
ar
X

iv
:1

70
6.

02
38

4v
2

 [
cs

.P
F]

 9
 J

un
 2

01
7

Delay Comparison of Delivery and Coding Policies

in Data Clusters

Virag Shah

Microsoft Research-Inria Joint Centre

Palaiseau, France, 91120

virag.shah@inria.fr

Anne Bouillard

ENS/INRIA

Paris Cedex 05, France, 75230

anne.bouillard@ens.fr

François Baccelli

The University of Texas at Austin

Austin, TX, USA, 78712

francois.baccelli@austin.utexas.edu

Abstract—A key function of cloud infrastructure is to store
and deliver diverse files, e.g., scientific datasets, social network
information, videos, etc. In such systems, for the purpose of fast
and reliable delivery, files are divided into chunks, replicated
or erasure-coded, and disseminated across servers. It is neither
known in general how delays scale with the size of a request nor
how delays compare under different policies for coding, data
dissemination, and delivery.

Motivated by these questions, we develop and explore a set of
evolution equations as a unified model which captures the above
features. These equations allow for both efficient simulation and
mathematical analysis of several delivery policies under general
statistical assumptions. In particular, we quantify in what sense a
workload aware delivery policy performs better than a workload
agnostic policy. Under a dynamic or stochastic setting, the sample
path comparison of these policies does not hold in general.
The comparison is shown to hold under the weaker increasing
convex stochastic ordering, still stronger than the comparison of
averages.

This result further allows us to obtain insightful computable
performance bounds. For example, we show that in a system
where files are divided into chunks of equal size, replicated or
erasure-coded, and disseminated across servers at random, the
job delays increase sub-logarithmically in the request size for
small and medium-sized files but linearly for large files.

I. INTRODUCTION

Modern cloud computing infrastructures feature several

clusters each of which consists of thousands of highly in-

terconnected servers which collectively run and serve diverse

computing applications [1]–[3]. An important aspect of these

clusters is to collectively store and deliver Internet scale

data/files. Key design challenges for such systems include

placement of files across servers and an algorithm for the swift

delivery of dynamically arriving file requests. A common prac-

tice towards file placement is to divide each file into chunks of

fixed size, which could then potentially be replicated/coded,

and to disseminate them across the servers [4], [5]. This can

potentially reduce delays in delivering large files since the

delivery algorithm could now aggregate the service rate from

multiple servers.

To gain intuition, consider some hypothetical scenario

where, for the placement of each file, one is allowed to use

variable and arbitrarily small (possibly fractional) chunk sizes.

Then, for a system of m servers, one could divide each file

of size ν bits into m different chunks, each of size ν/m
bits. Suppose that the service/delivery rate at each sever is

µ bits/sec and that there is no other network bottleneck. Then,

the minimum achievable delay in serving a download request

for a file of size ν is ν
mµ

, which is possible only if no other

request is present in the system.

However, delays which scale inverse linearly with m clearly

cannot be achieved for each file if there is a limit to the

minimum chunk size. For example, suppose that each file of

size ν is divided into
⌈

ν
c

⌉

chunks of size c. Then, if there is

only one download request in the system at a given time, for

any file of size less than cm, a download delay equal to c
µ

can be achieved. Whereas for files several times larger than

cm bits, the delay is still of the order of ν
mµ

under isolation.

However, for a system with diverse files and fixed chunk size,

it is not directly clear what the delays are under stochastic

loads. In such a setting, how do delays relate with the size of

a requested file? Do replication of chunks or erasure coding

help in reducing delays? What is the impact of dynamic load-

balancing? These are some of the questions we address in this

work.

Contributions: We provide a stochastic model which en-

capsulates the key features of the content delivery process in

a highly interconnected cluster of servers and allows us to

compare several different policies as well as to obtain explicit

performance bounds. In particular, our model captures the

following aspects:

Dissemination policy: We allow each file to be divided into

chunks of a given size. Thus, a larger file is divided into

larger number of chunks. These chunks are most often encoded

to obtain code blocks of the given size, as explained below.

The code blocks are then disseminated across servers in a

randomized fashion to ensure that the load across servers is

balanced.

Coding policy: Suppose that a file is divided into k chunks.

For each k ≥ 1, these chunks are coded into αk code blocks

for some αk ≥ k via MDS (maximum distance separable)

erasure codes [6], [7]. These codes are designed such that the

original k chunks can be exactly recovered from any k out of

the αk code blocks. This allows additional flexibility towards

dynamically balancing load across servers as the requests

arrive over time, as explained below.

Delivery policy: Upon the arrival of a request for a file

with k chunks, a request is sent to a subset of servers to

obtain k out αk associated code blocks. The servers serve

http://arxiv.org/abs/1706.02384v2

the block requests in FCFS fashion. We allow dynamic load

balancing policies such as Water-filling and Batch Sampling

policies (defined below) which favor a subset of the set of

servers with lower instantaneous loads to balance the server

workload as well as to achieve lower request delays.

We propose a comprehensive model for this class of sys-

tems, with the potential of representing all such policies under

certain diversity and symmetry assumptions on the file sizes

and the loading policy. This model consists of a set of evo-

lution equations which allow for both efficient simulation and

mathematical analysis under general statistical assumptions. In

particular, we are able to show the following:

1) We compare the evolution of workloads under three

different delivery policies: namely, water-filling (WF),

batch sampling (BS), and a randomized policy called

Balanced Random (BR). We show that, for a given

workload at each server, WF is optimal in the sense

that upon a new arrival, it achieves ‘the most balanced’

workload as compared to any other policy. Further, BS
is somewhere in between WF and BR in this respect.

2) We show that WF and BS achieve more favorable

workload distributions and lower delay distributions as

compared to BR in the sense of ‘increasing convex

order’, which in turn implies that the former policies

achieve better performance not only in expectation but

in higher moments as well.

3) We provide an upper bound for the delay in delivering

a file as a function of its size, under a scenario where

the requests form a mix of diverse file sizes. Our bound

reveals the relative impact of the local dynamics at an

individual server and that of the global view of server

workloads seen by an arrival. We also provide new scaling

laws on the behavior of delays under such a scenario.

4) Using simulations we analyze the impact of the key

options and parameters, including the delivery policy,

the coding options and the chunck size. We identify two

fundamental regimes, the logaritmic regime when the file

sizes are such that no two chunks are stored on the same

server, and the linear regime when files have a number

of chunks that exceeds the number of servers. We show

that in the logarithmic regime, the gains of dynamic load

balancing via WF and BS are significant even when the

coding rate is small. We also show that our product form

bound on the delivery latency is tight when requests have

a moderate size.

Related Work: Recently there has been significant interest

towards developing scalable performance models and analysis

for content delivery systems with low delays. For example,

the work in [8]–[10] exploits server parallelism via “resource

pooling”, that is multiple servers are allowed to work together

as a pooled resource to meet individual download requests.

The pools of servers associated with different requests may

overlap, so the sharing of server resources across classes is

done via a fairness criterion. Under a scenario where the size

of resource pools is limited (i.e.o(m)), it is shown that the

gains of resource pooling and load-balancing can be achieved

simultaneously.

An alternate approach considered in the literature is to

split a download request into multiple parts, for example, into

requests for individual chunks, and achieve server parallelism

by employing different servers for different parts [11], [12].

Further, sophisticated coding policies are employed to achieve

flexibility in server choices [12]. Under the assumption that

the number of servers available for each request is limited, the

works in [11], [12] are able to use mean-field based arguments

to study performance as the number of servers m tends to

infinity. Several other works also study queuing models under

coding based techniques via heuristics or bounds, e.g. [13]–

[16], but these are not scalable for our purposes.

We depart from the above approaches in that we are

interested in developing performance models for a regime

where we obtain a maximum gain from server parallelism

without restricting ourselves to limited resource pools or a

limited number of available servers for each request. Given

a lower bound on the chunk size, we divide each file into

a maximum number of chunks and disseminate them across

several servers, potentially Ω(m) servers for large files. Thus,

we allow Ω(m) servers to take care of a request in parallel.

We allow diverse file sizes and provide a delay bound which

is a function of the file size.

