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A Bernoulli-Gaussian Physical Watermark for Detecting Integrity

Attacks in Control Systems

Sean Weerakkody Omur Ozel Bruno Sinopoli

Abstract— We examine the merit of Bernoulli packet drops in
actively detecting integrity attacks on control systems. The aim
is to detect an adversary who delivers fake sensor measurements
to a system operator in order to conceal their effect on the
plant. Physical watermarks, or noisy additive Gaussian inputs,
have been previously used to detect several classes of integrity
attacks in control systems. In this paper, we consider the
analysis and design of Gaussian physical watermarks in the
presence of packet drops at the control input. On one hand,
this enables analysis in a more general network setting. On
the other hand, we observe that in certain cases, Bernoulli
packet drops can improve detection performance relative to a
purely Gaussian watermark. This motivates the joint design
of a Bernoulli-Gaussian watermark which incorporates both
an additive Gaussian input and a Bernoulli drop process. We
characterize the effect of such a watermark on system perfor-
mance as well as attack detectability in two separate design
scenarios. Here, we consider a correlation detector for attack
recognition. We then propose efficiently solvable optimization
problems to intelligently select parameters of the Gaussian
input and the Bernoulli drop process while addressing security
and performance trade-offs. Finally, we provide numerical
results which illustrate that a watermark with packet drops
can indeed outperform a Gaussian watermark.

I. INTRODUCTION

The security of cyber-physical systems (CPS) has become

a critical issue [1]. Since CPS such as the smart grid, waste

management systems, water distribution systems, transporta-

tion systems, and smart buildings are linked to critical

infrastructures, it is imperative that they operate securely. Un-

fortunately, attacks have occurred against CPS. This includes

Stuxnet [2], which targeted uranium enrichment facilities

in Iran, the Maroochy Shire incident [3], an attack by a

malicious insider on a sewage management system, and the

Ukraine power attack [4], a hack resulting in widespread

blackouts in Ukraine. The threat does not appear to be over

as the growing connectivity and heterogeneity of our system

architectures provide new attack surfaces for adversaries.

We focus on detecting integrity attacks in control systems

in the presence of packet drops at the control input. In an

integrity attack, an adversary modifies inputs and sensor

measurements in a control system. The goal of such an
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attacker may be to achieve some economic benefit or cause

physical damage to a system. An attacker can potentially

maximize his impact by hiding his presence from the opera-

tor. Remaining stealthy allows an attacker to affect the sys-

tem for long periods of time without defender interference.

The adversary can avoid detection by intelligently modifying

the sensor measurements to fool detectors. One example

is a replay attack, as used in Stuxnet, where an attacker

replaces true outputs with a previously recorded sequence

of measurements [5].

We consider the use of physical watermarking to detect

integrity attacks. A physical watermark is a noisy Gaus-

sian signal added on top of an optimal control input to

authenticate a system’s dynamics. Physical watermarking is

a method of active detection, where a defender alters his

strategy to recognize attacks. These methods are necessary

when standard fault detection methods provably fail [6], [7].

Recent work has investigated physical watermarking. In [5],

[8]–[10], the design of watermarks against replay attacks

was examined. Additionally, [11] and [12] design asymptotic

detectors in systems implementing physical watermarking

to ensure zero additive distortion power is introduced into

sensor measurements. Additionally, in a scalar setting, [13]

demonstrates the optimality of Gaussian watermarks against

Gaussian attackers and vice versa. [14] evaluates the use of

non-stationary watermarks to hamper system identification.

Finally, [15] considers watermarks to thwart adversaries who

have access to a subset of inputs and model knowledge.

However, prior work fails to consider the scenario where

there exists packet drops in the network. In this paper, we

generalize the design of the Gaussian physical watermark

by incorporating Bernoulli drops at the control inputs. This

enables the operator to account for imperfect networks when

designing a Gaussian watermark for secure detection. We

also argue that using Bernoulli drops together with a Gaus-

sian watermark can improve detection. This motivates the

analysis and design of a joint Bernoulli-Gaussian watermark.

In our preliminary work [16], we proposed using packet

drops in a setting without Gaussian watermarks to detect

replay attacks. This article extends these results by providing

a rigorous mathematical setting to jointly design parameters

of both a Gaussian watermark and Bernoulli drop process.

We investigate two types of watermark design: 1) a water-

mark with an independent and identically distributed (IID)

Gaussian additive input multiplied by a Markovian Bernoulli

drop process at the control input and 2) a watermark with

a stationary Gaussian additive input generated by a hidden

Markov model (HMM) multiplied by an IID Bernoulli drop
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process at the control input. We incorporate a correlation

detector [17], [8] to recognize integrity attacks and char-

acterize adversarial scenarios where the Bernoulli-Gaussian

watermark is provably effective. Next, we provide efficiently

solvable optimization problems to design parameters of the

Gaussian input and the Bernoulli drop process. Simulation

results illustrate scenarios where packet drops improve de-

tection performance relative to a purely Gaussian watermark.

II. SYSTEM MODEL

We consider a discrete time LTI control system as follows

xk+1 = Axk +Buk,c + wk, yk = Cxk + vk. (1)

xk ∈ Rn is the state vector at time k. A set of m sensor

measurements yk ∈ Rm is delivered to a supervisory control

and data acquisition (SCADA) system at time k in order to

perform remote estimation and compute an intended control

input uk ∈ Rp. A set of p control inputs uk,c ∈ Rp actuate

the system. We differentiate uk,c, the control input applied

to the system, versus uk, the input computed by a SCADA

operator. We assume wk ∼ N (0, Q) is IID process noise

and vk ∼ N (0, R) is IID measurement noise (independent

of {wk}), where Q ≻ 0, R ≻ 0. A Kalman filter performs

state estimation as follows.

x̂k+1|k = Ax̂k|k +Buk,c, x̂k|k = x̂k|k−1 +Kzk, (2)

K = PCT (CPCT +R)−1, zk = yk − Cx̂k|k−1, (3)

P = APAT +Q−APCT (CPCT +R)−1CPAT . (4)

The defender minimizes a cost function J :

J = lim
N→∞

1

2N + 1
E

[

N
∑

k=−N

xTkWxk + uTk,cUuk,c

]

, (5)

where W ≻ 0 and U ≻ 0. We assume (A,B) and (A,Q
1

2 )
are controllable and (A,C) and (A,W

1

2 ) are observable.

A. Control in Uncertain Networks

As shown in Fig. 1, the control input uk may be dropped

as it is sent from the SCADA system to the plant. Here,

uk,c = ηkuk, (6)

where ηk ∈ {0, 1} is a Bernoulli random variable. The

control input uk may be dropped due to network imperfec-

tions. In this case, we assume the operator receives an ac-

knowledgement (ACK), which specifies if uk was delivered.

Alternatively, the input uk may be intentionally dropped as

a means to watermark the system, enabling the detection of

integrity attacks that fail to preserve the effect of the drop

process. This strategy was initially investigated in [16]. We

consider both IID and Markovian drop processes.

