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Abstract—We present a comprehensive view of the relations

among several privacy notions: differential privacy (DP) [1],

Bayesian differential privacy (BDP) [2], semantic privacy (SP) [3],

and membership privacy (MP) [4]. The results are organized

into two parts. In part one, we extend the notion of semantic

privacy (SP) to Bayesian semantic privacy (BSP) and show its

essential equivalence with Bayesian differential privacy (BDP)

in the quantitative sense. We prove the relations between

BDP, BSP, and SP as follows: ǫ-BDP ⇐=
(

1

2
−

1

e
ǫ+1

)

-BSP, and

ǫ-BDP =⇒ (e2ǫ − 1)-BSP =⇒ (e2ǫ − 1)-SP. In addition, we obtain a

minor result ǫ-DP ⇐=
(

1

2
− 1

e
ǫ+1

)

-SP, which improves the result of

Kasiviswanathan and Smith [3] stating ǫ-DP ⇐= ǫ/6-SP for ǫ ≤ 1.35.

In part two, we establish the relations between BDP and MP. First,

ǫ-BDP =⇒ ǫ-MP. Second, for a family of distributions that are

downward scalable in the sense of Li et al. [4], it is shown that

ǫ-BDP ⇐= ǫ-MP.

Keywords—Differential privacy, Bayesian differential privacy,

semantic privacy, membership privacy.

I. INTRODUCTION

Differential privacy (DP). Differential privacy by

Dwork et al. [1], [5] is a robust privacy standard that has

been successfully applied to a range of data analysis tasks, since

it provides a rigorous foundation for defining and preserving

privacy. Differential privacy has received considerable attention

in the literature [6]–[15]. Apple has incorporated differential

privacy into its mobile operating system iOS 10 [16]. Google

has implemented a differentially private tool called RAPPOR in

the Chrome browser to collect information about clients [17].

A randomized algorithm Y satisfies ǫ-differentially privacy

if for all adjacent databases x, x′ and any event E, it holds

that P[Y (x) ∈ E] ≤ eǫP[Y (x′) ∈ E], where P[·] denotes the

probability throughout this paper. Intuitively, under differential

privacy, an adversary given access to the output do not have

much confidence to determine whether it was sampled from the

probability distribution generated by the algorithm when the

database is x or when the database is x′.

Bayesian differential privacy (BDP). Yang et al. [2] in-

troduce the notion of Bayesian differential privacy as follows.

Bayesian differential privacy broadens the application scenarios

of differential privacy when data records have dependencies. For

a database x with n tuples, let i ∈ {1, 2, . . . , n} be a tuple index
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in the database and S ⊆ {1, 2, . . . , n} \ i be a tuple index set.

An adversary denoted by A(i,S) knows the values of all tuples

in S (denoted by xS ) and attempts to attack the value of tuple

i (denoted by xi). For a randomized perturbation mechanism

Y = P[y ∈ Y | x] on database x, the Bayesian differential privacy

leakage (BDPL) of Y with respect to the adversary A(i,S) is

BDPLA(Y ) = supxi,x
′

i
,xS ,Y ln P[y∈Y|xi,xS ]

P[y∈Y|x′

i
,xS ] . The mechanism Y

satisfies ǫ-Bayesian differential privacy if supABDPLA(Y ) ≤ ǫ.

Semantic privacy (SP). Kasiviswanathan and Smith [3] pro-

pose a Bayesian formulation of semantic privacy, inspired by the

following interpretation of differential privacy explained in [1]:

Regardless of external knowledge, an adversary with access to

the sanitized database draws the same conclusions whether or

not any individual data is included in the original database.

The phrases “external knowledge” and “drawing conclusions” are

formulated as follows in [3]. The external knowledge is modeled

by a prior probability distribution b on Dn, where b is short

for “belief”, and databases are assumed to be vectors in Dn for

some domain D. Conclusions are captured via the corresponding

posterior distribution: given a transcript y, the adversary updates

his belief b about the database x using Bayes’ rule to obtain a

posterior b: b[x|y] = P[Y (x)=y]b[x]∑
z P[Y (z)=y]b[z] .

For the database x, Kasiviswanathan and Smith [3] further

define x−i to be the same vector except that the record at position

i has been replaced by some fixed, default value ⊥ in D.

Kasiviswanathan and Smith [3] define n + 1 related games,

numbered 0 through n. In Game 0, the adversary interacts with

Y (x). This is the interaction that actually takes place between

the adversary and the randomized mechanism Y . Hence, the

distribution b0 is just the distribution b as defined in (1); i.e.,

b0[x|y] = b[x|y] = P[Y (x)=y]b[x]∑
z
P[Y (z)=y]b[z] .

In Game i (for 1 ≤ i ≤ n), the adversary interacts with

Y (x−i). Game i describes the hypothetical scenario where person

i’s record is not used. In Game i (for 1 ≤ i ≤ n), given a

transcript y, the adversary updates his belief b about database

x again using Bayes’ rule to obtain a posterior bi as follows:

bi[x|y] =
P[Y (x−i)=y]b[x]∑
z P[Y (z−i)=y]b[z] .