In terms of tools used, we model the system dynamics via

an evolution equation which is a generalization of the Kiefer

and Wolfowitz recursion for workloads in G/G/s queues [17],

which allows us to go beyond exponentiality assumptions

for file-size requests. We use coupling arguments to compare

different policies. Coupling has been used to compare several

queueing systems in past, e.g., see for example [10], [18].

Further, to provide explicit bounds on delays, we use the

notion of association of random variables, which is a property

that has had several applications in queueing systems and

beyond [17], [19].

Organization: In Section II we provide our system model

and develop the evolution equations. In Section III we provide

results comparing various dynamic load balancing policies

via coupling arguments. In Section IV we give performance

bounds based on the notion of association of random variables.

In Section V we consider a scenario where the chunk size

may be different for different files. In Section VI we provide

simulation results and numerical evaluations. We conclude in

Section VII. Some proofs of technical nature are provided in

the Appendix.

II. SYSTEM MODEL

We consider a system with m servers, indexed 1, 2, . . . ,m.

The system consists of a very large number (several orders

of magnitude larger than m) of diverse files. We assume that

the size of each file is an integer multiple of c bits. Each

file is divided into chunks of size c bits each. These chunks

are encoded before being placed across servers, as explained

below.

For each positive integer k we use an MDS erasure code of

rate k/αk, where αk is an integer greater than or equal to k.

Such a code is called (αk, k) MDS code in coding theory [6].

Thus, equivalently, each file of size kc is divided into k chunks

and encoded into αk code blocks of size c bits each. The MDS

erasure codes may serve various practical purposes. Only the

following property is relevant for our purposes: for a file of

size kc, it is possible to recover the entire file by downloading

any k out of the αk code blocks.

For each file of size kc, the associated αk code blocks are

placed across servers as follows. If αk < m, then we choose

αk among the m servers uniformly at random and place a

distinct code block across each of these servers. Else, we place
⌊

αk

m

⌋

distinct blocks on each server and for the remaining

αk −m
⌊

αk

m

⌋

blocks we choose that many servers uniformly

at random.

We assume that the blocks are placed across servers as

described above at time t = −1. The placement of blocks is

kept fixed since then. From time t = 0, file download requests

arrive as per an independent Poisson point process Π with rate

λ. Let {t0, t1, . . .} be the points of Π.

Consider a probability mass function π = (πk : k ∈ Z+).
Each request arrival corresponds to a file of size ck bits with

probability πk independently of all other arrivals. Let κn be

the number of chunks for the file requested at time tn. Thus,

{κn}
∞
0 is a sequence of discrete i.i.d. random variable with

p.m.f. π.

For each n, let an ∈ Z
m
+ represent the placement of the file

requested at time tn, in the following sense: for each server

i the entry ain represents the number of coded blocks placed

on server i that correspond to the file requested upon the nth

arrival. Thus, for each n, k ∈ Z+, if κn = k, then |an| = αk.

We call {an}
∞
0 the sequence of placement vectors.

Let ν = c
∑∞

k=0 kπk denote the mean file-size in bits. Let

ρ = λν/m denote the per server load in bits/sec.

Assumption 1 (Symmetry in load across servers): Due to

the randomized placement of blocks, for a very large number

of files, the load across servers is approximately symmetric.

Thus we model the symmetry in load via symmetry in

request arrivals as follows: given κn = k, an is chosen

uniformly at random from each of its feasible realizations.

Equivalently, given κn = k, the entry ain is equal to
⌊

αk

m

⌋

+1
for αk −m

⌊

αk

m

⌋

servers chosen uniformly at random and it

is equal to
⌊

αk

m

⌋

for the rest of the servers.

Making such a symmetry assumption to obtain insightful

results is a common practice, see e.g. [8], [11], [12]. While,

in general, a system with a finite number of files may not

be symmetric, we believe that this is a good approximation

especially when the number of files is an order of magnitude

larger than the number of servers.

We will not discuss server memory capacity issues here

as this is not needed. Note however that such a randomized

placement results into concentration of memory usage at each

server.

Delivery policy: Upon each arrival, we load servers with

requests for coded blocks via a delivery/routing policy as

described below. Each server serves its block requests in FCFS

fashion at rate µ, i.e., it delivers a code block at the rate of

µ bits per second. Recall, due to our use of MDS codes, if

κn = k then the system only needs to deliver k out of the

αk associated blocks for the nth arrival. We let sn denote

the Z
m
+ valued random variable where sin is the number of

blocks requested from server i upon the nth arrival. Thus,

we have |sn| = κn and sn ≤ an for each n. We call

{sn} the sequence of routing vectors. Following are some of

the admissible routing policies, each resulting into possibly

different sequences of routing vectors.

Balanced Random Policy (BR): For each n, k, if κn =
k, then request

⌊

k
m

⌋

blocks from each server and, for the

remaining k − m
⌊

k
m

⌋

blocks, choose the same number of

servers at random from the remaining min
(

αk −m
⌊

k
m

⌋

,m
)

servers having an additional block. More formally, suppose

κn = k. Let k′ = k −m
⌊

k
m

⌋

and a′n = an −
⌊

k
m

⌋

1. From

the set {i : a′
i
n > 0} choose a subset of size k′ at random.

Let sin be equal to
⌊

k
m

⌋

+1 for each i in this subset and
⌊

k
m

⌋

for others.

The following two policies take a routing decision upon the

nth arrival based on the instantaneous workloads at different

servers at time t−n .

Batch Sampling Policy (BS): This is a workload dependent

policy. The workload at a server at any given time is the

number of bits requested from the server and which are not

yet served. Of the required k blocks, request
⌊

k
m

⌋

blocks from

each server and for the remaining k′ = k − m
⌊

k
m

⌋

blocks,

choose the k′ servers with least instantaneous workload from

the remaining min
(

αk −m
⌊

k
m

⌋

,m
)

servers having an addi-

tional block. More formally, suppose that the workload at the

servers at time t−n is w = (wi : i = 1, . . . ,m) and that κn = k.

Let k′ = k−m
⌊

k
m

⌋

and a′n = an−
⌊

k
m

⌋

1. Let i1, i2, . . . , ik′

be given recursively as follows: let i1 = argmini:a′i
n>0 w

i,

and for l = 2, . . . , k′ let il = argmini:a′i
n>0,i6=i1,...,il−1

wi.

Then, we have sin =
⌊

k
m

⌋

+ 1 for each i ∈ {i1, i2, . . . , ik′}
and sin =

⌊

k
m

⌋

for i /∈ {i1, i2, . . . , ik′}.

Water-filling Policy (WF): This is also a workload depen-

dent policy. If κn = k, then at time tn, we take a routing

decision for k block requests defined sequentially as follows.

Among the servers which store at least one of the αk blocks for

the associated file, choose the server with minimum workload.

If there are multiple such servers, choose one at random.

Request a block from this server and update its workload,

i.e., add c to its existing value. We now have to choose k− 1
blocks among the αk − 1 remaining code blocks, for which

we repeat the above procedure, see Fig. 1.

More formally, suppose that the workload at the servers at

time t−n is w and that κn = k. Then, let j1, j2, . . . , jk be

recursively given as follows: j1 = argmini:ai
n>0 w

i, and for

l = 2, . . . , k let

jl = argmin
i:ai

n−
∑l−1

l′=1
1{i=j

l′}
>0

wi + c

l−1
∑

l′=1

1{i=jl′}
.

For i = 1, . . . ,m, let ei represent the vector in R
m with ith

randomized
selection

(a) Balanced Random

least

servers
loaded

(b) Batch Sampling

1

2
3

3 step
water-filling

(c) Water-filling

Fig. 1: Illustration of different dynamic delivery policies upon the nth arrival; m = 4, k = 3, αk = 5, an = (1, 2, 1, 1).

entry equal to 1 and other entries equal to 0. Then, under the

WS policy we have sn =
∑m

l=1 ejl .
One would guess that WF is the most egalitarian policy,

i.e., it attempts at spreading the arriving load to servers

with lower instantaneous workloads, and BS is somewhere in

between WF and BR in egalitarianism. We will corroborate

these intuitions in the next section.

Note that we do not allow policies which depend explicitly

on the server indices. More concretely, if server indices are

permuted at time t = 0−, the choice of servers upon each

arrival is permuted in the corresponding fashion.