1) IID Bernoulli Process: First, we assume {ηk} is

an IID Bernoulli process where P (ηk = 1) = 1 −
pd. LQG control with IID Bernoulli packet losses was

studied in [18]. Consider the information set Fk ,
{y−∞:k, η−∞:k−1, u−∞:k−1}. We suppose pd is chosen (or

given) so that the system (1) can have finite cost J . The
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Fig. 1. System model

optimal control strategy at time k given Fk is as follows

[16], [18]:

ubk = Lkx̂k|k, Lk = −(BTSk+1B + U)−1BTSk+1A,

Sk = ATSk+1A+W + (1 − pd)A
TSk+1BLk. (7)

As we expect the system has been running for a long time,

both Lk and Sk have converged to fixed point values so that

ubk = L(b)x̂k|k, L(b) = −(BTS(b)B + U)−1BTS(b)A,

S(b) = ATS(b)A+W + (1 − pd)A
TS(b)BL(b). (8)

J = J(b) for this strategy where J(b) is

J(b) = tr
(

S(b)Q+ (ATS(b)A+W − S(b))(P −KCP )
)

.
(9)

2) Markovian Bernoulli Process: In this setup, we assume

there are Markovian packet losses [19] at the input where
[

P (ηk+1 = 0|ηk = 0)P (ηk+1 = 1|ηk = 0)
P (ηk+1 = 0|ηk = 1)P (ηk+1 = 1|ηk = 1)

]

=

[

ᾱ α
β β̄

]

(10)

and ᾱ , 1 − α, β̄ , 1 − β. Here, we assume 0 < α ≤ 1,

0 < β ≤ 1 so that ηk is irreducible. Moreover, we assume

ηk is stationary, which can be obtained by letting its initial

distribution be P (η−∞ = 0) = β
α+β

. Finally, we assume that

α and β are selected (or given) so that the system (1) can

have finite cost J . The optimal strategy at time k given Fk

is

umk = L(m)x̂k|k, L(m) = −(BTR(m)B + U)−1BTR(m)A,

Rm = AT (βS(m) + β̄R(m))A+W + β̄ATR(m)BL(m),

Sm = AT (ᾱS(m) + αR(m))A+W + αATR(m)BL(m),

where L(m), R(m), S(m) are parameters which converged to

their steady state values. The resulting cost of control is

J = J(m) =
tr(βS(m)Q+ αR(m)Q)

α+ β
(11)

+
tr((AT (ᾱS(m) + αR(m))A+W − S(m))(P −KCP ))

α+ β
.



Remark 1: The prior strategies are optimal when the de-

fender only has knowledge of the observed drop sequence

η−∞:k−1. However, if the drop sequence is intentionally in-

troduced using a pseudo random number generator (PRNG),

the defender knows future values of ηk. The design of a

controller that uses this information is left for future work.

B. Joint Bernoulli-Gaussian Physical Watermarking

To account for adversarial behavior, we consider additive

Gaussian physical watermarks ∆uk. First introduced in [5]

to detect replay attacks, an additive Gaussian watermark can

be leveraged to verify the freshness of outputs. We aim to

intelligently combine the Gaussian watermarks considered

in [8] and [9] with a Bernoulli drop process at the input.

Such a design accomplishes two goals: 1) to expand the

analysis of physical watermarking to a more realistic network

setting with packet drops and 2) to potentially improve

performance by considering a more general joint Bernoulli-

Gaussian watermark.

We consider two main joint designs.

Watermark 1: IID Gaussian Input + Markovian Drops

uk,c = ηk(u
m
k +∆uk). (12)

{ηk} is a Markovian Bernoulli process and ∆uk ∼ N (0,Q)
is an IID Gaussian watermark [5]. We assume ∆uk is

independent of other stochastic processes in the system.

Watermark 2: Stationary Gaussian Input + IID Drops

uk,c = ηk(u
b
k +∆uk). (13)

In this case, {ηk} is an IID Bernoulli process. The Gaussian

input ∆uk is assumed to be a stationary process generated

by a hidden Markov model (HMM) as considered in [9].

ζk+1 = Aωζk + ψk, ∆uk = Chζk. (14)

ζk is the hidden state of the HMM, Aω has spectral radius

ρ(Aω) ≤ ρ̄ ≤ 1, and ψk ∼ N (0,Ψ) is IID Gaussian noise.

For stationarity, Cov(ζ0) = AωCov(ζ0)A
T
ω + Ψ. ∆uk is

independent of other stochastic processes in the system.

Remark 2: Here, ρ̄, the maximum allowable spectral ra-

dius, is a design parameter for the defender. We observe a

larger ρ̄ improves expected detection performance. However,

a larger ρ̄ means a larger correlation between watermarks and

this could facilitate the prediction of future watermarks if the

attacker guesses an initial Gaussian input ∆uk.

III. ATTACK MODEL

In this section we describe a model of our adversary in

terms of knowledge, capabilities, and potential strategies.

A. Attacker Capabilities

Without loss of generality, we assume an attack begins at

time k = 0. We make the following assumptions.

1) The attacker can modify all measurements yk, k ≥ 0.

The falsified outputs at time k are denoted by yvk .

2) The attacker inserts an input Bauak into the system.

3) The attacker is unable to read the true control inputs

uk,c. As a result, he is unaware of the drop sequence

{ηk} and the Gaussian watermark {∆uk}.

The system under attack is given by

xk+1 = Axk +Buk,c +Bauak + wk, (15)

x̂k+1|k+1 = (I −KC)(Ax̂k|k +Buk,c) +Kyvk+1. (16)

Remark 3: Attackers can inject Bauak by appropriating

the defender’s actuators or inserting their own. The attacker

could possibly modify inputs without being able to read them

if the inputs are encrypted. Alternatively, the attacker can

cause damage even if Bauak = 0. For example, the attacker

can destabilize the plant if A is open loop unstable.

B. Attack Strategy

The attacker generates yvk through a virtual system:

xvk+1 = Axvk + ηvkB(Lm|bx̂
v
k|k +∆uvk) + wv

k , (17)

x̂vk+1|k+1 = (I −KC)(A+ ηvkBLm|b)x̂
v
k|k +Kyvk+1 (18)

+ ηvk(I −KC)B∆uvk,

yvk = Cxvk + vvk . (19)

In the case of Watermark 1, Lm|b = L(m), η
v
k follows

a Markovian process (10) with parameters α and β and

∆uvk ∼ N (0,Q) is an IID Gaussian process. In the case of

Watermark 2, Lm|b = L(b), η
v
k is an IID Bernoulli process

with drop probability pd and ∆uvk is a stationary Gaussian

process which satisfies (14). Additionally, vvk ∼ N (0, R)
and wv

k ∼ N (0, Q) are IID processes. Finally, we assume

the stochastic processes {ηvk,∆uvk, wv
k, v

v
k} are independent

of the real system’s stochastic parameters {ηk,∆uk, wk, vk}.

The previous attack strategy can be generated (approx-

imately) by a replay attack where the attacker records a

long sequence of outputs y−T ′:−T ′+T and, starting at time 0,

replaces yk with yvk = yk−T ′ for 0 ≤ k ≤ T . Attackers who

do not have precise knowledge of the model may engage in

replay attacks, which only require access to the outputs [5],

[8], [9]. Alternatively, this attack strategy can be constructed

by an adversary who is familiar with the model, for instance a

malicious insider. In this case, the attacker simulates a virtual

copy of the system dynamics to fool a bad data detector. It

was previously shown [9] that if pd = 0 and there is no

Gaussian watermark, the given strategies are asymptotically

stealthy when A , (A+BL(b))(I −KC) is Schur stable.

