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Abstract—The problem of symmetric private information re-
trieval (SPIR) from replicated databases with colluding servers
and adversaries is studied. Specifically, the database comprises
K files, which are replicatively stored among N servers. A user
wants to retrieve one file from the database by communicating
with the N servers, without revealing the identity of the desired
file to any server. Furthermore, the user shall learn nothing
about the other K − 1 files in the database. Any T out
of N servers may collude, that is, they may communicate
their interactions with the user to guess the identity of the
requested file. An adversary in the system can tap in on
or even try to corrupt the communication. Three types of
adversaries are considered: a Byzantine adversary who can
overwrite the transmission of any B servers to the user; a
passive eavesdropper who can tap in on the incoming and
outgoing transmissions of any E servers; and a combination
of both – an adversary who can tap in on a set of any E

nodes, and overwrite the transmission of a set of any B nodes.
The problems of SPIR with colluding servers and the three
types of adversaries are named T-BSPIR, T-ESPIR and T-
BESPIR respectively. The capacity of the problem is defined
as the maximum number of information bits of the desired file
retrieved per downloaded bit. We show that the information-
theoretical capacity of the T-BSPIR problem equals 1− 2B+T

N
, if

the servers share common randomness (unavailable at the user)
with amount at least 2B+T

N−2B−T
times the file size. Otherwise,

the capacity equals zero. The information-theoretical capacity

of the T-ESPIR problem is proved to equal 1 −

max(T,E)
N

, if
the servers share common randomness with amount at least

max(T,E)
N−max(T,E)

times the file size. Finally, for the problem of T-

BESPIR, the capacity is proved to be 1−
2B+max(T,E)

N
, where

the common randomness shared by the servers should be at

least
2B+max(T,E)

N−2B−max(T,E)
times the file size. The results resemble

those of secure network coding problems with adversaries and
eavesdroppers.

I. INTRODUCTION

In the situation where a user wants to retrieve a file from

a remotely stored database, the nature of the data might be

privacy-sensitive, for example medical records, stock prices

etc., such that the user does not want to reveal the identity of

the data retrieved. This is known as the problem of private

information retrieval (PIR). In some cases, the privacy of the

database needs also to be preserved. For example, if a user

wants to retrieve his/her medical data from a database, it is

hoped that the user obtains no information about other users’

medical records. This is known as the problem of symmetric

private information retrieval (SPIR).

The problem of SPIR was firstly studied in the computer

science society. It is shown that if the database is stored

at a single server, the only possible scheme for the user is

to download the entire database to guarantee information-

theoretic privacy [1], [2], which is inefficient in practice. It is

further shown that the communication cost can be reduced in

sublinear scale by replicating the database at multiple non-

colluding servers [2]. To further protect the privacy of the

database, the problem of SPIR is introduced [3], such that

the user obtains no more information regarding the database

other than the requested file. In [1]–[3], the database is

modeled as a bit string, and the user wishes to retrieve

a single bit. In these works, the communication cost is

measured as the sum of the transmission at the querying

phase from user to servers and at the downloading phase

from servers to user.

When the file size is significantly large and the target is to

minimize the communication cost of only the downloading

phase, the metric of the downloading cost is defined as the

number of bits downloaded per bit of the retrieved file, and

the reciprocal of which is named the PIR capacity. A series

of recent works derive information-theoretic limits of various

versions of the PIR problem [4]–[10] etc. The leading work

in the area is by Sun and Jafar [4], where the authors find

the capacity of the PIR problem with replicated databases. In

subsequent works by Sun and Jafar [5], [6], the PIR capacity

with duplicated databases and colluding servers, and the SPIR

capacity with duplicated (non-colluding) databases are de-

rived. In [7]–[9], Banawan and Ulukus find the capacity of the

PIR problem with coded databases, multi-message PIR with

replicated databases, and the PIR problem with colluding and

Byzantine databases. In our previous work [10], we derive

the capacity of the SPIR problem with coded databases.

Another series of works focus more on the coding structure

of the storage system, and study schemes and information

limits for various PIR problems with coded databases [11]–

[15]. In [11], PIR is achieved by downloading one extra bit

other than the desired file, given that the number of storage

nodes grows with file size, which can be impractical in some

storage systems. In [12], storage overhead can be reduced

by increasing the number of storage nodes. In [13], tradeoff

between storage cost and downloading cost is analyzed.

