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Nonlinear Sequential Accepts and Rejects for Identification

of Top Arms in Stochastic Bandits

Shahin Shahrampour and Vahid Tarokh

Abstract— We address the M -best-arm identification prob-
lem in multi-armed bandits. A player has a limited budget
to explore K arms (M < K), and once pulled, each arm
yields a reward drawn (independently) from a fixed, unknown
distribution. The goal is to find the top M arms in the sense of
expected reward. We develop an algorithm which proceeds in
rounds to deactivate arms iteratively. At each round, the budget
is divided by a nonlinear function of remaining arms, and the
arms are pulled correspondingly. Based on a decision rule, the
deactivated arm at each round may be accepted or rejected.
The algorithm outputs the accepted arms that should ideally
be the top M arms. We characterize the decay rate of the
misidentification probability and establish that the nonlinear
budget allocation proves to be useful for different problem
environments (described by the number of competitive arms).
We provide comprehensive numerical experiments showing that
our algorithm outperforms the state-of-the-art using suitable
nonlinearity.

I. INTRODUCTION

Multi-Armed Bandits (MAB) is a sequential decision-

making framework for the exploration-exploitation dilemma

[1], [2]. In MAB, a player explores a finite set of arms,

and pulling each arm reveals a reward to the player. In the

stochastic MAB, the rewards for each arm are independent

samples from an unknown, fixed distribution. The player

aims to exploit the arm with the largest expected reward

as often as possible to maximize the gain. This framework

has been formulated in terms of the cumulative regret,

a comparison measure between the player’s performance

versus a clairvoyant knowing the best arm a priori. Early

studies on MAB dates back to several decades ago, but the

problem has attracted a lot of renewed interest due to its

modern applications, such as web search and advertising,

wireless cognitive radios, and multi-channel communication

systems (see e.g. [3]–[7] and references therein).

More recently, many researchers have examined MAB

in a pure-exploration framework where the player aims to

minimize the simple regret. This task is closely related to

(probability of) finding the best arm in the pool [8]. As

a result, the best-arm identification problem has received a

considerable attention in the literature of machine learning

[8]–[14]. It is well-known that algorithms developed to mini-

mize the cumulative regret (exploration-exploitation) perform

poorly for the simple-regret minimization (pure-exploration).

This work was supported by DARPA under grant number
N6600115C4028.

S. Shahrampour and V. Tarokh are with the John A. Paulson School of
Engineering and Applied Sciences, Harvard University, Cambridge, MA,
02138 USA. (e-mail: {shahin,vahid}@seas.harvard.edu).

Consequently, one must adopt different strategies for opti-

mal best-arm recommendation [12]. To motivate the pure-

exploration setting, consider channel allocation for mobile

phone communication. Before the outset of communication,

a cellphone (player) can explore the set of channels (arms) to

find the best one to operate. Each channel feedback is noisy,

and the number of trials (budget) is limited. The problem is

hence an instance of best-arm identification, and minimizing

the cumulative regret is not the right approach to the problem

[8].

In this paper, we consider the M -best-arm identification

problem in the fixed-budget setting [15]. Given a fixed

number of arm pulls, the player attempts to maximize the

probability of correctly identifying the top M arms (in the

sense of the expected reward). Note that this setting differs

from the fixed-confidence setting, in which the objective is

to minimize the number of trials to find the top M arms

with a certain confidence [16], [17]. Recently, for best-arm

identification (M = 1) in the fixed-budget setting, the authors

of [18] proposed an efficient algorithm based on nonlinear

sequential elimination. The idea is to discard the suboptimal

arms sequentially and divide the budget according to a

nonlinear function of remaining arms at each round. With

a suitable nonlinearity, the nonlinear budget allocation was

proven to improve upon Successive Rejects [8] (its linear

counterpart) as well as Sequential Halving [13].

Inspired by the success of nonlinear budget allocation for

best-arm identification [18], in this work, we extend the

Successive Accepts and Rejects (SAR) algorithm in [15] to

nonlinear budget allocation for M -best-arm identification.