A model aware attacker could also potentially pursue an

additive attack, for instance a false data injection attack [20]

or a zero dynamics attack [21], [22]. In these attacks, the

adversary injects an additive bias into the system which

preserves the watermark and allows the attacker to remain

stealthy. However, there are scenarios where additive attacks

on sensor measurements are not feasible. As an example,

suppose the defender uses public key cryptography, where

a public key is used to encrypt the measurements while a

private key is used to decrypt the associated cipher text. An

attacker could send his own virtual measurements encrypted



with the public key. However, such an attack could not

leverage information in the true measurement as that would

require access to the defender’s private key to learn yk. In this

case, additive attacks constructed by replacing a true output

packet with a virtual packet would be infeasible. By assump-

tion, an additive networked-based attack on the defender’s

control input is also impossible because the adversary is

unable to read the defender’s input.

We argue that alternative attack strategies which manipu-

late all sensors yk in a setting with public key cryptography

also fail due to the fact that the resulting attack sequence

{yvk} is independent of the watermarks {∆uk, ηk}. Specifi-

cally, an attacker who is unable to read the inputs or outputs

will have no information about the watermarks. As a result,

the outputs he can construct will fail to fool the correlation

detector, which we propose in the next section.

IV. A CORRELATION DETECTOR

We consider a correlation detector, proposed in [8]. The

defender computes a virtual output y′k, which explicitly

characterizes the effect of watermarks on yk.

x′k+1 = Ax′k + ηkB(Lm|bx̂
′
k|k +∆uk), y′k = Cx′k, (20)

x̂′k+1|k+1 = (I −KC)(A+ ηkBLm|b)x̂
′
k|k +Ky′k+1 (21)

+ ηk(I −KC)B∆uk,

where with some abuse of notation x′−∞ = 0, x̂′−∞|−∞ = 0.

We can simplify (20) and (21) to obtain

x′k+1 = (A+ ηkBLm|b)x
′
k + ηkB∆uk, y′k = Cx′k. (22)

This virtual process created by the defender is driven en-

tirely by the sequence of Bernoulli-Gaussian watermarks

{∆uk, ηk}. Thus, if we were to multiply the true outputs

yk with the defender’s virtual outputs y′k we would expect

a positive correlation. However, if an attacker introduces

measurements yvk , which are driven by an independent se-

quence of watermarks, the expected correlation drops to 0.

This motivates consideration of the detection statistic yTk y
′
k,

where a large statistic is indicative of normal behavior while

a small statistic indicates malicious behavior. Observe due to

the random real time selection of watermarks, ‖y′k‖2 may be

close to 0, impacting detector performance since the correla-

tion will likely also approach 0 even under normal operation.

As a result, we propose an event triggered detector:

If ‖y′k‖22 ≥ µ Perform Detection

κ = κ+ 1, tκ = k
κ
∑

j=κ−W+1

gj
H0

≷
H1

τ, gκ = yTtκy
′
tκ
. (23)

The null hypothesis H0 is that the system is operating

without malicious behavior while the alternative hypothesis

H1 is that the system is under attack. W is the size of the

detector’s window. A detection event is triggered if ‖y′k‖22 is

greater than some user defined threshold µ, preventing false

alarms from being raised when y′k is small, while sacrificing

time to detection. This tradeoff can be addressed by tuning

µ. Note that κ corresponds to the time index of the event

triggered correlation detector and increases at instants when a

new detection statistic is computed. Identifying attacks on an

individual sensor i can be done by focusing on the correlation

between individual measurements. An appropriate statistic giκ
would be yitκy

i
tκ

′
where yitκ is the ith entry of ytκ .

Remark 4: A detector with an adaptive threshold could

address issues of small y′k. However, such a detector is more

prone to misses, mistaking an attack for noise. Incorporation

and analysis of such a detector is left for future work.

Remark 5: An adversary that can not read {uk}, {yk} can

not take advantage of instances when detection does not

occur, because such instances are entirely dependent on the

realization of previous watermarks. An attacker who is forced

to act independently of the real time watermarking sequence

cannot determine if a detection has been triggered.

We now verify that the expected correlation is 0, if the

outputs yvk are generated independently of the watermarks.

Theorem 6: If yvk and {∆uk, ηk} are independent, then

E

[

yvk
T y′k

∣

∣

∣
‖y′k‖22 ≥ µ

]

= 0.

Proof: Observe that y′k can be written as a linear

function of the Gaussian watermarks ∆uk so that

y′k =
k−1
∑

j=−∞

Gj(ηj:k−1)∆uj , (24)

where Gj is some linear gain, determined by the sequence

of Bernoulli drops ηj:k−1. Thus, we have

E[yvk
T y′k] = E



yvk
T

k−1
∑

j=−∞

Gj(ηj:k−1)∆uj

∣

∣

∣

∣

∣

‖y′k‖22 ≥ µ





=

k−1
∑

j=−∞

E [yvk ]
T
E

[

Gj(ηj:k−1)∆uj

∣

∣

∣
‖y′k‖22 ≥ µ

]

= 0.

The proposed detector can often differentiate between

faulty and malicious scenarios. During a fault, we expect

to see the effect of the embedded watermarks in the output

and it could be measured through correlation. Alternatively,

residue based detectors such as a χ2 detector (gκ =
−zTtκ(CPCT + R)−1ztκ), which measures the difference

between measured and expected behavior, will likely raise an

alarm during faulty behavior and malicious behavior. Both

detectors can be used in tandem. A residue based detector

can raise alarms in the case of faulty or malicious behavior,

while a correlation detector can distinguish these events. In

this article, we focus on the correlation detector.

V. THE FIRST WATERMARK DESIGN

We consider the design of a watermark consisting of an

IID Gaussian input and Markovian drops. This requires the

evaluation of a detection and performance trade-off. We wish

to maximize the correlation of yk and y′k to distinguish the

system under attack from normal operation. However, we



also need to ensure the system meets an adequate level of

performance as characterized by the cost J̄ , starting at k = 0.

J̄ = lim
N→∞

1

N
E

[

N−1
∑

k=0

xTkWxk + uTk,cUuk,c

]

(25)

As such, we design the parameters α, β,Q by solving the

following optimization problem

maximize
α,β,Q

lim
k→∞

E[yTk y
′
k|H0]

subject to J̄ ≤ δ, 0 < α, β ≤ 1.
(26)

To begin with, we use [19, Theorem 3] to analytically

compute the cost J̄ as follows.

