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Abstract—We construct a joint coordination-channel polar
coding scheme for strong coordination of actions between two
agents X and Y, which communicate over a discrete memoryless
channel (DMC) such that the joint distribution of actions
follows a prescribed probability distribution. We show that
polar codes are able to achieve our previously established inner
bound to the strong noisy coordination capacity region and
thus provide a constructive alternative to a random coding
proof. Our polar coding scheme also offers a constructive
solution to a channel simulation problem where a DMC and
shared randomness are together employed to simulate another
DMC. In particular, our proposed solution is able to utilize
the randomness of the DMC to reduce the amount of local
randomness required to generate the sequence of actions at
agent Y. By leveraging our earlier random coding results for
this problem, we conclude that the proposed joint coordination-
channel coding scheme strictly outperforms a separate scheme
in terms of achievable communication rate for the same amount
of injected randomness into both systems.

I. INTRODUCTION

A fundamental problem in decentralized networks is to
coordinate activities of different agents with the goal of
reaching a state of agreement. Such a problem arises in a
multitude of applications, including networks of autonomous
robots, smart traffic control, and distributed computing prob-
lems. For such applications, coordination is understood to
be the ability to arrive at a prescribed joint distribution
of actions at all agents in the network. In information
theory, two different notions of coordination are explored: (i)
empirical coordination, which only requires the normalized
histogram of induced joint actions to approach a desired
target distribution, and (ii) strong coordination, where the
sequence of induced joint actions must be statistically close
(i.e., nearly indistinguishable) from a given target probability
mass function (pmf).

A significant amount of work has been devoted to finding
the capacity regions of various coordination problems based
on both empirical and strong coordination [1]–[10], where
[4], [6]–[8], [10] focus on small to moderate network settings.

This work is supported by NSF grants CCF-1440014, CCF-1439465.

While all these works address the noiseless case, coordina-
tion over noisy channels has received only little attention in
the literature so far. However, notable exceptions are [11]–
[13]. For example, in [11] joint empirical coordination of
the channel inputs/outputs of a noisy communication channel
with source and reproduction sequences is considered. Also,
in [12] the notion of strong coordination is used to simulate a
discrete memoryless channel via another channel. Recently,
[13] explored the strong coordination variant of the problem
investigated in [11].

As an alternative to the impracticalities of random coding,
solutions for empirical and strong coordination problems
have been proposed based on low-complexity polar-codes
introduced by Arikan [14], [15]. For example, polar coding
for strong point-to-point coordination is addressed in [16],
[17], and empirical coordination for cascade networks in
[18], respectively. The only existing design of polar codes
for the noisy empirical coordination case [19] is based on the
joint source-channel coordination approach in [11]. However,
to the best of our knowledge, polar code designs for noisy
strong coordination have not been proposed in the literature.

In this work we consider the point-to-point coordination
setup depicted in Fig. 1 where only source and reproduc-
tion sequences are coordinated via a suitable polar coding
scheme over DMCs. In particular, we design an explicit low-
complexity nested polar coding scheme for strong coordina-
tion over noisy channels that achieves the inner bound of
the two-node network capacity region of our earlier work
[20]. In this work, we show that a joint coordination-channel
coding scheme is able to strictly outperform a separation-
based scheme in terms of achievable communication rate
if the same amount of randomness is injected into the
system. Note that our proposed joint coordination-channel
polar coding scheme employs nested codebooks similar to the
polar codes for the broadcast channel [21]. Further, our polar
coding scheme also offers a constructive solution to a channel
simulation problem where a DMC is employed to simulate
another DMC in the presence of shared randomness [12].

The remainder of the paper is organized as follows. Sec-
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tion II introduces the notation, the model under investigation,
and a random coding construction. Section III provides our
proposed joint coordination-channel coding design and a
proof to show that this design achieves the random coding
inner bound.

II. PROBLEM STATEMENT
A. Notation

Let N , 2n, n ∈ N. We denote the source polarization
transform as Gn = RF⊗n, where R is the bit-reversal
mapping defined in [14], F = [ 1 0

0 0 ] , and F⊗n denotes the n-
th Kronecker power of F. Given X1:N , (X1, X2, . . . , XN )
and A ⊂ J1, NK, we let XN [A] denote the components Xi

such that i ∈ A. Given two distributions PX(x) and QX(x)
defined over an alphabet X , we let D(PX(x)||QX(x)) and
‖PX(x) − QX(x)‖

TV
denote the Kullback-Leibler (KL)

divergence and the total variation, respectively. Given a pmf
PX(x) we let min∗(PX) = min {PX(x) : PX(x) > 0}.