Recall that the routing vector sn for each n is such that

|sn| is chosen independently with distribution (πk : k ∈ N),
while its entries depend on the workload at the servers at

time t−n and on the delivery policy. Due to symmetry in file

placement (modeled via symmetry in request arrivals) and the

above mentioned restriction on the delivery policies, we have

that {sn}
∞
0 are exchangeable random vectors in the following

sense: upon permutation of server indices the distribution of

the sequence {sn} remains unchanged.

Let {τn}
∞
0 be inter-arrival times, i.e., τn = tn+1 − tn for

each n. Let {Wn}
∞
0 be a sequence of R

m
+ valued random

variables representing the workload seen by nth arrival, i.e.,

the workload at different servers at time t = t−n . Then we have

W0 = 0 and

Wn+1 = (Wn + csn − µτn1)
+, n = 0, 1, . . . (1)

where 1 = (1, 1, . . . , 1), and

(x1, . . . , xm)+ = (max(x1, 0), . . . ,max(xm, 0)).

The delay of the nth request is then:

Dn = max
i:sin>0

W i
n + csin, n = 0, 1, . . .

As mentioned earlier, we are mainly interested in the case

where c is a constant since we want to obtain a maximum gain

from server parallelism. However, one can envisage a scenario

where different requests/files use different chunk sizes. This

can be incorporated in our model as follows: we have W0 = 0

and

Wn+1 = (Wn + cnsn − µτn1)
+, n = 0, 1, . . . , (2)

where the random variables {cn}
∞
0 are R+ valued and i.i.d..

Note that in this extension, for a given file, the chunks are

still of equal sizes. For most parts of the paper, we will use

recursion (1). We will nevertheless discuss and analyze (2) in

Section V.

III. COMPARISON OF DELIVERY POLICIES

In this section we compare the server workloads and the re-

quest delays under different delivery policies. We use coupling

arguments to compare systems adopting different delivery

policies. In particular, we couple the request arrival process

as well as the sequence of routing vectors in each system.

We then study and compare the evolution of server workloads

{Wn}
∞
0 in the respective systems.

For comparing the workloads of different systems, we use

stochastic submajorization and stochastic dominance in the

increasing convex order sense, which are briefly introduced

in the first subsection. While the former is more amenable

to compare the loading under different policies subject to a

given initial condition, the later allows us to propagate the

comparison result and also to compare delays (recall that the

delay of a request is the max of the delays in downloading

individual blocks).

A. Order statistics and stochastic orders

The notation and concepts listed below are borrowed from

[20] and [19].

For all vectors z ∈ R
m, let z(1), z(2), . . . , z(m) represent its

entries in increasing order.

We say that a function φ : Rm → R is symmetric if for all

x ∈ R
m and its permutation x′ ∈ R

m, we have φ(x) = φ(x′).
For two vectors x, y ∈ R

m, we say that x is majorized by

y, which is denoted by x ≺ y, if
∑m

i=1 x
i =

∑m

i=1 y
i and

∑l

i=1 x
(i) ≥

∑l

i=1 y
(i) for l = 1, 2, . . . ,m− 1. Intuitively, if

x ≺ y, then x is ‘more balanced’ than y. For example, in R
m,

we have (1, 1, . . . , 1) ≺ (m2 ,
m
2 , 0, . . . , 0) ≺ (m, 0, 0, . . . , 0).

We say that x is submajorized by y, which is denoted by

x ≺s y, if
∑m

i=l x
(i) ≤

∑m

i=l y
(i) for l = 0, 1, 2, . . . ,m− 1.

We say that a function φ : Rm → R is Schur-convex if,

for all x and y such that x ≺ y, we have φ(x) ≤ φ(y). One

can check that a function φ is Schur-convex and increasing if

and only if (iff), for all x and y such that x ≺s y, we have

φ(x) ≤ φ(y). Further, Schur-convex functions are symmetric

since the property x ≺s y depends only on the ordered entries

of x and y.

Consider two random vectors X and Y . We say that X is

stochastically dominated by Y , which is denoted by X ≤st Y ,

if, for all increasing functions g, we have E[g(X)] ≤ E[g(Y)].
A classical result (Strassen’s theorem) states that X ≤st Y iff

there exist random vectors X̃ and Ỹ such that X and X̃ are

identically distributed, Y and Ỹ are identically distributed, and

X̃ ≤ Ỹ w.p. 1.

For two random vectorsX and Y we say that X is stochasti-

cally submajorized by Y , which is denoted by X ≺st Y if, for

all Schur-convex functions φ, we have E[φ(X)] ≤ E[φ(Y)].
We have X ≺st Y iff there exist random vectors X̃ and Ỹ
such that X and X̃ are identically distributed, Y and Ỹ are

identically distributed, and X̃ ≺st Ỹ w.p. 1.

Similarly, for the random vectors X and Y we say that

X is stochastically submajorized by Y , which is denoted by

X ≺st
s Y , if, for all increasing Schur-convex functions φ, we

have E[φ(X)] ≤ E[φ(Y)]. Again, X ≺st
s Y iff there exist

random vectors X̃ and Ỹ such that X and X̃ are identically

distributed, Y and Ỹ are identically distributed, and X̃ ≺st
s Ỹ

w.p. 1.

For the random vectors X and Y , we say that X is

stochastically dominated by Y in the increasing convex order

sense, which is denoted by X ≤icx Y , if, for all increasing

convex functions g, we have E[g(X)] ≤ E[g(Y)].
For i = 1, . . . ,m, let ei denote the vector in R

m with ith

entry equal to 1 and other entries equal to 0. For any vector

x we let |x| represent the sum of the absolute values of its

entries.

The following lemma is proved in the Appendix.

Lemma 1: Consider R
m valued exchangeable random

variable X and Y . If X ≺st
s Y then we have X ≤icx Y .

B. Comparison of Policies

A delivery policy can be seen as a form of load balancing.

Intuitively, a more egalitarian load balancing should achieve

more balanced overall workloads. For instance, recall the

policies WF , BS, and BR defined in the System Model.

The following theorem says that, given a workload vector W ,

WF is the most egalitarian policy while BS is somewhere in

between WF and BR. For a proof, see the Appendix.

Theorem 1: Suppose an arrival into the system sees the

workload W , where W is an R
m valued random variable. Let

sWF , sBS , sBR, and s′ be the routing vectors associated with

WF , BS, BR, and an arbitrary routing policy, respectively.

Then, the following holds.

W + csWF ≺st W + cs′ and W + csBS ≺st W + csBR.

Further, if W is an exchangeable random vector, then we have

W + csWF ≤icx W + csBS ≤icx W + csBR.

Thus, for a given workload at n, a system under WF or

BS achieves a more balanced workload in the ≺s sense at

n+ 1 as compared to BR. However, the resulting workloads

might be different. Starting with W0 = 0, to be able to claim

that an ordering holds for each n, one needs to argue that

it propagates. For this we additionally need the monotonicity

property of BR given in the lemma below. For a proof, see

the Appendix.

Lemma 2: Consider random vectors W and W ′ such that

W ≤icx W ′. Let s and s′ be the routing vectors as per the

BR policy for W and W ′ respectively. Then, W + cs ≤icx

W ′ + cs′.
The following theorem establishes that the WF and BS

policies achieve ‘more balanced and lower’ workloads across

servers as compared to BR in a strong sense. For a proof, see

the Appendix.

Theorem 2: Consider a system which starts empty. The

workload under policies WF , BS, and BR satisfy the fol-

lowing:

WWF
n ≤icx W BR

n and W BS
n ≤icx W BR

n for n = 0, 1, . . .

Proof: We show the comparison result for a system with

BS and a system with BR; the argument for comparison for

WF and BR is analogous.

Suppose that the two systems are fed with arrivals as given

by the same point process Π. Thus, the sequence of interarrival

times {τn}
∞
0 is the same for both systems.

For ease of notation let Wn, sn represent the vectors as-

sociated with BS with their usual meaning, and let W ′
n, s

′
n

represent those associated with BR. W0 ≤icx W ′
0 holds

trivially since both systems start empty. Now suppose that

Wn ≤icx W ′
n for a given n. We show below that this implies

Wn+1 ≤icx W ′
n+1.

From Theorem 1 we have that Wn + csn ≤icx Wn + cs′n.