Theorem 7: Suppose α and β are chosen so that the

system has finite cost J(m) in the absence of a Gaussian

watermark. The LQG cost J̄ of the control system (1) with

IID Gaussian and Markovian watermark (12) is:

J̄ = J(m)(α, β) +
α

α+ β
tr
(

(BTR(m)B + U)Q
)

. (27)

Proof: Consider the cost to go in a finite hori-

zon, Vk(xk) ,
∑N

j=k E
[

xTj Wxj + uTj,cUuj,c|Fk

]

, and let

uN,c = 0. Similar to, [19], it can be shown that

Vk(xk) =

{

E[xTk Skxk|Fk] + ck (ηk−1 = 0)

E[xTkRkxk|Fk] + dk (ηk−1 = 1)
, (28)

where cN = dN = 0, RN , SN =W, P̄ = P −KCP and

F = (A+BL(m)),

Rk =W + βATSk+1A+ β̄FTRk+1F + β̄LT
(m)UL(m),

Sk =W + ᾱATSk+1A+ αFTRk+1F + αLT
(m)UL(m),

ck = −αtr((FTRk+1F −ATRk+1A+ LT
(m)UL(m))(P̄ ))

+ α[tr(Rk+1Q) + dk+1 + tr((BTRk+1B + U)Q)]

+ ᾱ[tr(Sk+1Q) + ck+1], (29)

dk = −β̄tr((FTRk+1F −ATRk+1A+ LT
(m)UL(m))(P̄ ))

+ β̄[tr(Rk+1Q) + dk+1 + tr((BTRk+1B + U)Q)]

+ β[tr(Sk+1Q) + ck+1]. (30)

Let J̄N = E

[

∑N
k=0 x

T
kWxk + uTk,cUuk,c

]

= E[V0(x0)]. We

find that

J̄N = P (η−1 = 0)
(

E[xT0 S0x0|η−1 = 0] + c0
)

+ P (η−1 = 1)
(

E[xT0 R0x0|η−1 = 1] + d0
)

.

Leveraging the fact that {ηk} is stationary with P (ηk = 0) =
β

α+β
as well as (29) and (30), we obtain

J̄N =
1

α+ β

N−1
∑

k=0

(

− αtr((FTRk+1F −ATRk+1A

+ LT
(m)UL(m))(P̄ )) + tr((βSk+1 + αRk+1)Q)

+ αtr((BTRk+1B + U)Q)

)

+
βE[xT0 S0x0|η0−1] + αE[xT0 R0x0|η1−1]

α+ β
,

where ηj−1 refers to the condition η−1 = j. It can be shown

(in a similar manner to the proof of Theorem 8) that the last

term is bounded. Note J̄ = limN→∞
1
N
J̄N−1. Moreover,

from [19][Theorem 3, Lemma 4], {Sk}, {Rk} converge to

S(m), R(m), respectively. This proves the desired result.

We now compute the expected correlation without attacks.

Theorem 8: Suppose α and β are chosen so the resulting

system has finite cost J(m) [19][Theorem 3] in the absence

of a Gaussian watermark. Then, for the control system (1)

with IID Gaussian and Markovian watermark (12), we have

lim
k→∞

E[yTk y
′
k|H0] =

tr(C(αX1 + βX0)C
T )

α+ β
, (31)

where

X0 = A(ᾱX0 + αX1)A
T , (32)

X1 = (A+BL(m))(βX0 + β̄X1)(A +BL(m))
T +BQBT

Proof: We begin with the Lemma below.

Lemma 9: ∀ M ∈ R2n×n, limk→∞ Lk
0(M) = 0 where,

L0

(

X
Y

)

=

[

A(ᾱX + αY )AT

(A+BL(m))(βX + β̄Y )(A+BL(m))
T

]

.

The proof is in the appendix. The closed loop dynamics are

xk+1 = (A+ ηkBL(m))xk − ηkBL(m)ek + wk + ηkB∆uk

ek+1 = (A−KCA)ek + (I −KC)wk −Kvk+1,

where ek = xk − x̂k|k . From (22), when ηk = 1. we obtain

E[x′k+1x
T
k+1|ηk = 1]

= (A+BL(m))E[x
′
kx

T
k |ηk = 1](A+BL(m))

T−
(A+BL(m))(E[x

′
ke

T
k |ηk = 1]LT

(m)B
T − E[x′kw

T
k |ηk = 1])

+ (A+BL(m))E[x
′
k∆u

T
k |ηk = 1]BT

+BE[∆ukx
T
k |ηk = 1](A+BL(m))

T

+B
(

E[∆ukw
T
k |ηk = 1] + E[∆uk∆u

T
k |ηk = 1]BT

)

−BE[∆uke
T
k |ηk = 1](BL(m))

T ,

where we implicitly condition on H0. x′k is independent of

∆uk, wk, ek and ∆uk is independent of xk, wk, ek. Thus,

E[x′k+1x
T
k+1|ηk = 1] (33)

= (A+BL(m))E[x
′
kx

T
k |ηk = 1](A+BL(m))

T +BQBT .

Next, since the Markov process is stationary and xk, x
′
k and

ηk are conditionally independent given ηk−1, we observe

E[x′kx
T
k |ηk = 1] (34)

= P (ηk−1 = 1|ηk = 1)E[x′kx
T
k |ηk = 1, ηk−1 = 1]

+ P (ηk−1 = 0|ηk = 1)E[x′kx
T
k |ηk = 1, ηk−1 = 0],

= β̄E[x′kx
T
k |ηk−1 = 1] + βE[x′kx

T
k |ηk−1 = 0].

It can be similarly shown that

E[x′k+1x
T
k+1|ηk = 0] = AE[x′kx

T
k |ηk = 0]AT . (35)

E[x′kx
T
k |ηk = 0] (36)

= αE[x′kx
T
k |ηk−1 = 1] + ᾱE[x′kx

T
k |ηk−1 = 0].



Letting Xk,j = E[x′kx
T
k |ηk−1 = j] we have

(

Xk+1,0

Xk+1,1

)

= L0

(

Xk,0

Xk,1

)

+

[

0
BQBT

]

. (37)

Since L0 is stable, limk→∞ E[x′kx
T
k |ηk−1 = 0] and

limk→∞ E[x′kx
T
k |ηk−1 = 1] are obtained by solving a fixed

point equation which has a unique solution X0 and X1. (32)

immediately follows from (37). Next, we find that

lim
k→∞

E[x′kx
T
k ] = P (ηk−1 = 1)X1 + P (ηk−1 = 0)X0, (38)

=
αX1 + βX0

α+ β
.

Finally, we observe that

E[yTk y
′
k] = tr

(

E[(y′ky
T
k )]
)

= tr
(

CE[x′kx
T
k ]C

T
)

. (39)

Thus, the watermark design problem (26) is given by

maximize
α,β,Q

tr(C(αX1 + βX0)C
T )

α+ β

subject to

(

X0

X1

)

= L0

(

X0

X1

)

+

[

0
BQBT

]

,

J(m)(α, β) + tr((BTR(m)B + U)Q) ≤ δ,

0 < α, β ≤ 1.
(40)

For fixed α and β, the problem is an efficiently solvable

semidefinite program. However, to optimize over α and β,

we have to solve multiple instances of the problem over a

finite 2 dimensional space. Ideally a designer will sample the

space sufficiently. Note, not all (α, β) in (0, 1]× (0, 1] are

feasible as some selections of α and β lead to unbounded

cost. Likewise, there may be naturally occurring drops which

constrain α and β. For instance, if we add an artificial

Markovian drop process on top of a naturally occurring

IID drop process with drop probability pd, we know that

α ≤ (1− pd), β̄ ≤ (1− pd).
Remark 10: The optimal design of Watermark 1 requires

solving multiple instances of a convex optimization problem

with parameters varying over a bounded 2 dimensional space.