B. System Model

The point-to-point coordination setup considered in this
work is depicted in Fig. 1. Node X receives a sequence
of actions XN ∈ XN specified by nature where XN is
i.i.d. according to a pmf pX . Both nodes have access to
shared randomness J at rate Ro bits/action from a common
source, and each node possesses local randomness M` at rate
ρ`, ` = 1, 2.

Node X

Encoder Decoder

Node Y

Source of

Common Randomness

JJ

DMC

PB|A
XN

AN BN

M1 M2

Y N

Fig. 1. Point-to-point strong coordination over a DMC.

We wish to communicate a codeword AN corresponding to
the coordination message over the rate-limited DMC PB|A to
Node Y. The codeword AN is constructed based on the input
action sequence XN , the local randomness M1 at Node X,
and the common randomness J . Node Y generates a sequence
of actions Y N ∈ YN based on the received codeword BN ,
common randomness J , and local randomness M2.

By assumption, the common randomness is independent of
the action specified at Node X. A strong coordination coding
scheme with rates (Rc, Ro, ρ1, ρ2) is deemed achievable if
for each ε > 0, there exists an N ∈ N such that the joint
pmf of actions P̃XN ,Y N induced by this scheme and the N
i.i.d. copies of desired joint pmf (X,Y ) ∼ qXY , QXNY N ,
are close in total variation, i.e.,

‖P̃XNY N −QXNY N ‖TV < ε. (1)

C. Random Coding Construction

Consider auxiliary random variables A ∈ A and C ∈ C
with (A,C) ∼ PAC be jointly correlated with (X,Y )
as PXYABC = PACPX|ACPB|APY |BC . The joint

strong coordination-channel random code with parameters
(Rc, Ro, Ra, N) [20], where I , J1, 2NRcK, J , J1, 2NRoK,
and K , J1, 2NRaK, consists of

1) Nested codebooks: A codebook C of size 2N(Ro+Rc)

is generated i.i.d. according to a pmf PC , i.e.,
CN

ij ∼
∏N

l=1 PC(·) for all (i, j) ∈ I × J . A code-
book A is generated by randomly selecting AN

ijk ∼∏N
l=1 PA|C(·|CN

ij ) for all (i, j, k) ∈ I × J ×K.
2) Encoding functions:

CN : J1, 2NRcK×J1, 2NRoK→ CN ,
AN : J1, 2NRcK×J1, 2NRoK×J1, 2NRaK→ AN .

3) The indices I, J,K are independent and uniformly
distributed over I, J , and K, respectively. These
indices select the pair of codewords CN

IJ and AN
IJK

from codebooks C and A.
4) The selected codeword AN

IJK is sent through the
communication DMC PB|A, whose output BN is used
to decode codeword CN

ÎJ
, and both are then passed

through a DMC PY |BC to obtain Y N .
The corresponding scheme is displayed in Fig. 2.

Fig. 2. Joint strong coordination-channel coding scheme.

The following theorem provides the inner bound for strong
coordination region achieved by such joint coordination-
channel code.

Theorem 1. (Strong coordination inner bound [20]) A tuple
(Ro, ρ1, ρ2) is achievable for the strong noisy communication
setup in Fig. 1 if for some Ra, Rc ≥ 0,

Ra +Ro +Rc > I(XY ;AC), (2a)
Ro +Rc > I(XY ;C), (2b)
Ra +Rc > I(X;AC), (2c)

Rc > I(X;C), (2d)
Rc < I(B;C), (2e)
ρ1 > Ra +Rc − I(X;AC), (2f)
ρ2 > H(Y |BC). (2g)

The underlying proofs and details of the coding mecha-
nism for this joint coordination-channel coding scheme for
noisy strong coordination are based on a complex channel
resolvability framework [20]. Channel resolvability has been
successfully used to study different strong coordination prob-
lems due to its ability to approximate channel output statistics
with random codebooks [22]. We now propose a scheme



based on polar codes that achieves the inner bound stated
by Theorem 1 for the strong coordination region as follows.

III. NESTED POLAR CODE FOR STRONG COORDINATION
OVER NOISY CHANNELS

Since the proposed joint coordination-channel coding
scheme is based on a channel resolvability framework, we
adopt the channel resolvability-based polar construction for
noise-free strong coordination [17] in combination with polar
coding for the degraded broadcast channel [21].

A. Coding Scheme

Consider the random variables X,Y,A,B,C, Ĉ distributed
according to QXYABCĈ over X ×Y ×A×B×C such that
X − (A,C) − (B, Ĉ) − Y . Assume that |A| = 2 and the
distribution QXY is achievable with |C| = 2 †. Let N , 2n.
We describe the polar coding scheme as follows:

Fig. 3. Block diagram of the superposition polar code.