Further, by Lemma 2 we have Wn+cs
′
n ≤icx W ′

n+cs
′
n. Thus,

we have Wn + csn ≤icx W ′
n + cs′n. Since µτn1 has equal

entries and max(., 0) is an increasing and convex operation,

we have (Wn + csn − µτn1)
+ ≤icx (W ′

n + cs′n − µτn1)
+,

i.e., Wn+1 ≤icx W ′
n+1. Hence the result holds.

The above theorem implies, for example, that each raw

moment of the workload at given server under WF and BS
is less than or equal to that under BR. Similarly, each raw

moment of the total workload in the system is lower or equal

under WF and BS as compared to that under BR.

However, the above theorem does not directly allow us to

compare the delays of requests for each n. To see this, recall

that delay seen by a request is the max of the delays in

downloading individual blocks, which are random in number.

Further, a more unbalanced workload W ′
n may have more

empty servers than Wn. The next arrival could, for example,

have the associated blocks stored on the servers which are

empty in W ′
n and not in Wn.

The following theorem compares delays of requests under

both the policies.

Theorem 3: Consider a system which starts empty. The

delays seen by requests under the WF , BS, and BR policies

satisfy the following:

DWF
n ≤icx DBR

n and DBS
n ≤icx DBR

n , n = 0, 1, . . .

Proof: We show this for BS; the argument for WF is

analogous.

For ease of notation, we will use the notation Wn, sn for

random vectors associated with policy BS with their usual

meaning, and W ′
n, s

′
n for those associated with policy BR.

For a given R
m
+ valued vector r, the function maxi:ri>0(x

i+
ri) is increasing and convex in x ∈ R

m. Thus, for any increas-

ing convex function g : R → R, g
(

maxi:ri>0(x
i + ri)

)

is an

increasing convex function in x. Thus, from Theorem 2 we

have

Es′n
g

(

max
i:s′in>0

(W i
n + cs′in)

)

≤ Es′n
g

(

max
i:s′in>0

(W ′i
n + cs′in)

)

,

where Es′n
denotes the conditional expectaion given s′n. Note

that on both sides of the above inequality we are conditioning

on s′n which is the routing vector associated with BR.

Recall that under the BR policy, sn is independent of the

instantaneous workload Wn for each n. Using the coupling

κn = κ′n and an = a′n, and the definition, given instantaneous

workload Wn one can additionally couple the routing vectors

sn and s′n and the associated κn block requests under BS and

BR policies such that the workload seen by the lth block in

front of it under BS is lower than that under BR for each

l ≤ κn under Wn. Thus, we get

Es′n
g

(

max
i:sin>0

(W i
n + csin)

)

≤ Es′n
g

(

max
i:s′in>0

(W i
n + cs′

i

n)

)

.

By combining the previous two inequalities we get

Es′n
g

(

max
i:sin>0

(W i
n + csin)

)

≤ Es′n
g

(

max
i:s′in>0

(W ′i
n + cs′

i

n)

)

,

from which the result follows by taking expectation on both

sides.

Recall that ρ = λν/m = cλ
∑

k kπk

m
is the load factor per

server. The overall system load is ρm. By exchangeability, the

marginal dynamics of the workload at a given server under BR
can be modeled via an M/GI/1 FCFS queueing system with

load ρ bits/sec and service rate µ bits/sec. Since the number

of servers m is finite, the system is stable (asymptotically

stationary) if ρ < µ. From Theorem 2 and the ergodicity of

the arrival process, it follows that the system is stable under

WF and BS as well if ρ < µ.

Note that, for general αk, the delays under the BR policy

are statistically equivalent to the delays obtained when αk = k
for each k, i.e., when the code rate is equal to 1. There are

prior works which study gains of erasure-coding via simula-

tions [13], [14], experiments [15], [16], and analytically but

under mean-filed type asymptotic approximations and under

exponential service time assumptions [12]. To the best of our

knowledge, Theorem 3 is the first rigorous analytical result

which compares delays for finite systems employing erasure

codes with different code rates. Further, we would like to stress

that the result holds under general statistical assumptions for

service requirements.

IV. ASSOCIATION AND DELAY BOUNDS

In this section, we use the notion of association of ran-

dom variables to obtain computable bounds on the delays of

requests.

Definition 1: The random variables X1, X2, . . . , Xk are

associated if, with notation X = (X1, X2, . . . , Xk), the

inequality

E[f(X)g(X)] ≥ E[f(X)]E[g(X)]

holds for each pair of increasing functions f, g : Rk → R for

which E[f(X)], E[g(X)], and E[f(X)g(X)] exist.

We say that a random vector X is associated if its entries

are associated. Similarly, we say that a set of random variables

is associated if its elements are associated.

To understand the power of association, consider the fol-

lowing definition and subsequent proposition.

Definition 2: Consider random variables X1, X2, . . . , Xk.

We say that X̃1, X̃2, . . . , X̃k are independent versions of the

random variables X1, . . . , Xk if the X̃1, . . . , X̃k are mutually

independent, and if Xi and X̃i are identically distributed for

1 ≤ i ≤ k.

Proposition 1 (see [17] Chap 4.3): Suppose that random

variables X1, . . . , Xk are associated and that X̃1, . . . , X̃k are

their independent versions. Then the following holds:

max
1≤i≤k

Xi ≤
st max

1≤i≤k
X̃i.

Now consider m different queues with dependent work-

loads, as in the previous section. If we can show that the

arrival of a request sees associated workloads, then we can

bound its delay by using the independent version of the

workloads. Several works in the literature for large-scale

systems, e.g. [12], [21], consider the marginal distribution

at a given server and study its properties by assuming that the

dynamic at any other server is independent of that under the

given server; an assumption which is justified in these works

as a ‘mean-field approximation’. In [21], the queue associated

with a given server is called a ‘queue at the cavity’. With the

association property, can analyze a system without resorting

to the mean-field approximation.

Recall that under the BR policy, the selection of servers sn
is independent of the workload Wn. Upon an arrival, a server

gets no additional workload with probability 1−
∑m

k=1
k
m
πk−

∑∞
k=m+1 πk, and gets workload which is a multiple of c

otherwise. One can show that, given that the request is of

size kc, the server gets the load c
(⌊

k
m

⌋

+ 1
)

with probability
k
m

−
⌊

k
m

⌋

and the load c
⌊

k
m

⌋

with probability 1− k
m

+
⌊

k
m

⌋

.

Thus, for i = 1, . . . ,m, the workload process at ith server,

namely {W i
n}

∞
n=0, in isolation is stochastically equivalent to

workload seen by arrivals in a Cavity Queue which is as

defined below.

Definition 3: A Cavity Queue is an M/GI/1 FCFS queue

which starts empty at time t = 0, has Poisson arrivals with

rate λm, service rate µ bits/sec, and service requirement in

bits with probability mass function on set {0, c, 2c, . . .} given

as follows:

π̃(0) = 1−

m
∑

k=1

k

m
πk −

∞
∑

k=m+1

πk,

and for l = 1, 2, . . .

π̃(lc) =

lm
∑

k=(l−1)m+1

(
k

m
− l+1)πk +

(l+1)m−1
∑

k=lm+1

(1−
k

m
+ l)πk.

The M/GI/1 FCFS queues are well studied in the lit-

erature. In particular, the following lemma well-known as

Pollaczek-Khinchine formula describes the steady state work-

load distribution of jobs in these queues. Below, we view

service time of a job as the ratio of its service requirement

in bits and the service rate of the server in bits/sec.

Lemma 3 ([22]): Consider an M/GI/1 FCFS queue with

arrival rate λ̃. Let σ be a random variable with distribution

equal to that of the service times of jobs. Let ψσ(s) =
E[e−sσ]. Suppose that λ̃E[σ] < 1. In steady state the workload

W has Laplace Transform G(.) (i.e., G(s) = E[e−sW]) which

can be given as:

G(s) =
(1− λ̃E[σ])s

s− λ̃ (1− ψσ(s))
. (3)

Below, we use (3) to obtain performance bounds on the

systems of our interest by using association property along

with Proposition 1. The following subset of the many known

properties of association can come handy in proving associa-

tion of random variables (RVs).

Proposition 2 (see [17] Chap 4.3): The following state-

ments hold.

(i) The set consisting of a single RV is associated.

