
ar
X

iv
:1

71
1.

04
36

7v
1

 [
cs

.D
S]

 1
2

N
ov

 2
01

7

Longest Alignment with Edits in Data Streams

Elena Grigorescu∗ Erfan Sadeqi Azer† Samson Zhou ‡

Abstract— Analyzing patterns in data streams generated
by network traffic, sensor networks, or satellite feeds is a
challenge for systems in which the available storage is limited.
In addition, real data is noisy, which makes designing data
stream algorithms even more challenging.

Motivated by such challenges, we study algorithms for
detecting the similarity of two data streams that can be read
in sync. Two strings S, T ∈ Σn form a d-near-alignment if
the distance between them in some given metric is at most d.
We study the problem of identifying a longest substring of S
and T that forms a d-near-alignment under the edit distance,
in the simultaneous streaming model. In this model, symbols of

strings S and T are streamed at the same time, and the amount
of available processing space is sublinear in the length of the
strings.

We give several algorithms, including an exact one-pass
algorithm that uses O

(

d2 + d log n
)

bits of space. We couple
these results with comparable lower bounds.

I. INTRODUCTION

A data stream is a massive sequence of elements (network

packets, database transactions, sensor network reads, or parts

of nucleic acids) that requires further processing, while it

is too large to be stored entirely. The area of streaming

algorithms, initiated in [1], is now a core subject in computer

science, focusing on re-designing classical algorithms to the

setting where the amount of available working space is only

sublinear in the size of the data. Furthermore, the area has

connections to other modern topics, including sketching,

compressed sensing and communication complexity (for

comprehensive surveys, see e.g., [8], [23], [15]).

In this work we are concerned with approximately mea-

suring the similarity between two data streams, by finding a

largest ‘near-alignment’. Two strings S, T ∈ Σn form a d-

near-alignment if the distance between them in some given

metric is at most d. In this paper we consider the edit distance

(or Levenshtein distance), which is the minimum number of

insertions, deletions, or substitutions needed to obtain one

string from the other.

We study the d-Substring Alignment problem of finding

the longest d-near-alignment in the edit distance, consisting

of substrings in S and T of the form (S[i, j], T [i, j])), when

the symbols of S and T are streamed in sync1.

∗Department of Computer Science, Purdue University, West Lafayette,
IN. elena-g@purdue.edu. Research supported in part by NSF CCF-
1649515.

†School of Informatics and Computing, Indiana University, Bloomington,
IN. esadeqia@indiana.edu

‡Department of Computer Science, Purdue University, West Lafayette,
IN. samsonzhou@gmail.com. Research supported in part by NSF
CCF-1649515.

1In this paper, all the techniques and results are presented assuming the
input is in binary bits. However, all the results can be adapted for non-binary
settings.

The following definition formally defines ℓmax, the quan-

tity that is studied in this paper.

Definition 1: The length of the longest d-near-alignment

between two strings S and T , with length n, is

ℓmax = max
1≤i≤j≤n

{j − i+ 1 | ed(S[i, j], T [i, j]) ≤ d},

where ed(S[i, j], T [i, j]) denotes the minimum number of

insertions, deletions, or substitutions needed to obtain T [i, j]
from S[i, j].

Example 2: Let S = “1234yyyyyy123456789xxxxx”
and T = “1234xxxxxx123467890yyyyy”, and d = 2. The

longest d-near-alignment between S and T is “123456789”

from S and “123467890” from T . This implies that ℓmax =
9.

Specifically, in the simultaneous streaming model, the

symbols at index i of two strings S and T arrive at the

same time, and the pair (S[i], T [i]) arrives right before

the pair (S[i + 1], T [i + 1]). In the streaming model, the

algorithm can only use a small amount of space, ideally

sublinear in the length of the input. The input may be

revealed in one pass or multiple passes, and the goal is

to obtain a solution to an optimization problem. One pass

algorithms have a wider range of applications. Though, some

applications might allow two or more passes over input.

Our results

We obtain several algorithms and lower bounds for the d-

Substring Alignment problem in the simultaneous streaming

model, as detailed next. We will use ℓmax to denote the

length of a longest d-near-alignment, in the edit distance.

As a warm-up, we start with a multiplicative and an

additive approximation.

Theorem 3: There exists a one-pass simultaneous stream-

ing algorithm that provides a (1+ ǫ)-approximation to ℓmax,

using O
(

d log2 n
ǫ log(1+ǫ)

)

bits of space.

Theorem 4: There exists a one-pass simultaneous stream-

ing algorithm that provides a d-near-alignment of length at

least ℓmax − E using O
((

n
E

)

d logn
)

bits of space.

Our main result is a one-pass, exact algorithm that outputs

a maximum-length d-near-alignment using O
(

d2 + d logn
)

bits of space. Hence, the multiplicative bound from

Theorem 3 achieves space savings guarantees if the sequence

of edits does not need to be printed and d = ω(log2 n). The

additive space bound from Theorem 4 achieves better upper-

bounds guarantees if we afford E = ω
(

n logn
d

)

.

Theorem 5: There exists a deterministic one-pass algo-

rithm that outputs ℓmax, along with the necessary edit

operations, using O
(

d2 + d logn
)

bits of space.

http://arxiv.org/abs/1711.04367v1

We remark that our algorithms can be extended to the

more general case where the substrings of S and T need not

begin at the same index. Given the promise that a longest

alignment of the two strings begins within δ indices of each

other, one may run δ instances of our algorithms in parallel,

thus incurring an extra factor of δ in the space complexity.