This will also be true for Watermark 2. A formulation that

considers a stationary Gaussian input with a Markovian drop

process is nontrivial. Even if analysis can be performed, op-

timal design will likely require searching over 3 dimensions.

This more complicated case is left for future work.

VI. THE SECOND WATERMARK DESIGN

We now investigate a watermark consisting of stationary

Gaussian noise generated by a HMM (14) and an IID

Bernoulli drop process at the control input with drop proba-

bility equal to pd. Again, we design a watermark to address

a performance and security trade-off. We wish to solve:

maximize
pd,Aω,Ch,Ψ

lim
k→∞

E[yTk y
′
k|H0]

subject to J̄ ≤ δ, ρ(Aω) ≤ ρ̄,

0 ≤ pd ≤ 1.

(41)

Rather than optimizing over the parameters of the HMM,

we instead optimize over the autocovariance functions

Γ(d) , E[∆uk∆u
T
k+d]. For tractable analysis we replace the

constraint ρ(Aω) ≤ ρ̄ with the following related assumption.

Assumption 1: Let Γ(d) be an autocovariance function for a

Gaussian process generated by an HMM (Aω , Ch,Ψ). Then

(Aω , Ch,Ψ, ρ̄) is feasible only if Γ̃(d) , ρ̄−|d|Γ(d) is a

autocovariance function of a stationary Gaussian process.

Γ̃(d) can be potentially realized by an alternate HMM

ζ̃k+1 = (Aω/ρ̄)ζ̃k + ψ̃k, ∆ũk = Chζ̃k, (42)

Cov(ζ̃0) = AωCov(ζ̃0)A
T
ω +Ψ, (43)

ψ̃k ∼ N (0,Cov(ζ̃0)−AωCov(ζ̃0)A
T
ω/ρ̄

2). (44)

Note, that if ρ(Aω) > ρ̄, (42) can not be a stationary

process. This HMM can be realized if and only if Cov(ζ̃0)−
AωCov(ζ̃0)A

T
ω/ρ̄

2 is positive semidefinite. Intuitively, if

ρ(Aω) is marginally less than ρ̄, there is a larger chance

that Cov(ζ̃0)−AωCov(ζ̃0)A
T
ω/ρ̄

2 is positive semidefinite.

Remark 11: When ρ̄ = 1, Assumption 1, introduces no

relaxation. In fact, the resulting formulation optimizes all

stationary Gaussian processes in general. However, in the

case ρ̄ = 1, we will prove that the resulting Gaussian process

{∆uk} is entirely deterministic except for the initial water-

mark. A lower parameter ρ̄ reduces average performance, but

prevents an attacker who learns or guesses the current hidden

state from adequately predicting future watermarks.

We arrive at a relaxed formulation to (41) below.

Theorem 12: Consider the control system (1) with IID

Bernoulli and stationary Gaussian watermark (14). Sup-

pose pd is chosen so that the system has finite cost J(b)
[19][Theorem 3] in the absence of a Gaussian watermark. An

equivalent formulation to (41) after replacing the constraint

ρ(Aω) ≤ ρ̄ with Assumption 1 is given by

maximize
ω,H,pd

tr(CF2(ω,H, pd)C
T )

subject to J(b)(pd) + F1(ω,H, pd) ≤ δ,

0 ≤ pd ≤ 1, 0 ≤ ω ≤ 0.5,

H ∈ C
p×p, H � 0.

(45)

where

F2(ω,H, pd) = 2Re
(

2sym
[

L1(M2HB
T )
]

+ L1(BHB
T )
)

F1(ω,H, pd) = tr(UΘ) + tr((W + p̄dL
T
(b)UL(b))F2),

Θ(ω,H, pd) = 2Re (2sym [p̄dM1H ] + p̄dH) ,

M2 = p̄dρ̄s(A+BL(b))
[

I − sρ̄(A+ p̄dBL(b))
]−1

B,

M1 = p̄dρ̄sL(b)

[

I − sρ̄(A+ p̄dBL(b))
]−1

B,

L1(X) = p̄d
(

(A+BL(b))L1(X)(A+BL(b))
T +X

)

+ pdAL1(X)AT ,

sym(X) =
X +XT

2
, s = exp(2πjω), p̄d = 1− pd.

There is also an optimal solution (H∗, ω∗, pd∗) such that

H∗ = hhH where hH denotes the conjugate transpose of



h ∈ Cp. Letting Re and Im be the real and imaginary parts

of a matrix/vector, respectively, an optimal Aω, Ch,Ψ is

Aω = ρ̄

[

cos(2πω∗) − sin(2πω∗)
sin(2πω∗) cos(2πω∗)

]

,

Ch =
√
2
[

Re(h) Im(h)
]

, Ψ = (1− ρ̄2)I. (46)

The proof is similar in nature to the proof of Theorem

6 in [9]. A sketch is found in the appendix. For fixed

pd and ω, the proposed problem is an efficiently solvable

semidefinite program. To approximate a global maximum,

we solve the problem repeatedly over the space 0 ≤ ω ≤ 0.5
and 0 ≤ pd ≤ 1. For sufficiently large pd, the cost J̄
becomes infinite in open loop unstable systems [18], limiting

the feasible space. We can account for natural packet drops

in the system as before. For instance, if the input is dropped

naturally with probability p′d, we have p′d ≤ pd ≤ 1.

Remark 13: An optimal watermark for a given pd 6= pd∗
may have better detection performance than the globally op-

timal watermark. Future work aims to use objective functions

that better highlight the relative performance of watermarks.

Remark 14: While packet drops at the sensor measure-

ments are not modeled in this paper, our framework could

be extended to address this behavior without significantly

changing the formulations of the proposed optimization

problems. The main effect of packet drops at the sensor

side is a time varying Kalman gain. The objective function

and increase in cost J̄ due to the Gaussian portion of the

watermark are not affected by time variations in the Kalman

gain in both watermarking settings. Both J(m) and J(b) can

be empirically evaluated for fixed (α, β) and pd, respectively,

to account for packet drops at the sensor measurements.

VII. SIMULATIONS

In this section, we illustrate the performance of the pro-

posed watermarking designs through extensive numerical

results. We tested our watermark designs in various randomly

generated systems and, unless otherwise stated, averaged

results over 1500 trials. Replay attacks are considered.

In Fig. 2, we utilize Watermark 1, which has a Marko-

vian drop process defined by parameters (α, β) and an IID

Gaussian watermark. The watermark is tested on a randomly

generated open loop stable system with 5 states, 4 inputs,

and 2 outputs. We plot the receiver operating characteristic

(ROC) curve for both the proposed correlation detector and a

χ2 detector. The χ2 detector serves as a benchmark, having

been previously used for attack detection [5], [8], [10], [16]

in watermarked systems. The threshold µ is chosen to be

a constant multiple of limk→∞ E[yTk y
′
k]. The ROC curves

are collected at multiple different costs ∆J = 1.05J∗,

∆J = 0.45J∗ and ∆J = 0.15J∗. Here, ∆J represent the

increase in the cost J̄ relative to optimal cost J∗ without

drops or a Gaussian watermark. We compare a system with

drops (α = 0.69, β = 0.9) to a system without drops

(α = 1, β = 0). The proposed detector outperforms the

χ2 detector in all cases and packet drops improve the ROC

curve for both detectors. The improvement appears to be

higher for moderately valued ∆J before saturating. In Fig.