Given a transcript y, Kasiviswanathan and Smith [3] say that

privacy has been breached if the adversary would draw different

conclusions about the world and, in particular, about a person

i, depending on whether or not i’s data was used. To this end,

Kasiviswanathan and Smith [3] formally define ǫ-semantic privacy

below, where the statistical difference SD(X,Y ) between random

variables X and Y on the same discrete space D is defined
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by SD(X,Y ) = maxS⊆D

∣

∣P [X ∈ S]−P [Y ∈ S]
∣

∣. A randomized

mechanism Y is said to be ǫ-semantically private if for all belief

distributions b on Dn, for all possible transcripts y, and for all

i = 1, . . . , n, it holds that SD(b0[·|y], bi[·|y]) ≤ ǫ.

Membership privacy (MP). Li et al. [4] propose membership

privacy (MP) in consideration of the adversary’s prior beliefs. Let

the adversary’s prior beliefs about the dataset be captured by a

distribution D. From the adversary’s point of view, the dataset is

a random variable drawn according to the distribution D. With xi

denoting the event that record xi is not in the database, Li et al. [4]

define membership privacy as follows. A mechanism Y achieves

ǫ-membership privacy under a family D of distributions, i.e.,

〈D, ǫ〉-MP, if and only if for any distribution D ∈ D and for

any record xi, any possible set Y for the output, we have1

PD,Y [xi | Y] ≤ eǫPD[xi] and PD,Y [xi | Y] ≥ e−ǫ
PD[xi].

The rest of the paper is organized as follows. Section II

presents the results on the relations among several privacy notions:

differential privacy (DP), Bayesian differential privacy (BDP), se-

mantic privacy (SP), and membership privacy (MP). We elaborate

their proofs in Sections III. Section IV surveys related work, and

Section V concludes the paper.

II. THE RESULTS

Kasiviswanathan and Smith [3] introduce semantic privacy

(SP) and show its essential equivalence with differential privacy

(DP) in the quantitative sense (the notion of essential equivalence

means ǫ-DP ⇐= f(ǫ)-SP and ǫ-DP =⇒ g(ǫ)-SP for some

functions f and g). We extend their notion to Bayesian semantic

privacy (BSP) and show its essential equivalence with Bayesian

differential privacy (BDP) also in the quantitative sense. We prove

the relations between BDP, BSP, and SP as follows:

(i) ǫ-BDP ⇐=
(

1
2 − 1

eǫ+1

)

-BSP.

(ii) ǫ-BDP =⇒ (e2ǫ − 1)-BSP =⇒ (e2ǫ − 1)-SP.

We prove results (i) and (ii) in Section III-A, where we also obtain

a minor result ǫ-DP ⇐=
(

1
2 − 1

eǫ+1

)

-SP, which improves the

result of Kasiviswanathan and Smith [3] stating ǫ-DP ⇐= ǫ/6-SP

for ǫ ≤ 1.35.

Li et al. [4] propose membership privacy (MP), which is

applicable to Bayesian data, in contrast to DP. However, no

general algorithm has been proposed for this framework. We

present the following relations between BDP and MP:

(iii) ǫ-BDP =⇒ ǫ-MP.

(iv) For a family of distributions that are downward scalable in

the sense of Li et al. [4], ǫ-BDP ⇐= ǫ-MP (See [4] for the

meaning of “downward scalable” distributions).

We prove results (iii) and (iv) in Section III-B.

1〈D, ǫ〉-membership privacy actually corresponds to 〈D, eǫ〉-positive member-
ship privacy in [4]. Li et al. [4] use γ and γ−1 instead of eǫ and e−ǫ in (21)
and (22) to define 〈D, γ〉-membership privacy. We use eǫ and e−ǫ here for better
comparison between membership privacy and Bayesian differential privacy. Also,
by membership privacy, we mean positive membership privacy of [4]. We do not
discuss negative membership privacy of [4].

III. PROOFS

A. Relations between our Bayesian differential privacy and Ka-

siviswanathan and Smith’s semantic privacy [3]

We extend the work of Kasiviswanathan and Smith [3] on

semantic privacy to tackle the case of correlated tuples. Specif-

ically, we will present Bayesian semantic privacy and prove

that the notions of Bayesian differential privacy and Bayesian

semantic privacy are essentially (i.e., quantitatively) equivalent

(see Theorem 1 below). Our result resembles [3, Theorem 2.2],

which shows that differential privacy and semantic privacy are

essentially equivalent.

Theorem 1. ǫ-Bayesian differential privacy implies (e2ǫ − 1)-
Bayesian semantic privacy, and is implied by

(

1
2−

1
eǫ+1

)

-Bayesian

semantic privacy.

Theorem 2 (Improving the result of Kasiviswanathan and

Smith [3]). ǫ-Differential privacy implies (e2ǫ − 1)-semantic

privacy, and is implied by
(

1
2 − 1

eǫ+1

)

-semantic privacy.

Theorem 1 is one of our novel results. The first part of

Theorem 2 is obtained by Kasiviswanathan and Smith [3]. The

second part of Theorem 2 improves the corresponding result of

Kasiviswanathan and Smith [3], which states that ǫ-differential

privacy is implied by ǫ/6-semantic privacy for ǫ ≤ 1.35. The

improvement can be seen from 1
2 − 1

eǫ+1 > ǫ/6 for ǫ ≤ 1.35.

