value for the accuracy
of supermajority detection in these graphs shifts to ±µ+

β,0 6=
0, unlike the graphs in the previous proposition where the
critical value was at µ+

β,0 = 0. This is due to the strong
influence of the center vertex which is connected to all the
other vertices.

C. Complete graph
The Complete graph, representing a close-knit social com-

munity, is possibly the simplest graph that demonstrates a
phase transition behavior, where the strength of the con-
nection β strongly affects the accuracy of supermajority
sentiment detection. In a Complete graph, the corresponding
Curie-Weiss [11] prior is defined slightly differently, in that
the strength is weakened to β/n, to ensure that the total
strength from all neighbors of a vertex remains constant,
i.e., does not grow with number of neighbors n − 1. With
this standard modification, the prior on the sentiments is

p(x) =
exp

(
β
2n (1Tx)2 + h1Tx

)
Zn(β, h)

. (16)

The free entropy density is

ψ(β, h) = max
µ∈[−1,1]

hµ+
1

2
βµ2 +H

(
1 + µ

2

)
, (17)

where H(x) = −x log x − (1 − x) log(1 − x) denotes the
binary entropy function. If either h 6= 0 or β ≤ 1 the
maximizing value µ in (17) is unique, denoted as µβ,h (which
can be obtained by numerical optimization). In particular,
µβ,0 = 0 in this case.

When h = 0 and β > 1, there are two maximizing values
which are symmetric around 0, with the positive value being
denoted as µ+

β,0 6= 0. From results in [12], if either h 6= 0 or
β ≤ 1, there exists αb > 0, such that for all n large enough,

P(|Xn − µβ,h| ≤ b) ≥ 1− exp(−nαb).

In contrast, if β > 1 and h = 0, there exists αb > 0, such
that for all n large enough,

P(|Xn−µ+
β,0| ≤ b) = P(|Xn+µ+

β,0| ≤ b) ≥
1

2
−exp(−nαb).

In all cases, we can calculate that

∂2

∂h2
ψ(β, h) = σ2

β,h =
1− µ2

β,h

1− β + βµ2
β,h

.

Therefore by Theorem 4 and Corollary 2 we conclude that:

Proposition 3 In a Complete graph with Curie-Weiss prior,
• When h 6= 0 or β ≤ 1:
(a) If S 6= µβ,h, lim

n→∞
P

(n)
e = 0. Furthermore lim sup

n→∞
1
n logP

(n)
e < 0.

(b) If S = µβ,h, lim
n→∞

P
(n)
e = 1

π arccot(Dpσβ,h) > 0.

• When h = 0 and β > 1:
(a) If S 6= ±µ+

β,0, lim
n→∞

P
(n)
e = 0. Furthermore lim sup

n→∞
1
n logP

(n)
e < 0.

(b) If S = µ+
β,0 or S = −µ+

β,0, lim
n→∞

P
(n)
e =

1
2π arccot(Dpσβ,0) > 0.

Unlike the graphs in the previous propositions, notice that
the Complete graph demonstrates a phase transition-like
behavior in error performance when S = h = 0; the
error performance switches from asymptotically accurate to
inaccurate when the connection strength β drops below the
critical value βc = 1.



D. Lattice graph

The 2-dimensional Lattice graph is historically interesting
because it is the first graph possessing finite degree that
was demonstrated to exhibit a phase transition behavior, thus
validating its use as a model to explain ferromagnetism. In
the Lattice graph, [5] provides a detailed analysis of the free
entropy density. When h 6= 0 or β < βc = 1

2 log(1 +
√

2),
the free entropy density is differentiable with respect to
h, so that the asymptotic mean µβ,h can be obtained by
differentiation (10). In particular, µβ,0 = 0 when β < βc.
In contrast, when h = 0 and β > βc, the free entropy
density is not differentiable, while the asymptotic properties
of Xn in the phase transition interval cannot be determined
only through the free entropy density. However, statistical
physicists typically analyze the Lattice under the positive
boundary condition (where the boundary vertices i are all
clamped to Xi = +1). In that case, a celebrated result in
statistical physics shows that

lim
n→∞

E[Xn] = µ+
β,0 =

∂

∂h+
ψ(β, h)

∣∣∣∣
h=0

> 0.

Thus, when β > βc, the asymptotic mean is positive even
without any external influence. Furthermore, when β is
sufficiently larger than βc, there is a covariance decay result
in the Lattice graph stating that lim supn→∞ nV[Xn] <∞.
Thus, by Theorem 4, we have the following results:

Proposition 4 In a 2-dimensional Lattice graph,

• When h 6= 0 or β < βc = 1
2 log(1 +

√
2):

(a) If S 6= µβ,h, lim
n→∞

P
(n)
e = 0. Furthermore lim sup

n→∞
1
n logP

(n)
e < 0.

(b) If S = µβ,h, lim inf
n→∞

P
(n)
e > 0.

• When h = 0, β is sufficiently larger than βc, and under
the positive boundary condition:

(a) If S 6= µ+
β,0 > 0, lim

n→∞
P

(n)
e = 0.

(b) If S = µ+
β,0, lim inf

n→∞
P

(n)
e > 0.

(The same result holds for the negative boundary condition
at supermajority threshold level −µ+

β,0.)

Notice that the (finite degree) Lattice graph also demonstrates
a subtle error performance behavior, similar to the (infinite
degree) Complete graph. When S = h = 0, the detection is
asymptotically accurate when β is sufficiently large, but is
inaccurate when β < βc. The social network underlying the
sentiments matters significantly in this case!