Consider a 2-user physically degraded discrete memoryless
broadcast channel (DM-BC) PAB|A in Fig. 3 where A
denotes the channel input and A,B denote the output to
the first and second receiver, respectively. In particular, the
channel DMC PB|A is physically degraded with respect to
the perfect channel PA|A (i.e., PA|A � PB|A), leading to
the Markov chain A−A−B. We construct the nested polar
coding scheme in a similar fashion as in [21] as this mimics
the nesting of the codebooks C and A in Step 1) of the
random coding construction in Section II-C. Here, the second
(weaker) user is able to recover its intended message I , while
the first (stronger) user is able to recover both messages
K and I . Let C be the auxiliary random variable (cloud
center) required for superposition coding over the DM-BC
leading to the Markov chain C − A − (A,B). As a result,
the channel PB|C is also degraded with respect to PA|C
(i.e., PA|C � PB|C) [21, Lemma 3]. Let V be a matrix of
the selected codewords AN and CN as

V ,

[
AN

CN

]
. (3)

Now, apply the polar linear transformation Gn as

U ,

[
UN

1

UN
2

]
= V Gn. (4)

First, consider CN , UN
2 Gn from (3) and (4) where UN

2

is generated by the second encoder E2 in Fig. 3. For β < 1
2

†For the sake of exposition, we only focus on the set of joint distribu-
tions over X ×Y that are achievable with binary auxiliary random variables
C,A, and over a binary-input DMC. The scheme can be generalized to
non-binary C,A with non-binary polar codes in a straightforward way [23].

and δN , 2−N
β

we define the very high and high entropy
sets
VC , {i ∈ J1, NK : H(U i

2|U1:i−1
2 )>1− δN},

VC|X , {i ∈ J1, NK : H(U i
2|U1:i−1

2 XN )>1− δN},
VC|XY , {i ∈ J1, NK : H(U i

2|U1:i−1
2 XNY N )>1− δN},

HC|B , {i ∈ J1, NK : H(U i
2|U1:i−1

2 BN )>δN},
HC|A , {i ∈ J1, NK : H(U i

2|U1:i−1
2 AN )>δN},

(5)
which by [24, Lemma 7] satisfy

lim
N→∞

|VC |
N

= H(C), lim
N→∞

|VC|X |
N

= H(C|X),

lim
N→∞

|VC|XY |
N

= H(C|XY ), lim
N→∞

|HC|B |
N

= H(C|B),

lim
N→∞

|HC|A|
N

= H(C|A).

These sets are illustrated in Fig. 4. Note that the set
HC|B indicates the noisy bits of the DMC PB|C (i.e., the
unrecoverable bits of the codeword CN intended for the
weaker user in the DM-BC setup in Fig. 3) and is in general
not aligned with other sets. Let

L1 , VC \ HC|A, L2 , VC \ HC|B ,

where the set HC|A indicates the noisy bits of the DMC
PA|C (i.e., the unrecoverable bits of the codeword CN in-
tended for the stronger user). From the relation PA|C � PB|C
we obtain Hc

C|B ⊆ H
c
C|A. This ensures that the polarization

indices are guaranteed to be aligned (i.e., L2 ⊆ L1) [25],
[21, Lemma 4]. As a consequence, the bits decodable by the
weaker user are also decodable by the stronger user.

Now, consider AN , UN
1 Gn (see (3) and (4)), where

UN
1 is generated by the first encoder E1 with CN as a side

information as seen in Fig. 3. We define the very high entropy
sets illustrated in Fig. 5 as

Fig. 4. Index sets for codeword C.

Fig. 5. Index sets for codeword A.

VA , {i ∈ J1, NK : H(U i
1|U1:i−1

1 )>1−δN},
VA|C , {i ∈ J1, NK : H(U i

1|U1:i−1
1 CN )>1−δN},

VA|CX , {i ∈ J1, NK : H(U i
1|U1:i−1

1 CNXN )>1−δN},
VA|CXY , {i ∈ J1, NK : H(U i

1|U1:i−1
1 CNXNY N )>1−δN}

(6)



satisfying

lim
N→∞

|VA|
N

= H(A), lim
N→∞

|VA|CX |
N

= H(A|CX),

lim
N→∞

|VA|C |
N

= H(A|C), lim
N→∞

|VA|CXY |
N

= H(A|CXY ).

Note that, in contrast to Fig. 4, here there is no channel
dependent set overlapping with all other sets as PA|A is a
noiseless channel with rate H(A) and hence HA|A = ∅.

Accordingly, in terms of the polarization sets in (5) and
(6) we define the sets combining channel resolvability for
strong coordination and broadcast channel construction

F1 , (VC|X \ VC|XY ) ∩Hc
C|B ,

F2 , VC|XY ∩Hc
C|B ,

F3 , Vc
C|X ∩HC|B = HC|B \ HC|BX ,

F4 , VC|X ∩HC|B = HC|BX ,

F̂4 , HC|BXY ,

F̌4 , HC|BX \HC|BXY ,

F5 , (VC \ VC|X) ∩Hc
C|B ,

F6 , VA|CX \ VA|CXY ,

F7 , VA|CXY ,

F8 , VA|C \ VA|CX ,

F9 , VA \ VA|C .