In terms of lower bounds, if the edits to obtain the longest

d-near alignment are output, then we trivially must use

Ω(d logn) bits of space. A straightforward argument shows

that this lower bound holds even if the algorithm is not

required to output the positions of the mismatched indices.

Theorem 6: For ǫ < 1 and E ∈ R+, any deterministic

algorithm that computes a (1 + ǫ)-multiplicative, or an E-

additive approximation of ℓmax requires Ω(d log n) bits of

processing space.

We also give a lower bound for the d-Substring Alignment

problem in the streaming model where the string S appears

before the string T (rather than in sync).

Theorem 7: For 7 < d = o(
√
n), any randomized (1 +

ǫ)-approximation streaming algorithm computing ℓmax with

success probability at least 1− 1/n, requires Ω(d logn) bits

of space.

Finally, we observe that our algorithms can be modified

to recognize complementary d-near-alignments, which are

objects relevant to computational biology arising in pairings

of DNA or RNA sequences:

Definition 8: Let f :
∑ → ∑

be a pairing of symbols in

the alphabet. A string S ∈ ∑n
is a complementary alignment

if S[x] = f(T [x]) for all 1 ≤ x ≤ n.

Indeed, for each character T [x] in T , one can feed f(T [x])
instead of T [x] to our algorithm in order to find a comple-

mentary alignment between S and T .

Motivation and related work

The d-Substring Alignment problem is a restricted variant

of the classic Longest Common Substring problem, in which

the goal is to find a longest substring common to the given

strings S and T . It is also related to the Longest Common

Subsequence problem, in which the goal is to find the longest

common subsequence of S and T . The offline solutions

to these problems involve either suffix trees or dynamic

programming [33], [18]. Some of these problems and related

string alignment problems have been recently studied in the

streaming model (e.g., [22], [29], [7], [20], [14]).

Real data is often subject to errors, and hence algorithms

that account for “near”-alignments, rather than just align-

ments, are important for processing data. The mismatches

leading to near-alignments are most relevant to metrics such

as Hamming and edit distance. While the Hamming distance

only accounts for substitutions, the edit distance accounts

for insertions and deletions, in addition to substitution.

Therefore, it is often the case that the study of alignment

problems in the edit distance is more challenging than in the

Hamming distance.

Alignment problems have sustained interest in the com-

puter science community over many decades (see e.g., book

[4]). The edit metric has been recently well-studied in the

streaming model, e.g., [3], [5], [9], [10], [6]), and “mis-

matches” in the Hamming metric have been investigated in

[25], [21], [2], [13], [11], [28], [16], [12].

Preliminaries and Overview

We denote the set {1, 2, . . . , n} by [n]. We assume that two

input streams are strings of length n over a finite alphabet Σ.

Given a string S[1, . . . , n], we denote its length by |S|, its ith

character by S[i] or Si, and the substring between locations

i and j (inclusive) by S[i, j].
The edit or Levenshtein distance between S and T ,

denoted ed(S, T), is the minimum number of insertions,

deletions, or substitutions needed to obtain one string from

the other. We say S[i, j] and T [i, j] is a d-near-alignment

if ed(S[i, j], T [i, j]) ≤ d. A related metric which we use

in proving lower bounds is the Hamming distance. The

Hamming distance between S and T , denoted HAM(S, T)
is the number of indices whose symbols do not match:

HAM(S, T) =
∣

∣

∣
{i | S[i] 6= T [i]}

∣

∣

∣
.

The approximation algorithms from Theorem 3 and

Theorem 4: We define a sequence of checkpoints, such that

at each checkpoint we initiate a sketch of the following

characters in each of the two streams, S and T , so that

we can compare the alignments. The checkpoints for the

one-pass multiplicative algorithm in Theorem 3 are dynam-

ically created and maintained to guarantee the (1 + ǫ)-
approximation, as in Figure 1, while the checkpoints for the

one-pass additive algorithm are predefined.

For each checkpoint c, we create a sketch of S[c, x], using

the data structure from [6], which uses O (d logn) bits of

space. This sketch is indeed relevant to the simultaneous

streaming model.

Theorem 9: [6] There exists a data structure in the si-

multaneous streaming model that computes the edit distance

using O (d logn) bits of space and O
(

n+ d2
)

processing

time. Furthermore, this data structure can be augmented to

recover the necessary edit operations, using O
(

d2 logn
)

bits

of space.

Upon reading S[x] and T [x], for each checkpoint c
we compare the sketches of S[c, x] and T [c, x] using [6]

(Theorem 9). If the edit distance is greater than d, we discard

the sketches. Otherwise, we compare x − c + 1 to our

estimate of the length of the longest d-near-alignment and

proceed with the stream. We give further details about how

the structure updates from S[c, x] to S[c, x+ 1] shortly.

To obtain the additive approximation guaranteed by the

one-pass algorithm in Theorem 4, we modify our check-

points, so that they appear in every E positions. Hence,

the longest d-near-alignment contains a checkpoint within

E positions of the its first position, and the algorithm will

recover a d-near-alignment with length at least ℓmax − E.

