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Interactive Coding for Markovian Protocols

Assaf Ben-Yishai, Ofer Shayevitz and Young-Han Kim

Abstract—We address the problem of simulating an arbitrary
Markovian interactive protocol over binary symmetric channels
with crossover probability ε. We are interested in the achievable
rates of reliable simulation, i.e., in characterizing the smallest
possible blowup in communications such that a vanishing error
probability (in the protocol length) can be attained. Whereas
for general interactive protocols the output of each party may
depend on all previous outputs of its counterpart, in a (first
order) Markovian protocol this dependence is limited to the
last observed output only. In the special case where there is no
dependence on previous outputs (no interaction), the maximal
achievable rate is given by the (one-way) Shannon capacity
1 − h(ε). For Markovian protocols, we first show that a rate
of 2

3
(1 − h(ε)) can be trivially achieved. We then describe a

more involved coding scheme and provide a closed-form lower
bound for its rate at any noise level ε. Specifically, we show that
this scheme outperforms the trivial one for any ε < 0.044, and

achieves a rate higher than
1−h(ε)

1+h(ε)+h(<ε(2−ε)>)
= 1− Θ(h(ε))

as ε → 0, which is order-wise the best possible. This should
be juxtaposed with a result of Kol and Raz that shows the
capacity for interactive protocols with alternating rounds is

lower bounded by 1−O(
√

h(ε)).

I. INTRODUCTION

Suppose Alice and Bob would like to communicate using
some interactive communication protocol, where at time point
i Alice sends the bit XA

i and Bob then replies with the bit XB
i

(after having observed Alice’s transmission). The transcript
associated with their protocol is therefore

XA
1 , XB

1 , XA
2 , XB

2 , · · · , XA
n , XB

n .

where

XA
i = fA

i

(

X
i−1,B
1

)

; XB
i = fB

i

(

X
i,A
1

)

. (1)

The transmission functions fA
i (·), fB

i (·) depend on the time
index i and the identity of the speaker (Alice or Bob) and are
unknown to the other party. In general, these functions may
depend on the entire set of past inputs observed by either

Alice or Bob, i.e. X
i−1,B
1 or X

i,A
1 respectively. We refer to

the transcript XA
1 , XB

1 , XA
2 , XB

2 , · · · , XA
n , XB

n as the clean
transcript, where ”clean” is used to indicate that Alice and
Bob receive their counterpart’s transmission without any
noise.

Suppose now that Alice and Bob are connected through
two independent binary symmetric channels (BSCs) with
parameter ε. Namely, Alice receives Bob’s transmission with
additive noise: Y B

i = XB
i + ZB

i , and Bob received Alice’s
transmission with additive noise Y A

i = XA
i + ZA

i , where
{ZA

i , ZB
i } are mutually independent Bernoulli i.i.d. sequence

with Pr(ZA
i = 1) = Pr(ZB

i = 1) = ε and ”+” is addition
over GF(2). Alice and Bob would like to devise a coding
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scheme that would allow them to reliably simulate the clean
transcript over the noisy BSCs. Reliable simulation in this
context means that for any Markovian protocol, the proba-
bility of either Alice or Bob making an error in recovering
the clean transcript goes to zero with the transcript length.
To that end, they will need to exchange a larger number of
bits; the communication rate of their coding scheme is hence
defined to be the total number of bits in the clean transcript
divided by the total number of channel uses consumed by
their scheme. As usual, one is interested in characterizing
the capacity, namely the maximal rate for which reliable
simulation is possible.

The problem described above was originally introduced
and studied by Schulman [1]. In this seminal work, he showed
that reliable simulation with a positive rate (i.e., a positive
capacity) can be achieved for any ε 6= 1/2. Kol and Raz
[2] further studied the problem in the limit of ε → 0 and

introduced a scheme achieving a rate of 1−O(
√

h(ε)) (where
h(·) denotes the binary entropy function). They also showed
that for a larger class of protocols with non-alternating rounds

the rate is upper bounded by 1− Ω(
√

h(ε)).
This demonstrated a separation between one-way and

interactive communications, as the one-way capacity is given
by 1 − h(ε). In [3], Haeupler examined a more flexible
channel model than ours, in which at every time slot Alice
and Bob can independently decide if they want to use the
channel as a transmitter or as a receiver. This flexibility can
potentially lead to collisions, but was shown to eventually
increase the achievable rate to 1 − O(

√
ε). Haeupler also

conjectured that this rate is order-wise tight under adaptive
transmission order, i.e., that the rate of any such reliable
scheme is upper bounded by 1 − Ω(

√
ε). We note that the

general problem of exactly determining the capacity for any
fixed ε in the interactive setup is still wide open.

In order to better understand the gap between the one-way
and interactive setups for ε → 0, Haeupler and Velingker [4]
considered a more restrictive family of protocols that are “less
interactive”, where Alice and Bob have some limited average
lookahead, i.e., can often speak for a while without requiring
further input from their counterpart (hence, can use short
error correcting codes). They showed (also for adversarial
noise) that when this average lookahead is poly(1/ε) then
the capacity is 1 − O(h(ε)), i.e., is order-wise the same as
the one-way capacity.