Finally, with Y N , TNGn, we define the very high
entropy set:

VY |BC , {i ∈ J1, NK : H(T i|T 1:i−1BNCN )> log |Y|−δN},
(7)

satisfying
lim

N→∞

|VY |BC |
N

= H(Y |BC).

This set is useful for expressing the randomized generation
of Y N via simulating the channel PY |BC in Fig. 2 as a source
polarization operation [17]. We now proceed to describe the
encoding and decoding algorithms.

1) Encoding: The encoding protocol described in Algo-
rithm 1 is performed over k ∈ N blocks of length N . Since
for strong coordination the goal is to approximate a target
joint distribution with a minimum amount of randomness,
the encoding scheme performs channel resolvability while
reusing a fraction of the common randomness over several
blocks (i.e., randomness recycling) as in [17]. However, since
the communication is over a noisy channel, the encoding
scheme also considers a block chaining construction to
mitigate the channel noise influence as in [19], [24]–[26].

More precisely, as demonstrated in Fig. 2, we are interested
in successfully recovering the message I that is intended for
the weak user channel given by PB|A in Fig. 3. However,
the challenge is to communicate the set F3 that includes bits
of the message I that are corrupted by the channel noise.
This suggests that we apply a variation of block chaining
only at encoder E2 generating the codeword CN as follows
(see Fig. 6). At encoder E2, the set F3 of block i ∈ J1, kK
is embedded in the reliably decodable bits of F1 ∪ F2 of

Fig. 6. Chaining construction for block encoding.

the following block i + 1. This is possible by following
the decodability constraint (see (2d), (2e) of Theorem 1)
that ensures that the size of the set F3 is smaller than the
combined size of the sets F1 and F2 [19]. However, since
these sets originally contain uniformly distributed common
randomness J [17], the bits of F3 can be embedded while
maintaining the uniformity of the randomness by taking
advantage of the Crypto Lemma [27, Lemma 2]. Then, to
ensure that F3 is equally distributed over F1 ∪ F2, F3 is
partitioned according to the ratio between |F1| and |F2|. To
utilize the Crypto Lemma, we introduce F32 and F (i)

31
, which

represent uniformly distributed common randomness used to
randomize the information bits of F3. The difference is that
F32

, as F2, represents a fraction of common randomness
that can be reused over k blocks whereas a realization of the
randomness in F (i)

31
needs to be provided in each new block.

Note that, as visualized in Fig. 6, both the subsets F́31
⊂ F1

and F́32 ⊂ F2 represent the resulting uniformly distributed
bits of F3 of the previous block, where |F́31 | = |F31

| and
|F́32 | = |F32 |. Finally, in an additional block k+ 1 we use a
good channel code to reliably transmit the set F3 of the last
block k.

2) Decoding: The decoder is described in Algorithm 2.
Recall that we are only interested in the message Î intended
for the weak user channel given by PB|A in Figure 3. As a
result, we only state the decoding protocol at D2 that recovers
the codeword ĈN . Note that the decoding is done in reverse
order after receiving the extra k+1 block containing the bits
of set F3 of the last block k. In particular, in each block
i ∈ [1, k − 1] the bits in F3 are obtained by successfully
recovering the bits in both F1 and F2 in block i+ 1.

B. Scheme Analysis

We now provide an analysis of the coding scheme of
Section III. The analysis is based on KL divergence which
upper bounds the total variation in (1) by Pinsker’s inequality.
We start the analysis with a set of sequential lemmas. In
particular, Lemma 1 is useful to show in Lemma 2 that the
strong coordination scheme based on channel resolvability



Algorithm 1: Encoding algorithm at Node X for strong
coordination

Input: XN
1:k, uniformly distributed local randomness bits

M11:k
of the size k|F6|, common randomness bits J̄ =

(J̄1, J̄2) of sizes |F2 ∪ F̂4|, and |F7|, respectively, and
J1:k of size k|F̌4 ∪ F1| shared with Node Y.
Output: ÃN

1:k

1. for i = 2, . . . , k do
2. E2 in Fig. 3 constructs ŨN

2i bit-by-bit as follows:
if i = 1 then
• ŨN

2i [F1 ∪ F̌4]← Ji
• ŨN

2i [F2 ∪ F̂4]← J̄1

else
• Let F (i)

31
, F32 be sets of the size (|Fm| ×

|F3|)/(|F1|+ |F2|) for m ∈ {1, 2}.
•
(
ŨN

2i [(F1 \ F́31
) ∪ F̌4],F (i)

31

)
← Ji

•
(
ŨN

2i [(F2 \ F́32
) ∪ F̂4],F32

)
← J̄1

• ŨN
2i [F́31 ]← ŨN

2i−1
[F3 \ F32 ]⊕F (i)

31

• ŨN
2i [F́32 ]← ŨN

2i−1
[F3 \ F31 ]⊕F32

end
• Given XN

i , successively draw the remaining com-
ponents of ŨN

2i according to P̃Uj2i
|U1:j−1

2i
XN
i

defined
by

P̃Uj2i
|U1:j−1

2i
XN
i
,

{
QUj2 |U

1:j−1
2

j ∈ Vc
C ,

QUj2 |U
1:j−1
2 XN j ∈ F3 ∪ F5.