3, we plot the expected time to detection for both detectors

in a system with Watermark 1. The packet drop process

introduces an additional delay in the time to detection though

this additional time is less significant as ∆J is increased.

0 0.05 0.1 0.15 0.2

Probability of False Alarm α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

β

ROC Curve 

∆ J = 0.15 J*, α=0.69, β=0.9

∆ J = 0.15 J*, α=1, β=0

∆ J = 0.45 J*, α=0.69, β=0.9

∆ J = 0.45 J*, α=1, β=0

∆ J = 1.05 J*, α=0.69, β=0.9

∆ J = 1.05 J*, α=1, β=0

(a) Correlation Detector

0 0.05 0.1 0.15 0.2
Probability of False Alarm α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n 

β

ROC Curve 

∆ J= 0.15 J *, α=0.69, β=0.9

∆ J= 0.15 J *, α=1, β=0

∆ J= 0.45 J *, α=0.69, β=0.9

∆ J= 0.45 J *, α=1, β=0

∆ J= 1.05 J *, α=0.69, β=0.9

∆ J= 1.05 J *, α=1, β=0

(b) χ
2 Detector

Fig. 2. Detection probability versus false alarm rate for χ2 and correlation
detectors for a system using Watermark 1.
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Fig. 3. Expected time to detection for χ
2 and correlation detectors for a

system using Watermark 1.

In Fig. 4, we introduce Watermark 2, which has IID

drops (with probability of drop pd) and a stationary Gaussian

watermark. The watermark is added to a randomly generated

open loop stable system with 6 states, 5 inputs, and 5 outputs.

We plot ROC curves generated by both the correlation

detector and χ2 detector for a system with drops (pd = 0.6)
and a system without drops (pd = 0), at various costs of

control ∆J = 0.95J∗, ∆J = 0.45J∗ and ∆J = 0.15J∗.

Time to detection plots are provided in Fig. 5. The results

and patterns observed here are similar to the results seen in

the system with Watermark 1.
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Fig. 4. Detection probability versus false alarm rate for χ2 and correlation
detectors for a system using Watermark 2.
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Fig. 5. Expected time to detection for χ
2 and correlation detectors for a

system using Watermark 2.

In Figs. 6 and 7, we plot χ2 detector and correlation

detector statistics (averaged over 500 trials) during a fault

in the system. The fault introduced (at time 210) is a

constant additive bias added to a subset of sensors (i.e. due

to disturbances/sensor drift). While the χ2 detector raises an

alarm, the correlation detector does not since the watermark

is preserved in the system. This motivates the use of both the

correlation and χ2 detector to distinguish faults from attacks.

If both detectors raise an alarm, indicating the watermark is

absent in the outputs, we consider a likely attack scenario.

If only the χ2 detector raises an alarm, we expect that the

watermark is preserved while the dynamics are inconsistent

with modeling. As such, we anticipate a fault.
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Fig. 6. Average correlation detector and χ
2 detector statistics under a fault

at the sensor output for a system using Watermark 1.
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Fig. 7. Average correlation detector and χ
2 detector statistics under a fault

at the sensor output for a system using Watermark 2.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we showed how to incorporate Bernoulli

packet drops at the control input in the design of physical wa-

termarks. We argued that packet drops can be beneficial for

detection and consequently considered the design of a joint

Bernoulli-Gaussian watermark to detect integrity attacks.

We proposed two main watermark designs in conjunction

with a correlation detector and provided efficiently solvable

optimization problems to address the trade-off between de-

tection and control performances. In future work we aim to

generalize our watermarking approach to allow us to drop

either the entire control input or the Gaussian portion of the

watermark. We also hope to conduct testing in real systems.
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IX. APPENDIX: PROOF OF LEMMA 9

Proof: We begin with the following Lemma.

Lemma 15: Assume {ηk} is a stationary Markovian drop

process. Suppose α > 0 and β > 0 are chosen so that the

system has finite cost J(m) [19][Theorem 3] in the absence of

a Gaussian watermark. Consider x̄k+1 = (A+ ηkBL(m))x̄k
and x̄′k+1 = (A+ ηkBL(m))x̄

′
k,

x̄0 =

{

x00 η−1 = 0

x10 η−1 = 1
, x̄′0 =

{

x0
′

0 η−1 = 0

x1
′

0 η−1 = 1
. (47)

Then, we have

lim
k→∞

E[x̄ikx̄
j′
k |ηk−1 = 0] = 0, lim

k→∞
E[x̄ikx̄

j′
k |ηk−1 = 1] = 0,

lim
k→∞

E[x̄ikx̄
j′
k ] = 0, lim

k→∞
E[(x̄ik)

2] = 0,

where i, j ∈ {1, · · · , n} and x̄ik is the ith element of x̄k and

x̄j′k is the jth element of x̄′k .

Proof: Define JN ,
∑N

k=0 ǫE[x̄
T
k x̄k] where ǫ > 0

is chosen so ǫI ≤ W . Moreover the cost to go function is

defined as V̄j(x̄j) ,
∑N

k=j ǫE[x̄
T
k x̄k|η−1:j−1]. We show that

V̄k(x̄k) =

{

E[x̄Tk S̄kx̄k|η−1:k−1] (ηk−1 = 0)

E[x̄Tk R̄kx̄k|η−1:k−1] (ηk−1 = 1)
, (48)

where

S̄k = g1(S̄k+1, R̄k+1), R̄k = g2(S̄k+1, R̄k+1),

g1(X,Y ) , ǫI + ᾱATXA+ αFTY F,

g2(X,Y ) , ǫI + βATXA+ β̄FTY F,

and F = A + BL(m), S̄N = ǫI , R̄N = ǫI . The proof is

by induction. (48) holds for k = N . Assume it holds for

k = t+ 1. We next show (48) holds for k = t. Conditioned

on ηt−1 = 0, we have

V̄t(x̄t) = E[ǫx̄Tt x̄t + V̄t+1(x̄t+1)|η−1:t−1],

= E[ǫx̄Tt xt + x̄Tt (ᾱA
T S̄t+1A+ αFT R̄t+1F )x̄t|η−1:t−1],

= E[x̄Tt g1(S̄t+1, R̄t+1)x̄t|η−1:t−1] = E[x̄Tt S̄tx̄t|η−1:t−1].

The case when ηt−1 = 1 is similar. Thus,

JN = E[V̄0(x̄0)] =
βx00

T
S̄0x

0
0 + αx10

T
R̄0x

1
0

α+ β
. (49)

We claim that limN→∞ JN exists. Consider the sequence

Sk+1 = g1(Sk,Rk),Rk+1 = g2(Sk,Rk),R0 = S0 = ǫI.
(50)

We observe that g1(X,Y ) and g2(X,Y ) are monotonically

increasing functions in (X,Y ). Because S1 ≥ S0 and R1 ≥
R0, we see that {Sk} and {Rk} are monotonically increasing

in the semidefinite sense. Now consider the sequence

S̄k+1 = h1(S̄k, R̄k), R̄k+1 = h2(S̄k, R̄k), R̄0 = S̄0 = ǫI,
(51)

where we define

h1(X,Y ) ,W + αLT
(m)UL(m) + ᾱATXA+ αFTY F,

h2(X,Y ) ,W + β̄LT
(m)UL(m) + βATXA+ β̄FTY F.

