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Abstract— The culture of sharing instead of ownership is
sharply increasing in individuals behaviors. Particularly in
transportation, concepts of sharing a ride in either carpool-
ing or ridesharing have been recently adopted. An efficient
optimization approach to match passengers in real-time is
the core of any ridesharing system. In this paper, we model
ridesharing as an online matching problem on general graphs
such that passengers do not drive private cars and use shared
taxis. We propose an optimization algorithm to solve it. The
outlined algorithm calculates the optimal waiting time when a
passenger arrives. This leads to a matching with minimal overall
overheads while maximizing the number of partnerships. To
evaluate the behavior of our algorithm, we used NYC taxi real-
life data set. Results represent a substantial reduction in overall
overheads.

I. INTRODUCTION

Currently, cars are vastly underutilized. Firstly, most cars
sit in parking spaces most of the time. Secondly, cars under-
used due to their low occupancy rate relative to the number
of seats available (1.67 persons per vehicle in the U.S.
[Di Gianni, 2015]). This inefficient use of transportation and
parking resources had to be tolerated to enjoy reliable, safe,
and on-demand transportation. Today, however, technology
allows us to move away from the car-ownership paradigm
toward a shared transportation one [Gargiulo et al., 2015],
[Saranow, 2006]. Individuals who have similar itineraries and
time schedules use a shared vehicle in any portion of their
paths in a ridesharing scheme. An efficient use of empty
seats of cars in urban trips has numerous economic and
societal outcomes for individuals and the general public.
Increasing warnings about high consumption rates of finite
sources of fossil fuels and global warming, getting stuck at
traffic congestions [Xiang et al., 2008] and rising gas prices
are few examples demanding wiser adoption of vehicles.
Additionally, Sharing a car enables passengers to share travel
expenses which could be a substantial source of motivation.
It should be noted that ridesharing is different from conven-
tional carpooling and vanpooling systems dedicated to trips
on a regular basis [Levofsky and Greenberg, 2001] which
are very limited with respect to scheduling.

Taxi service providers can benefit from the advantages of
ridesharing as well. These companies may lose some of the
passengers due to their limited fleet size compared to the
requests in metropolitan areas. Relatively high costs of taking
taxis in comparison with other public transportation means
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is a deterrent factor of extensive usage of taxis. Having more
than one passenger in a taxi could be a key factor in solving
issues above since the occupancy rate of taxis increase, and
every passenger pays marginally lower expenses.

In this paper, we focus on the case when a central coor-
dinator is owning a finite fleet of cars offering an automated
matching of passengers within an urban area. Optimal time
windows and other constraints on accepted detours for every
passenger need to be respected while overall costs mini-
mized. Each active individual has a specific itinerary and has
to make a detour and extra stops to accommodate ridesharing
partner. The length of the individual optimal waiting time
depends on the passenger’s willingness to deviate from the
shortest path to get to his destination.

In this paper, we design and implement an algorithm
to maximize the matching of passengers (based on the
matching algorithms on general graphs [Witzgall and Zahn,
1965]) while optimizing the costs incurred for a taxi service
provider. We evaluate the effectiveness of the proposed
algorithm using real data set.

We can formulate this problem in the sense of a cooper-
ative agent based system [Xing et al., 2009]. In this case,
neither of tasks can be carried out by individual agents in
isolation. Thus, problem solving necessitates agents’ inter-
action. User agents inquire an appropriate number of service
agents to perform the matching task. Service agents maintain
and has access to active passengers’ information including
origin, destination, and flexibility. To be precise, matching
agents find a compatible match for a passenger willing to
leave.

The remainder of this paper is organized as follows. In
section II, formulates the model to solve online ridesharing
problem and presents our proposed algorithm. Experimental
results are discussed in Section III. In Section IV, we review
related work and represent how our approach is different
from others. Finally, we summarize conclusions and describe
future works in Section V.