In this work, rather than restricting the “interactiveness” of
the protocol as above, we restrict the memory of the protocol.
Specifically, we consider Markovian protocols for which the
lookahead can be as short as 1 (highly interactive), but where
Alice and Bob need only recall the last bit they have received.
For these Markovian Protocols, we provide lower bounds for
the capacity for all values of ε, and not only in the limit
ε → 0.

A. Markovian Protocols

A (first order) Markovian protocol is a protocol in which
each party needs to know only the last transmission of its
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counterpart in order to decide what to send next, and not the
entire set of past transmissions. Namely,

XA
i = fA

i (XB
i−1); XB

i = fB
i (XA

i ).

where now, in contrast to (1), the transmission functions
fA
i (·), fB

i (·) depend only on what was last received (XB
i−1

and XA
i respectively). It is important to note that the non-

interactive communication problem is a special case where
fA
i (·), fB

i (·) are a sequence of constant valued functions that
do not depend on the output of the second party.

The rate of any communication scheme that attempts to
simulate the clean transcript is defined by

R =
2n

ñ

where 2n is the length of the clean transcript, and ñ is the
number of channel uses required by the scheme.

The probability of error attained by a scheme is defined
to be the maximal probability that either Alice or Bob fail
to exactly simulate the clean transcript, where the maximum
is taken over all possible Markovian protocols. A sequence
of schemes with rate at least R and error probability ap-
proaching zero is said to achieve the rate R. The capacity
for Markovian protocols over BSCs is the supremum over
all such achievable rates, and is denoted by CMarkov(ε). Note
that CMarkov(ε) cannot exceed the one-way Shannon capacity
of the BSC, i.e.,

CMarkov(ε) ≤ 1− h(ε), (2)

as this is the maximal achievable rate for the special case of
non-interactive protocols. Below we derive lower bounds on
the Markovian capacity.

B. Main Result

Our main result is the following.

Theorem 1. The capacity for Markovian protocols over
BSCs with crossover probability ε is lower bounded by

CMarkov(ε) ≥ max

{

R0(ε), sup
K,M∈N

R1(ε,K,M)

}

where R0(ε)
def
= 2

3 (1− h(ε)),

R1(ε,K,M)
def
=

1− h(ε)

1 + h(ε) + ℓ(ε,K,M)
,

and ℓ(ε,K,M) is defined in (29). The following upper
bounds for ℓ(ε,K,M) are easily computable and can be
used to lower bound R1(ε,K,M). The first bound is

ℓ(ε,K,M) ≤ h (<ε(2− ε)>)

(where < x>
def
= min(x, 1

2 )) and the second, tighter upper

bound is ℓ(ε,K,M) ≤ ℓ̌(ε) where

ℓ̌(ε) =

∞∑

k=1

(ε(2− ε))2(1 − ε(2− ε))k−1 log(k + 1).

The rates R0(ε) and R1(ε,K,M), (with K = 100,M =
400) normalized by the BSC capacity 1 − h(ε), are plotted
in Fig. 1. It can be seen that R1(ε,K,M) is superior for ε <
0.044, and R0(ε) is superior otherwise. Moreover, analyzing
R1(ε,K,M) for small ε, the following can be shown:

Corollary 1. For ε → 0

CMarkov(ε) = 1−Θ(h(ε)).

In light of the trivial upper bound (2), this rate is order-
wise the best possible. Moreover, it is order-wise higher than

the lower bound of 1−O(
√

h(ε)) obtained by Kol and Raz
[2] for interactive protocols with alternating rounds a non-
adaptive transmission schedule.

The remainder of the paper is dedicated to the proof of
Theorem 1 and its corollary, and is organized follows: In
Subsection II-A, we present Scheme #1, which is a very
simple scheme that achieves R0(ε). In Subsection II-B, we
present Scheme #2 which is more involved and achieves
supK,M R1(ε,K,M) which is larger than R0(ε) for any
ε < 0.044. The analysis of Scheme #2, including the
description of a designated compression protocol, its behavior
for large n, and numeric evaluation of R1(ε,K,M) are given
in Section III.

II. CODING SCHEMES

A. Scheme #1

We observe that the transmission functions fA
i (·), fB

i (·),
are binary functions that map a single input bit to a single
output bit. We note that there are only four such functions,
µ1, µ2, µ3, µ4 as in the following table:

µ1: µ2: µ3: µ4:
Y X = Y + 0 X = Y + 1 X = 0 X = 1

0 0 1 0 1
1 1 0 0 1

We observe that µ1 and µ2 are linear, i.e. X = Y + ξ and
ξ is either 0 or 1. µ3 and µ4 are constant functions, namely,
the output is 0 or 1 regardless the input. In the sequel we
refer to the locations where µ3 and µ4 are used as ”stuck
positions”.