Again, we observe that h1(X,Y ) and h2(X,Y ) are mono-

tonically increasing in (X,Y ). Because S̄1 ≥ S̄0 and R̄1 ≥
R̄0, it can be seen that {S̄k} and {R̄k} are monotonically in-

creasing in the semidefinite sense. Moreover, due to Lemma

4 in [19], {S̄k} and {R̄k} converge. We observe that if

X ≤ X̄ and Y ≤ Ȳ , then g1(X,Y ) ≤ h1(X̄, Ȳ ) and

g2(X,Y ) ≤ h2(X̄, Ȳ ). Since R0 = R̄0 and S0 = S̄0, it

can be seen that Sk ≤ S̄k and Rk ≤ R̄k for all k.

As a result, {Sk} and {Rk} are bounded above by a

monotonically increasing, convergent sequence, which in

turn means that {Sk} and {Rk} are bounded. From the

monotone convergence theorem {Sk} and {Rk} converge

to some S∗ and R∗. It is immediately seen that

lim
N→∞

JN =
βx00

TS∗x00 + αx10
TR∗x10

α+ β
. (52)

Note that JN =
∑N

k=0 ǫE[x̄
T
k x̄k]. Since JN converges to a

finite constant, limk→∞ E[x̄Tk x̄k] = 0. Since 0 ≤ E[(x̄ik)
2] ≤

E[x̄Tk x̄k], we immediately obtain

lim
k→∞

E[(x̄ik)
2] = 0. (53)

By symmetry this also implies that limk→∞ E[(x̄j′k )
2] = 0.

By Cauchy Schwartz, we see

0 ≤ (E[x̄ikx̄
j′
k ])

2 ≤ E[(x̄ik)
2]E[(x̄j′k )

2]. (54)

Since E[(x̄ik)
2]E[(x̄j′k )

2] converges to 0, we know

(E[x̄ikx̄
j′
k ])

2 converges to 0 and thus

lim
k→∞

E[x̄ikx̄
j′
k ] = 0. (55)

Next, we observe that

0 ≤ min(α, β)

α+ β
E[(x̄ik)

2|ηk−1 = l] ≤ E[(x̄ik)
2], (56)

where l ∈ {0, 1}. As α, β > 0 by assumption, we know

limk→∞ E[(x̄ik)
2|ηk−1 = l] = 0. Using the Cauchy Schwartz

inequality in a similar manner as before, we see

lim
k→∞

E[x̄ikx̄
j′
k |ηk−1 = 1] = 0, lim

k→∞
E[x̄ikx̄

j′
k |ηk−1 = 0] = 0.

(57)



We are now ready to prove the desired result. To this end,

we first observe that
(

E[x̄′k+1x̄
T
k+1|ηk = 0]

E[x̄′k+1x̄
T
k+1|ηk = 1]

)

= L0

(

E[x̄′kx̄
T
k |ηk−1 = 0]

E[x̄′kx̄
T
k |ηk−1 = 1]

)

.

(58)

As a result,
(

E[x̄′kx̄
T
k |ηk−1 = 0]

E[x̄′kx̄
T
k |ηk−1 = 1]

)

= Lk
0

(

x0
′

0 x
0 T
0

x1
′

0 x
1 T
0

)

. (59)

Leveraging (57), we see that limk→∞ E[x̄′kx̄
T
k |ηk−1 = l] = 0

for l ∈ {0, 1}. Consequently, we have

lim
k→∞

Lk
0

(

x0
′

0 x
0 T
0

x1
′

0 x
1 T
0

)

= 0. (60)

Note that x0
′

0 , x
0
0, x

1′

0 , and x10 can be chosen so that Lk
0 is

applied to an arbitrary canonical basis vector in R2n×n. Thus,

for all M ∈ R2n×n, limk→∞ Lk
0(M) = 0. Thus, L0 is stable.

X. APPENDIX: PROOF OF THEOREM 12

Proof: We begin with the following Lemma.

Lemma 16: Suppose pd is chosen so the system with

IID drops has finite cost J(b) [19][Theorem 3]. Then the

matrix (A+p̄dBL(b)) is Schur stable. Moreover, the operator

L1(X) , p̄d(A+BL(b))X(A+BL(b))
T +pdAXA

T is sta-

ble. Specifically, ∀M ∈ Rn×n, we have limk→∞ Lk
1(M) = 0

Proof: Consider the systems x̄k+1 = (A+ηkBL(b))x̄k,

and x̄′k+1 = (A + ηkBL(b))x̄
′
k. where ηk is an IID drop

process with drop probability pd and x̄0 = x0,∗, x̄
′
0 = x′0,∗.

Observe that

E[x̄k] = (A+ p̄dBL(b))
kx0,∗. (61)

Noting that the IID drop case is a special instance

of Markovian drops, we know from Lemma 15 that

limk→∞ E[(x̄ik)
2] = 0. Using the fact that E[(x̄ik)

2] ≥
(E[x̄ik])

2 ≥ 0, we have limk→∞ E[x̄k] = 0. As a result,

for all x0,∗ ∈ Rn

lim
k→∞

(A+ p̄dBL(b))
kx0,∗ = 0. (62)

Thus, (A+ p̄dBL(b)) is Schur stable. Next, we note that

E[x̄′k+1x̄
T
k+1] = L1(E[x̄

′
kx̄

T
k ]). (63)

As a result,

E[x̄′kx̄
T
k ] = Lk

1(x
′
0,∗x

T
0,∗). (64)

Leveraging (55), we note limk→∞ E[x̄′kx̄
T
k ] = 0 and this

implies

lim
k→∞

Lk
1(x

′
0,∗x

T
0,∗) = 0. (65)

Note that x′0,∗ and x0,∗ can be chosen so that Lk
1 is applied

to an arbitrary canonical basis vector in Rn×n. Thus, for all

M ∈ R
n×n, limk→∞ Lk

1(M) = 0. Thus, L1 is stable.

We now proceed to the main proof. We obtain an equivalent

realization to (41) by using autocovariance functions Γ(d) ,
E[∆uk∆uk+d].

Step 1: Calculate J̄ in terms of Γ(d):
Let us first compute

E[xTt Wxt + uTt,cUut,c] = tr(WCov(xt)) + tr(UCov(ut,c)),

for fixed t ≥ 0. It can be seen that

xt = l1,{ηk}(w−∞:t−1, v−∞:t−1) + γt(∆u−∞:t−1), (66)

ut,c = l2,{ηk}(w−∞:t−1, v−∞:t) + ηtL(b)γt(∆u−∞:t−1)

+ ηt∆ut,

γt(∆u−∞:t−1) =

∞
∑

i=1−t

[ t−1
∏

j=1−i

(A+ ηjBL(b))

]

η−iB∆u−i,

where l1 and l2 are linear functions of the process and sensor

noise for fixed realizations of the drop process ηk. Since

{wk} and {vk} are independent of ∆uk, we observe that

J̄ = J(b)(pd) +
1

N
lim

N→∞

N−1
∑

t=0

(

tr(WCov(γt))+

tr(UCov(ηt[L(b)γt +∆ut]))

)

. (67)

Step 1a: Calculate Cov(γt):
Define Zt ,

∑∞
i=1−t γi,tγ

T
i,t where

γi,t ,

[ t−1
∏

j=1−i

(A+ ηjBL(b))

]

η−iB∆u−i.