Our algorithm, called Nonlinear Sequential Accepts and

Rejects (NSAR), proceeds in rounds. At each round, the

arms are pulled strategically and their empirical rewards

are calculated. Then, one arm is deactivated, and according

to a decision rule the arm may be accepted or rejected.

Unlike SAR that divides the budget by a linear function

of remaining arms, NSAR (our algorithm) does so in a

nonlinear fashion. For two general reward regimes, we prove

theoretically that our algorithm achieves a lower sample

complexity compared to SAR, which improves the decay rate

of the misidentification probability. We also provide various

numerical experiments to support our theoretical results, and

moreover, we compare NSAR to the fixed-budget version of

AT-LUCB in [19].

A. Related Work

Pure-exploration in the PAC-learning setup was examined

in [9], where Successive Elimination for finding an ǫ-optimal

http://arxiv.org/abs/1707.02649v1


arm with probability 1 − δ (fixed-confidence setting) was

developed. The matching lower bounds for the problem

were provided in [10], [20]. Many algorithms for pure-

exploration are inspired by the celebrated UCB1 algorithm

for exploration-exploitation [2]. As an example, Audibert et

al. [8] proposed UCB-E, which modifies UCB1 for pure-

exploration. In addition, Jamieson et al. [21] proposed an

optimal algorithm for the fixed-confidence setting, inspired

by the law of the iterated logarithm. Gabillon et al. [14]

presented a unifying approach for fixed-budget and fixed-

confidence settings. For identification of multiple top arms

(or M -best-arm identification), Kalyanakrishnan et al. [16]

developed the HALVING algorithm in the fixed-confidence

setting, which is later improved by the LUCB algorithm in

[17]. For the fixed-confidence setting, more recent progress

can be found in [22]–[24]. In [25], the M -best-arm identifi-

cation problem was posed using a notion of aggregate regret,

and it was applied to crowdsourcing. Furthermore, Kaufmann

et al. [26] studied the identification of multiple top arms

using KL-divergence-based confidence intervals. The authors

of [27] investigated both settings to show that the complexity

of the fixed-budget setting may be smaller than that of the

fixed-confidence setting.

II. PRELIMINARIES

Notation: For integer K , we define [K] := {1, . . . ,K} to

represent the set of positive integers smaller than or equal

to K . We use |S| to denote the cardinality of the set S,

and ⌈·⌉ to denote the ceiling function, respectively. We use

the notation f(x) = O(g(x)) when there exists a positive

constant L > 0 and a point x0 such that |f(x)| ≤ L |g(x)|
for x ≥ x0. Throughout, the random variables are denoted

in bold letters.

A. Problem Statement

In the stochastic Multi-armed Bandit (MAB) problem, a

player explores a finite set of K arms. When the player

samples an arm, the corresponding reward of that arm is

observed. The rewards of each arm i ∈ [K] are drawn

independently from an unknown, fixed distribution with the

expected value µi. The support of the distribution is the unit

interval [0, 1], and the rewards are generated independently

across the arms. For simplicity, we have the following

assumption on the order of arms

µ1 > µ2 > · · · > µK , (1)

where the strict inequalities guarantee that there is no ambi-

guity over the top M arms [M ]. Let ∆i := µ1−µi denote the

gap between arm i and arm 1, measuring the sub-optimality

of arm i, and µ̂i,n the (empirical) average reward obtained

by pulling arm i for n times.

In this work, we address the M -best-arm identification

setup, a pure-exploration problem in which the player aims

to find the top M arms [M ] with a high probability. The

two well-known settings for this problem are the fixed-

confidence and the fixed-budget. In the former, the objective

is to minimize the number of arm pulls needed to identify the

top M arms with a certain confidence. In the latter, which

is the focus of this work, the problem is posed formally as:

Problem 1: Given a total budget of T arm pulls,

an M -best-arm identification algorithm outputs the arms

{J1, . . . ,JM}. Find the decay rate of misidentification prob-

ability, i.e., the decay rate of P ({J1, . . . ,JM} 6= [M ]).
For the case that M = 1, known as best-arm identification, it

is proven that classical MAB techniques in the exploration-

exploitation setting (e.g. UCB1) are not optimal. In particular,

Bubeck et al. [12] have showed that upper bounds on the

cumulative regret results in lower bounds on the simple

regret, i.e., the smaller the cumulative regret, the larger

the simple regret. The underlying intuition is that in the

exploration-exploitation setting, we aim to find the best

arm as quickly as possible to exploit it, and in this case,

playing even the second-best arm for a long time yields an

unacceptable cumulative regret. On the other hand, in the

best-arm identification problem, there is no need to minimize

an intermediate cost, and the player only recommends the

best arm at the end. Therefore, exploring the suboptimal

arms strategically during the game helps the player to make

a better final decision. In other words, the performance is

only measured by the final output, regardless of the number

of pulls for the suboptimal arms.

B. Previous Performance Guarantees and Our Result

Though the focus of this work is M -best-arm identifi-

cation, we start by reviewing some of the results for the

case of M = 1 (best-arm identification). Any (single)

best-arm identification algorithm samples the arms based

on some strategy and outputs a single arm as the best. In

order to characterize the misidentification probability of these

algorithms, we need to define a few quantities. The decay rate

of misidentification probability for two of the state-of-the-art

algorithms, Successive Rejects [8] and Sequential Halving

[13], relies on the complexity measure H2, defined as

H1 :=

K∑

i=2

1

∆2
i

and H2 := max
i6=1

i

∆2
i

, (2)

which is equal to H1 up to logarithmic factors in K [8].

In Successive Rejects, at round r, the K − r + 1 remaining

arms are played proportional to the whole budget divided by

K − r + 1 (a linear function of r). As the linear function

is not necessarily the best sampling rule, the authors of [18]

extended Successive Rejects to Nonlinear Sequential Elimi-

nation which divides the budget at round r by the nonlinear

function (K−r+1)p, based on an input parameter p ∈ (0, 2]
(p = 1 recovers Successive Rejects). The performance of the

algorithm depends on the following quantities

H(p) := max
i6=1

ip

∆2
i

and Cp := 2−p +
K∑

r=2

r−p. (3)

For each of the three algorithms, the bound on the

misidentification probability can be written in the form of

β exp (−T/α), where α and β are provided in Table I

(log K = 0.5 +
∑K

i=2 i
−1). It was shown in [18] that



TABLE I

THE PARAMETERS α AND β FOR THE ALGORITHMS PROPOSED FOR (SINGLE) BEST-ARM IDENTIFICATION. THE MISIDENTIFICATION PROBABILITY

FOR EACH ALGORITHM DECAYS IN THE FORM OF β exp (−T/α). THE QUANTITIES USED IN THE TABLE ARE DEFINED IN (2) AND (3).

Algorithm Successive Rejects Sequential Halving Nonlinear Sequential Elimination

α H2logK 8H2 log2 K H(p)Cp

β 0.5K(K − 1) exp
(

K/(H2logK)
)

3 log
2
K (K − 1) exp (K/H(p)Cp)

TABLE II

THE SAMPLING COMPLEXITY OF ALGORITHMS PROPOSED FOR M -BEST-ARM IDENTIFICATION. IT IDENTIFIES THE SMALLEST T FOR WHICH EACH

ALGORITHM RECOMMENDS THE TOP M ARMS WITH PROBABILITY AT LEAST 1− δ. THE QUANTITIES USED IN THE TABLE ARE DEFINED IN (3) AND

(4).

Algorithm SAR AT-LUCB NSAR (our algorithm)

Sampling complexity order H
〈M〉
2

logK log K
δ H

〈M〉
1

log
H

〈M〉
1

δ
H〈M〉(p)Cp log K

δ

in many regimes for the arm gaps, p 6= 1 provides better

results (theoretical and practical), and Nonlinear Sequential

Elimination outperforms the other two algorithms. The value

of p must be tuned, but the tuning is more qualitative rather

than quantitative, i.e., the algorithm performs reasonably well

as long as p is either in (0, 1) or (1, 2), and thus, the value

of p needs not be specific.