Having this simple notion stated, we note both and Alice
and Bob can compress their own transmission functions using
2n bits. We also note that every party, having the transmission
functions of its counterpart, can simulate the entire clean
transcript. So, we can state the following reliable interaction
protocol:

1) Alice compresses all her transmission function using 2n
bits

2) Alice sends them to Bob using a capacity achieving
channel code with rate 1−h(ε). The number of required
transmissions from Alice to Bob at this step is 2n/(1−
h(ε) + o(1)) with error probability O(1/poly(n)).

3) Bob, having all Alice’s transmission functions, can
simulate the clean transcript.

4) Bob can feed his side of the transcript to Alice, requiring
n information bits over a channel with capacity 1−h(ε).
So overall n/(1−h(ε)+o(1)) channel uses are needed,
with error probability O(1/poly(n)).

So, overall ñ = 3n/(1 − h(ε) + o(1)) channel uses are
required (with error probability O(1/poly(n))) hence the rate
is

R0(ε) =
2n

3n/(1− h(ε))
=

2

3
(1− h(ε)).

B. Scheme #2

The improved achievable rate introduced here is based on
running the protocol disregarding the channel errors (as if the
channels were clean), followed by several rounds designated
to correct the errors. This scheme is found to be better that



to the trivial scheme when the channel noise is low. We start
by running the ”clean” protocol, namely Alice and Bob use
the Markovian transmission functions on their noisy inputs,
XA

i = fA
i (Y B

i−1) and XB
i = fB

i (Y A
i ) requiring 2n channel

uses. Then, Alice can describe to Bob the errors of the first
round using Slepian-Wolf [5] coding protected by a channel
code. After this step, the stuck positions are transmitted
from side to side using a designated compression algorithm.
Finally, the protocol is corrected, using the linearity of the
transmission functions in places where they are linear, and
reseting at stuck position (as will be elaborated in the sequel).

Let us summarize these steps and give the rate calculation:

1) Both parties perform interaction disregarding the chan-
nel errors. Overall 2n channel uses.

2) Alice describes Bob the errors that occurred on the
channel connecting them (i.e. the channel from Alice to
Bob) using Slepian-Wolf coding over a noisy channel.
This step requires n(h(ε) + o(1))/(1 − h(ε) + o(1))
channel uses (with error probability O(1/poly(n))).
Then Bob feeds the errors back to Alice using simple
typical set coding (not Slepian-Wolf). These steps are
repeated replacing the roles of Alice and Bob. All in all
the channel are used 4n(h(ε)+ o(1))/(1−h(ε)+ o(1))
times (with error probability O(1/poly(n))). At the end
of this step both parties are aware of all channel errors
on both sides.

3) Bob, knowing all channel errors on both channels di-
vides his interaction functions ,fA

i (·), into segments that
start and end with a channel error (on either channel
direction). Then, the first ”stuck position” (i.e. µ3 of
µ4) is conveyed to Alice using the protocol elaborated in
Subsection III-A. The maximal (i.e. worst case) number
of bits used for the description is denoted by nℓ(ε) and
should be conveyed using a capacity achieving channel
code requiring nℓ(ε)/(1− h(ε) + o(1)) channel uses in
total.

4) Having all this data, Alice can simulate Bob’s clean
transcript. Assume that from 1 ≤ i ≤ j both Alice and
Bob have only linear transmission functions. Then, due
to the linearity of the transmission at both parties, Bob’s

clean transcript X̂B
i can be simulated by canceling the

error at both sides:

X̂B
i = Y B

i +

i∑

l=1

ZA
l +

i∑

l=1

ZB
i .

5) Whenever there is a ”stuck position” for either party, the
processing of previous errors is reset. For example, if
Alice receives Y B

i = 0, and knows the value of ZB
i and

the fact that fB
i is either µ3 or µ4, then XB

i = Y B
i +ZB

i ,
disregarding previous noise values. Note that in non-
stuck positions XB

i is not necessarily equal to Y B
i +ZB

i .
This is because XB

i is defined as Bob’s transmission
in the hypothetical noiseless interaction, and not as his
transmission in step 1.

6) Steps 3,4 and 5 are repeated by appropriately exchang-
ing the roles of Alice and Bob.

The rate attained by this scheme is therefore

R1(ε,K,M) =
2n

2n+ n(4h(ε) + 2ℓ(ε,K,M))/(1− h(ε))

=
1− h(ε)

1 + h(ε) + ℓ(ε,K,M)

0 5 · 10−2 0.1 0.15

0.4

0.6

0.8

1

ε

R0/(1− h(ε))

R1/(1− h(ε)) using ℓ

R1/(1− h(ε)) using ℓ̌

R1/(1− h(ε)) using h

Fig. 1. Achievable rates normalized by 1 − h(ε). R1 is computed with
K = 100,M = 400.

In the sequel, we will be mostly concerned with the com-
putation of the achievable rate R1. We will also provide a
simple lower bound on R1 which is easier to compute, by
upper bounding ℓ̌(ε) ≥ ℓ(ε) (see (30)):

sup
K,M

R1(ε,K,M) ≥ 1− h(ε)

1 + h(ε) + ℓ̌(ε)
.