II. PROBLEM DEFINITION

We model the ridesharing problem as an online single
decision maker problem. The road network modeled as a
weighted graph, with vertices representing locations, and
weighted edges representing the distance between locations.
Passengers appear at random time instants, with random
source and destination and we fix a flexibility factor which
models the overhead in travel time. We assume that a
central decision maker keeps track of this information for
each passenger in real-time, and is tasked with matching
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passengers in an online fashion. For simplicity, we first
assume that each passenger is either matched to one other
passenger or travels alone. Moreover, once a trip started,
matches are no longer allowed. In this model, the decision is
made of two components: how long to make each passenger
wait, and which another one (if any) to match to when the
waiting time has elapsed. Once passengers are matched, we
assume that a nearby taxi is dispatched to fulfill the trip.
A number of objectives can be considered: from a social
welfare perspective. We want to minimize for each passenger
the expected distance traveled in single occupancy, subject to
the flexibility constraint. From the perspective of an operator
like UberPool, the goal is to maximize the expected profit
for each passenger. We propose to estimate the distribution
of the random arrival time, source and destination from
openly available data. Given this distribution and travel times
on the road network, we propose an online algorithm that
first optimizes the waiting time for each newly appeared
passenger, and then matches a passenger whose waiting time
has elapsed by using the minimum cost perfect matching
algorithm. To model this problem, we present a set of
passengers P = {p1, . . . , pN} where pi = (si, di), i ∈
{1, . . . , N}. Each passenger has a starting point si and a
destination point di. The central ride sharing system assigns
either one or two passenger in a single car. In the former,
the taxi picks up passenger pi and moves along the shortest
path from his starting point si to his desired destination di.
Conversely, if a matching occurs, the taxi picks up passenger
i, travels to lift passenger j and drops them off in their
respective destinations. The taxi always opts for the shortest
path available between two points. We assume that starting
points and destinations are i.i.d. random variables and the
distributions are known. In addition, partial sums of expo-
nential random variables ek, k ∈ {1, . . . , N} represent time
elapsed between the appearance of consecutive passengers.
ti denotes passenger pi’s time of arrival.

ti =

i∑
k=1

ek. (1)

Assumption 2.1: We assume all random variables are gen-
erated i.i.d. and that distribution functions are known.

Let G = (V,E) be a q by q weighted grid representing
a road network. This graph illustrates starting points and
destinations of passengers currently in the system. Let πi
denote the shortest path travel time for passenger i to move
from his starting point to his desired destination. We assume
that each passenger pi is willing to incur at most ε fraction
above the shortest path. Consequently, the set of allowable
paths for every arrived pi is denoted:

Πi , {π : |π| ≤ (1 + εi)|πi|} (2)

The set Πi contains every allowable path from si to di.
In this paper, we design an algorithm to find the optimal
waiting time for every passenger pi arriving and then decide
on the best matching to optimize the system-wide overall
overhead. The optimum waiting time for passenger pi before

moving on is a function of si, di, and εi which is indicated
by τi(si, di, εi). For simplification, we denote this by τi.
We assume that cars always show up by the end of τi
and no passenger waits longer because a taxi arrives late.
Different values of τi may yield more compatible matches
and consequently lower overheads. A passenger pi spends
a longer time before reaching his destination as a result
of participating in a ride sharing arrangement. By denoting
actual travel time as ωi the following inequality must hold
for any passenger entering the system.

τi + ωi ≤ (1 + εi)πi (3)

As we increase the waiting time, more passengers appear in
the pool of waiting passengers; however, as the waiting time
for a given passenger increases, the tolerable detour distance
for that passenger decreases, such that fewer matches within
the pool are feasible due to the flexibility constraint. We
define set Wt including all passengers who are still in the
system at any instance t. This set excludes matched up
passengers who have left the system before t.

Wt = {pi | ti ≤ t < ti + τi} , i ∈ {1, . . . , N} (4)

During τi, some passengers may enter the system, and some
of them proper for share a ride with pi based on their source
and destination. These nominated passengers add to set Qi ⊂
W which is initially null for every passenger pi. By the end
of τi, the central ride sharing system decides to assign pi to
the best match to optimize system-wide overhead.