The rest of the discussion is organized as follows. We review

semantic privacy and define Bayesian semantic privacy in Section

III-A1. In Section III-A2, we recall Bayesian differential privacy.

Finally, we prove the above Theorem 1 in Section III-A3. The

proof of Theorem 2 is similar to that of Theorem 1.

1) Reviewing semantic privacy and defining Bayesian semantic

privacy: In this section, we first review semantic privacy from

Kasiviswanathan and Smith [3], before presenting Bayesian se-

mantic privacy, which extends the notion of semantic privacy to

address correlated tuples.

A review of Kasiviswanathan and Smith [3] for semantic

privacy:

Kasiviswanathan and Smith [3] propose a Bayesian formula-

tion of semantic privacy, inspired by the following interpretation

of differential privacy explained in [1]: Regardless of external

knowledge, an adversary with access to the sanitized database

draws the same conclusions whether or not any individual data is

included in the original database. The phrases “external knowl-

edge” and “drawing conclusions” are formulated as follows in

[3]. The external knowledge is modeled by a prior probability

distribution b on Dn, where b is short for “belief,” and databases

are assumed to be vectors in Dn for some domain D. Conclusions

are captured via the corresponding posterior distribution: given a

transcript y, the adversary updates his belief b about the database



x using Bayes’ rule to obtain a posterior b:2

b[x|y] =
P [Y (x) = y] b[x]

∑

z P [Y (z) = y] b[z]
. (1)

For the database x, Kasiviswanathan and Smith [3] further

define x−i to be the same vector except that position i has been

replaced by some fixed, default value in D. Any valid value in

D will do for the default value. In addition, the default value can

be understood as a special value ⊥ (e.g., “no data”); see [3, Page

3–Footnote 2] for details. We will use ⊥ whenever it is necessary

to explicitly write out the default value.

Kasiviswanathan and Smith [3] define n + 1 related games,

numbered 0 through n. In Game 0, the adversary interacts with

Y (x). This is the interaction that actually takes place between

the adversary and the randomized mechanism Y . Hence, the

distribution b0 is just the distribution b as defined in (1); i.e.,

b0[x|y] = b[x|y] =
P [Y (x) = y] b[x]

∑

z P [Y (z) = y] b[z]
. (2)

In Game i (for 1 ≤ i ≤ n), the adversary interacts with

Y (x−i). Game i describes the hypothetical scenario where person

i’s record is not used. In Game i (for 1 ≤ i ≤ n), given a transcript

y, the adversary updates his belief b about database x again using

Bayes’ rule to obtain a posterior bi as follows:

bi[x|y] =
P [Y (x−i) = y] b[x]

∑

z P [Y (z−i) = y] b[z]
. (3)

Given a transcript y, Kasiviswanathan and Smith [3] say

that privacy has been breached if the adversary would draw

different conclusions about the world and, in particular, about a

person i, depending on whether or not i’s data was used. To this

end, Kasiviswanathan and Smith [3] formally define ǫ-semantic

privacy below, where the statistical difference SD(X,Y ) between

probability distributions (or random variables) X and Y on a

discrete space D is defined by

SD(X,Y ) = max
S⊆D

∣

∣P [X ∈ S]− P [Y ∈ S]
∣

∣.

Definition 1 (ǫ-Semantical Privacy by [3, Definition 2.1]). A

randomized mechanism Y is said to be ǫ-semantically private

if for all belief distributions b on Dn, for all possible transcripts

y, and for all i = 1, . . . , n:

SD(b0[·|y], bi[·|y]) ≤ ǫ. (4)

From (3) and (4), the above definition of ǫ-semantic privacy

requires the use of x−i, where x−i is obtained after we replace

position i at x by the default value ⊥. If the tuples are correlated,

changing position i at x might also result in changing other

positions at x. Hence, ǫ-semantic privacy may not work well under

correlated tuples. Given this, we next extend ǫ-semantic privacy to

address correlated tuples and present ǫ-Bayesian semantic privacy.

2For simplicity, only discrete probability distributions are discussed. The results
can be readily extended to the continuous case.

Extending semantic privacy to Bayesian semantic privacy

to address correlated tuples:

As will become clear, our extension of semantic privacy

to Bayesian semantic privacy is similar to the extension of

differential privacy to Bayesian differential privacy.

We let a statistical database be [X1, X2, . . . , Xn], where Xj

for each j ∈ {1, 2, . . . , n} is a random variable. We also let N
be {1, 2, . . . , n}. Then we consider the databases x and z used

in (1)–(3) above to be

x = [X1 = x1, X2 = x2, . . . , Xn = xn] = [Xj = xj : j ∈ N ],
(5)

and

z = [X1 = z1, X2 = z2, . . . , Xn = zn] = [Xj = zj : j ∈ N ].
(6)

When the data tuples are correlated, the adversary may

gain more advantage in inferring xi by using random vari-

ables Xj |j∈S’s instantiations xj |j∈S , and random variables

Xj|j∈N\{i}\S for computation instead of using instantiations

xj |j∈N\{i} only, where S ⊆ N \ {i} (note that S can be an

arbitrary subset of N \ {i}). For notation convenience, we define

xi+S and zi+S by

xi+S = [Xi = xi, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S],
(7)

and

zi+S = [Xi = zi, Xj = zj : j ∈ S, Xj : j ∈ N \ {i} \ S]. (8)

From (5)–(8), if S = N \ {i}, then xi+S and zi+S reduce to

databases x and z, respectively.