(ii) The union of independent sets of associated RVs forms

a set of associated RVs

(iii) Any subset of a set of associated RVs forms a set of

associated RVs

(iv) For a non-decreasing function φ : R
m → R and

associated RVs {X1, . . . , Xm}, the random variables

{φ(X1, . . . , Xm), X1, . . . , Xm}

are associated.

Before providing our main results for this section, we need

the following additional notation.

Definition 4: For each k, n ∈ Zk, let Dk
n denote the delay

seen by the nth arrival given that the size of the requested file

is kc bits, that is,

Pr
(

Dk
n ≤ t

)

= Pr

(

max
i:sin>0

W i
n + csin ≤ t

∣

∣

∣
κn = k

)

,

t ∈ R and k, n ∈ Z+. (4)

Recall that for each k, n ∈ Z+, the nth request for a file is

of size kc bits with probability πk and the k requests for coded

blocks are routed to different servers upon the nth arrival as

per the chosen policy.

Definition 5: Let Θ(m) be the class of probability mass

functions {π} such that for each π = (πk : k ∈ Z+) in class

Θ, a system with m servers operating under BR policy has

the routing vector sn which is associated for each n.

In this paper we will be content to note that Θ(m) is a rich

class of p.m.f.s which includes Binomial(p,m) distribution

as well as Geometric(p) distribution for each p ∈ [0, 1].
The following theorem, proved in the Appendix, says that

for any π in Θ(m), we get an upper bound on the delay seen

by the nth arrival by pretending that the workloads at the m
servers ‘evolved independently in the past’.

Theorem 4: Consider a system with m servers which starts

empty. For each k ∈ Z+, requests for files of size kc bits,

equivalently batch requests for k blocks of c bits each, arrive

as per an independent point process with rate πkλm and are

routed to different servers upon arrival. Servers serve the block

requests in FCFS fashion at rate µ bits per second.

Suppose that π = (πk : k ∈ Z+) belongs to class Θ(m)
(see Definition 5). Then the following statements hold:

1) The workload Wn ∈ R
m, at the m servers seen by the

nth arrival under BR is associated for each n.

2) For i = 1, 2, . . . ,m, let {W̃ i
n}

∞
0 represent the workload

seen by arrivals in an independent Cavity Queue as in

Definition 3. Let ks be a typical routing vector s under

BR subject to |s| = k. Under either WF , BS, or BR,

the conditional delay Dk
n of Definition 4 satisfies the

following property: for each k, n ∈ Z+:

Dk
n ≤icx max

i: ksi>0
W̃ i

n + c ksi. (5)

Here is now a uniform bound in n.

Theorem 5: Consider a system satisfying the assumptions

of Theorem 4. Suppose that ρ = cλ
∑∞

k=0 kπk/m < µ. For

i = 1, 2, . . . ,m, let W̃ i represent the stationary workload of

an independent Cavity Queue. Then, under either WF , BS, or

BR, the conditional delay Dk
n satisfies the following property:

for each k, n ∈ Z+:

Dk
n ≤icx max

i: ksi>0
W̃ i + c ksi. (6)

Proof: This follows from Theorem 4 and noting that, us-

ing standard coupling arguments, an M/GI/1 queue starting

empty at time t = 0 and its version in equilibrium can be

coupled in such a way that the former is always lower than

the latter.

The above bound clearly reflects the impact of the local

dynamics at individual servers as well as the global view seen

by arrivals. As we shall see, it can be computed using Lemma

3 and using extremal statistics.

In what follows, we focus on π such that πk = 0 for each

k > m. Such a case is perhaps meaningful for clusters with

very large m since files which span each of the thousands of

servers may be rare. Under this scenario, Corollary 2 below

shows that delays admit a particularly simple bound.

Corollary 1: Consider a system with m servers. Suppose

that π belongs to class Θ(m) and that πk = 0 for each k > m.

Suppose that ρ < µ. Let

q = q(λ, σ) =

∣

∣

∣

∣

λ+
W (−λσ exp(−λσ))

σ

∣

∣

∣

∣

, (7)

where W denotes the principal branch of the Lambert W

function. Then, under WF , BS or BR, the conditional steady

state delay Dk satisfies

E[Dk]− c ≤
1

q(ρ
c
, c
µ
)
log k(1 + o(1)), (8)

as k tends to infinity, where q is the function defined in (7).

Note that the last relation implies that

E[Dk] ≤
1

q(ρ
c
, c
µ
)
log k(1 + o(1)),

when k tends to infinity. However it turns out that the formu-

lation in (10) is numerically more accurate in the prelimit.

Surprisingly, as long as π belongs to Θ(m) and the load

per server is fixed, the above bound does not depend on π.

However, note that the bound is for the conditional delay. The

bound on the overall delay still depends on π.

This bound scales linearly with c but logarithmically with

k. Thus, for small and medium files, it pays to have smaller

chunk size (see Subsection VI-D for a quantification of this

gain). This insight also concurs with the results obtained in

[12] under a mean field approximation.

V. RANDOM CHUNK SIZES

We now study the scenario where the chunk size may be

different for different files, which is modeled via recursion

(2). Suppose that the random variables {cn}
∞
0 are i.i.d. with

distribution ψ. The results of Section III readily extend to this

scenario. In particular the statement of Theorems 1, 2 and

3 can be shown to hold for this scenario as well, with minor

modifications in the proofs. We skip the details for brevity.

We now extend the results of Section IV. We first modify

the notion of Cavity Queue as follows.

Definition 6: The Modified Cavity Queue is an M/GI/1
FCFS queue which starts empty at time t = 0, has Poisson

arrivals with rate λm, service rate µ bits/sec, and where service

requirement in bits are i.i.d. with distribution equal to that of

the random variable X , where X can is generated as follows:

first, generate a Z+ valued random variable Y with probability

mass function given as follows:

π̃(0) = 1−
m
∑

k=1

k

m
πk −

∞
∑

k=m+1

πk,

and for l = 1, 2, . . .

π̃(lc) =

lm
∑

k=(l−1)m+1

(
k

m
− l+1)πk +

(l+1)m−1
∑

k=lm+1

(1−
k

m
+ l)πk.

Let Z be a random variable with distribution ψ. Then, X =
Y Z .

Recall that the steady state workload distribution of an

M/GI/1 FCFS queue satisfies Lemma 3. By using the above

notion of Modified Cavity Queue, analogues of Theorem 4

and 5 can be shown to hold with minor modifications in

proofs. Here, we only reproduce the analogue of Theorem 5

for brevity.

Theorem 6: Consider a system with m servers which start

empty. The chunk sizes {cn}
∞
0 are i.i.d. with distribution ψ.

For each k ∈ Z+, batch requests for k blocks (i.e., coded

chunks) arrive as per an independent point process with rate

πkλm and are routed to different servers upon arrival. Servers

serve the block requests in FCFS fashion at rate µ bits per

second.

Suppose that π = (πk : k ∈ Z+) belongs to class Θ(m) (see

Definition 5). Suppose that ρ = E[c1]λ
∑∞

k=0 kπk/m < µ.

For i = 1, 2, . . . ,m, let W̃ i represent the stationary workload

of an independent Modified Cavity Queue (see Definition 6).

Then, under either WF , BS, or BR, the conditional delay Dk
n

satisfies the following property: for each k, n ∈ Z+:

Dk
n ≤icx max

i: ksi>0
W̃ i + c ksi, (9)

where c is a random variable with distribution ψ.

Again consider a scenario where πk = 0 for each k >
m. Suppose that ψ is exponential. Then the Modified Cavity

Queue is an M/M/1 queue. Thus, the following corollary

readily follows from the above theorem.

Corollary 2: Consider a system with m servers. Suppose

that π belongs to class Θ(m), and that πk = 0 for each k >
m. Suppose that the distribution ψ is exponential with mean

c. Suppose that ρ < µ. Then, under WF , BS or BR, the

conditional steady state delay Dk satisfies

E[Dk]− c ≤
µ

µ− ρ

k
∑

l=1

1

l
<

µ

µ− ρ
(log k + 1). (10)

VI. SIMULATION AND PERFORMANCE EVALUATION

In this section we use our analysis and simulations in order

to develop a better quantitative understanding of the relative

performance and scaling laws under WF , BS, and BR.