Definition 2.1: (Compatible Matching). A match between
pi and pj are compatible if there exist two paths πi ∈ Πi

and πj ∈ Πj which:

di, sj ∈ V (πi ∩ πj) or sj , dj ∈ V (πi ∩ πj)
or si, di ∈ V (πi ∩ πj) or dj , si ∈ V (πi ∩ πj) (5)

Definition 2.2: (Order of sharing). Define O(pi, pj) as the
cost associated with the order of pick up and drop off of the
passengers such that the first element in the pair represents
the first passenger picked up and the second element denotes
the first passenger dropped off in his desired destination. It
should be noted that if pi does not share a ride, then the
cost is simply the cost of going alone on the shortest path,
denoted by O(pi, 0).

Definition 2.3: (Cost of a matched pair). Define the travel
cost for matched up passengers pi and pj , j ∈ Q:

C(pi, pj) =


1

2
min

m,n∈{i,j}

{
O(pm, pn)

}
if i 6= j

O(pi, 0) if i = j
(6)

It should be noted that the cost is proportional to the
distance covered by vehicles like fuel cost. We assume
that total overhead is comprised of two parts, total waiting
overhead and total travel overhead. As described before, an
increase in waiting time has a limiting effect on feasible
ride sharing partners for passenger i; therefore, influences
the probability of finding a match. The optimal waiting time



(in the expected sense) for every passenger i is as follows:

τi = arg min
u∈[1,∞)

Ψi(u) + Γi(u) (7)

In which Ψi(u) expectation shows the case which pj =
{sj , dj} ∈ V V is not matched to passenger pi and is
defined as follows:

Ψi , E
{
ωi | ∀pj ∈ V V :

(
pi and pj are not compatible

)}
=

∑
pj∈V V

{
P
(
di, sj /∈ πi ∩ πj and sj , dj /∈ πi ∩ πj

and si, di /∈ πi ∩ πj and dj , si /∈ πi ∩ πj
)

C(pi, pi)

+ P
(
di, sj ∈ πi ∩ πj or sj , dj ∈ πi ∩ πj

or si, di ∈ πi ∩ πj or dj , si ∈ πi ∩ πj
)
.(

1− P
(
ti ≤ tj ≤ ti + u

))
C(pi, pi)

}
(8)

On the other hand, Γi represents a case where a matching
can occur between pi and pj = {sj , dj} ∈ V V . The
expected value is shown in:

Γi , E
{
ωi(Qi) | ∀pj ∈ V V :

(
pi and pj are compatible

)}
=

∑
pj∈V V

{
P
(
di, sj ∈ πi ∩ πj or sj , dj ∈ πi ∩ πj

or si, di ∈ πi ∩ πj or dj , si ∈ πi ∩ πj .
)
.

P
(
ti ≤ tj ≤ ti + u

)
C(pi, pj)

}
(9)

We assumed passengers arrival time are independent and
identically distributed exponential random variables, X ∼
exp(λ) and Y ∼ exp(λ). We name the random variable Z =

X − Y and we know the CDF: P(X − Y ≤ u) = 1− e−λu

2
By knowing the distribution of random variables sj and
dj , the probabilities in the above equation are determined.
We consider a case where the travel cost is divided evenly
between pairs in any arrangement. Equation 7 prevent the
algorithm to assign long waiting time to passenger.as the
waiting time becomes longer, because of equation 3 must be
held for passenger, the number of incompatible passengers
increased, and it causes an increase in Ψi(u).

Definition 2.4: (Leaving candidates). Define a passenger
leaving the system with the minimum amount the time of
arrival and the optimum waiting time among all the current
passengers.

k∗ = arg min
{i|pi∈W}

{ti + τi} and θ = min
{i|pi∈W}

{ti + τi}

(10)

The number k∗ indicates the nominated passenger is leaving
the system by the end of his optimal waiting time. θ denotes
the latest departure time for the nominated passenger..

A. Proposed Algorithm
In this section, we describe how our algorithm works to

find the best matching over all passengers.

Algorithm 1: Finding the ride sharing matching
Input:
- A graph G and a positive number N
- A set of pairs P = {p1, . . . , pN}, where pi = (si, di)
and ∀i ∈ {1, . . . , N} : si, di ∈ V
- Pairs of O(pi, pj) which is the cost associated with
the order of pick up and drop off of passengers
i, j ∈ {1, . . . , N} - Distribution functions of si, di, εi, ei
- A cost function C : P 2 → Z ∪ {0}
Output:
- The optimal waiting time, i.e. value of τi for every
passenger pi
- A matching M ⊆ P 2 such that ∀i ∈ {1, . . . , N} there
is precisely one pair in M such that pi appears in that
pair (note that ci could be in both coordinates of the
pair, in which case a passenger is paired with itself).