Similar to the previous subsection, here we also let the adver-

sary play n + 1 related games with the randomized mechanism

Y , and define b, b0, bi|i=1,...,n as detailed below. In Game 0, the

adversary interacts with Y (xi+S). We generalize x and z in (2)

to xi+S and zi+S , so that (2) becomes

b0[xi+S |y] = b[xi+S |y] =
P [Y (xi+S) = y] b[xi+S ]

∑

zi+S
P [Y (zi+S) = y] b[zi+S ]

. (9)

For clarity, we explain the beliefs in (9). From (7) and (8), b[xi+S ]
and b[zi+S ] in (9) are given by

b[xi+S ] = b[Xi = xi, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S]

= b[Xi = xi, Xj = xj : j ∈ S], (10)

and

b[zi+S ] = b[Xi = zi, Xj = zj : j ∈ S, Xj : j ∈ N \ {i} \ S]

= b[Xi = zi, Xj = zj : j ∈ S]. (11)



Similar to (10), from (7), b0[xi+S |y] is given by

b0[xi+S |y]

= b0[Xi = xi, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S|y]

= b0[Xi = xi, Xj = xj : j ∈ S|y]. (12)

In Game i (for 1 ≤ i ≤ n), we change position i at xi+S to

the default value ⊥ to obtain x−i+S defined below; specifically,

recalling xi+S given by (7), we set x−i+S by

x−i+S = [Xi =⊥, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S].
(13)

Similarly, we change position i at zi+S to the default value ⊥ to

obtain z−i+S defined below; specifically, recalling zi+S given by

(8), we set z−i+S by

z−i+S = [Xi =⊥, Xj = zj : j ∈ S, Xj : j ∈ N \ {i} \ S].
(14)

As xi+S and zi+S generalize x and z in (3), clearly x−i+S and

z−i+S also generalize x−i and z−i in (3). In Game i (for 1 ≤ i ≤
n), the adversary interacts with Y (x−i+S ). Then replacing x, z,

x−i and z−i in (3) by xi+S , zi+S , x−i+S and z−i+S , respectively,

we obtain

bi[xi+S |y] =
P [Y (x−i+S ) = y] b[xi+S ]

∑

zi+S
P [Y (z−i+S) = y] b[zi+S ]

. (15)

The beliefs b[xi+S ] and b[zi+S ] in (15) are already interpreted as

(10) and (11). For clarity, we further explain bi[xi+S |y] in (15).

Similar to (12), from (7), bi[xi+S |y] is given by

bi[xi+S |y]

= bi[Xi = xi, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S|y]

= bi[Xi = xi, Xj = xj : j ∈ S|y]. (16)

With the above notation, we define ǫ-Bayesian semantical

privacy below, in a way similar to that of ǫ-semantical privacy

in Definition 1.

Definition 2 (ǫ-Bayesian Semantical Privacy). A randomized

mechanism Y is said to have ǫ-Bayesian semantical privacy if

for all belief distributions b on Dn, for all possible transcripts y,

for all i = 1, . . . , n, and for all xi+S and zi+S defined in (7) and

(8) with S ⊆ N \ {i}:

SD(b0[xi+S |y], bi[xi+S |y]) ≤ ǫ. (17)

To understand the beliefs b0[xi+S |y] and bi[xi+S |y] in (17),

we use their interpretations in (12) and (16). In Definition 2 for

ǫ-Bayesian semantical privacy, we consider all possible S ⊆ N \
{i}. In the hypothetical scenario where we consider S only as

N \ {i} in Definition 2, Definition 2 would reduce to Definition

1 for ǫ-semantical privacy.

2) Recalling Bayesian differential privacy: In this section, we

recall Bayesian differential privacy and express its definition using

some new notation.

With xi+S defined in (7) (i.e., xi+S = [Xi = xi, Xj = xj :
j ∈ S, Xj : j ∈ N \ {i} \ S]), for notation convenience, we

further define x′
i+S by

x′
i+S = [Xi = x′

i, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S].
(18)

Note that the only difference between xi+S and x′
i+S is that the

former has Xi = xi, while the latter enforces Xi = x′
i. Then

ǫ-Bayesian differential privacy means

P [Y (xi+S) = y]

P
[

Y (x′
i+S) = y

] ≤ eǫ. (19)

3) Proving Theorem 1 on the relations between Bayesian

differential privacy and Bayesian semantic privacy: Our

Theorem 1 restated below presents the relations between

Bayesian differential privacy and Bayesian semantic privacy.

Theorem 1 (Restated). ǫ-Bayesian differential privacy

implies (e2ǫ − 1)-Bayesian semantic privacy, and is implied by
(

1
2 − 1

eǫ+1

)

-Bayesian semantic privacy.

Theorem 1 shows that the notions of Bayesian differential

privacy and Bayesian semantic privacy are essentially equivalent

(of course, the parameters should be set appropriately). The

proof of Theorem 1 below is just an extension of the reasoning

by Kasiviswanathan and Smith [3].