For the sake of completeness, we now briefly describe the

Belazzougui-Zhang (BZ) Sketch [6] (Theorem 9) mentioned

above. Recall that the edit distance between two strings in

the classic offline model can be solved through dynamic pro-

gramming, such as in the Needleman-Wunsch and Wagner-

Fischer algorithms [31], [24], [26], [27], [32]. The dynamic

xci+3ci+2ci+1ci

String S

String T

Longest d-near-alignment

Sketch for each checkpoint c to recover ed(S[c, x], T [c, x]).

Fig. 1. Checkpoints spaced to guarantee (1 + ǫ)-approximation.

programming solution involves creating an alignment matrix,

namely an n× n matrix whose ij th entry contains the value

of ed(S[1, i], T [1, j]), called the score of that entry. The

BZ data structure outputs ed(S[1, x], T [1, x]) by keeping a

sketch of the alignment matrix, size O (d logn), as well as

some additional information to mimic the recursive solution

in the offline model. Upon seeing S[x+ 1] and T [x+ 1], it

updates the sketch by performing the same recursion as the

classic offline dynamic programming solution.

Specifically, the BZ sketch notes that for aligned strings

with edit distance at most d, at most 2d+ 1 diagonals need

to be considered, as in Figure 2. The sketch maintains a key

invariant: the scores of any two adjacent diagonals can differ

by at most 1.

The algorithm maintains a suffix tree that allows compu-

tation of the longest common prefix of suffixes of S and T .

Thus, the algorithm updates the score for each diagonal by

mimicking dynamic programming, based on the scores of the

adjacent diagonals, information from the suffix tree, as well

as additional information on the location of the most recent

edit operation in each diagonal.

Our one-pass exact algorithm in Theorem 5 bypasses

the use of the BZ sketch from [6], to obtain improved

space guarantees. Indeed, while one may use the BZ sketch

here too for O
(

d2 logn
)

bits of space, our algorithm uses

O
(

d2 + d logn
)

bits of space.

Our approach is based on a couple of important observa-

tions. First, no character in S may be aligned to a character

in T that is at least d + 1 positions away. Thus, if there

exist d + 1 consecutive positions in S that are aligned to

d+1 consecutive positions in T , then we only need to keep

the locations of the d most recent edit operations before this

region. Therefore, any (d+1)2 sequence of consecutive po-

sitions either contains such a region (where d+1 consecutive

positions in S are aligned to d+1 consecutive positions in T),

or requires at least d edit operations in order to be aligned.

The algorithm maintains a sliding window of size (d + 1)2

as well as the locations of the d most recent edit operations,

allowing recovery of the longest d-near-alignment.

However, straightforward recovery of the edit operations

in the sliding window using a BZ sketch takes O
(

d2 logn
)

bits. To improve on this space complexity, we modify the

classical Hirschberg’s algorithm [17]. Recall that Hirschberg

algorithm is a dynamic programming algorithm that finds the

optimal sequence alignment between two strings of length n
using O (n logn) bits of space. It uses divide-and-conquer

to split each string into two substrings, and recursively

compares the optimal sequence alignment between the corre-

sponding substrings. We use the algorithm here on the sliding

window of length O
(

d2
)

, but because we are only interested

in finding alignments with edit distance at most d, we can

allow the Hirschberg algorithm to throw away any alignments

with edit distance more than d. This modification, detailed

in the proof of Theorem 11, produces an algorithm that uses

O
(

d2 + d logn
)

bits of space.

The lower bounds Finally, to show the lower bound

from Theorem 7 we construct distributions for which any

deterministic algorithm fails with significant probability un-

less given a certain amount of space, and then apply Yao’s

principle. We first reduce the problem of approximating

the longest d-near-alignment under the edit distance to the

problem of approximating longest d-near-alignment under

the Hamming distance. We then reduce the problem to ex-

actly identifying whether two strings have Hamming distance

at most d. We construct hard distributions, and show via

counting arguments that deterministic algorithms using “low”

amounts of space fail on inputs from these distributions.

II. THE MULTIPLICATIVE APPROXIMATION ALGORITHM

In this section, we prove Theorem 3, giving a

O
(

d log2 n
ǫ log(1+ǫ)

)

space, one-pass streaming algorithm

with multiplicative approximation (1 + ǫ) to the length

of the longest d-near-alignment under the edit distance.

Furthermore, the algorithm uses O
(

(nd+d3) log2 n
ǫ log(1+ǫ)

)

update

time per arriving symbol.

Prior to the stream, we initialize the list of checkpoints C
to be the empty set, and ℓ̃ (the current estimate of the length

of the longest d-near-alignment) to be zero. We dynamically

create and maintain the checkpoints to guarantee the (1+ǫ)-
approximation. At each checkpoint, we initiate a BZ sketch

for each of the two streams, S and T , so that we can compare

the alignments. We also set cstart, the beginning position of

S[1]

T [1]

S[d]

T [d]

S[2d]

T [2d]

Fig. 2. The BZ sketch mimics dynamic programming (essentially Figure 4 in [6])

the returned d-near-alignment, to be zero. The algorithm in

full appears below.

Maintenance:

(1) Read S[x], T [x].
(2) For each checkpoint c ∈ C, update the sketches of

ed(S[c, x − 1], T [c, x − 1]) to ed(S[c, x], T [c, x])
respectively.

(3) For all k ≥ k0:

a) If x is a multiple of
⌊

α(1 + α)k−2
⌋

, where α =√
1 + ǫ − 1. then add the checkpoint c = x to

C. Set level(c) = k.

b) If there exists a checkpoint c with level(c) = k
and c < x− 2(1 + α)k , then delete c from C.