A. Simulation Methodology

The simulation methodology we selected is not based on

the classical discrete event principles but rather on a direct

use of the recurrence equations (1). The advantages of the

latter on the former are multiple, in term of generality and

of complexity. This recurrence relation setting is well adapted

to handling deterministic service times and general routing

vectors, whereas event driven Markov chain simulation would

require exponentiality assumptions and make the handling of

workload based routing policies cumbersome. The complexity

of BS is that of a sorting algorithm. If the servers containing

at most one chunk from the requested file are sorted in

increasing order of their load, then it suffices to take the k
smallest loads if k ≤ m. When k > m, the complexity

depends on m rather than k, as only k − m⌊k/m⌋ servers

with the smallest load need to be searched. The complexity is

then in O(min(k,m) logmin(k,m)). The complexity of WF
depends on k whatever its value: one strategy is to first sort the

servers containing at least one chunk of the requested file. Each

time a chunk is requested from one server, its load increases

by c, and this server has to be re-inserted in the ordered list

of servers. The complexity is then O(k log(m+ k)).
In several experiments, the size of the files is at most mc

and αk − k ≤ 2. When αk ≤ m for all k, then BS and

WF are exacly the same: as each server contains at most one

chunk of any given file, all the routing vectors are balanced,

and Theorem 1 states the optimality of BS in this case. For

this reason, we will only compare BS with BR.

An important question is that of the steady state charac-

terization. For this, we leverage Birkhoff’s pointwise ergodic

theorem, which shows that empirical averages based on iterates

of the recurrence equations (1) converge to the steady state

mean values. In practice, we perform 105 iterates to estimate

each point of the following plots.

B. Impact of the Delivery Policy

The first numerical experiments illustrate the comparison

results of Section III and more precisely Theorem 2. The

setting is the following: there are m = 200 servers; the

distribution π is Binomial(m, p), with p = 0.1, 0.3, 0.5 (which

gives an average of 20, 60 and 100 chunks, respectively);

recall that for each value of p this falls within the class of

distribution Θ(m); the server speed is µ = 1 and the chunk

size is c = 10; the arrival rate is chosen in such a way that the

load per server is always equal to 0.7; the coding assumptions

are that αk = k + 2.

Figure 2 compares the mean delay under BR and BS, for

various values of p. The bound obtained in Corollary 2 is

also plotted. Within the range considered in these plots, the

mean delays increase logarithmically in k for BR. The bound

correctly captures the logarithmic increase w.r.t. the BR, and

is in fact approximate for small p. For these parameters, it is

already a good heuristic for p = 0.1.

Fig. 2: Mean delay as a function of the number of chunks.

We observe that BS (or equivalently WF) performs sig-

nificantly better than BR. Intuitively, this happens since the

workload across servers is more balanced under BS and WF .

In particular, while they seem to increase as log log k for BR
and WF . One may see this in the light of the well-known

result on balanced allocations under balls and bins setting

[23] where load-balancing is shown to achieve exponential

improvement in load at the most-loaded bin. However, our

setting is markedly different. Not only do we incorporate

queuing dynamics (i.e., arrivals and services), but also batch

arrivals. We are interested in studying the delay of a typical job

which depends on the workload at a randomly chosen subset

of servers, instead of the most-loaded server.

Fig. 3: Mean delay as a function of the number of chunks:

Comparison of scenarios with constant chunk size and random

chunk size.

Interestingly, in our setting, the increase in delays seems

logarithmic in k even for BR and WF policies under a

scenario where the chunk size is assumed to be random, as

exhibited in Figure 3. The setting is the following: there are

m = 200 servers; the distribution π is Geometric with rate

0.25, the size of chunks are exponentially distributed with rate

0.1. The load per server is 0.7. The coding assumptions are

that αk = k + 2. The plots show that, in the cases where the

chunks sizes are exponentially distributed, the log growth in

delays as exhibited by the upper bound of Corollary 2 is tight

when the per-server load is sufficiently large.

Under the assumptions studied above, for each policy, the

growth of delays is logarithmic or sub-logarithmic in the file

size. This type of growth does not generalize to all cases. For

instance, it is shown in Subsection VI-E below that it can

actually be linear.

C. Impact of Coding Rate

In order to evaluate the impact of coding rate, we consider

a system under BS with m servers, where m varies. We take

λ = 0.1, p = 0.5 and again π is Binomial(p,m), so that the

load per server is constant. We take c = 14 and µ = 1. Figure

4 gives the mean delay as a function of m for different choices

of αk − k.

As expected, WF and BS perform significantly better than

BR when αk > k. We observe that the delays increase

logarithmically with m. This may be reasoned as follows: In

the presence of small and medium sized files if αk − k is a

constant then the choice in load-balancing is limited and the

unevenness in workload distribution across servers increases

with m. Further, as we increase the code redundancy αk − k,

we observe that the mean delays decrease as 1
log(αk−k) . This

shows that the impact of increasing choice in load-balancing

by improving coding rate is limited.

Fig. 4: Mean delay under BS as a function of number of

servers, for different coding rates.

D. Impact of the (Deterministic) Chunk Size

We now consider the impact of increasing chunk size on

delays for the case with π being Binomial(p,m). Rather than

taking chunks of size c, we take chunks of size c/a with a an

integer larger than 1, and study mean delay as a function of a.

Here, a file which had k chunks now has ak chunks. Consider

the upper bound of Corollary 2 (this bound is generic in that

it holds for all considered delivery policies). The bound in the

new chunk definition is now 1
|s∗(a)| ln(1+ k)(1+ o(1)), when

k tends to infinity, with s∗(a) the only negative solution of

the equation s = λpa
(

1− exp
(

− sc
a

))

. When a is large (but

such that pa < 1), this root can be approximated as |s∗(a)| =
(1−λpc)2a

c2λp
. so that we have the generic bound on requests of

initial cardinality k:

E[Dk] ≤
c2λp

(1− λpc)2a
ln(ak)(1 + o(k)),

when k tends to infinity. This shows that within the above Bi-

nomial setting, the mean delay of any policy can be decreased

in such a way that the constant multiplying the logarithmic

term is divided by a (provided pa < 1).

E. Beyond the Logarithmic Regime

The last three subsections were about the case where π
has its support on the integers from 0 to m. In view of the

results of these subsections, it makes sense to call this regime

the logarithmic regime. There are some caveats with this

terminology. This term is justified within the Binomial (p,m)

setting, if p is sufficiently separated from 1. As we saw above,

for p constant and less than 1, the logarithmic regime prevails

even when m tends to infinity. Note that this goes way beyond

the regimes considered in the mean field approach. However,

it should be clear that for fixed m and for p close to 1, the

mean delay must be approximately a constant in k.

Note that when the support of π is not limited to the integers

less than m with m fixed, it should be clear that for all delivery

policies, when k tends to infinity, requests of cardinality k have

a mean delay of order Ck with C a constant. This is the linear

regime alluded to above.

VII. CONCLUSIONS

One of the main motivations of this work was to derive scal-

ing laws for job delays in data clusters. A primary difficulty in

the analysis of job delays in multi-server systems comes from

the stochastic coupling of the server dynamics. To simplify the

analysis, research often resorts to an asymptotic ‘mean-field’

approximation which assumes an infinite number of servers

and a static empirical distribution. This approximation allows

for the decoupling of the dynamics at the servers attending a

tagged job. However, such a decoupling does not hold when

the total number of servers m is finite, or when certain jobs are

attended by O(m) servers. In the present paper, we developed

a new machinery which utilizes the notion of association of

random variables to obtain explicit bounds on delays for finite

systems. We obtain these bounds via an ‘independent version’

of a coupled system but without requiring the decoupling of

the servers. Further, we clarified the sense (increasing convex

ordering) in which adaptive policies outperform workload

oblivious policies. Our simulation results suggest that several

quite different delay growths can be obtained in function

of file size, from strictly sub-logarithmic to logarithmic to

linear. While some specific examples of these behaviors are

well explained by our machinery, there is still a need in the

future for a full classification allowing one to predict which

assumptions lead to each type of growth.

Our machinery is robust to statistical assumptions and

to model specifics. In addition, various types of file up-

dates/writes operations can be incorporated in the basic model

while preserving the basic association and stochastic compar-

ison properties. In the future, this model should hence also

provide a first comprehensive setting for analyzing the impact

of updates on job delays in data clusters.