Subsequently in [14], explicit schemes which match the

tradeoff in [13] are presented. It is worth noting that in [7],

the capacity of PIR for coded database is settled, which

improves the results in [13], [14]. Recently in [15], the

authors present a framework for PIR from coded database
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with colluding servers.

In this work, we study the SPIR version of the problem

in [9], that is, SPIR from replicated databases with colluding

and Byzantine servers. We also study the SPIR problem

with a passive eavesdropper, then generalize to the case

with an adversary who can both eavesdrop and corrupt the

communication. In analogy to previous works on SPIR [6],

[10], in the non-trivial context where the database comprises

at least two files, the storage nodes need to share common

randomness which is independent from the database and

meanwhile unavailable to the user. Furthermore, in the case

with an eavesdropper who can tap in on a set of the nodes

and is curious about the database, the utility of the shared

common randomness is two-fold in the sense that it also

protect the database from the eavesdropper. Briefly speaking,

in this work, we study the SPIR problem with replicated

databases, where a database with K files are replicated at N

servers. Any T out of the N servers may collude, that is,

they may share their communication with the user to infer

the identity of the requested file. The communication in the

system is not secure, that is, there is an adversary who can

tap in on or even corrupt the transmissions in the system. We

consider three types of adversaries, a Byzantine adversary

who can overwrite the transmission of any B servers to the

user, named T-BSPIR; a passive eavesdropper who can tap

in on the incoming and outgoing transmissions of any E

servers, named T-ESPIR; and a combination of both – an

adversary who can tap in on a set of any E nodes, and

overwrite the transmission of a set of any B nodes (the

two sets may overlap), named T-BESPIR. We show that

the information-theoretical capacity of the T-BSPIR problem

equals 1 − 2B+T
N

, if the servers share common randomness

(unavailable at the user) with amount at least T
N−2B−T

times

the file size. Otherwise, the capacity equals zero. This is

presented in Theorem 1. The information-theoretical capacity

of the T-ESPIR problem is proved to equal 1− max(T,E)
N

, if

the servers share common randomness with amount at least
max(T,E)

N−max(T,E) times the file size. This is presented in Theo-

rem 2. Finally in Section VI-A, we show that for the problem

of T-BESPIR, the capacity is 1 − 2B+max(T,E)
N

, where the

common randomness shared by the servers should be at least
max(T,E)

N−2B−max(T,E) times the file size. The results resemble the

capacity of secure network coding with adversaries [16].

II. MODEL

A. Notations

Let [m : n] denote the set {m,m+ 1, . . . , n} for m ≤ n.

For the sake of brevity, denote the set of random variables

{Xm, Xm+1, . . . , Xn} by X[m:n] . The transpose of matrix

G is denoted by G
T.

B. Problem Description

Database: A database comprises K independent files, de-

noted by W1, . . . ,WK , which are replicated at N nodes

(servers). Each file consists of L symbols drawn indepen-

dently and uniformly from the finite field Fq. Therefore, for

any k ∈ [1 : K],

H(Wk) = L log q ; H(W1, . . . ,WK) = KL log q.

User queries: A user wants to retrieve a file Wκ with

index κ from the database, where the desired file index κ is

uniformly distributed among [1 : K]. Let U denote a random

variable privately generated by the user, which represents the

randomness of the query scheme followed by the user. The

random variable U is generated before the realizations of the

messages or the desired file index. Let the realization of the

file index κ be k, based on the realization of the desired

file index k and the realization of U , the user generates and

sends queries to all nodes, where the query received by node-

n is denoted by Q
[k]
n . Let Q = [Q

[k]
n ]n∈[1:N ],k∈[1:K] denote

the complete query scheme, namely, the collection of all

queries under all cases of desired file index. We have that

H(Q|U) = 0.

Node common randomness: Let random variable S denote

the common randomness shared by all nodes, the realization

of which is known to all nodes but unavailable to the user.

The common randomness is utilized to protect database-

privacy (2) below. For any node n ∈ [1 : N ], a random

variable Sn is generated from S, which is used in the answer

scheme followed by node n. Hence, H(S1, . . . , Sn|S) = 0.

Node answers: The nodes generate answers according to

the agreed scheme with the user based on the received

query Q
[k]
n , the stored database, and the random variable

Sn generated from the common randomness. The answer

generated and sent to the user by node n is denoted by A
[k]
n .