(4) For every checkpoint c ∈ C such that x−c+1 > ℓ̃,
check if S[c, x] and T [c, x] are d-near-alignments.

If S[c, x] and T [c, x] are d-near-alignments, then

set cstart = c, ℓ̃ = x− c+ 1.

(5) If x = n, then report cstart and ℓ̃.

Because the checkpoints are spaced as the same as [7],

then the following properties hold:

Observation 10: [7] At reading S[x], for all k ≥ k0 =








log

(

(1+α)2

α

)

log(1+α)









, let Cx,k = {c ∈ C | level(c) = k}.

(1) Cx,k ⊆ [x− 2(1 + α)k, x].

(2) The distance between two consecutive checkpoints of

Cx,k is
⌊

α(1 + α)k−2
⌋

.

(3) |Cx,k| =
⌈

2(1+α)k

⌊α(1+α)k−2⌋

⌉

.

(4) At any point in the algorithm, the number of check-

points is O
(

log n
ǫ log(1+ǫ)

)

.

Proof of Theorem 3: Let ℓmax be the length of the longest

d-near-alignment, between indices imax and jmax. Let k be

the largest integer so that 2(1 + α)k−1 < ℓmax, where α =√
1 + ǫ− 1. Therefore, jmax − 2(1 + α)k−1 > imax.

By Observation 10, there exists a checkpoint in

the interval [jmax − 2(1 + α)k−1, jmax]. Moreover,

Observation 10 also implies that consecutive checkpoints of

level k − 1 are separated by distance
⌊

α(1 + α)k−2
⌋

.

Thus, there exists a checkpoint c in the interval
[

jmax − 2(1 + α)k−1, jmax − 2(1 + α)k−1 + α(1 + α)k−3
]

.

Hence, the output ℓ̃ of the algorithm is at least

2(1 + α)k−1 − α(1 + α)k−3. Thus, the output of the

algorithm satisfies the approximation guarantee

ℓmax

ℓ̃
≤ 2(1 + α)k

2(1 + α)k−1 − 2α(1 + α)k−3

=
(1 + α)3

(1 + α)2 − α
≤ (1 + α)2 = 1 + ǫ.

Since there are at most log n
ǫ log(1+ǫ) checkpoints at any

point, and each sketch S[ci, x] uses O (d logn) space, then

the total space used is O
(

d log2 n
ǫ log(1+ǫ)

)

. As each sketch

requires O
(

n+ d2
)

update time, the total update time is

O
(

(nd+d3) log2 n
ǫ log(1+ǫ)

)

. ✷

III. THE ADDITIVE APPROXIMATION ALGORITHM

In this section, we prove Theorem 4, giving a

O
((

n
E

)

d logn
)

space, one-pass streaming algorithm

returning the length of the longest d-near-alignment under

the edit distance, with additive error at most E. Unlike the

previous algorithm that uses a series of dynamic checkpoints,

this algorithm creates and maintains a checkpoint for every

multiple of E. Again, the checkpoints “sandwich” the

longest d-near-alignment within an additive window of size

E. Before the stream begins, we initialize ℓ̃, the current

estimate of the length of the longest d-near-alignment to

be zero and cstart, the beginning position of the returned

d-near-alignment, to be zero. Then upon seeing characters

S[x] and T [x] in the stream:

Maintenance:

(1) Read S[x], T [x].
(2) For each checkpoint c, update the sketches of

ed(S[c, x− 1], T [c, x− 1]) to

ed(S[c, x], T [c, x]), respectively.

(3) If x is a multiple of E, then add the checkpoint

c = x to C.

(4) For every checkpoint c ∈ C such that x − c +
1 > ℓ̃, we check if S[c, x] and T [c, x] are d-

near-alignments. If S[c, x] and T [c, x] are d-near-

alignments, then set cstart = c, ℓ̃ = x− c+ 1.

(5) If x = n, then report cstart and ℓ̃.

We now show correctness of Theorem 4.

Proof of Theorem 4: Let ℓmax be the length of the

longest d-near-alignment, between indices imax and jmax. If

jmax − imax ≤ E, then the result holds trivially. Otherwise,

imax + E < jmax and there exists a checkpoint in the

interval [imax, imax + E], since the checkpoints are spaced

distance E apart. From the correctness of the BZ sketch, the

checkpoint will find a d-near-alignment, and so the output

of the algorithm will be at least jmax − (imax + E) + 1 ≥
ℓmax − E. Thus, the correctness of the algorithm follows.

Since we keep a sketch for each multiple of E, there are
n
E checkpoints. Each sketch is of size O (d logn) bits, so the

total space used is O
((

n
E

)

d logn
)

. ✷

IV. THE LONGEST d-NEAR-ALIGNMENT ALGORITHM

In this section, we present a one-pass streaming algo-

rithm that returns the longest d-near-alignment with space

O
(

d2 + d logn
)

bits, thus proving Theorem 5. We empha-

size that the algorithm is deterministic.

The idea is to distinguish between the following two cases:

either all edit operations corresponding to the longest d-near-

alignment are close to each other, or there is at least one pair

of consecutive edit operations that are at least d indices apart.

We show that if the second case holds, so that there is at least

one pair of consecutive edit operations that are at least d
indices apart, it suffices to keep the locations of the d most

recent edit operations before this region. To this end, our

algorithm stores the information of the optimal alignment for

the region of the input before a long-enough gap of identical

substrings, along with all the characters in a sliding window

of a length at most (d+ 1)2.