(8)
3. C̃N

i ← ŨN
2iGn

4. E1 in Fig. 3 constructs ŨN
1i bit-by-bit as follows:

• ŨN
1i [F6]←M1i

• ŨN
1i [F7]← J̄2

• Given XN
i and C̃N

i , successively draw the remaining
components of ŨN

1i according to P̃Uj1i
|U1:j−1

1i
CNi XN

i

defined by

P̃Uj1i
|U1:j−1

1i
CNi XN

i
,


QUj1 |U

1:j−1
1

j ∈ Vc
A,

QUj1 |U
1:j−1
1 CN j ∈ F9,

QUj1 |U
1:j−1
1 CNXN j ∈ F8.

(9)
5. ÃN

i ← ŨN
1iGn

6. Transmit ÃN
i

7. end for

holds for each block individually regardless of the random-
ness recycling.

Lemma 1. For block i ∈ J1, kK, we have

D(QANCNXN ||P̃ANi CNi XN
i

) ≤ 2NδN .

Algorithm 2: Decoding algorithm at Node Y for strong
coordination

Input: BN
1:k, uniformly distributed common randomness,

J̄1, and J1:k shared with Node X.
Output: Ỹ N

1:k

1. For block i = k, . . . , 1 do
2. D2 in Fig. 3 constructs ÛN

2i bit-by-bit as follows:

•
(
ÛN

2i [(F1 \ F́31
) ∪ F̌4],F (i)

31

)
← Ji

•
(
ÛN

2i [(F2 \ F́32
) ∪ F̂4],F32

)
← J̄1

• Given BN
i successively draw the components of ÛN

2i

according to P̃Uj2i
|Uj−1

2i
,BNi

defined by

P̃Uj2i
|Uj−1

2i
BNi
,

{
QUj2 |U

1:j−1
2

j∈ Vc
C ,

QUj2 |U
1:j−1
2 BNi

j∈ F́32
∪F́31

∪F5.
(10)

3. if i = k then
• ÛN

2i [F3]← BN
k+1

else
• ÛN

2i [F3 \ F32
]← ÛN

2i+1
[F́31

]⊕F (i+1)
31

• ÛN
2i [F3 \ F31

]← ÛN
2i+1

[F́32
]⊕F32

4. Let
• ÛN

2i [F́31
]← F (i)

31

• ÛN
2i [F́32

]← F32

5. ĈN
i ← ÛN

2iGn

6. Channel simulation: given ĈN
i and Bi

N , successively
draw the components of T̃N

i according to

P̃T ji |T
1:j−1
i BNi CNi

,

{
1/|Y| j ∈ VY |BC ,

QT j |T 1:j−1BNCN j ∈ Vc
Y |BC .

(11)
5. Ỹ N

i ← T̃N
i Gn

6. end for

Proof. We have

D(QANCNXN ||P̃ANi CNi XN
i

)

(a)
= D(QUN1 UN2 XN ||P̃UN1i

UN2i
XN
i

)

(b)
= EQXN

[
D(QUN1 UN2 |XN ||P̃UN1i

UN2i
|XN
i

)
]

= EQXN

[
D(QUN2 |XNQUN1 |UN2 XN ||P̃UN2i

|XN
i
P̃UN1i

|UN2iX
N
i

)
]

(c)
= EQXN

[
D(QUN2 |XN ||P̃UN2i

|XN
i

)

+ D(QUN1 |UN2 XN ||P̃UN1i
|UN2iX

N
i

)
]

(d)
=

N∑
j=1

EQ
U

1:j−1
2 XN

[
D(QUj2 |U

1:j−1
2 XN ||P̃Uj2i

|U1:j−1
2i

XN
i

)
]

+

N∑
j=1

EQ
U

1:j−1
1 UN2 X

N

[
D(QUj1|U

1:j−1
1 UN2 XN||P̃Uj1i

|U1:j−1
1i

UN2i
XN
i

)
]



(e)
=

∑
j /∈F3∪F5

EQ
U

1:j−1
2 XN

[
D(QUj2 |U

1:j−1
2 XN ||P̃Uj2i

|U1:j−1
2i

XN
i

)
]