For all the graph examples discussed above, we can make
the following general observations.

• When S = 0 and h 6= 0, the detection error probability
always decays to 0, i.e., the majority sentiment detection
in those networks is always asymptotically accurate if
there is a non-zero external influence.

• When h = 0 and S 6= 0, the detection error probability
always decays to 0, except perhaps for a few (unlucky)

choices of S, i.e., strict supermajority sentiment detec-
tion in those networks is nearly always asymptotically
accurate if there is no external influence.

V. NUMERICAL RESULTS

In this section, we provide numerical results on the asymp-
totic behavior of average member sentiments Xn and on
supermajority sentiment detection performance.
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Fig. 2: Wheel graph - part (a): cdf of Xn for n = 10001,
β = {0.2, 0.4, 0.6}, h = 0.1, S = µβ,h, p = 0.3. Dashed
lines denote µβ,h.

10
2

10
3

10
4

n

0

0.1

0.2

0.3

0.4

0.5

 = 0.2

 = 0.4

 = 0.6

Fig. 3: Wheel graph - part (a): P (n)
e versus n for β =

{0.2, 0.4, 0.6}, h = 0.1, S = µβ,h, p = 0.3. Dashed lines
denote 1

π arccot(Dpσβ,h).

First, we consider the Wheel graph. In part (a), we set h =
0.1 and S = µβ,h 6= 0. The cumulative density function (cdf)
is shown in Fig. 2. The detection error probability versus
number of members n is shown in Fig. 3. We can observe
that, the distribution of Xn concentrates around its mean
µβ,h. Consequently, the detection error probability does not
decay to 0, but instead converges to 1

π arccot(Dpσβ,h) > 0,
as predicted by the results in Section IV.

For the Wheel graph, in part (b), we set h = S = 0.
The cdf of Xn is shown in Fig. 4. The detection error
probability versus n is shown in Fig. 5. We can observe that
the distribution of Xn concentrates around the two modes
±µ+

β,h 6= 0, due to the strong influence of the center vertex.
However, since the supermajority threshold level S is not
equal to one of these modes, the detection error probability
reduces to 0 exponentially fast.
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Fig. 4: Wheel graph - part (b): cdf of Xn for n = 10001,
β = {0.2, 0.4, 0.6}, h = 0, S = 0, p = 0.3. Dashed lines
denote ±µ+

β,0.
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Fig. 5: Wheel graph - part (b): P (n)
e versus n for β =

{0.2, 0.4, 0.6}, h = 0, S = 0, p = 0.3.

Finally, we consider the Lattice graph for h = S = 0. The
cdf of Xn is shown in Fig. 6. The detection error probability
versus connection strength β is shown in Fig. 7. We can
observe that, when β < 1

2 log(1 +
√

2), the distribution of
Xn concentrates around zero, so that the error probability is
large (and is predicted in Section IV to remain nonzero, even
for large n.) When β > 1

2 log(1 +
√

2), the distribution con-
centrates around the two modes which are symmetric around
zero. Consequently, the error probability in this regime is
small (and is predicted to reduce to zero as n→∞.)

VI. CONCLUSION

In this paper, we analyzed the asymptotic accuracy of
supermajority sentiment detection in social networks with an
external influence. We related the detection accuracy to the
asymptotic distribution of the average member sentiments
in the network. We showed that in several graphs such as
Empty graph, Chain graph, Complete graph, Lattice graph,
when the average member sentiment stays away from the
supermajority threshold level, the detection is asymptotically
accurate; otherwise, the detection is inaccurate.

REFERENCES

[1] Efthymios Kouloumpis, Theresa Wilson, and Johanna D Moore.
Twitter sentiment analysis: The good the bad and the omg! Icwsm,
11:538–541, 2011.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

c
d
f

 = 0.1

 = 0.3

 = 0.5

 = 0.7

Fig. 6: Lattice graph: cdf of Xn for n = 2601, β =
{0.1, 0.3, 0.5, 0.7}, h = 0, S = 0, p = 0.3.

0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

Fig. 7: Lattice graph: P (n)
e versus β for n = 2601, h = 0,

S = 0, p = 0.3.

[2] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis.
Foundations and trends in information retrieval, 2(1-2):1–135, 2008.

[3] Tsung-Dao Lee and Chen-Ning Yang. Statistical theory of equations
of state and phase transitions. ii. lattice gas and ising model. Physical
Review, 87(3):410, 1952.

[4] Rodney J Baxter. Exactly solved models in statistical mechanics.
Courier Corporation, 2007.

[5] Sacha Friedli and Yvan Velenik. Statistical Mechanics of Lattice Sys-
tems: A Concrete Mathematical Introduction. Cambridge University
Press, 2017.

[6] Tian Tong and Rohit Negi. Asymptotic performance analysis of major-
ity sentiment detection in online social networks. In Communication,
Control, and Computing, 2016 54th Annual Allerton Conference on.
IEEE, 2016.

[7] Richard M Dudley. Real analysis and probability, volume 74.
Cambridge University Press, 2002.

[8] Wlodzimierz Bryc. A remark on the connection between the large de-
viation principle and the central limit theorem. Statistics & probability
letters, 18(4):253–256, 1993.

[9] Hugo Touchette. The large deviation approach to statistical mechanics.
Physics Reports, 478(1):1–69, 2009.

[10] Peter W Glynn and Dirk Ormoneit. Hoeffding’s inequality for
uniformly ergodic markov chains. Statistics & probability letters,
56(2):143–146, 2002.
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