Consider a sliding window beginning at some position b
and ending with the most recent position, x. We enforce an

invariant for this window: the edit operations corresponding

to the optimal alignment within this window are always at

most d positions apart from each other. We ultimately show

in Lemma 12 that this property ensures the sliding window

has size at most (d+ 1)2.

However, naı̈vely recovering the edit operations in the

sliding window takes O
(

d2 logn
)

bits. Thus, we detail

modifications of the classical Hirschberg algorithm, called

procedure ModifiedHirschberg, in Theorem 11 to guarantee

O
(

d2 + d logn
)

space. While the classical Hirschberg al-

gorithm is a dynamic programming algorithm that finds the

optimal sequence alignment between two strings, the promise

that our alignment contains at most d edits allow us to greatly

narrow the search space.

Let A denote the set of the most recent d edit operations

corresponding to the optimal alignment between for S[0, b]
and T [0, b].

In summary, the algorithm stores the following data:

• The indices b and x.

• The characters of S[b, x] and T [b, x].
• The set of at most d edit operations A, in a queue data

structure.

• The information of the longest d-near-alignment found

so far, namely:

◦ is, js: the two ends of the d-near-alignment, so that

ℓ = js − is + 1 is the length of the longest d-near-

alignment

◦ L: the set of edit operations.

Maintenance:

(1) Read S[x], T [x].
(2) Construct the optimal alignment between S[b, x]

and T [b, x] using ModifiedHirschberg algorithm.

If there exist d+1 consecutive positions in S that

are aligned to d+1 consecutive positions in T , i.e.,

S[i1, j1] = T [i2, j2] with j1 − i1 = j2 − i2 > d,

then

a) Append the at most d latest edit operations

corresponding to indices before i1 and i2 to A
from the optimal alignment between S[b, x] and

T [b, x].
b) Remove earlier operations from A, until |A| ≤
d.

c) Update b = min{j1, j2}.

(3) Identify whether ed(S[b, x], T [b, x]) is greater than

d using ModifiedHirschberg algorithm.

(4) If ed(S[b, x], T [b, x]) > d, then define c
to be the smallest index in [b, x] such that

ed(S[c, x], T [c, x]) ≤ d. Note that c is also com-

putable with ModifiedHirschberg algorithm.

(5) Else if ed(S[b, x], T [b, x]) ≤ d, let f =
ed(S[b, x], T [b, x]), and define c be the index of

(d− f)th operation from the end in A.

(6) In either case, check if x− c+1 > ℓ, then update

is, js, ℓ,L accordingly.

(7) If x = n, then report L and ℓ.

Theorem 11 (ModifiedHirschberg): Given two strings S
and T of length m and a parameter d, there exists an

algorithm that either states that ed(S, T) > d or recovers

the locations of the edit operations if ed(S, T) ≤ d, using

O (m+ d logm) space and O (md logm) time.

Proof: The classic Hirschberg’s algorithm [17], [19]

returns the locations of the optimal edit operations between

S and T in O (m logm) space. However, if we do not care

about the locations of the edit operations for ed(S, T) > d,

then we can optimize the space down to O (m+ d logm)
bits using ideas from [30].

In the classic Hirschberg algorithm, the edit distance is

computed for multiple alignments. Specifically, the entry

ij in the dynamic programming lookup table contains the

edit distance between the substrings S[1, i] and T [1, j].
However, if |j − i| > d, then the edit distance between

S[1, i] and T [1, j] is greater than d. Therefore, at each

level of Hirschberg’s algorithm, we only keep 2d − 1 cells

around the main diagonal (a similar idea is used for the BZ

sketch in Figure 2). If ed(S, T) > d, then some optimal edit

operation will appear outside of the cells that we keep. Thus,

the algorithm recognizes that it cannot recover the optimal

operations, and instead declares ed(S, T) > d. Hence, if

ed(S, T) ≤ d, the algorithm will return the locations of the

optimal edit operations, whereas if ed(S, T) > d, the algo-

rithm outputs ed(S, T) > d. Since each cell contains a score

using logm bits, the total space used is O (m+ d logm).

Recall that Hirschberg’s algorithm uses a divide-and-

conquer approach, splitting the dynamic programming table

into two subproblems, roughly of equal size, say q and m−q,

where
∣

∣q − m
2

∣

∣ ≤ d. At each level, with input size m′, the

algorithm takes O (m′d) time. Hence, the algorithm satisfies

the recursion T (m) = O (md) + T (m − q) + T (q) so that

the overall running time is O (md logm).

Lemma 12: Let x, y ∈ Σh be two strings of length h.

Also let A be the set of all edit operations corresponding

to the optimal alignment between x and y. If e is the maxi-

mum distance between two operations among all consecutive

operations in A, then we have: h ≤ (|A|+ 1)(e+ 1).

Proof: Suppose, by way of contradiction, h > (|A| +
1)(e + 1). Since e is the maximum distance between the

locations of two operations among all consecutive operations

in A, then any group of e+1 consecutive characters contains

an edit operations. But there are at least |A| + 1 disjoint

groups of e+ 1 consecutive characters, so there are at least

|A| + 1 edit operations. This contradicts the definition that

A is the set of all edit operations.

We now show the correctness of Theorem 5.

Proof of Theorem 5: Let i and j be the two endpoints of

the longest d-near-alignment. Also, let L be the set of edit

operations corresponding to the optimal alignment between

S[i, j] and T [i, j]. There are two cases for this alignment.