ACKNOWLEDGEMENTS

We would like to thank Alex Dimakis at The University

of Texas at Austin, and Ankit Singh Rawat at Massachusetts

Institute of Technology for helpful discussions.

REFERENCES

[1] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with Borg,”
in Proceedings of the European Conference on Computer Systems

(EuroSys), pp. 18:1–18:17, 2015.
[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST), pp. 1–10, 2010.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible
data center network,” in Proceedings of the ACM SIGCOMM 2009

Conference on Data Communication, pp. 51–62, 2009.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in
Proceedings of the Nineteenth ACM Symposium on Operating Systems

Principles (SOSP), pp. 29–43, 2003.

[5] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in Proceedings of the 9th USENIX Symposium on Operating

Systems Design and Implementation, pp. 61–74, 2010.

[6] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” Information Theory,

IEEE Transactions on, vol. 56, pp. 4539–4551, Sept 2010.

[7] J. S. Plank and C. Huang, “Tutorial: Erasure coding for
storage applications.” Slides presented at FAST-2013: 11th
Usenix Conference on File and Storage Technologies:
http://web.eecs.utk.edu/∼plank/plank/papers/FAST-2013-Tutorial.html,
February 2013.

[8] V. Shah and G. de Veciana, “High performance centralized content de-
livery infrastructure: Models and asymptotics,” IEEE/ACM Transactions
on Networking, vol. 23, pp. 1674–1687, Oct 2015.

[9] V. Shah and G. de Veciana, “Asymptotic independence of servers’
activity in queueing systems with limited resource pooling,” Queueing
Systems, vol. 83, no. 1, pp. 13–28, 2016.

[10] V. Shah and G. de Veciana, “Impact of fairness and heterogeneity on
delays in large-scale centralized content delivery systems,” Queueing

Systems, vol. 83, no. 3, pp. 361–397, 2016.

[11] N. D. Vvedenskaya, “Large queueing system where messages are
transmitted via several routes,” Problemy Peredachi Informatsii, vol. 34,
no. 2, pp. 98–108, 1998.

[12] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field-analysis of coding
versus replication in cloud storage systems,” in Proceedings of IEEE

INFOCOM, 2016.

[13] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queue: Analysing
the latency performance of erasure codes,” in IEEE International Sym-

posium on Information Theory (ISIT), pp. 861–865, June 2014.

[14] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off
in content download from coded distributed storage systems,” IEEE

Journal on Selected Areas in Communications, vol. 32, pp. 989–997,
May 2014.

[15] S. Jain, M. Demmer, R. Patra, and K. Fall, “Using redundancy to cope
with failures in a delay tolerant network,” in ACM SIGCOMM, (New
York, NY, USA), pp. 109–120, 2005.

[16] G. Liang and U. C. Kozat, “TOFEC: achieving optimal throughput-delay
trade-off of cloud storage using erasure codes,” in IEEE INFOCOM 2014

- IEEE Conference on Computer Communications, pp. 826–834, April
2014.

[17] F. Baccelli and P. Brémaud, Elements of Queueing Theory: Palm

Martingale Calculus and Stochastic Recurrences, vol. 26 of Applications

of Mathematics. Berlin: Springer-Verlag, second ed., 2003.

[18] F. Baccelli, A. M. Makowski, and A. Shwartz, “The fork-join queue and
related systems with synchronization constraints: Stochastic ordering
and computable bounds,” Advances in Applied Probability, vol. 21, no. 3,
pp. 629–660, 1989.

[19] A. Müller and D. Stoyan, Comparison methods for stochastic models

and risks. Wiley, 2002.

[20] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of

Majorization and Its Applications. Springer, 2nd ed., 2011.

[21] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized load balancing
with general service time distributions,” in Proceedings of the ACM

Sigmetrics, pp. 275–286, 2010.

[22] L. Takács, Introduction to the theory of queues. University texts in the
mathematical sciences, Oxford University Press, 1962.

[23] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-
tions,” SIAM J. Comput., vol. 29, pp. 180–200, Feb. 2000.

[24] M. D. Mitzenmacher, The Power of Two Choices in Randomized Load
Balancing. PhD thesis, University of California, Berkeley, 1996.

[25] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich, “Queueing
system with selection of the shortest of two queues: An asymptotic
approach,” Problemy Peredachi Informatsii, vol. 32, no. 1, pp. 20–34,
1996.

[26] L. Ying, R. Srikant, and X. Kang, “The power of slightly more than one
sample in randomized load balancing,” in Proc. of IEEE INFOCOM,
2015.

VIII. APPENDIX

A. Proof of Lemma 1

Recall that if X ≺st
s Y then E[φ(X)] ≤ E[φ(Y)] for

any increasing Schur-convex function φ. Now consider an

increasing convex function g : Rm → R. Let P be the set

of all permutations of (1, 2, . . . ,m). One can check that for

any p ∈ P , the function g(p(x)) is increasing and convex in

x. Let function φ be given as follows:

φ(x) =
1

m!

∑

p∈P

g(p(x)).

Then, φ is a symmetric, increasing, and convex function;

hence an increasing Schur-convex function [20]. Further, by

exchangeability of X , we have E[g(X)] = E[g(p(X))] for

any p ∈ P , which in turn implies E[g(X)] = E[φ(X)]. Simi-

larly, by exchangeability of Y , we have E[g(Y)] = E[φ(Y)].
But as noted above, we have E[φ(X)] ≤ E[φ(Y)]. The result

thus follows since g is chosen arbitrarily.

B. Proof of Theorem 1

We show ≺st comparisons below. The icx comparisons then

follow from Lemma 1 and noting that W + sWS , W + sBS ,

and W + sBR are exchangeable since each of these policies

is exchangeable.

We will need below the following lemma, which says that

a vector becomes more balanced if we decrease a larger entry

by a ‘small’ amount and increase a smaller entry by the same

amount.

Lemma 4: Let x ∈ R
m such that xi ≤ xj and 0 ≤ δ ≤

xj − xi. Then x+ δei − δej ≺ x.

Proof: Set y = x + δei − δej . There exist k and l such

that xi = x(k) and xj = x(l), with k < l, k′ and l′ such that

yi = y(k
′) and yj = y(l

′), and as δ ≤ xj − xi, k ≤ k′, l′ ≤ l.
For all i′ < k and i′ > l, we have

∑

u≤i′ x
(u) =

∑

u≤i′ y
(u): in the first case, exactly the same terms are

involved, and in the second, xi + xj = yi + yj , and these

terms are all involved.

If k ≤ i′ < min(k′, l′), then
∑

u≤i′ y
(u) =

∑

u<k x
(u) +

∑

k≤u≤i′ x
(u+1) ≥

∑

u<k x
(u) +

∑

k≤u≤i′ x
(u).

If min(k′, l′) ≤ i′ < max(k′, l′),
∑

u≤i′ y
(u) =

∑

u<k x
(u) +

∑

k≤u<min(k′,l′) x
(u+1) + min(yi, yj) +

∑

min(k′,l′)<u≤i′ x
(u) ≤

∑

u≤i′ x
(u), as min(yi, yj) =

min(xi + δ, xj − δ) ≥ xi (because δ ≤ xj − xi).
If max(k′, l′) ≤ i′ ≤ l,

∑

u≤i′ y
(u) =

∑

u≤i′ x
(u) + x(l) −

x(i
′) ≥

∑

u≤i′ x
(u) (we have used that x(l) = xj ≥ x(i

′)).

Then y ≺ x.

Optimality of WS: We now show that WS achieves more

balanced workload than any other policy. For ease of notation,

let s, κ and a represent the vectors associated with WS with

their usual meaning, and let s′, κ′ and a′ represent those

associated with any other policy. Recall that the number of

http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html

chunks for the requested file κ and the placement vector

a associated with an arrival have same distribution in each

system and they are independent of the workload seen by the

arrival. Thus, it is sufficient to prove that W + cs ≺W + cs′

w.p. 1 subject to the coupling κ = κ′ and a = a′.
We proceed as follows. For any routing vector s′′, define

its distance to s as d(s, s′′) =
∑

i | si>s′′i s
i − s′′i. As s and

s′′ are integer-valued, d(s, s′′) is a non-negative integer.