Initialization:
Create set of the current passengers such that
Wt = {p1}
Evaluate optimal waiting time for the first passenger, τ1
as in equation 7.
Update the potential leaving candidate information, k∗,
and θ as in equation 10
j ← 2
while |M | < N do

while θ ≥ tj do
Add the arrived passenger to the set of current
ones in the system, Wθ ←Wθ + {pj}
Evaluate the optimal waiting time for the newly
arrived passenger, τj
Update the leaving candidates and put it in set
k∗

Update the time of leaving for the candidate
and tag it as θ
j ← j + 1

Create a weighted graph T with |Wθ| nodes and for
each candidate add edge to compatible passengers
in Wθ with a weight equal to the cost function C.
Use Blossom algorithm to find minimum cost
perfect matching in T . Remove matched up
passengers from Wθ and add them as a pair to set
M .
Update the information about leaving candidate, k∗

and θ

III. EXPERIMENTAL RESULTS

To test the behavior of our algorithm, we used the data
provided by NYC Taxi & Limousine Commission [NYC
Taxi & Limousine Commission, 2016] for yellow cabs in
January 2016. This dataset contains more than 77 million
trips information. Thus, we extracted 10,000 trips and used
Kernel Density Estimation [Wand and Jones, 1993] to esti-
mate the probability distribution function of starting points
and destinations of all passengers. Note that the database size



of 10,000 entries is a practical case and closely resembles
the current daily amount of matches in a city. To extend the
data set to our approach of arbitrary origin and destination
locations, we applied the estimated PDF to estimate the
likelihood of appearance of pickup and drop-off points of
all passengers. For each starting point which we picked up
randomly from the region with the estimated probability,
a destination point is located in the same way. Figure 1
shows the likelihood function behavior for three different
passengers in a short period which passengers can wait
for a match. The function evaluated as discussed before in
equation 7. Figure 2 compares the original nodes locations

Fig. 1 : Estimated Ψi(u) + Γi(u)

on the left to the right showing a population density plot of
NYC to support the validity of the perturbation.

Our approach for estimating the waiting time applied for a
set of 1000 passengers in March 2016 and as shown in figure
3 for most of the passengers the waiting time is less than
2 minutes which is reasonable. Experiments on 16 datasets
and each of them with the 1000 passengers from April shows
that our algorithm has a significant reduction in costs using
ridesharing. This plot shows that using ridesharing could
result in a decrease in costs for a taxi provider company
and its could motivate passengers to use their service more
frequently. In 4 we compare cost reduction via our approach
with a greedy offline algorithm which is for the greedy
offline model, passengers arrival time are given and used
to find the best waiting time from 7. Blossom algorithm
is used to find the proper matching of the passengers in
the offline algorithm. For calculating the reduction in cost
we define total travel distance of passengers as

∑n
i=1 |πi|

where n is the number of passengers in the dataset, and the
total travel distance after finding the optimal matching as M
by algorithm 1 as

∑
ei∈M wei and calculate the reduction

in cost by 1 −
∑
ei∈M wei∑n
i=1 |πi|

. In figure 5 we compare the

reduction in costs on 16 test sets based on the waiting time
of the passengers. As the waiting time increase for a specific
passenger in figure 6 we increase the ε from zero to one in

(a) Original pickup locations (b) Estimated probability
distribution function

(c) Original dropoff
locations

(d) Estimated probability
distribution function

Fig. 2 : Original nodes and estimated PDFs

Fig. 3 : Waiting time for passengers in minutes

order to see how ε changes the results. We choose ε = 0.6
based on experimental results. By setting ε = 0.6 the average
waiting time for passengers based on 16 test sets equal to 1
minutes and 31 seconds and the average travel time increased
by 3 minutes and 23 seconds.