+
∑
j /∈F8

EQ
U

1:j−1
1 UN2 X

N

[
D(QUj1 |U

1:j−1
1 UN2 XN ||P̃Uj1i

|U1:j−1
1i

UN2i
XN
i

)
]

(f)
=

∑
j∈VcC∪VC|X

EQ
U

1:j−1
2 XN

[
D(QUj2 |U

1:j−1
2 XN ||P̃Uj2i

|U1:j−1
2i

XN
i

)
]

+
∑

j∈VcA∪VA|CX∪VA\VA|C

EQ
U

1:j−1
1 UN2 XN

[
D(QUj1 |U

1:j−1
1 UN2 XN ||P̃Uj1i

|U1:j−1
1i

UN2i
XN
i

)
]

(g)
=
∑
j∈VcC

(
H(U j

2 |U
1:j−1
2 )−H(U j

2 |U
1:j−1
2 XN )

)
+

∑
j∈VC|X

(
1−H(U j

2 |U
1:j−1
2 XN )

)
+
∑
j∈VcA

(
H(U j

1 |U
1:j−1
1 )−H(U j

1 |U
1:j−1
1 UN

2 X
N )
)

+
∑

j∈VA|CX

(
1−H(U j

1 |U
1:j−1
1 UN

2 X
N )
)

+
∑

j∈Vc
A|C\VcA

(
H(U j

1 |U
1:j−1
1 UN

2 )−H(U j
1 |U

1:j−1
1 UN

2 X
N )
)

(h)
=
∑
j∈VcC

(
H(U j

2 |U
1:j−1
2 )−H(U j

2 |U
1:j−1
2 XN )

)
+

∑
j∈VC|X

(
1−H(U j

2 |U
1:j−1
2 XN )

)
+
∑
j∈VcA

(
H(U j

1 |U
1:j−1
1 )−H(U j

1 |U
1:j−1
1 CNXN )

)
+

∑
j∈VA|CX

(
1−H(U j

1 |U
1:j−1
1 CNXN )

)
+

∑
j∈Vc

A|C\VcA

(
H(U j

1 |U
1:j−1
1 CN )−H(U j

1 |U
1:j−1
1 CNXN )

)
(i)

≤ (|Vc
C |+ |VC|X |+ |VA|XC |+ |Vc

A|C |)δN ≤ 2NδN

where
(a) holds by invertibility of Gn;
(b) - (d) follows from the chain rule of the KL divergence

[28];
(e) results from the definitions of the conditional distribu-

tions in (8), and (9);
(f) follows from the definitions of the index sets as shown

in Figures 4 and 5;
(g) results from the encoding of ŨN

1i and ŨN
2i bit-by-bit

at E1 and E2, respectively, with uniformly distributed
randomness bits and message bits. These bits are gener-
ated by applying successive cancellation encoding using
previous bits and side information with conditional
distributions defined in (8) and (9);

(h) holds by the one-to-one relation between UN
2 and CN ;

(i) follows from the sets defined in (5) and (6).
�

Lemma 2. For block i ∈ J1, kK, we have

D(P̃XN
i Y Ni

||QXNY N )

≤ D(P̃XN
i ANi CNi BNi ĈNi Y Ni

||QXNANCNBN ĈNY N ) ≤ δ(2)
N

where δ(2)
N , O(

√
N3δN ).

Proof. Consider the argument shown at the top of the fol-
lowing page. In this argument:
(a) - (b) results from the Markov chain XN −ANCN −

BN ĈN−Y N ;
(c) follows from [17, Lemma 16] where

δ̂
(2)
N , −N log(µXACBĈY )

√
2 ln 2

√
2NδN ,

µXACBĈY , min∗x,y,a,c,b,ĉ
(
QXACBĈY

)
;

(d) follows from the chain rule of KL divergence [28];
(e) holds by Lemma 1 and [17, Lemma 14] where

δ
(1)
N , −N log(µXAC)

√
2 ln 2

√
2NδN ,

µXAC , min∗x,a,c
(
QXAC

)
;

(f) follows from the chain rule of KL divergence [28];
(g) holds by [17, Lemma 14], where

µACBĈ , min∗a,c,b,ĉ
(
QACBĈ

)
,

µY BĈ , min∗y,b,ĉ
(
QY BĈ

)
;

(h) holds by bounding the terms
D(QBN ĈN |ANCN ||P̃BNi ĈNi |ANi CNi

), and
D(QY N |BN ĈN ||P̃Y Ni |BNi ĈNi

), as follows:

D(QBN ĈN |ANCN ||P̃BNi ĈNi |ANi CNi
)

(a)
= D(QBN |ANQĈN |BN ||QBN |AN P̃ĈNi |BNi

)