Under the coupling κ = κ′ and a = a′, we show that for

the routing vector s′ 6= s, there exists another routing vector

s′′ such that d(s, s′′) < d(s, s′) and W + cs′′ ≺ W + cs′.
This means that for any routing vector s′, we can construct a

sequence (s0, . . . , sd) such that W + cs0 ≺W + cs1 ≺ · · · ≺
W + csd = W + cs′, with d(s0, s) = 0, that is, s = s0. In

conclusion, for all routing vector s′, W +cs ≺W +cs′, hence

the optimality of water-filling.

Let us now prove the existence of the routing vector s′′.
Note that any routing vector less than max(s, s′) is admissible,

i.e., max(s, s′) ≤ a. As s′ 6= s, there exists i and j such that

(W + cs)i < (W + cs′)i and (W + cs)j > (W + cs′)j , and

as s and s′ are integer-valued, si ≤ s′i − 1 and sj ≥ s′j + 1.

Consider the step of the water-filling algorithm where a

chunk is sent to server j for the last time, and let s̃ be the

routing vector obtained just before the chunk is sent to server

j step: in particular s̃j = sj − 1, so

(W + cs′)j ≤ (W + cs)j − c = (W + cs̃)j . (11)

Due to the water-filling algorithm, server j is chosen over i
because (W+cs̃)j ≤ (W+cs̃)i. But we also have (W+cs̃)i ≤
(W + cs)i ≤ (W + cs′)i − c. Thus, we get (W + cs̃)j ≤
(W+cs′)i−c. Combining this with (11), we get (W+cs′)j ≤
(W + cs′)i − c.

Now, consider the new vector where s′′ = s′ + ej − ei.
We have d(s, s′′) < d(s, s′) and from Lemma 4, we have

W + s′′ ≺W + s′, as required.

Comparing BS with BR: We now show that BS achieves

more balanced workload than BR. For ease of notation, let s,
κ and a represent the vectors associated with BS with their

usual meaning, and let s′, κ′ and a′ represent those associated

with BR. We again assume the coupling κ = κ′ and a = a′.
Under the coupling, we will show a statement which is

somewhat stronger than required; in particular, we will show

that the batch-sampling is optimal among all balanced routing

vectors, i.e. the routing vectors s′ such that s′i ∈ {l, l + 1}

where l =
⌊

κ′

m

⌋

, and |{i : s′i = l + 1}| = κ′ − m
⌊

κ′

m

⌋

.

Moreover, due to our coupling κ = κ′ and a = a′, we only

need to focus on routing vectors s, s′ of the form {0, 1}m.

We now proceed as follows: Take any balanced routing vec-

tor s′′ and define its distance to s, the routing vector obtained

with the water-filling policy as d(s, s′′) =
∑

i | si>s′′i s
i−s′′i.

As s and s′ are integer-valued, d(s, s′) is a non-negative

integer. We show that for any routing vector s′ 6= s, there

exists another balanced routing vector s′′ ∈ {0, 1}m such that

d(s, s′′) < d(s, s′) and W + cs′′ ≺ W + cs′. This means

that for any routing vector s′, we can construct a sequence

(s0, . . . , sd) such that W+cs0 ≺W+cs1 ≺ · · · ≺W+csd =
W + cs′, with d(s0, s) = 0, that is, s = s0. In conclusion, for

all routing vector s′, W + cs ≺W + cs′, hence the optimality

of batch-sampling among the balanced routing vectors.

Let us now prove the existence of the routing vector s′′.
Note that any routing vector less than max(s, s′) is admissible

(there are enough chunks available). As s′ 6= s, there exists i
and j such that si = 0, s′i = 1, sj = 1 and s′j = 0, and as s
is obtained from the batch-sampling, one can always such an

i and j such that that W j ≤W i, so (W + cs′)j ≤ (W + cs′)i

and (W+cs′)j =W j ≤W i = X i+cs′i−c = (W+cs′)i−c.
Consider the routing vector s′′ = s′ + ej − ei. From

Lemma 4, the above inequality implies that W +s′′ ≺W +s′,
and d(s, s′′) < d(s, s′), as required.

C. Proof of Lemma 2

Since W ≤icx W ′, Strassen’s theorem [19] says that there

exists a coupling such that E[W ′|W] ≥W . In addition, since

s and s′ are identical in distribution and independent of W
and W ′, there exists a coupling (namely one with s = s′)
such that

E [W ′ + cs′|W, s] ≥W + cs. (12)

Consider an increasing convex function g. Under the above

coupling, using Jensen’s inequality we get

E[g(W ′ + cs′)|W, s] ≥ g (E[W ′ + cs′|W, s]) .

Combining this with (12), we get

E[g(W ′ + cs′)|W, s] ≥ g(W + cs).

By taking expectation on both sides, we get E[g(W ′+cs′)] ≥
E[g(W + cs)]. Hence the result holds.

D. Proof of Theorem 4

We first prove part (i) using induction. Clearly, W0 is

associated since all its entries are constant and equal to zero.

Suppose Wn is associated for some n. We show below that

this implies that Wn+1 is associated as well.

Recall that under BR the random vectors Wn, sn, and

−µτn1 are mutually independent and are themselves asso-

ciated. Hence, from part (ii) of Proposition 2, we have that

the entries of Wn, sn, and −µτn1 are mutually associated.

Each entry of (Wn + csn − µτn1)
+ is an increasing function

of the entries of Wn, sn, and −µτn1. From m applications

of part (i) of Proposition 2, and then of its part (iii), we get

that Wn+1 is associated.

We now prove part (ii) of the theorem. We show that in

fact for BR policy the stochastic dominance is in ≤st sense

which is stranger than ≤icx. By definition, the vector W̃n =
(W̃ i

n : i = 1, . . . ,m) is an independent version of Wn for each

n under BR policy. Since s̃ is an independent exchangeable

vector, and since both Wn and W̃n are exchangeable, it is

sufficient to assume that s̃ is deterministic. Then, the result

follows for BR from Proposition 1.

For WF and BS, the result then follows by arguing along

the lines of Theorem 3 while additionally conditioning on

|sn| = k.

E. Proof of Corollary 2

The proof leverages the following two results:

Theorem 7 (Theorem 7.4. in [18]): Let {Yl}
∞
1 be a family

of i.i.d. R+-valued random variables whose common distribu-

tion function G(·) exhibits the tail behavior

P [Y1 > x] = 1−G(x) = Ce−qx(1 + o(1)), x ≥ 0,

for some q > 0 and C > 0. Then

E

[

max
{

Y1, ..., Yk
}

]

=
1

q
log(k)(1 + o(1))

when k goes to infinity.

Lemma 5: The steady state Y delay in the M/D/1 queue

with arrival rate λ and service time σ, with λσ < 1 has the

tail behavior

P [Y > x] = 1−G(x) = Ce−qx(1 + o(1)), x ≥ 0,

with q defined as in Equation (7).

Proof: The Pollaczek-Khinchine formula, of Lemma 3,

when applied to the M/D/1 queue, gives a steady state delay

with a Laplace transform having an isolated pole at the only

solution other than 0 of the equation

s = λ(1− exp(−sσ)).

Elementary calculations show that this solution is precisely q
given in (7). The shape of the tail then follows from classical

complex analysis arguments.

The fact that the delay of a request of size k is upper

bounded by c plus the maximum of the workloads in k
independent M/D/1 queues with arrival rate λp and service

times c immediately leads to the announced result.

	I Introduction
	II System Model
	III Comparison of Delivery Policies
	III-A Order statistics and stochastic orders
	III-B Comparison of Policies

	IV Association and Delay Bounds
	V Random Chunk Sizes
	VI Simulation and Performance Evaluation
	VI-A Simulation Methodology
	VI-B Impact of the Delivery Policy
	VI-C Impact of Coding Rate
	VI-D Impact of the (Deterministic) Chunk Size
	VI-E Beyond the Logarithmic Regime

	VII Conclusions
	References
	VIII Appendix
	VIII-A Proof of Lemma ??
	VIII-B Proof of Theorem ??
	VIII-C Proof of Lemma ??
	VIII-D Proof of Theorem ??
	VIII-E Proof of Corollary ??