In this work, our goal is to extend this idea to M -best-arm

identification. For convenience, we discuss the performance

of these algorithms in terms of the sample complexity,

defined as the smallest budget T needed to achieve the

confidence level δ for misidentification probability, i.e., the

smallest T for which P ({J1, . . . ,JM} 6= [M ]) ≤ δ. For

M -best-arm identification, we need to define a new set of

quantities and complexity measures as

∆
〈M〉
i =

{
µi − µM+1, if i ≤ M

µM − µi, otherwise

H
〈M〉
1 =

K∑

i=1

(
∆

〈M〉
i

)−2

H
〈M〉
2 = max

i6=1

{
i
(
∆

〈M〉
(i)

)−2
}

H〈M〉(p) = max
i6=1

{
ip
(
∆

〈M〉
(i)

)−2
}
, (4)

where ∆
〈M〉
(i) for each (i) ∈ [K] is such that

∆
〈M〉
(1) ≤ ∆

〈M〉
(2) ≤ · · · ≤ ∆

〈M〉
(K) .

Based on the definitions above,

H〈M〉(1) = H
〈M〉
2 6= H

〈M〉
1 .

Table II tabulates the sample complexities of three algorithms

for M -best-arm identification: SAR [15], AT-LUCB [19], and

NSAR proposed in this paper. It follows immediately from

(4) that for p ∈ (0, 1), H〈M〉(p) ≤ H
〈M〉
2 , and for p ∈

(1, 2], H〈M〉(p) ≥ H
〈M〉
2 . Also, in view of (3), Cp > logK

for p ∈ (0, 1) and Cp < logK for p ∈ (1, 2]. Therefore,

the comparison of H
〈M〉
2 log K and H〈M〉(p)Cp, the sample

complexities of SAR and NSAR, is not obvious. As in the

case of single best-arm identification, we will show that in

many regimes for rewards, NSAR can outperform SAR.

Note that AT-LUCB [19] is an anytime algorithm, i.e.,

it does not require a pre-assigned budget. In that sense,

AT-LUCB is more powerful compared to algorithms de-

signed specifically for the fixed-budget setting, but since it

can also be used in this framework, we include it in the

table as a benchmark and will compare our results with this

algorithm in the numerical experiments.

III. NONLINEAR SEQUENTIAL ACCEPTS AND REJECTS

In this section, we propose the Nonlinear Sequential

Accepts and Rejects (NSAR) algorithm for M -best-arm iden-

tification in the fixed budget setting. The algorithm follows

the steps of SAR [15], except for the fact that the budget

allocation at each round is a nonlinear function of arms. The

details of NSAR is given in Figure 1. The algorithm is given a

budget T of arm pulls. At any round r ∈ [K−1], it maintains

an active set of arms Ar, initialized by A1 = [K]. The

algorithm proceeds for K − 1 rounds to deactivate the arms

sequentially (one arm at each round) until a single arm is

left. Based on an input value p ∈ (0, 2], the constant Cp and

the sequence {nr}
K−1
r=1 are calculated for any r ∈ [K − 1].

At round r, the algorithm samples the K+1− r active arms

for nr − nr−1 times and computes the empirical average of

rewards for each arm. Then, it orders the empirical rewards

and calculates the empirical version of gaps, where the true

gaps ∆
〈M〉
i for i ∈ [K] are defined in the first line of (4).

The arm with the highest empirical gap is deactivated: if its

empirical reward is within the top M arms, it is accepted;

otherwise, it is rejected. At the end, the algorithm outputs

M accepted arms as the top M arms.

Note that our algorithm with the choice of p = 1
amounts to SAR. We will show that in many regimes for

arm gaps, p 6= 1 provides better theoretical results, and we

further exhibit the efficiency in the numerical experiments

in Section IV. The following proposition encapsulates the

theoretical guarantee of the algorithm (the proof is given in

the appendix).



Nonlinear Sequential Accepts and Rejects

Input: budget T , parameter p > 0.

Initialize: A1 = [K], n0 = 0, m1 = M .

Let

Cp = 2−p +

K∑

r=2

r−p

nr =

⌈
T −K

Cp(K − r + 1)p

⌉
for r ∈ [K − 1]

At round r = 1, . . . ,K − 1:

(1) Sample each arm in Ar for nr − nr−1 times.