The achievable rates are depicted in Fig. 1. R1 is computed
using ℓ(ε,K,M) and two corresponding upper bounds ℓ̌(ε)
and a trivial entropy bound that is elaborated in the next
section.

It is important to note that for ε > 0.044 the description
of the errors and stuck positions in scheme #2 causes it to be
less efficients than scheme #1 as seen in the figure. On the
other hand, supK,M R1(ε,K,M) is better that R0(ε) when
the channel noise is low and approach 1 as the ε go to zero.

It is of interest to compare this results to [2]. Taking
the trivial upper bound ℓ(ε) ≤ h(< ε(2 − ε) >) given in
Subsection III-A we can assess the behavior for small ε by:

sup
K,M

R1(ε,K,M) ≥ 1− h(ε)

1 + h(ε) + h(ε(2− ε))
= 1−Θ(h(ε)),

hence, the capacity for Markovian protocols scales like the
Shannon capacity in this limit. This should be juxtaposed

with the upper bound (for general protocols) of 1−Ω(
√

h(ε))
given in [2]. This shows a gap between the capacities of
general protocols and Markovian protocols. We note that [2]
assumes non-adaptive transmission order, which is satisfied
by our scheme.

It was shown in [3] a higher rate of 1 − O(
√
ε) can be

achieved for general protocols under adaptive transmission
order. This rate is still outperformed by our scheme (for
Markovian protocols).

III. ANALYSIS OF SCHEME #2

In this section we analyze the performance of the scheme
introduced in II-B. In particular, we define and analyze a
novel compression algorithm designated for the compression
of the stuck position.



A. Compression of the Stuck Positions

We consider the fixed binary sequence φn = (φ1, . . . , φn),
φi ∈ {0, 1} which describes the ”stuck positions” in the orig-
inal problem. Namely, φn describes Bob’s ”stuck positions”,
and is equal to 1 if fB

i (·) = µ3 = 0 or fB
i (·) = µ4 = 1. We

also consider the i.i.d random sequence z
n = (z1, . . . , zn),

zi ∈ {0, 1} with marginal probability Pr(zi = 1) = p,
where p is the probability that there is at least one error
on the channel from Alice to Bob or vice versa, i.e. p =
1− (1 − ε)2 = ε(2− ε).

It is useful to think of the interlaced picture:

z1 z2 z3 . . .
φ1 φ2 φ3 . . .

The sequence z
n is parsed into segments of the form

(1,0k−1), k > 0, where 0
k−1 denotes a row vector of zeros

with k − 1 elements.
We wish to describe the position of the first φj = 1 in every

segment. For example, consider the following interlaced
sequence

z = 1 0 0, 1 0, 1, 1
φ = 0 1© 1 1© 1 1©

The parsed segments are separated by commas, and the
appearances of the first φ = 1 are circled.

First, we note that the total number of the first stuck posi-
tions is trivially upper bounded by the number of segments,
which is the total number of errors. So, the total number of
the first stuck positions is with high probability smaller than
n(p+ o(1)) and can be described via universal compression
using less than n(h(<p>) + o(1)) bits. We note that this
naive compression method does not use the fact that both
sides know the error positions and can take advantage of
them in order to improve the compression rate.

An improved compression algorithm can use the knowl-
edge of the vector z as follows: segments of length k are
grouped and the empirical distribution of the appearance
of the first 1 is calculated. Then, universal compression is
applied for every k based on these distributions. We denote
the vector of empirical distribution related to segments of

length k by πk = {πk,l}kl=0. The first k elements of this
vector comprise the fraction of these segments that start at
some zi, and whose first appearance of φj = 1 thereafter is
at j = i+ l. πk,k is the fraction of the segments that contain
no φj = 1.

Let L denote the overall length of the stuck positions
description (with high probability), normalized by n. In the
sequel we shall prove that L converges to an asymptotic value
L̄, which is more easily computable.

First, we define the empirical distribution πk,l (for 0 ≤ l ≤
k) as the ratio between the counters Nk,l and Nk:

πk,l =
Nk,l

Nk
. (3)

The counters Nk,l are defined as:

Nk,l
def
=

n∑

i=1

1k,l(i),

where indicator 1k,l(i) for 0 ≤ l < k is one only if and only

if zi+k
i = (1,0k−1, 1) and

φi+j =

{
1 for j = l

0 for 0 ≤ j < l.

The indicator 1k,k(i) is one only if zi+k
i = (1,0k−1, 1) and

φi+j = 0 for 0 ≤ j < k. The denominator of (3) is defined
as

Nk
def
=

k∑

l=0

Nk,l =

n∑

i=1

1
(
z
i+k
i = (1,0k−1, 1)

)

where the second equality is by construction.
Having the counters and the resulting empirical distribution

vectors πk, we can calculate the average description length L.
It is useful to use two schemes, one for k ≤ Kn and one for
k > Kn, with Kn defined in the sequel. For k < Kn we use
universal compression which requires for every k: NkH (πk)
bits for the compression where H(·) is the entropy function of
a probability vector. Additional bits are also required for the
lossless description of the probability vectors πk for k ≤ Kn.
We denote this number of bits by W .