= D(QĈN |BN ||P̃ĈNi |BNi
)

(b)
= D(QÛN |BN ||P̃ÛNi |BNi

)

(c)
=

N∑
j=1

EQ
U

1:j−1
2 BN

[
D(QUj2 |U

1:j−1
2 BN ||P̃Uj2i

|U1:j−1
2i

BNi
)
]

(d)
=
∑
j∈VcC

EQ
U

1:j−1
2 BN

[
D(QUj2 |U

1:j−1
2 BN ||P̃Uj2i

|U1:j−1
2i

BNi
)
]

+
∑

j∈HC|B∪VC|X
EQ

U
1:j−1
2 BN

[
D(QUj2|U

1:j−1
2 BN||P̃Uj2i|U

1:j−1
2i

BNi
)
]

(e)
=
∑
j∈VcC

(
H(U j

2 |U
1:j−1
2 )−H(U j

2 |U
1:j−1
2 BN )

)
+

∑
j∈HC|B∪VC|X

(
1−H(U j

2 |U
1:j−1
2 BN )

)
(f)

≤ |Vc
C |δN + |HC|B ∪ VC|X |δN ≤ NδN ,

where
(a) results from the Markov chain C−A−B− Ĉ and

the fact that P̃BNi |ANi = QBN |AN ;
(b) holds by the one-to-one relation between UN

2 and
CN ;

(c) follows from the chain rule of KL divergence [28];



D(P̃XN
i ANi CNi BNi ĈNi Y Ni

||QXNANCNBN ĈNY N )

= D(P̃Y Ni |XN
i ANi CNi BNi ĈNi

P̃XN
i ANi CNi BNi ĈNi

||QY N |XNANCNBN ĈNQXNANCNBN ĈN )

(a)
= D(P̃Y Ni |BNi ĈNi

P̃XN
i ANi CNi BNi ĈNi

||QY N |BN ĈNQXNANCNBN ĈN )

= D(P̃Y Ni |BNi ĈNi
P̃BNi ĈNi |XN

i ANi CNi
P̃XN

i ANi CNi
||QY N |BN ĈNQBN ĈN |XNANCNQXNANCN )

(b)
= D(P̃Y Ni |BNi ĈNi

P̃BNi ĈNi |ANi CNi
P̃XN

i ANi CNi
||QY N |BN ĈNQBN ĈN |ANCNQXNANCN )

(c)

≤ δ̂
(2)
N + D(P̃Y Ni |BNi ĈNi

P̃BNi ĈNi |ANi CNi
P̃XN

i ANi CNi
||P̃Y Ni |BNi ĈNi

P̃BNi ĈNi |ANi CNi
QXNANCN )

+ D(P̃Y Ni |BNi ĈNi
P̃BNi ĈNi |ANi CNi

QXNANCN ||QY N |BN ĈNQBN ĈN |ANCNQXNANCN )

(d)
= δ̂

(2)
N + D(P̃XN

i ANi CNi
||QXNANCN ) + D(P̃Y Ni |BNi ĈNi

P̃BNi ĈNi |ANi CNi
||QY N |BN ĈNQBN ĈN |ANCN )

(e)

≤ δ̂
(2)
N + δ

(1)
N + D(P̃Y Ni |BNi ĈNi

P̃BNi ĈNi |ANi CNi
||QY N |BN ĈNQBN ĈN |ANCN )

(f)
= δ̂

(2)
N + δ

(1)
N + D(P̃Y Ni |BNi ĈNi

||QY N |BN ĈN ) + D(P̃BNi ĈNi |ANi CNi
||QBN ĈN |ANCN )

(g)

≤ δ̂
(2)
N + δ

(1)
N −N log(µY BĈ)

√
2 ln 2

√
D(QY N |BN ĈN ||P̃Y Ni |BNi ĈNi

)

−N log(µACBĈ)
√

2 ln 2
√
D(QBN ĈN |ANCN ||P̃BNi ĈNi |ANi CNi

)

(h)

≤ δ̂
(2)
N + δ

(1)
N −N log(µY BĈ)

√
2 ln 2

√
NδN −N log(µACBĈ)

√
2 ln 2

√
NδN

(d) - (e) results from the definitions of the conditional
distributions in (10);

(f) follows from the sets defined in (5).
D(QY N |BN ĈN ||P̃Y Ni |BNi ĈNi

)

(a)
=

N∑
j=1

EQ
T1:j−1BN

i
ĈN
i

[
D(QT j |T 1:j−1BNĈN ||P̃T j |T 1:j−1BNi Ĉ

N
i

)
]

(b)
=
∑

j∈VY |BC
EQ

T1:j−1BN
i
ĈN
i

[
D(QT j |T 1:j−1BNĈN ||P̃T j |T 1:j−1BNi Ĉ

N
i

)
]

(c)
=

∑
j∈VY |BC

(
log |Y| −H(T j |T 1:j−1BNCN )

)
(d)

≤ |VY |BC |δN ≤ NδN ,
where
(a) follows from the chain rule of KL divergence [28];
(b) - (c) results from the definitions of the conditional

distribution in (11);
(d) follows from the set defined in (7).