(2) Let σr : [K + 1− r] → Ar be a permutation that orders the empirical means such that

µ̂σr(1),nr
≥ µ̂σr(2),nr

≥ · · · ≥ µ̂σr(K+1−r),nr
.

Then, for any ℓ ∈ [K + 1− r], define the following empirical gaps

∆̂σr(ℓ),nr
=

{
µ̂σr(ℓ),nr

− µ̂σr(mr+1),nr
, if ℓ ≤ mr

µ̂σr(mr),nr
− µ̂σr(ℓ),nr

, otherwise

(3) Identify index := argmaxi∈Ar
∆̂i,nr

, set Ur := {index} and Ar+1 = Ar \Ur, i.e., discard the arm index.

(4) If µ̂index,nr
> µ̂σr(mr+1),nr

, accept the arm index, set mr+1 = mr − 1 and JM−mr+1
= index.

(5) After finishing r = K − 1, the survived arm is accepted, if we have accepted M − 1 arms at the beginning of

r = K − 1; otherwise, the survived arm is rejected.

Output: {J1, . . . ,JM}.

Fig. 1. The NSAR algorithm for identification of the best-M arms.

Proposition 2: Let the Nonlinear Sequential Accepts and

Rejects algorithm in Figure 1 run for a given p ∈ (0, 2], and

let Cp and H〈M〉(p) be defined as in (3) and (4). Then, the

misidentification probability satisfies the bound,

P ({J1, . . . ,JM} 6= [M ]) ≤ 2K2 exp

(
−

T −K

8CpH〈M〉(p)

)
.

The performance of NSAR relies on the input parameter p,

but this choice is more qualitative rather than quantitative. In

particular, larger values for p increase H〈M〉(p) and decrease

Cp, and hence, there is a trade-off in selecting p. According

to Table II, to compare NSAR with SAR and AT-LUCB ,

we have to evaluate the corresponding sample complexities.

Fair theoretical comparisons with AT-LUCB is delicate,

since H
〈M〉
1 is in essence slightly different from H

〈M〉
2

and H〈M〉(p). However, we will provide comprehensive

simulations in Section IV to compare all algorithms. We

consider two instances for sub-optimality of arms in this

section to compare NSAR with SAR:

1 A large group of competitive arms: The top M arms

are roughly similar such that µ1 ≈ µM , µM −µM+1 =
δ1 is non-negligible, and the other arms are just as

competitive as each other, i.e., µM+1 ≈ µK .

2 A small group of competitive arms: The top M arms

are roughly similar such that µ1 ≈ µM . µM−µM ′ = δ1
for a small number of arms (M ′ = O(1) with respect

to K) and µM+1 ≈ µM ′ , µM ′ − µM ′+1 = δ2, and

µM ′+1 ≈ µK . We also have δ1 ≪ δ2.

The subsequent corollary follows from Proposition 2. Note

that the orders are expressed with respect to K .

Corollary 3: Consider the Nonlinear Sequential Accepts

and Rejects algorithm in Figure 1. Let constants p and q be

chosen such that 1 < p ≤ 2 and 0 < q < 1. Then, for the

two settings given above, the bound on the misidentification

probability presented in Proposition 2 satisfies

Regime 1 Regime 2

CqH〈M〉(q) = O(K) CpH〈M〉(p) = O(1)

Now let us compare NSAR and SAR using the result of

Corollary 3. Returning to Table II and calculating H
〈M〉
2

for Regimes 1 and 2, we can derive the following table,

which shows that with a proper tuning for p, we can save

TABLE III

THE SAMPLING COMPLEXITY FOR NSAR (OUR ALGORITHM) AND SAR.

FOR REGIME 1, WE SET 0 < q < 1, AND FOR REGIME 2, WE USE

1 < p ≤ 2. THE ORDER DOES NOT INCLUDE THE log K
δ

TERM AS IT IS

IN COMMON BETWEEN THE TWO ALGORITHMS.