For k > Kn we describe the location of the first stuck
position using the simplifying assumption that πk,l = 1

k+1
(for all 0 ≤ l ≤ k), shared by both the receiver and
transmitter. So, the number of bits for every value of k is
⌈log(k + 1)⌉. All in all, the average description length L is

L =
1

n

[
Kn∑

k=1

NkH (πk) +W +

n∑

k=Kn+1

Nk ⌈log(k + 1)⌉
]

It is useful write L as

L = S1 +
W

n
+ S2 (4)

where

S1
def
=

Kn∑

k=1

Nk

n
H (πk) , (5)

S2
def
=

n∑

k=Kn+1

Nk

n
⌈log(k + 1)⌉ . (6)

In the sequel we prove that L converges to its asymptotic
value by proving that the counters Nk,l and Nk converge to
their expected values. It is now useful to introduce ”spectrum
vector” {am}, and write ENk,l and ENk as functions of this
vector. Let

am =
1

n

n∑

i=1

1
(
φi−m = 1,φi−1

i−m+1 = 0
m−1, φi = 1

)
(7)

for m = 1, ..., n. Namely, am is the fraction of elements in
φn which are equal to 1, and their nearest preceding 1 in z

n

is exactly m time instances earlier. In order to take care of
the edge effects we set φ0 = 1 and φi = 0 for i < 0.

Let us now calculate the related expectations:

ENk =

n∑

i=1

E1
(
z
i+k
i = (1,0k−1, 1)

)
= np2(1− p)k−1.(8)

And for 0 ≤ l < k

ENk,l =

n∑

i=1

E [1k,l(i)]

=
n∑

i=1

p2(1− p)k−1
1

(

φi+l−1
i = 0

l−1 AND φi+l = 1
)

(a)
= p2(1 − p)k−1n

n∑

m=l+1

am



where (a) follows by counting the number of elements in
φn that are one, and whose distance to their preceding one
is more than l + 1 (note that l starts at zero).

The calculation of ENk,k is different:

ENk,k =

n∑

i=1

E [1k,k(i)]

= p2(1− p)k−1
n∑

i=1

1

(

φi+k−1
i = 0

k
)

(a)
= p2(1 − p)k−1n

n∑

m=k+1

am(m− k)

The equality (a) follows by observing that for every φ
segment (1,0m−1, 1) there exist m − k placements of a z
sequence (1,0k−1, 1) that contain no φ = 1. This notion is
illustrated below:

z = 1

k−1
︷ ︸︸ ︷

0 · · ·0 1
φ = 1 0 · · · · · · · · · 0

︸ ︷︷ ︸
m−1

1

It is also easy to verify that ENk =
∑k

l=0 ENk,l. Let us
define the probabilities

π̄k,l
def
=

ENk,l

ENk

=

{∑n
m=l+1 am, for 0 ≤ l < k

∑n
m=k+1 am(m− k), for 0 ≤ l = k

. (9)

and define L̄ based on the definition of S1 in (5), replacing
Nk with ENk, πk with π̄k:

L̄ =
1

n

Kn∑

k=1

np2(1 − p)k−1H (π̄k)

We are now ready to state Theorem 2.

B. Convergence of the Compression Rate

Theorem 2. For Kn = β lnn
− ln(1−p) for every ε > 0

lim
n→∞

Pr
(
L > L̄+ ε

)
= 0.

Recalling (4), L is composed of three elements : S1, W/n
and S2. Proving that W/n and S2 converge to zero is simple
and is deferred to the end of this subsection. Analyzing the
convergence of S1 is more involved and is now handled.
The proof is based on two elements: the convergence of the
counters Nk,l to their expected value (Lemma 1), and the
smoothness of the entropy function (Lemma 2). Let us start
by giving the lemmas and then use them to prove the theorem.

Lemma 1. The following inequalities hold any t ≥ 0:

Pr (|Nk,l − ENk,l| ≥ t) ≤ 2 exp
(

− t2

16n

)

(10)

Pr (|Nk − ENk| ≥ t) ≤ 2 exp
(

− t2

16n

)

(11)

Pr

(
n∑

k=K+1

Nk − E

n∑

k=K+1

Nk ≥ t

)

≤ exp
(

− t2

4n

)

.(12)

Proof. The proof is based on a straightforward application
of the bounded difference inequality. We start by citing the
inequality:

Theorem 3 (Bounded difference inequality [6, Theorem 3.18]
). Let x

n be a random independent series, and f(xn) a
scalar function, then for any t ≥ 0 the following hold:

Pr(f(xn)− Ef(xn) ≥ t)

≤ exp

(

− t2

4‖∑n
i=0

|D−

i
f |2‖

∞

)

(13)

Pr(f(xn)− Ef(xn) ≤ −t)

≤ exp

(

− t2

4‖∑n
i=0

|D+

i f |2‖
∞

)

. (14)

where

D−
i f

def
= f(xn)− inf

x
f(xi−1, x,xn

i+1)

and

D+
i f

def
= sup

x
f(xi−1, x,xn

i+1)− f(xn).