�

Now, Lemmas 3 and 4 provide the independence between
two consecutive blocks and the independence between all
blocks based on the results of Lemma 2.

Lemma 3. For block i ∈ J2, kK, we have

D(P̃XN
i−1:iY

N
i−1:iJ̄1

||P̃XN
i−1Y

N
i−1J̄1

P̃XN
i Y Ni

) ≤ δ(3)
N

where δ(3)
N , O( 4

√
N15δN ).

Proof. We reuse the proof of [17, Lemma 3] with substitu-
tions qU1:N ← QCN , qY 1:N ← QXNY N , p̃U1:N

i
← P̃CNi

,

p̃Y 1:N
i
← P̃Y Ni XN

i
, and R̄1 ← J̄1. This will result in the

Markov chain XN
i−1Ỹ

N
i−1 − J̄1 − XN

i Ỹ
N
i replacing the chain

in [17, Lemma 3]. �

Lemma 4. We have

D
(
P̃XN

1:kY
N
1:k
||

k∏
i=1

P̃XN
i Y Ni

)
≤ (k − 1)δ

(3)
N

where δ(3)
N is defined in Lemma 3.

Proof. We reuse the proof of [17, Lemma 4] with substi-
tutions p̃Y 1:N

i
← P̃XN

i Y Ni
, and R̄1 ← J̄1. This will result

in the Markov chain XN
1:i−2Ỹ

N
1:i−2 − J̄1X

N
i−1Ỹ

N
i−1 −XN

i Ỹ
N
i

replacing the chain in [17, Lemma 4]. �

Finally, by the results of Lemma 4 we can show in
Lemma 5 that the target distribution QXNY N is approximated
asymptotically over all blocks jointly.

Lemma 5. We have

D
(
P̃XN

1:kY
N
1:k
||QX1:kNY 1:kN

)
≤ δ(4)

N .

where δ(4)
N , O(k3/2N23/8δ

1/8
N )

Proof. We reuse the proof of [17, Lemma 5] with substitu-
tions qY 1:N ← QXNY N , p̃Y 1:N

i
← P̃Y Ni XN

i
. �

Theorem 2. The polar coding scheme described in Algo-
rithms 1, 2 achieves the region stated in Theorem 1. It
satisfies (1) for a binary input DMC channel and a target
distribution qXY defined over X×Y , with an axillary random
variable C defined over the binary alphabet.



Proof. The common randomness rate Ro is given as

|J̄1|+ |J1:k|
kN

=
|VC|XY |+ k|VC|X \ VC|XY |

Nk

=
|VC|XY |
kN

+
|VC|X \ VC|XY |

N
N→∞−−−−→ H(C|XY )

k
+ I(Y ;C|X)

k→∞−−−−→ I(Y ;C|X). (12)

The communication rate Rc is given as

k|F5 ∪ F3|
kN

=
k|VC \ VC|X |

Nk
=
|VC \ VC|X |

N
N→∞−−−−→ I(X;C), (13)

whereas Ra can be written as

|VA|CXY |+ k|F8|
kN

=
|VA|CXY |+ k|VA|C \ VA|CX |

kN

=
|VA|CXY |
kN

+
|VA|C \ VA|CX |

N
N→∞−−−−→ I(A;X|C) +

H(A|CXY )

k
k→∞−−−−→ I(A;X|C). (14)

The rates of local randomness ρ1 and ρ2, respectively, are
given as

ρ1 =
k|F6|
kN

=
k|VA|CX \ VA|CXY |

Nk
=
|VA|CX \ VA|CXY |

N
N→∞−−−−→ I(A;Y |CX) and (15)

ρ2 =
k|VY |BC |
kN

N→∞−−−−→ H(Y |BC). (16)

Finally we see that conditions (2a)-(2g) are satisfied by
(12)-(16). Hence, given Ra, Ro, Rc satisfying Theorem 1,
based on Lemma 5 and Pinsker’s inequality we have

E
[
||P̃XN

1:kY
N
1:k
−QX1:kNY 1:kN ||TV

]
≤ E

[√
2D(P̃XN

1:kY
N
1:k
||QX1:kNY 1:kN )

]
≤
√

2E
[
D(P̃XN

1:kY
N
1:k
||QX1:kNY 1:kN )

]N→∞−→ 0. (17)

As a result, from (17) there exists an N ∈ N for which the
polar code-induced pmf between the pair of actions satisfies
the strong coordination condition is given by (1). �
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