Proof of Theorem 1. We show Theorem 1 in two parts

below. We will use the following definition of point-wise (ǫ, 0)-
indistinguishability from [3, Definition 3.2]: Two discrete random

variables X and Y are point-wise (ǫ, 0)-indistinguishable if it

holds for a drawn from either X or Y that e−ǫ
P [Y = a] ≤

P [X = a] ≤ eǫP [Y = a].

Proving ǫ-Bayesian differential privacy =⇒ (e2ǫ−1)-Bayesian

semantic privacy: To prove this part, we consider any database

x ∈ Dn. Let Y be an ǫ/2-Bayesian differentially private al-

gorithm. Consider any belief distribution b. Let the posterior

distributions b0[xi+S |y] and bi[xi+S |y] for some fixed i, S and

y be defined in (9) and (15). From (19), ǫ-Bayesian differential

privacy implies that for every zi+S ,

e−ǫ
P [Y (z−i+S) = y] ≤ P [Y (zi+S) = y] ≤ eǫP [Y (z−i+S) = y] .

These inequalities imply that the ratio of b0[xi+S |y] and

bi[xi+S |y] (defined in (9) and (15)) is within e±2ǫ. Since these

inequalities hold for every xi+S , we get:

e−2ǫbi[xi+S |y] ≤ b0[xi+S |y] ≤ e2ǫbi[xi+S |y], ∀xi+S .

This implies that the random variables b0[xi+S |y] and bi[xi+S |y]
are point-wise (2ǫ, 0)-indistinguishable. Applying [3, Lemma 3.3-

Property 5], we obtain SD(b0[xi+S |y], bi[xi+S |y]) ≤ (e2ǫ − 1).
Repeating the above arguments for every belief distribution, for

every i, and for every y, we thus show that the mechanism Y is

(e2ǫ − 1)-Bayesian semantic private.



Proving
(

1
2 − 1

eǫ+1

)

-Bayesian semantic privacy =⇒
ǫ-Bayesian differential privacy: To prove this part, we consider

a belief distribution b which is uniform over

xi+S = [Xi = xi, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S]

and

x′
i+S = [Xi = x′

i, Xj = xj : j ∈ S, Xj : j ∈ N \ {i} \ S];

i.e.,

b[xi+S ] = b[Xi = xi, Xj = xj : j ∈ S] =
1

2

and

b[x′
i+S ] = b[Xi = x′

i, Xj = xj : j ∈ S] =
1

2
.

Fix a transcript y. The distribution bi[·|y] will be uniform over

xi+S and x′
i+S since they induce the same distribution on tran-

scripts in Game i. This means that b0[·|y] will assign probabilities

in the interval [ 12 −
(

1
2 −

1
eǫ+1

)

, 1
2 +

(

1
2 −

1
eǫ+1

)

] to each of xi+S

and x′
i+S (by Definition 1). Working through Bayes’ rule shows

that (note that b[xi+S ] = b[x′
i+S ])

P [Y (xi+S ) = y]

P
[

Y (x′
i+S ) = y

]

=
b0[xi+S |y]

b0[x′
i+S |y]

≤
1
2 +

(

1
2 − 1

eǫ+1

)

1
2 −

(

1
2 − 1

eǫ+1

) = eǫ. (20)

Since the bound in (20) holds for every y, Y (xi+S) and Y (x′
i+S)

are point-wise (ǫ, 0)-indistinguishable. From [3, Lemma 3.3-

Property 5], Y (xi+S) and Y (x′
i+S ) are (ǫ, 0)-indistinguishable.

Since this relation holds for every pair of xi+S and x′
i+S , the

mechanism Y is ǫ-Bayesian differentially private.

B. Relations between Bayesian differential privacy and member-

ship privacy

The adversary may have prior beliefs about what the dataset

is; this is captured by a distribution D. From the adversary’s point

of view, the dataset is a random variable drawn according to the

distribution D. With xi denoting the event that record xi is not in

the database, Li et al. [4] define membership privacy as follows,

where we reuse some notation of Li et al. [4].

Definition 3 (Li et al. [4]). A mechanism Y achieves

ǫ-membership privacy under a family D of distributions, i.e.,

〈D, ǫ〉-membership privacy, if and only if for any distribution

D ∈ D and for any record xi, any possible set Y for the output,

we have3

PD,Y [xi | Y] ≤ eǫPD[xi] (21)

and

PD,Y [xi | Y] ≥ e−ǫ
PD[xi]. (22)

3〈D, ǫ〉-membership privacy actually corresponds to 〈D, eǫ〉-membership pri-
vacy in [4]. Li et al. [4] use γ and γ−1 instead of eǫ and e−ǫ in (21) and (22) to
define 〈D, γ〉-membership privacy. We use eǫ and e−ǫ here for better comparison
between membership privacy and Bayesian differential privacy.

We discuss the adversary model considered here. Let Di,K

denote a distribution where P [xi, xK ] = p and P [x′
i, xK ] = 1−p

for some p. Define D∗
def
= ∪i∈{1,...,n},

K⊆{1,...,n}\{i}

Di,K . The adversary

model will be captured by the family D∗ of distributions. For

simplicity, we will refer to 〈D∗, ǫ〉-membership privacy as ǫ-
membership privacy.