We shall use the theorem by setting f(xn) = Nk,l where
x
n is the noise series z

n (i.i.d Ber(p)). Using this, the
elements of z

n determine the error segments in which the
counters Nk,l are calculated. We observe that changing a
single element of z

n can leave the number of segments
unchanged or change them by at most two. The maximal
change is achieved in the following situation:

z
n = (. . . , 1,0k−1, xi,0

k−1, 1 . . .)

in which changing xi from zero to one (respectively from
one to zero) will increase (respectively decrease) the number
of segments by two. Since changing the number of segments
by two will change the counter Nk,l by at most two we can

conclude that D+
i f ≤ 2 and D−

i f ≤ 2, and
∥
∥
∥
∥
∥

n∑

i=0

|D−
i f |2

∥
∥
∥
∥
∥
∞

≤ n (2)
2
= 4n

and similarly
∥
∥
∑n

i=0 |D+
i f |2

∥
∥
∞

can be bounded by the same
value. Using this and (13) and (14) we obtain (10). Note that
the same bound and the same argument also holds for the
total number of segments Nk expressed in (11).

Finally, (12) follows from the fact that changing xi from
one to zero will create at most one new segment with k ≥
K + 1. So D+

i ≤ 1 and
∥
∥
∑n

i=0 |D+
i f |2

∥
∥
∞

≤ n.

Lemma 2 ([7, Lemma 2.7]). If d(P,Q) = Θ ≤ 1
2 then

|H(P )−H(Q)| ≤ −Θ log
Θ

|X |
where dTV(P,Q) is the total variation distance between the
distributions P and Q on X :

dTV(P,Q)
def
=
∑

x∈X

|P (x) −Q(x)|.

Having these two lemmas at hand, we are ready to prove
the Theorem 2.

Proof of Theorem 2. We start by proving that S1 is asymp-
totically upper bounded by L̄. We first upper bound
|H (πk)−H (π̄k) | by upper bounding the variation distance



Θ = |πk − π̄k|. Using (10) and (11) and the union bound it
follows that

Pr

(
Nk,l

Nk
≥ ENk,l + t

ENk − t

)

≤ 4 exp
(

− t2

16n

)

.

where t < ENk. Using (3), (9) and the fact that ENk =
np2(1− p)k−1 we can also write

Pr

(
Nk,l

Nk
≥ ENk,l + t

ENk − t

)

= Pr
(

πk,l ≥ np2(1−p)k−1π̄k,l+t
np2(1−p)k−1−t

)

=Pr
(

πk,l − π̄k,l ≥ t(π̄k,l+1)

np2(1−p)k−1−t

)

and hence

Pr
(

πk,l − π̄k,l ≥ t(π̄k,l+1)
np2(1−p)k−1−t

)

≤ 4 exp
(

− t2

16n

)

.(15)

Similarly

Pr

(
Nk,l

Nk
≤ ENk,l − t

ENk + t

)

= Pr
(

πk,l − π̄k,l ≤ − t(π̄k,l+1)
np2(1−p)k−1+t

)

≤ 4 exp
(

− t2

16n

)

. (16)

Combining (15) and (16) taking into account that (15) is
tighter, we obtain

Pr
(

|πk,l − π̄k,l| ≥ t(π̄k,l+1)
np2(1−p)k−1−t

)

≤ 8 exp
(

− t2

16n

)

.

Summing up for l = 1, . . . , k and using the fact that
∑k

i=0 π̄k,l = 1 we get the following inequality for the
variation distance Θ = dTV(πk, π̄k):

Pr
(

Θ ≥ t(k+2)
np2(1−p)k−1−t

)

≤ 8(k + 1) exp
(

− t2

16n

)

.

Now, we can set t = nα with α ∈ (12 , 1) and obtain

Pr

(

Θ ≥ k+2
n1−αp2(1−p)k−1+1

)

≤ 8(k + 1) exp
(

−n2α−1

16

)

.

Finally, Lemma 2 implies that

Pr

(

|H(πk)−H(π̄k)| ≥ εk

)

(17)

≤ 8(k + 1) exp
(

−n2α−1

16

)

.

where

εk
def
= − k+2

n1−αp2(1−p)k−1−1
log
(

(k+2)/(k+1)
n1−αp2(1−p)k−1−1

)

.

Clearly, for any fixed k we have that εk
n→∞−→ 0. Trivially,

the upper side of the bound in (17) also holds:

Pr(H(πk)−H(π̄k) ≥ εk) ≤ 8(k + 1) exp(−n2α−1

16 ).(18)

Let us now bound the summands of S1. Using (18), (10)
and (8) and the union bound implies that

Pr
(
Nk

n H (πk) ≥ (p2(1− p)k−1 + nα−1) (H (π̄k) + εk)
)

≤ (8k + 10) exp
(

−n2α−1

16

)

. (19)

Rearranging (19) we obtain

Pr

(
Nk

n
H (πk)− p2(1− p)k−1H (π̄k)

≥H(π̄k)n
α−1 + (p2(1− p)k−1 + nα−1)εk

)

≤ (8k + 10) exp
(

−n2α−1

16

)

.