We see that E[Zt+1] is equal to

E[(A+ ηtBL(b))Zt(A+ ηtBL(b))
T + η2tB∆ut∆u

T
t B

T ].

Since ηt is independent of Zt, we have

E[Zt+1] = L1(E[Zt]) + p̄dBΓ(0)BT .

Since L1 is stable and the system has been running since

k = −∞, E[Zt] is the unique solution of the following fixed

point equation.

E[Zt] = L1(E[Zt]) + p̄dBΓ(0)BT = L1(BΓ(0)BT ).

In addition, let

Y d
t ,

∞
∑

i=1−t

ξdi,tγ
T
i,t,

ξdi,t ,

[ t−1
∏

j=1−i−d

(A+ ηjBL(b))

]

η−i−dB∆u−i−d.

By similar reasoning, we find that E[Y d
t ] equals

L1

(

p̄d(A+BL(b))(A+ p̄dBL(b))
d−1BΓ(d)BT

)

.

We argue

Cov(γt) = E

[

Zt +

∞
∑

d=1

Y d
t + (Y d

t )
T

]

= 2

∞
∑

d=1

sym[Y d
∗ ] + L1(BΓ(0)BT ), (68)



where

Y d
∗ = L1

(

p̄d(A+BL(b))(A+ p̄dBL(b))
d−1BΓ(d)BT

)

.

Step 1b: Calculate Cov(ηt[L(b)γt +∆ut]):
We argue that

E[η2tL(b)γt∆u
T
t ] = p̄2dL(b)

∞
∑

d=0

(A+ p̄dBL(b))
dBΓ(d+ 1).

Therefore, we obtain

Cov(ηt[L(b)γt +∆u1]) = p̄d

(

Γ(0) + L(b)Cov(γ)LT
(b)

)

+ 2sym

(

p̄2dL(b)

∞
∑

d=0

(A+ p̄dBL(b))
dBΓ(d+ 1)

)

, (69)

where Cov(γ) , Cov(γt) is given in (68). Note, Cov(γt) is

constant in t. Substituting (69) into (67), we have J̄ =

J(b)(pd) + tr(p̄dUΓ(0)) + tr((W + p̄dL
T
(b)UL(b))Cov(γ))

+ tr

(

2Usym

(

p̄2dL(b)

∞
∑

d=0

(A+ p̄dBL(b))
dBΓ(d+ 1)

)

)

.

Step 2: Calculate E[yTk y
′
k|H0] in terms of Γ(d):

Recall from the proof of Theorem 8 and (39)

E[yTk y
′
k|H0] = tr

(

CE[x′kx
T
k ]C

T
)

.

We observe that x′k = γk. Thus, from (66), we assert

lim
k→∞

E[yTk y
′
k|H0] = tr

(

CCov(γ)CT
)

. (70)

Step 3: Convert to Frequency Domain:

Optimizing over the autocovariance functions is intractable

as there are infinitely many optimization variables. In this

case, as in the work [9], we will leverage Bochner’s theorem

in [23, p.64] (see also [24]). This theorem provides a fre-

quency domain representation of an autocovariance function

of a stationary process:

Theorem 17 (Bochner’s theorem): Γ(d) is an autocovari-

ance function of a stationary Gaussian process {∆uk} if and

only if there exists a unique positive Hermitian measure ν
of size p× p satisfying

Γ(d) =

∫ 0.5

−0.5

exp(2πjdω)dν(ω).

Note that a positive Hermitian measure ν takes a Borel set

in [−0.5 0.5] and outputs a positive semidefinite Hermitian

matrix in Cp×p. We choose to optimize over Γ̃(d), which

has bijective relationship with Γ(d). By assumption Γ̃(d) is

an autocovariance function of a stationary Gaussian process.

As a result, we can use Bochner’s theorem to rewrite Γ̃(d)
in terms of a Riemann sum. Specifically,

Γ̃(d) = lim
σ→0

2Re

[

q
∑

i=1

exp(2πjdωi)ν̃(Ii)

]

, (71)

where Ii ∩ Ij = ∅, ∪q
i=1 Ii = [0, 0.5], ωi ∈ Ii and σ is

the maximum length of Ii. Here, we also leverage the fact

that Γ̃(d) is real. Moreover, from (68), we see that

Cov(γ)

= lim
σ→0

q
∑

i=1

(

2Re
[

2sym
(

L1

[

p̄d exp(2πjωi)ρ̄(A+BL(b))

∞
∑

d=1

(ρ̄ exp(2πjωi)(A + p̄dBL(b)))
d−1Bν̃(Ii)B

T
])

+ L1

[

Bν̃(Ii)B
T
]])

,

= lim
σ→0

q
∑

i=1

(

2Re
[

2sym
(

L1

[

p̄d exp(2πjωi)ρ̄(A+BL(b))

(I − ρ̄ exp(2πjωi)(A + p̄dBL(b)))
−1Bν̃(Ii)B

T
])

+ L1

[

Bν̃(Ii)B
T
]])

,

= lim
σ→0

q
∑

i=1

F2(ωi, ν̃(Ii), pd). (72)

The inverse is well defined since we showed (A+ p̄dBL(b))
is Schur stable. By similar reasoning it can be shown that

J̄ = J(b)(pd) + lim
σ→0

q
∑

i=1

F1(ωi, ν̃(Ii), pd). (73)

Replacing ρ(Aω) ≤ ρ̄ with Assumption 1 in problem (41),

we arrive at the following equivalent formulation:

maximize
ν̃(Ii),pd

lim
σ→0

q
∑

i=1

tr(CF2(ωi, ν̃(Ii), pd)C
T )

subject to J(b)(pd) + lim
σ→0

q
∑

i=1

F1(ωi, ν̃(Ii), pd) ≤ δ,

0 ≤ pd ≤ 1.
(74)

Step 4: Demonstrate Equivalence:

The rest of the result follows from Steps 3 and 4 in the

proof of Theorem 6 in [9] when pd < 1. In particular, we can

leverage the linearity of F2 and F1 in H for fixed pd < 1 and

ω to show that the optimal value of (45) is an upper bound

on the optimal value for problem (74). Then, we show that

for Borel set Sb ⊂ [−0.5, 0.5], the measure

ν̃(Sb) = Iω∗∈Sb
H∗ + I−ω∗∈Sb

conj(H∗), (75)

where I is the indicator function and conj refers to the

complex conjugate, achieves this upper bound. The resulting

autocovariance function is

Γ(d) = 2ρ̄|d|Re(exp(2πjdω∗)H∗), (76)

and can be generated by the HMM (46) if there exists an opti-

mal H∗, which has rank 1. Theorem 7 of [8] demonstrates the

existence of such a solution, while the associated proof shows

how such a solution can be constructed from an optimal H∗

with rank greater than 1. When pd = 1, F2 and F1 are

identically 0, establishing the equivalence of (45) and (74)

in this scenario. Note also in this case, (if J(b)(pd) ≤ δ) any

stationary Gaussian process in the feasible region is optimal

since the resulting additive input is immediately dropped.
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