1) From Bayesian differential privacy to membership privacy:

Theorem 3. ǫ-Bayesian differential privacy implies ǫ-membership

privacy.

Lemma 1. A mechanism Y achieves ǫ-membership privacy under

a family D of distributions, i.e., 〈D, ǫ〉-MP, if and only if it holds

for any distribution D ∈ D that4

PD,Y [Y | xi]

PD,Y [Y | xi]
≤



















1− PD[xi]

e−ǫ − PD[xi]
, if 0 ≤ PD[xi] ≤

1
1+eǫ

,(23a)

eǫ − 1 + PD[xi]

PD[xi]
, if 1

1+eǫ
< PD[xi] ≤ 1.(23b)

We will explain that Lemma 1 implies the following corollary,

which will be used to show Theorem 3.

Corollary 1. A mechanism Y achieves ǫ-membership privacy

under a family D of distributions, i.e., 〈D, ǫ〉-MP, if it holds for

any distribution D ∈ D that
PD,Y [Y|xi]
PD,Y [Y|xi]

≤ eǫ.

Proof of Theorem 3 using Corollary 1. Under distribution Di,K

where P [xi, xK ] = p and P [x′
i, xK ] = 1−p for some p, we have

PDi,K ,Y [Y | xi] = P
[

Y (xi, xK , XK) ∈ Y
]

, (24)

and

PDi,K ,Y [Y | xi] = P
[

Y (x′
i, xK , XK) ∈ Y

]

. (25)

Under ǫ-Bayesian differential privacy, we have
P

[

Y (xi,xK ,X
K
)∈Y

]

P

[

Y (x′

i
,xK ,XK)∈Y

]

≤ eǫ, which along with (24) and (25) yields
PDi,K,Y [Y|xi]

PDi,K,Y [Y|xi]
≤

eǫ, then 〈D∗, ǫ〉-membership privacy (i.e., ǫ-membership privacy)

follows for D∗
def
= ∪i∈{1,...,n},

K⊆{1,...,n}\{i}

Di,K .

Proof of Corollary 1 using Lemma 1. Note that (23a) and (23b)

in Lemma 1 can be written as
PD,Y [Y|xi]
PD,Y [Y|xi]

≤ g
(

PD[xi]
)

, where g(b)
is a function defined as follows:

g(b)
def
=







1−b
e−ǫ−b

, if 0 ≤ b ≤ 1
1+eǫ

,

eǫ−1+b
b

, if 1
1+eǫ

< b ≤ 1.
(26)

The function g(b) increases as b increases for 0 ≤ b ≤ 1
1+eǫ

and decreases as b increases for 1
1+eǫ

< b ≤ 1. Hence, at b =
0 or b = 1, g(b) takes its minimum g(0) = g(1) = eǫ. Then
PD,Y [Y|xi]
PD,Y [Y|xi]

≤ eǫ implies
PD,Y [Y|xi]
PD,Y [Y|xi]

≤ g
(

PD[xi]
)

for any PD[xi].
In view this, we obtain Corollary 1 from Lemma 1.

4We let 0

0
= 1 and non-zero

0
= ∞ to address the degenerate cases.



Proof of Lemma 1. For simplicity, we define

A
def
=

PD,Y [Y | xi]

PD,Y [Y | xi]
, (27)

Then the goal of Lemma 1 is to show the combination of (21)

and (22) is equivalent to A ≤ g
(

PD[xi]
)

. Hence, we will establish

Lemma 1 once proving the following three results:

(21) ⇐⇒
{

1− PD[xi] ≥ A
(

e−ǫ − PD[xi]
)

}

, (28)

(22) ⇐⇒
{

A× PD[xi] + 1− PD[xi] ≤ eǫ
}

, (29)

and

1− PD[xi] ≥ A
(

e−ǫ − PD[xi]
)

,

and A× PD[xi] + 1− PD[xi] ≤ eǫ

}

⇐⇒ A ≤ g
(

PD[xi]
)

.

(30)

Below we demonstrate (28) (29) and (30), respectively.

Proving (28):

By Bayes’ theorem, it holds that

PD,Y [xi | Y] =
PD,Y [Y | xi]PD[xi]

PD,Y [Y]
. (31)

Given (31), we have

(21) ⇐⇒ PD,Y [Y | xi] ≤ eǫ × PD,Y [Y]. (32)

To prove (32), we express PD,Y [Y] by the law of total probability,

and find

PD,Y [Y] = PD,Y [Y | xi]PD[xi] + PD,Y [Y | xi]PD[xi]. (33)

Applying (27) to (33), we obtain

PD,Y [Y] = PD,Y [Y | xi]×
{

PD[xi] +A−1 × PD[xi]
}

. (34)

Then it follows from (32) and (34) that

(21) ⇐⇒ PD[xi] +A−1 × PD[xi] ≥ e−ǫ

⇐⇒ 1− PD[xi] ≥ A
(

e−ǫ − PD[xi]
)

;

i.e., (28) is established.