Summing up for k = 1, . . . ,Kn and noticing that the
following bounds hold for 1 ≤ k ≤ Kn:

p2(1− p)k−1 ≤ p2

H(π̄k) ≤ log(Kn + 1)

εk ≤ εKn

we obtain

Pr
(
S1 − L̄ ≥ ǫ1

)
≤ δ1. (20)

where

ǫ1
def
= Kn log(Kn + 1)nα−1 + (p2 + nα−1)KnεKn

and

δ1
def
= Kn(8Kn + 10) exp

(

−n2α−1

16

)

.

Setting

Kn =
β lnn

− ln(1− p)
(21)

with β ∈ (0, 1− α) yields

(1− p)Kn = n−β (22)

which assures that εKn

n→∞−→ 0 and also ǫ1
n→∞−→ = 0 and

δ1
n→∞−→ 0.
Let us now prove that S2 converges to zero in probability.

For k > Kn we describe the location of the first stuck posi-
tion using ⌈log(k + 1)⌉ bits for every value of k. Therefore

S2 =

n∑

k=Kn+1

Nk

n
⌈log(k + 1)⌉

≤
n∑

k=Kn+1

Nk

n
(log(k + 1) + 1)

≤
(

n∑

k=Kn+1

Nk

n

)

(log(n+ 1) + 1) (23)

Recalling (12) and using only the upper side of the bound

Pr

( n∑

k=Kn+1

Nk

n
≥

n∑

k=K+1

p2(1− p)k−1 +
t

n

)

≤ 2 exp
(

− t2

4n

)

.

and noticing that

n∑

k=K+1

p2(1− p)k−1 ≤
∞∑

K+1

p2(1 − p)k−1 = p(1− p)Kn



we have

Pr

(
n∑

k=Kn+1

Nk

n
≥ p(1− p)Kn +

t

n

)

≤ 2 exp
(

− t2

4n

)

setting as before t = nα with α ∈ (12 , 1) and recalling (22)
we obtain

Pr

(
n∑

k=Kn+1

Nk

n
≥ pn−β + nα−1

)

≤ 2 exp
(

−n2α−1

4

)

Now, we use (23) and further loosen the bound, obtaining

Pr

(

S2 ≥ (pn−β + nα−1) (log(n+ 1) + 1)

)

≤ 2 exp(−n2α−1

4 ).

Defining

ǫ2
def
=
(
pn−β + nα−1

)
log(n+ 1)

and

δ2
def
= 2 exp

(

−n2α−1

4

)

.

we obtain

Pr (S2 ≥ ǫ2) ≤ δ2 (24)

where clearly ǫ2
n→∞−→ = 0 and δ2

n→∞−→ 0.
Lastly, we can show that W/n converges to zero in prob-

ability by representing the values in πk for k = 1, . . . ,Kn

using log(Kn) bits each. There are overall
∑Kn

k=1(k + 1) =
Kn(Kn+3)/2 such elements so, the total number of required
bits is W = Kn(Kn+3) log(Kn+1). Setting Kn as in (21)

clearly yields W/n
n→∞−→ = 0. Combining this, (20), (24) and

applying the union concludes the proof.

C. Numerical Evaluations of the Compression Rate

In the previous subsection, we proved that L is asymptot-
ically upper bounded by L̄. However, L̄ is a function of the
spectrum vector a. Therefore, an upper bound for L̄ should
be related to the maximization of L̄ w.r.t a. In this subsection
we explicitly write this (convex) optimization problem, and
provides some numeric evaluations. We note that a is a vector
of length n → ∞. Since our optimization tools are limited
to vectors with finite dimension, we limit the size of a, and
bound the residue inflicted by this process.

We start by recalling (4): L = S1 +
W
n + S2, however, in

contrast to the definitions in (5) and (6), we define S1 and S2

with K that is a fixed number, and not an increasing function
in n. Namely

S1 =

K∑

k=1

Nk

n
H (πk) ,

S2 =

n∑

k=K+1

Nk

n
⌈log(k + 1)⌉ .

Having a fixed K , the number of bits required for the
description of the universal codebooks, W can be trivially

upper bounded by K2 log(K +1) thus clearly W
n

n→∞−→ 0. In
the previous subsection, we showed that L is asymptotically
upper bounded by L̄, for Kn defined in (21). It is possible
to show by steps similar to the ones used in the previous

subsection that for a fixed K , S1 and S2 are asymptotically
upper bounded by the following terms respectively

S̄1(p,K)
def
=

K∑

k=1

p2(1− p)k−1H(π̄k),

S̄2(p,K)
def
=

n∑

k=K+1

p2(1− p)k−1 ⌈log(k + 1)⌉ .