Algorithm SAR NSAR

Regime 1 O(K logK) O(K)

Regime 2 O(logK) O(1)

a O(logK) factor in the sampling complexity. Though we

do not have prior information on gaps to categorize them

specifically, the choice of the input parameter p is more

qualitative rather than quantitative, i.e., once the sub-optimal

arms are almost the same 0 < p < 1 performs better than



1 < p ≤ 2, and when there are a few real competitive arms,

1 < p ≤ 2 outperforms 0 < p < 1. Next, we will show

in the numerical experiments that a wide range of values

for p can potentially result in efficient algorithms with small

misidentification error.

IV. NUMERICAL EXPERIMENTS

We now empirically evaluate our proposed algorithm

on a few settings studied in [15]. More specifically, we

compare NSAR with SAR, AT-LUCB, as well as uniform

allocation (UNI), where in the UNI algorithm, we simply

divide the budget uniformly across the arms. We remark that

AT-LUCB in [19] is an anytime algorithm, i.e., it does not

require a pre-assigned budget; however, since it can also

be used for the fixed-budget setting, we include it in our

numerical experiments as a benchmark. We consider K = 50
arms and assume Bernoulli distribution on the rewards. For

the following setups, we examine two values for top arms

M ∈ {2, 4} (we use the notation x :y to denote integers in

[x, y]):

1 One group of suboptimal arms: µ1:M = 0.7 and

µM+1:K = 0.5.

2 Two groups of suboptimal arms: µ1:M = 0.7,

µM+1:2M = 0.66, and µ2M+1:K = 0.5.

3 Three groups of suboptimal arms: µ1:M = 0.7,

µM+1:2M = 0.66, µ2M+1:3M = 0.62, and µ3M+1:K =
0.5.

4 Beta(2,2): The expected values of Bernoulli distribu-

tions are generated according to a beta distribution with

shape parameters 2 and 2.

5 Beta(5,5): The expected values of Bernoulli distribu-

tions are generated according to a beta distribution with

shape parameters 5 and 5.

6 One real competitive arm: µ1:M = 0.7, µM+1 = 0.68
and µM+2:K = 0.5.

We run 4000 experiments for each setup with a specific value

of M , and we calculate the misidentification probability

by averaging out over the error in experiment runs. We

set the budget T in each setup equal to
⌈
H

〈M〉
1

⌉
in the

corresponding setup as suggested in [15], and we also choose

the parameters of AT-LUCB as instructed in [19].

We illustrate the overall performance of the algorithms in

Figure 2 for different setups. The height of each bar shows

the misidentification probability, and the index guideline

is as follows: (i) indices 1-5: NSAR with parameter p ∈
{0.7, 0.85, 1.1, 1.2, 1.3}. (ii) index 6: SAR. (iii) index 7:

AT-LUCB. (iv) index 8: UNI. The legends are the same for

all of the plots, and hence, they are omitted in most of the

plots.

The results are consistent with Corollary 3, and the fol-

lowing comments are in order:

• Setup 1 corresponds to Regime 1 in Corollary 3. As

expected, with any choice of 0 < p < 1, NSAR should

outperform SAR, and we observe that this happens when

p ∈ {0.7, 0.85}. However, in this regime, our algorithm

is inferior compared to AT-LUCB.

• Setups 2-3-6 are considered close to Regime 2 in Corol-

lary 3 as we have a small number of arms competitive

to the top M arms. Thus, we should choose 1 < p ≤ 2.

We observe that in these setups, at least for two choices

out of p ∈ {1.1, 1.2, 1.3}, NSAR outperforms SAR and

AT-LUCB. One should observe that the improvement

in Corollary 3 is O(logK) which increases slowly with

K . Since we only have K = 50 numbers, using larger

values for p is not suitable in these setups, because the

increase in H〈M〉(p) worsens the performance overall.

Though for larger values of K , the improvement must

be more visible, we avoid that due to prohibitive time-

complexity of Monte Carlo simulations.

• In Setups 4-5, we choose the expected values of

Bernoulli rewards randomly and concentrate them

around 0.5. Again, for at least two choices out of

p ∈ {1.1, 1.2, 1.3}, our algorithm outperforms SAR and

AT-LUCB.