Proving (29):

By Bayes’ theorem, it holds that

PD,Y [xi | Y] =
PD,Y [Y | xi]PD[xi]

PD,Y [Y]
. (35)

Given (35), we have

(22) ⇐⇒PD,Y [Y | xi] ≥ e−ǫ × PD,Y [Y (X ) 6= y]. (36)

We recall (34). Applying (27) to (34), we obtain

PD,Y [Y]

= A× PD,Y [Y | xi]×
{

PD[xi] +A−1 × PD[xi]
}

. (37)

Then it follows from (36) and (37) that

(22) ⇐⇒ A×
{

PD[xi] +A−1 × PD [xi]
}

≤ eǫ

⇐⇒ A× PD[xi] + 1− PD[xi] ≤ eǫ;

i.e., (29) is established.

Proving (30):

With PD[xi] replaced by real x ∈ [0, 1], (30) will follow once

we show for x ∈ [0, 1] that

1− x ≥ A
(

e−ǫ − x
)

,

and A× x+ 1− x ≤ eǫ

}

⇐⇒ A ≤ g(x). (38)

We first prove the “=⇒” part in (38). If 0 ≤ x < e−ǫ, we

obtain from 1− x ≥ A
(

e−ǫ − x
)

that A ≤ 1−x
e−ǫ−x

. If 0 < x ≤ 1,

we obtain from A×x+1−x ≤ eǫ that A ≤ eǫ−1+x
x

. With g1(x)

denoting 1−x
e−ǫ−x

for 0 ≤ x < e−ǫ and g2(x) denoting eǫ−1+x
x

for

0 < x ≤ 1, we see that g(x) equals g1(x) if 0 ≤ x ≤ 1
1+eǫ

, and

equals g2(x) if 1
1+eǫ

< x ≤ 1. Given the above, if 0 ≤ x ≤ 1
1+eǫ

,

we have A ≤ g1(x) = g(x), and if 1
1+eǫ

< x ≤ 1, we have

A ≤ g2(x) = g(x). Hence, the “=⇒” part in (38) immediately

follows.

We then prove the “⇐=” part in (38). For any x ∈ [0, 1], we

will establish i) 1−x ≥ A
(

e−ǫ−x
)

, and ii) A×x+1−x ≤ eǫ,
respectively. We still use g1(x) and g2(x) defined above. Note that

g1(x) is only defined for 0 ≤ x < e−ǫ and g2(x) is only defined

for 0 < x ≤ 1. It is straightforward to show g1(x) ≤ g2(x) if

0 < x ≤ 1
1+eǫ

, and g1(x) ≥ g2(x) if 1
1+eǫ

< x < e−ǫ.

i) If 0 ≤ x ≤ 1
1+eǫ

, we obtain from A ≤ g(x) = g1(x) that

A ≤ 1−x
e−ǫ−x

, implying 1 − x ≥ A
(

e−ǫ − x
)

. If 1
1+eǫ

<
x < e−ǫ, we obtain from A ≤ g(x) = g2(x) ≤ g1(x) that

A ≤ 1−x
e−ǫ−x

, yielding 1− x ≥ A
(

e−ǫ − x
)

. If e−ǫ ≤ x ≤ 1,

it holds that 1 − x ≥ 0 ≥ A
(

e−ǫ − x
)

. To summarize, for

any x ∈ [0, 1], it follows that 1− x ≥ A
(

e−ǫ − x
)

.

ii) If 1
1+eǫ

< x ≤ 1, we obtain from A ≤ g(x) = g2(x) that

A ≤ eǫ−1+x
x

, implying A × x + 1 − x ≤ eǫ. If 0 < x ≤
1

1+eǫ
, we obtain from A ≤ g(x) = g1(x) ≤ g2(x) that

A ≤ eǫ−1+x
x

, yielding A × x + 1 − x ≤ eǫ. If x = 0,

we have A × x + 1 − x = 1 ≤ eǫ. To summarize, for any

x ∈ [0, 1], it follows that 1− x ≥ A
(

e−ǫ − x
)

.

(38) is proved since its “=⇒” and “⇐=” both hold.

2) From membership privacy to Bayesian differential privacy:

Theorem 4. For a family of distributions that are downward

scalable in the sense of Li et al. [4], ǫ-membership privacy implies

ǫ-Bayesian differential privacy.

Proof of Theorem 4. The proof is similar to that of [4, Theorem

3.6]. For completeness, we still present the details below.

Assume, for the sake of contradiction, that mechanism Y
achieves ǫ-membership privacy yet does not satisfy ǫ-Bayesian



differential privacy. Then there exists a distribution D and entity

xi such that 0 < PD[xi] < 1 and PD,Y [Y | xi] > eǫPD,Y [Y | xi].
We discuss two cases below.

Case one: PD,Y [Y | xi] = 0 and PD,Y [Y | xi] > 0. Since D is

downward scalable, by definition D contains some D′ which is xi-

scaled from D such that PD′ [xi] < e−ǫ. From [4, Lemma 3.4], we

have PD′,Y [Y | xi] = PD,Y [Y | xi], which with the case condi-

tion PD,Y [Y | xi] = 0 means PD′,Y [Y | xi] = 0, further yielding

PD′,Y [xi | Y] = 1. Therefore, PD′,Y [xi | Y] = 1 > eǫPD′ [xi],
which contradicts the fact that Y achieves ǫ-membership privacy.