In figure 7 constant waiting time assigned to all the
passengers to compare our method for estimating the best
waiting time with constant waiting time. Our results are close
to two minutes constant waiting time and we achieve similar
results with 1 minutes and 31 seconds as the average of our
waiting time.



Fig. 4 : The reduction in costs using ridesharing

Fig. 5 : The relation between waiting time and cost
reduction

Fig. 6 : The relation between ε and cost reduction

Fig. 7 : Constant waiting time

IV. RELATED WORK

Online ridesharing defines a scheme in which passengers
arrive into the system as time goes on. At each time instance,
only the information related to active passengers are known.
Surveys of online ridesharing problem can be found in
[Agatz et al., 2011], [Agatz et al., 2012] presenting opti-
mization challenges and [Furuhata et al., 2013] addressing a
classification of the current ridesharing systems.

Online ridesharing is in contrast with the case when
entire data is available at the very beginning [Bernstein and
Rajagopalan, 1993]. In the traditional systems passengers
have fixed schedules, starting points, and destinations and
basically, all the passenger’s information is available at
any time instance [Michalak et al., 1994]. Our problem
investigates practical situations in the real world, and it is
more challenging, as information emerges continuously and
passengers must be matched optimally in a short notice.
The automated ridesharing operator matches up potential
passengers in a short notice.

This problem is very similar to pick up and delivery
problems described in [Berbeglia et al., 2010]. It can be
referred to like a particular case of dial-a-ride problem
[Attanasio et al., 2004]. DARP mainly revolves around
routing vehicles subject to time constraints on pickup and
delivery. The majority of research in this category is carried
out on static DARP where all the information is ready
before initiating the system. These portions use two-phase
scheduling strategy [Attanasio et al., 2004], [Horn, 2002] to
route the taxi fleet. This is distinguished from our problem
as we focus on passengers but in DARP scheduling taxis are
considered as the main concerns. Moreover, here we aim to
maximize matching of passengers while optimizing overall
overheads, an approach that taxi-sharing problem ignores.

Li et al. [Li et al., 2014] considered a problem in which
a shared vehicle delivers a passenger and a parcel to des-
tinations while persons have priority over parcels. They
avoid serving two passengers simultaneously in a taxi. They
present an exact MILP formulation to solve this problem



in tiny instances to maximize taxi provider’s profit in a
deterministic configuration. They proposed a solution based
on large neighborhood search heuristic for a case in which
travel times and delivery locations are stochastic [Li et al.,
2016].

Ma et al. [Ma et al., 2013] defined an algorithm to
dispatch the best vehicle in a taxi sharing scheme when
passengers send real-time queries. They provided a search-
ing algorithm to schedule taxis to satisfy queries incurring
minimum additional travel time. They showed using shared
rides, it is possible to increase vehicle occupancy rate (25%
in their paper) having a relatively small increase in travel
distances (only 13%). Our problem differs from this research
as beyond having real-time requests from passengers, we
consider maximizing ridesharing partners and minimizing
overheads. Taxi sharing problem (i.e., DARP, SARP) usually
discussed regarding a scheduling problem, rather than a
matching problem. We propose our problem in the sense of
online roommate problem and online matching problem on
general graphs [Bernstein and Rajagopalan, 1993].

Tao [Tao, 2007] addressed the problem where a set of
passengers travel from different origins to a fixed destination
on a regular basis and then dispatched from this fixed place
to their origins in the reverse paths. The matching is done in
real-time. A call center matches the closest taxi to the prede-
termined matching list of passengers. We also emphasize on
the role of central coordinator to match passengers in a way
the total cost of a fleet is minimized. However, passengers
and matching sets are at the center of focus, not routing
vehicles. Also, in our paper, passengers have distinguished
starting points, and destinations and vehicle serve at most
two passengers simultaneously.

[Herbawi and Weber, 2012] presented a genetic algorithm
to solve the multi-criteria optimization model of minimizing
total distance covered by drivers and incurred travel time of
passengers while maximizing the size of matching. Detours
of drivers and passengers time limitations are predetermined.
Conversely, we calculate the optimal waiting time for every
passenger such that resulting matching leads to optimal
overall overhead. Additionally, we assume that passengers
do not use a private vehicle to travel.