Thus the total description length can be written as

L(p,K) = S̄1(p,K) + S̄2(p,K)

We first note that we can trivially upper bound all H(π̄k)
by log(k + 1) yielding the following bound

L(p,K) ≤ Ľ(p)
def
=

∞∑

k=1

p2(1− p)k−1 log(k + 1). (25)

Let us now write S̄1(p, L) as a convex optimization prob-
lem in a, and numerically evaluate its optimum. We recall
that π̄k can be written in terms of a as in (9). This relation
can be stated in using matrix/vector notation by introducing
the set of matrices Bk with sizes (k+1)×n with the following
element. For 1 ≤ i ≤ k

[Bk]i,j =

{
1 for j ≥ i

0 otherwise

and for i = k + 1

[Bk]k+1,j =

{
j − k for j ≥ k

0 otherwise

The matrix Bk can also be written as follows:

Bk =










1 2 3 ··· k k+1 k+2

1 1 1 1 · · · 1 1 1 · · ·
2 0 1 1 · · · 1 1 1 · · ·
3 0 0 1 · · · 1 1 1 · · ·
...

. . .

k 0 0 0 · · · 1 1 1 · · ·
k+1 0 0 0 · · · 0 1 2 · · ·










Recalling the definition of {am} in (7), and taking into
account that all the sequences of all lengths m = 1, . . . , n
construct the original sequence φn (whose length is n) gives∑n

m=1 mnam = n hence
∑n

m=1 mam = 1. Also note that
am ≥ 0 for all m = 1, . . . , n.

So, an upper bound for S̄1(p,K) denoted by S̃1(p,K) can
be computed as follows:

S̃1(p,K) = max
a

K∑

k=1

p2(1− p)k−1H (Bka)

s.t. ai ≥ 0 ∀i,
∑

iai = 1

We note that the constraints are convex and that the function
to be maximized is the sum of the composition of convex
function (H(·)) with linear functions, hence is also convex.



A more convenient parameterization is obtained by nor-
malizing a to be a probability vector. To that end, Bk should
be replaced with Ck as follows

Ck =












1 2 3 ··· k k+1 k+2

1 1 1
2

1
3 · · · 1

k
1

k+1
1

k+2 · · ·
2 0 1

2
1
3 · · · 1

k
1

k+1
1

k+2 · · ·
3 0 0 1

3 · · · 1
k

1
k+1

1
k+2 · · ·

...
. . .

k 0 0 0 · · · 1
k

1
k+1

1
k+2 · · ·

k+1 0 0 0 · · · 0 1
k+1

2
k+2 · · ·












.(26)

This yields the following optimization problem

S̃1(p,K) = max
a

n∑

k=1

p2(1− p)k−1H (Cka) (27)

s.t. ai ≥ 0 ∀i,
∑

ai = 1

We would like evaluate S̃1(p,K) by numerically optimiz-
ing (27). It is clear that the length of the vector a should be
limited to some fixed value (denoted by M ). We denote the
reduced size vector by ã and derive it from a by:

ãi =

{
ai, for i = 1, . . . ,M − 1
∑n

j=M aj for i = M

We also define C̃k by cutting only the first M columns of Ck.
Noticing the definition of Ck in (26) and the fact that both
a and ã are probability vector gives the following bounds

[

C̃kã− Cka

]

i
≤ ãM

M

for i ∈ [1, k] and
∣
∣
∣
∣

[

C̃kã− Cka

]

k+1

∣
∣
∣
∣
= ãM

∣
∣
∣
∣

M − k

M
− 1

∣
∣
∣
∣
=

kãM
M

Therefore, the variation distance is bounded by

dTV(C̃kã, Cka) ≤
2kãM
M

Lemma 2 requires that dTV(C̃kã, Cka) ≤ 1
2 , so in order to

comply we set M = 4K and obtain the bound:

H(Cka) < H(C̃kã)−
2kãM
M

log
2kãM

(k + 1)M
.

Finally, the following finite-dimensional convex optimiza-
tion problem provides a computable upper bound for

Š1(p,K,M) ≥ S̃1(p,K) that holds for any n large enough:

Š1(p,K,M)
def
= (28)

max
ã∈RM

K∑

k=1

[

p2(1− p)k−1H
(

C̃kã

)

− 2kãM
M

log
2kãM

(k + 1)M

]

s.t. ãi ≥ 0,
M∑

i=1

ãi = 1

and lastly

L(p,K,M) ≤ Š1(p,K,M)+
n∑

k=K+1

p2(1− p)k−1 log(k + 1).
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Fig. 2. h(p), L̃(p) and Ľ(p) as a function of p.

We evaluated Ľ(p) and L(p,K,M) for K = 100 and M =
400. The results are depicted in Fig. 2 including the trivial
bound h(p).

We are only left with relating L(p,K,M) to ℓ(ε,K,M).
We note that p corresponds to the event of one of more errors
on the channel between Alice and Bob and vice versa. So,
p = 1− (1 − ε)2 = ε(2− ε) and

ℓ(ε,K,M) = L(ε(2− ε),K,M), (29)

where L̃(·) is given in (28). A simpler upper bound can be
obtained using (25),

sup
K,M

ℓ(ε,K,M) ≤ ℓ̌(ε)
def
= Ľ(ε(2 − ε)). (30)
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