Case two: PD,Y [Y | xi] = αPD,Y [Y | xi], where α > eǫ.
Since D is downward scalable, by definition D contains some D

′

which is xi-scaled from D such that PD′ [xi] = q for an arbitrarily

small q (see [4] for the meaning of “*-scaled”). From [4, Lemma

3.4], we have PD′,Y [Y | xi] = PD,Y [Y | xi] and PD′,Y [Y | xi] =
PD,Y [Y | xi]. These with the case condition PD,Y [Y | xi] =
αPD,Y [Y | xi] gives PD′,Y [Y | xi] = αPD′,Y [Y | xi]. Then,

under D′, we have

PD′,Y [xi | Y]

PD′[xi]
=

PD′,Y [Y | xi]

PD′,Y [Y]

=
PD′,Y [Y | xi]

PD′,Y [Y | xi]PD′ [xi] + PD′,Y [Y | xi]PD′ [xi]

=
αPD′,Y [Y | xi]

αPD′,Y [Y | xi] · q + PD′,Y [Y | xi] · (1− q)

=
α

αq + 1− q
. (39)

The above ratio α
αq+1−q

is greater than eǫ given α > eǫ, once we

ensure q < α−eǫ

eǫ(α−1) . This will give PD′,Y [xi | Y] > eǫPD′ [xi],
which contradicts the fact that Y achieves ǫ-membership privacy.

Summarizing the above two cases, we have proved the desired

result.

IV. RELATED WORK

The notion of differential privacy (DP) [1], [5] provides a

rigorous foundation for privacy protection. Intuitively, DP implies

that changing one entry in the database does not significantly

change the query output, so that an adversary, seeing the query

output and knowing all records except the one to be inferred,

draws almost the same conclusion on whether or not a record

is in the database. Differential privacy has received consider-

able interest in the literature [17]–[26]. Yang et al. [2] and

Liu et al. [27] propose Bayesian differential privacy and de-

pendent differential privacy respectively to generalize differential

privacy for correlated data. Kasiviswanathan and Smith [3] pro-

pose a Bayesian formulation of semantic privacy, inspired by the

following interpretation of differential privacy explained in [1]:

Regardless of external knowledge, an adversary with access to the

sanitized database draws the same conclusions whether or not any

individual data is included in the original database. To present

the notion of semantic privacy, Kasiviswanathan and Smith model

the external knowledge via a prior probability distribution, and

model conclusions via the corresponding posterior distribution.

Li et al. [4] introduce membership privacy (MP) in consideration

of the adversary’s prior beliefs.

Dwork and Rothblum [28] recently proposed the notion of

concentrated differential privacy, a relaxation of differential pri-

vacy achieving better accuracy than differential privacy without

compromising on cumulative privacy cost over multiple com-

putations. Motivated by [28], Bun and Steinke [29] suggest a

relaxation of concentrated differential privacy. Instead of treating

the privacy loss as a subgaussian random variable as [28] does,

Bun and Steinke [29] instead formulate the problem in terms of

Renyi entropy, giving a relaxation of concentrated differential

privacy. Jorgensen et al. [30] introduce a new privacy defini-

tion called personalized differential privacy, a generalization of

differential privacy in which users specify a personal privacy

level for their data. They show that by accepting that not all

users demand the same level of privacy, a higher level of utility

can often be obtained by not providing excess privacy budget

to those who do not need it. They present a mechanism for

achieving personalized differential privacy, inspired by the well-

known exponential mechanism of differential privacy. Hall et

al. [31] introduce additional randomness to extend differential

privacy to the notion of random differential privacy. Compared

with differential privacy, Lee and Clifton [32] give an alter-

nate formulation, differential identifiability, parameterized by the

probability of individual identification. Their notion provides the

strong privacy guarantees of differential privacy, while allowing

policy makers to set parameters based on the privacy concept of

individual identifiability.

Bohli and Andreas [33] discuss the relations among several

privacy definitions, but the discussion does not cover differ-

ential privacy. Li et al. [34] present the relation between k-

anonymization and differential privacy, where the k-anonymity

notion by [35], [36] means that when only quasi-identifiers are

considered, each record in a k-anonymized dataset should appear

at least k times. Wang et al. [37] analyze the relation between

differential privacy, mutual-information privacy, and identifiabil-

ity. Mironov et al. [38] present several relaxations of differential

privacy by requiring privacy guarantees to hold only against com-

putationally bounded adversaries. They establish various relations

among these notions, and show that the notions exhibit close

connection with the theory of pseudodense sets [39].

V. CONCLUSION

In this paper, we present a comprehensive view of the

relations among different privacy notions: differential privacy

(DP), Bayesian differential privacy (BDP), semantic privacy (SP),

and membership privacy (MP). In particular, we extend the notion

of semantic privacy (SP) to Bayesian semantic privacy (BSP) and

prove its essential equivalence with Bayesian differential privacy

(BDP) in the quantitative sense. We show the relations between

BDP, BSP, and SP as follows: ǫ-BDP ⇐=
(

1
2 − 1

eǫ+1

)

-BSP,

and ǫ-BDP =⇒ (e2ǫ − 1)-BSP =⇒ (e2ǫ − 1)-SP. Moreover,

we derive the following relations between BDP and

MP. First, ǫ-BDP =⇒ ǫ-MP. Second, For a family of



distributions that are downward scalable in the sense of

Li et al. [4], it holds that ǫ-BDP ⇐= ǫ-MP.
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