• In all setups, the naive UNI algorithm is outperformed

by the other methods.

Overall, the performance of algorithms depends on the

problem environment. If we have prior knowledge of the en-

vironment, we can select the suitable algorithm. The notable

feature of NSAR is incorporation of this prior knowledge in

tuning of p without changing the foundation of the algorithm.

V. CONCLUSION

We considered M -best-arm identification in stochastic

multi-armed bandits, where the objective is to find the top M
arms in the sense of the expected reward. We presented an

algorithm working based on sequential deactivation of arms

in rounds. The key is to allocate the budget of arm pulls in

a nonlinear fashion at each round. We proved theoretically

and empirically that we can gain from the nonlinear budget

allocation in several problem environments, compared to the

state-of-the-art methods. An important future direction is to

propose a method that adaptively fine-tunes the nonlinearity

according to the problem environment.

VI. APPENDIX

Fact 1: (Hoeffding’s inequality) Let W1, . . . ,Wn be inde-

pendent random variables with support on the unit interval

with probability one. If Sn =
∑n

i=1 Wi, then for all a > 0,

it holds that

P (Sn − E[Sn] ≥ a) ≤ exp

(
−2a2

n

)
.

PROOF OF PROPOSITION 2

Recall that µ̂i,n denotes the average reward of pulling arm

i for n times. Now consider the following event

E :=

{
∀i ∈ [K], ∀r ∈ [K − 1] :

∣∣µ̂i,nk
− µi

∣∣ ≤ 1

4
∆

〈M〉
(K+1−r)

}
.

Using Hoeffding’s inequality (Fact 1), we get
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Fig. 2. The figure shows the misidentification probability for NSAR, SAR, AT-LUCB, and UNI algorithms in six different setups. The six plots on the left
relate to the case M = 2, and the six plots on the right are associated with M = 4. The height of each bar represents the misidentification probability,
and each index (or color) represents one algorithm tuned with a specific parameter.

P
(
EC
)
≤

K∑

i=1

K−1∑

r=1

P

(∣∣µ̂i,nk
− µi

∣∣ > 1

4
∆

〈M〉
(K+1−r)

)

≤

K∑

i=1

K−1∑

r=1

2 exp

(
−2nr

(
1

4
∆

〈M〉
(K+1−r)

)2
)
.

Noting the fact that nr =
⌈

T−K
Cp(K+1−r)p

⌉
≥ T−K

Cp(K+1−r)p ,

we can use above to conclude that

P
(
EC
)
≤ 2K2 max

r∈[K−1]




exp


−

T −K

8

(
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〈M〉
(K+1−r)

)2

Cp(K + 1− r)p


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= 2K2 exp


−
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8
min
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
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(
∆

〈M〉
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)2

Cp(K + 1− r)p








= 2K2 exp

(
−

T −K

8CpH〈M〉(p)

)
.

The rest of the proof is to show that the event E warrants

that the algorithm does not make erroneous decision. This

part follows precisely by the induction argument given in

[15] (see page 4-5). �

PROOF OF COROLLARY 3

First, let us analyze the order of Cp defined as

Cp = 2−p +
K∑

r=2

r−p.

For any p > 1, Cp is a convergent sum when K → ∞. Thus,

for the regime p > 1, the sum is a constant, i.e., Cp = O(1).
On the other hand, consider q ∈ (0, 1), and note that the

sum is divergent, and for large K we have Cq = O(K1−q).
Now, let us analyze

H〈M〉(p) = max
i6=1

{
ip
(
∆

〈M〉
(i)

)−2
}
.



For Regime 1, q ∈ (0, 1) and we have

max
i6=1

{
iq
(
∆

〈M〉
(i)

)−2
}

≈
Kq

δ21

Combining with Cq , the product CqH
〈M〉(q) = O(K). For

Regime 2, p ∈ (1, 2] and we have

max
i6=1

{
ip
(
∆

〈M〉
(i)

)−2
}

≈
M ′p

δ21
= O(1),

since δ1 ≪ δ2. Therefore, combining with Cp = O(1), the

product CpH
〈M〉(p) = O(1). �
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