Agatz et al. [Agatz et al., 2011] designed optimization ap-
proaches to solve real-time matching in an online ridesharing
scheme. They showed that using sophisticated optimization
techniques benefits the performance of ridesharing systems.
However, they opt for the case where passengers use their
own vehicles to move. In our paper, we consider a limited
fleet of independent taxis controlled by a central coordinator.
In our paper, when the passengers start their trip they leave
the system and will not participate in matching. But in
[Ghoseiri et al., 2011] riders can be matched while en-route.

Notwithstanding the fact that many ridesharing projects
have been initiated in the past few years, many of them have
been proved to be unsuccessful in practice [Ghoseiri et al.,
2011]. A ridesharing system must be flexible, efficient and
economical to be substituted with the private cars having the
advantage of immediate door-to-door access [Agatz et al.,

2011]. Our model provides this features to passengers.
While the role of technological advances like GIS and

communication networks and the potential of ridesharing are
vastly studied [Sarraino et al., 2008], [Amey, 2011], devel-
oping sophisticated optimization and matching algorithms to
arrange ridesharing partnerships in real-time has been largely
neglected. In this paper, we mainly focus on designing an
algorithm to maximize the rate of participation in ridesharing
(matching passengers) while minimizing system-wide over-
heads.

A mixed integer optimization is developed by [Ghoseiri
et al., 2011] to maximize the matching of partners while
considering individual preferences. In our paper, minimizing
costs is a vital part of the objective function. waiting time is a
predetermined factor manually selected by riders, but in our
paper, it is computed optimally aligned with our perspective.

Some people may opt for the ride sharing merely for cost
savings. Individuals not owning private cars have limited
access to public transportation options can be other targets
of ridesharing. People are likely to participate in ridesharing
arrangements if they pay less fare in comparison with taking
a taxi alone. Also, they have to accept a deviation from
their shortest path too. There are different methods to share
the travel-expenses among entities. The most straightforward
intuitive way is to devide the costs evenly between passen-
gers [Geisberger et al., 2009]. This approach would not be
fair as the portion of the shared path could be different.
To overcome this, passengers may divide the related costs
proportional to the distances they ride autonomously and the
part they shared the car.

Among the topics investigated in this field, most studies
capture passengers time preference by denoting an accepted
time window. Agatz et. al [Agatz et al., 2011] considers an
acceptable period between earliest departure time and latest
arrival time to the destination defined by every passenger.
Some papers limit the actual travel time by defining a fixed
threshold deviation in traveling time [Amey, 2011] and a
maximum ride time [Baldacci et al., 2004]. In contrast, we
propose a strategy where the central coordinator computes
and declares an optimal waiting time by the advent of a
passenger leading to optimal overall cost. A passenger’s of
tendency to move along longer paths to get to his desired
destination is the first element to compute his optimal waiting
time.

[Xiang et al., 2008] introduced a ridesharing scheme
considering a decentralized agent based system. In this
paper, passenger agents try to find a partner every two
minutes among driver agents. They delineated that given a
high number of drivers, travel time for a single passenger
decrease. We face a problem where passengers use taxis to
commute not their own vehicles. Additionally, there is no
emphasize on optimizing in [Xiang et al., 2008] research.

V. CONCLUSION AND OUTLOOK

In this work, we have modeled a particular online rideshar-
ing problem as a matching problem and provided an algo-
rithm to solve it optimally. The case where passengers only



use taxis and no one drives his private car is considered in
this paper. In addition, we have engineered NYC Taxis &
Limousine Commission dataset for testing the performance
of our algorithm and predict real-time data. By using our
algorithm, we have shown that maximized participation in
ridesharing arrangements decreases the total distance covered
by taxis and consequently minimizes total costs in compar-
ison with the case all passengers take taxis autonomously.
This is in favor of the central taxi provider since this scheme
decreases the likelihood of losing requests as a result of lack
of sufficient number of fleet. There are many directions to
extend this work. One is to implement other matching and
optimization techniques to solve the same problem. Another
direction is to extend the capabilities the algorithm to use
the full capacity of the taxis by adjoining more passengers.
One interesting research venue is to make the algorithm more
flexible by enabling en route matchings. These initiatives can
lead to more realistic scenarios.
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