Either no two consecutive operations in L have distance

farther than d+ 1 or there exist d+ 1 consecutive positions

in S which are aligned to d+ 1 consecutive positions in T .

In the first case, the correctness follows from the correct-

ness of Theorem 9 and Lemma 12. In this case, S[i, j] and

T [i, j] will be covered by the sliding window after reading

S[j] and T [j]. This means that in line (3), x = j and the

algorithm will assign c = i. Thus, the algorithm will report

the correct d-near-alignment.

Suppose the second case occurs. So, there exist d + 1
consecutive positions in S[i, j] are aligned to d + 1 con-

secutive positions in T [i, j], i.e., S[i1, j1] = T [i2, j2] with

j1−i1 = j2−i2 > d. We claim that no character before i1 (i2,

respectively) in S (T , respectively) could be aligned to any

character after j2 (j1, respectively) in an optimal alignment

between S[i, j] and T [i, j], as in Figure 3.

Otherwise, more than d insertions or deletions are re-

quired.

Therefore, the algorithm will recover the alignment be-

tween S[i, i1] and T [i, i2] from what it has already stored in

A. In addition, the alignment between S[i1, j] and T [i2, j]
is constructed at line (2) and these two alignments are

combined in line (4).

The space needed to store A and L is O (d logn) as there

are at most 2d operations in each data structure. Taking

|A| ≤ d and e = (d+1) in Lemma 12 implies that the sliding

window [b, x] is O
(

d2
)

bits long. Taking m = (d + 1)2 in

Theorem 11 implies that recovery of the edit operations can

be done using O
(

d2 + d logn
)

space. Hence, the overall

memory of the algorithm is O
(

d2 + d logn
)

bits. Again

taking m = (d+ 1)2 in Theorem 11 shows that the running

time per arriving symbol is O
(

d2 log d
)

. ✷

We observe that the running time per arriving symbol can

be improved to O
(

d2
)

by creating a BZ sketch for the

entire sliding window. However, this implementation uses

O
(

d2 log d
)

space instead.

V. LOWER BOUNDS

To prove Theorem 7, we first create a distribution between

two strings, over which calculating the edit distance is

equivalent to calculating the Hamming distance. We then

show that any deterministic algorithm that approximates long

length d-near-alignments under Hamming distance with high

probability requires a certain amount of space through a

simple counting argument. By Yao’s Minimax Principle, any

randomized algorithm with the same probability of success

requires the same amount of space.

To prove Theorem 7, we define X be the set of binary

strings of length n with d many 1’s. We pick x independently

and uniformly at random from X and y independently and

uniformly at random from the set of binary strings of length

n with either HAM(x, y) = d or HAM(x, y) = d+1. Define

transformation s(x) = x11d+1x21d+1 . . . 1d+1xn1d+1. Thus,

we pick (S, T) ∼ (s(x), s(y)).
Claim 13: If ed(x, y) = d, then there exist a sequence

of d insertions, deletions, or substitutions on x to obtain

y. Furthermore, we may perform the substitutions first,

followed by the insertions, then the deletions.

Proof: First, we fix a sequence of d operations to

obtain y from x, and note that no character can be inserted

and subsequently deleted, or else the edit distance between

x and y would be less than d by avoiding these opera-

tions. Similarly, any character which undergoes a substitution

should not be involved in either an insertion or a deletion.

Hence, any character is involved in at most one operation.

But since a character is not affected by operations on other

characters, we may first perform the substitutions, followed

by the insertions, then the deletions.

Lemma 14: ed(s(x), s(y)) = HAM(x, y)
Proof: By Claim 13, we may perform the substitutions

first, followed by the insertions, then the deletions to obtain

s(y) from s(x). Let s1(x) be s(x) following the sequence

of substitutions. Suppose there exists a position in s1(x)
which does not equal the corresponding position in s(y).
Then the position is zero in one of s1(x) or s(y). However,

the nearest zero in the other string is at least d+1 positions

Length ≥ d+ 1

Fig. 3. If there exists some alignment in which the red regions are aligned, then nothing before the region can be aligned to anything after the region
(the dashed alignment can never exist). Thus, it suffices to keep the locations of the d most recent edit operations before the region (for example, the blue
lines)

away, requiring at least d + 1 additional operations. Since

ed(s(x), s(y)) ≤ HAM(s(x), s(y)) ≤ d + 1, then it follows

that every single operation to obtain s(y) from s(x) must be

a substitution, and so ed(s(x), s(y)) ≥ HAM(s(x), s(y)). By

construction, HAM(s(x), s(y)) = HAM(x, y) and the result

follows.

Lemma 15: Any algorithm D using less than d logn
3 bits

of memory cannot distinguish between HAM(x, y) = d and

HAM(x, y) > d with probability at least 1− 1/n.

Proof: Note that |X | =
(

n
d

)

. By Stirling’s approxima-

tion, |X | ≥
(

n
d

)d
. Since d = o(

√
n), then |X | ≥ (n)

d/2
.

If D uses less than d logn
3 bits of memory, then D has at

most 2
d log n

3 = nd/3 unique memory configurations. Since

|X | ≥ (n)d/2, then there are at least 1
2 (|X | − nd/3) ≥ |X|

4
pairs x, x′ such that D has the same configuration after

reading x and x′. We show that D errs on a significant

fraction of these pairs x, x′.

Let I be the positions where either x or x′ take value 1, so

that d+1 ≤ |I| ≤ 2d. Observe that if HAM(x, y) = d, but x
and y do not differ in any positions of I, then HAM(x′, y) >
d. Recall that D has the same configuration after reading x
and x′, but since HAM(x, y) = d and HAM(x′, y) > d,

then the output of D is incorrect for either HAM(x, y) or

HAM(x′, y).

For each pair (x, x′), there are
(

n−|I|
d

)

≥
(

n−2d
d

)

such

y with HAM(x, y) = d, but x and y do not differ in any

positions of I. Hence, there are
|X|
4

(

n−2d
d

)

strings s(x, y) for

which D errs. We note that there is no overcounting because

the output of D can be correct for at most one HAM(xi, y)
for all xi mapped to the same configuration. Recall that y
satisfies either HAM(x, y) = d or HAM(x, y) = d + 1 so

that there are |X |
(

(

n
d

)

+
(

n
d+1

)

)

pairs (x, y) in total. Thus,

the probability of error is at least

|X|
4

(

n−2d
d

)

|X |
(

(

n
d

)

+
(

n
d+1

)

) =
1

4
·
(

n−2d
d

)

(

n+1
d+1

)

=
(d+ 1)

4

(n− 3d+ 1) . . . (n− 2d)

(n− d+ 1) . . . (n+ 1)

Since n−3d+1
n−d+1 ≤ n−3d+i

n−d+i for all i ≥ 1, it follows that the

probability of error is at least

d+ 1

4(n+ 1)

(

n− 3d+ 1

n− d+ 1

)d

=
d+ 1

4n+ 4

(

1− 2d

n− d+ 1

)d

Then by Bernoulli’s Inequality (which states that (1+x)r ≥
1 + rx for x ≥ −1 and r ≥ 1), the probability of error is at

least
d+ 1

4n+ 4

(

1− 2d2

n− d+ 1

)

≥ 1

n

Since d = o(
√
n), then for large n, it follows that 1 −

2d2

n−d+1 ≥ 1
2 . Hence, for d > 7, the probability of error is at

least 1
n .

Therefore, Ω(d log n) bits of memory are necessary to

distinguish between HAM(x, y) = d and HAM(x, y) > d
with probability at least 1− 1/n.

Now, we use a simple trick to show that any sketch

providing a (1+ǫ)-approximation to the length of the longest

d-near-alignment under the edit distance with probability at

least 1− 1/n requires Ω(d logn) space.

Proof of Theorem 7: Recall that s(x) =
x11d+1x21d+1 . . . 1d+1xn1d+1. Define string t(x) =
1(d+1)n/2x1(d+1)n/2 so that the longest d-near-alignment of

t(s(x)) and t(s(y)) has length 2(d+ 1)n if ed(x, y) ≤ d.

On the other hand, if ed(x, y) > d, then the longest d-

near-alignment of t(s(x)) and t(s(y)) has length at most

(d+1)n. Thus, a (1+ ǫ)-approximation to the length of the

longest d-near-alignment of t(s(x)) and t(s(y)) differentiates

whether HAM(x, y) ≤ d or HAM(x, y) > d. Since t(s(x))
has length 2(d+1)n, any sketch which achieves this requires

Ω(d log(n/d)) bits. Because d = o(
√
n), then the result

follows. ✷

We now turn our attention to Theorem 6, which states

that any algorithm computing a (1 + ǫ)-multiplicative or E-

additive approximation of the length of the longest d-near

alignment under the edit distance and outputs the necessary

edit operations requires Ω(d logn) bits, even in the simul-

taneous streaming model. Furthermore, simply determining

the length of the longest d-near alignment also requires

Ω(d logn) bits.

Proof of Theorem 6: We first prove that any algorithm

that computes a (1 + ǫ)-multiplicative approximation of the

length of the longest d-near alignment under the edit distance

requires Ω(d logn) bits using a reduction from the corre-

sponding problem from communication complexity. Namely,

in the communication complexity model, Alice receives the

first half of both S and T , and Bob receives the second half

of S and T ; their goal is to find the longest d-near-alignment

between S and T . Now, suppose S
[

1, n2
]

and T
[

1, n2
]

have

edit distance d, and none of the edit operations occur within

the first
(

1− 1
1+ǫ

)

n positions of S and T . Thus, Alice

must communicate the locations of all edit operations (i.e.,

Ω(d logn) bits.), as any one of these locations could be the

beginning of the longest d-near-alignment.

We observe that an algorithm that computes a E-additive

approximation of the length of the longest d-near alignment

under the edit distance and outputs the necessary edit op-

erations also forces Alice to communicate the locations of

the d most recent edit operations, provided that S
[

1, n
2

]

and

T
[

1, n
2

]

have edit distance d and none of the edit operations

occur in the first E locations of Alice’s input.

Finally, if Alice and Bob must output the length of the

longest d-near-alignment, and S
[

1, n
2

]

and T
[

1, n2
]

have

edit distance d, then Alice must output the locations of the

d most recent edit operations. ✷

REFERENCES

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity
of approximating the frequency moments. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing, pages
20–29. ACM, 1996.

[2] Srinivas Aluru, Alberto Apostolico, and Sharma V. Thankachan. Effi-
cient alignment free sequence comparison with bounded mismatches.
In Research in Computational Molecular Biology - 19th Annual

International Conference, RECOMB, Proceedings, pages 1–12, 2015.

[3] Alexandr Andoni, Assaf Goldberger, Andrew McGregor, and Ely
Porat. Homomorphic fingerprints under misalignments: sketching edit
and shift distances. In Proceedings of the Forty-Seventh Annual ACM

on Symposium on Theory of Computing, STOC, pages 931–940, 2013.

[4] Alberto Apostolico and Zvi Galil, editors. Pattern Matching Algo-

rithms. Oxford University Press, Oxford, UK, 1997.

[5] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in
strongly subquadratic time (unless SETH is false). In Proceedings

of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC, pages 51–58, 2015.

[6] Djamal Belazzougui and Qin Zhang. Edit distance: Sketching,
streaming and document exchange. In 57th Annual Symposium on

Foundations of Computer Science, FOCS, pages 51–60, 2016.

[7] Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan
Sadeqi Azer. Palindrome recognition in the streaming model. In 31st
International Symposium on Theoretical Aspects of Computer Science

(STACS), pages 149–161, 2014.

[8] Amit Chakrabarti. Data stream algorithms. Computer Science, 49:149,
2015.

[9] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký.
Streaming algorithms for computing edit distance without exploiting
suffix trees. CoRR, abs/1607.03718, 2016.

[10] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký.
Streaming algorithms for embedding and computing edit distance in
the low distance regime. In Proceedings of the 48th Annual ACM

SIGACT Symposium on Theory of Computing, STOC, pages 712–725,
2016.

[11] Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and
Tatiana A. Starikovskaya. The k-mismatch problem revisited. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA, pages 2039–2052, 2016.

[12] Funda Ergün, Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou.
Streaming periodicity with mismatches. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques

- 21st International Workshop, RANDOM (to appear), 2017.
[13] Tomás Flouri, Emanuele Giaquinta, Kassian Kobert, and Esko Ukko-

nen. Longest common substrings with k mismatches. Inf. Process.
Lett., 115(6-8):643–647, 2015.

[14] Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemys-
law Uznanski. Tight tradeoffs for real-time approximation of longest
palindromes in streams. In 27th Annual Symposium on Combinatorial

Pattern Matching, CPM, pages 18:1–18:13, 2016.
[15] Anna C. Gilbert and Piotr Indyk. Sparse recovery using sparse

matrices. Proceedings of the IEEE, 98(6):937–947, 2010.
[16] Elena Grigorescu, Erfan Sadeqi Azer, and Samson Zhou. Stream-

ing for aibohphobes: Longest palindrome with mismatches. CoRR,
abs/1705.01887, 2017.

[17] Daniel S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Commun. ACM, 18(6):341–343, 1975.

[18] Lucas Chi Kwong Hui. Color set size problem with application to
string matching. In Combinatorial Pattern Matching, Third Annual
Symposium, CPM Proceedings, pages 230–243, 1992.

[19] Jon Kleinberg and Eva Tardos. Algorithm design, 2006.
[20] Tomasz Kociumaka, Tatiana A. Starikovskaya, and Hjalte Wedel

Vildhøj. Sublinear space algorithms for the longest common substring
problem. In Algorithms - ESA. Proceedings, pages 605–617, 2014.

[21] Chris-Andre Leimeister and Burkhard Morgenstern. kmacs: the
k-mismatch average common substring approach to alignment-free
sequence comparison. Bioinformatics, 30(14):2000–2008, 2014.

[22] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increas-
ing and common subsequences in streaming data. J. Comb. Optim.,
11(2):155–175, 2006.

[23] S Muthukrishnan. Data stream algorithms, 2004.
[24] Saul B. Needleman and Christian D. Wunsch. A general method

applicable to the search for similarities in the amino acid sequence
of two proteins. Journal of Molecular Biology, 48(3):443–53, 1970.

[25] Benny Porat and Ely Porat. Exact and approximate pattern matching in
the streaming model. In 50th Annual IEEE Symposium on Foundations

of Computer Science, FOCS, pages 315–323, 2009.
[26] David Sankoff. Matchings sequences under deletion/insertion con-

straints. Proceedings of the National Academy of Sciences, 69(1):1–4,
1972.

[27] Peter H. Sellers. On the theory and computation of evolutionary
distances. SIAM Journal on Applied Mathematics, 26(4):787–793,
1974.

[28] Tatiana A. Starikovskaya. Longest common substring with approxi-
mately k mismatches. In 27th Annual Symposium on Combinatorial

Pattern Matching, CPM, pages 21:1–21:11, 2016.
[29] Xiaoming Sun and David P. Woodruff. The communication and

streaming complexity of computing the longest common and increas-
ing subsequences. In Proceedings of the Eighteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA, pages 336–345,
2007.

[30] Esko Ukkonen. Finding approximate patterns in strings. J. Algorithms,
6(1):132–137, 1985.

[31] Taras Vintsiuk. Speech discrimination by dynamic programming.
Kibernetika, 4(1):81–88, 1968.

[32] Robert A. Wagner and Michael J. Fischer. The string-to-string
correction problem. Journal of the ACM, 21:168–178, 1974.

[33] Peter Weiner. Linear pattern matching algorithms. In 14th Annual
Symposium on Switching and Automata Theory,SWAT (FOCS), pages
1–11, 1973.

	I Introduction
	II The Multiplicative Approximation Algorithm
	III The Additive Approximation Algorithm
	IV The Longest d-Near-Alignment Algorithm
	V Lower Bounds
	References