Adversary: Three types of adversaries are considered in

this work. The first type is called Byzantine adversaries,

who can overwrite the answers of a set B of at most B

nodes, called corrupted nodes, pretending to send answers

to the user from the corrupted nodes to confuse the user.

The nodes that are not corrupted by the adversary are called

authentic nodes. The user has no knowledge of the identity

of the corrupted nodes. The answers overwritten and sent

to the user are denoted by Ã
[k]
B . We assume the Byzantine

adversary is omniscient, that is, the adversary can tap in on

all transmissions and corrupt the B answers in a worst-case

way that confuses the user the most. The model considered

in [9], where there are B Byzantine adversarial nodes who

send arbitrary or worst-case answers to the user, can be

considered as a special case where the adversary can only

taps on the transmissions of the B nodes chosen to corrupt,

i.e. the adversary has less knowledge.1

The second type adversary considered is called passive

eavesdroppers, who can tap in on the incoming and outgoing

transmissions of E nodes in the system. The eavesdropper is

“nice but curious”, in the sense that the goal of the eavesdrop-

per is to obtain some information about the database, without

corrupting any transmission. The user has no knowledge of

1For zero-error decodability, the knowledge of the adversary does not
affect the result, because the adversary could “happen” to generate the worst-
case corrupted answers without knowing the transmissions in the system, in
which case the communication scheme should still prevent the user from
decoding the desired file wrong.



the identity of the nodes tapped on by the eavesdropper.

The third type of adversary considered is a combination

of the above two types. The adversary can tap in on the

incoming and outgoing communications of any set E with E

nodes, and can overwrite the answers of any set B with B

nodes. The two sets may intersect. In this case, the adversary

is not omniscient and does not tap in on the nodes that are

in B but not in E .

T-BSPIR and T-ESPIR: Based on the received answers

A
[k]
[1:N ] (for the case with Byzantine adversary, we abuse the

notation and let A
[k]
[1:N ] = {A

[k]
[1:N ]\B, Ã

[k]
B }) and the query

scheme Q, the user shall be able to decode the requested file

Wk with zero error. Any set of T nodes may collude to guess

the requested file index, by communicating their interactions

with the user. Two privacy constraints must be satisfied:

• User-privacy: any T colluding nodes shall not be able

to obtain any information regarding the identity of the

requested file, i.e.,

I(κ;Q
[κ]
T , A

[κ]
T ,W[1:K], S) = 0, ∀T ⊂ [1 : N ], |T | = T.

(1)

• Database-privacy: the user shall learn no information

regarding other files in the database, that is, defining

Wκ̄ = {W1, . . . ,Wκ−1,Wκ+1, . . . ,WK},

I(Wκ̄;A
[κ]
[1:N ],Q, κ) = 0. (2)

For the case with passive eavesdropper and the case with

the combination adversary, one more privacy constraint must

be satisfied to protect the database from the eavesdropper. For

any node set E with at most E nodes, and for any k ∈ [1 : K]:

I(W[1:K];Q
[k]
E , A

[k]
E ) = 0. (3)

We use the same definition as in [10] for rate and capacity

of T-BSPIR, T-ESPIR and T-BESPIR schemes. (We state

only the definitions in terms of T-BSPIR.)

Definition 1. The rate of a T-BSPIR scheme is the num-

ber of information bits of the requested file retrieved per

downloaded answer bit. By symmetry among all files, for

any k ∈ [1 : K],

RT-BSPIR ,
H(Wk)

∑N
n=1 H(A

[k]
n )

.

The capacity CT-BSPIR is the supremum of RT-BSPIR over all

T-BSPIR schemes.

Definition 2. The secrecy rate is the amount of common

randomness shared by the storage nodes relative to the file

size, that is

ρT-BSPIR ,
H(S)

H(Wk)
.

III. MAIN RESULT

A. T-BSPIR

When there is only one file in the database, i.e. K = 1,

database-privacy is guaranteed automatically, because there

is no other file to protect from the user in the database.

Therefore, the T-BSPIR problem reduces to T-BPIR problem,

and from [9], the capacity is 1− 2B
N

if N > 2B+T . In fact,

when K = 1, user-privacy is also trivial, since there is only

one file that the user can request for. That is the reason the

parameter T is not in the capacity 1 − 2B
N

. Therefore, the

condition can be relaxed to that if N ≥ 2B+1, the capacity

of T-BSPIR when K = 1 is 1 − 2B
N

. If N ≤ 2B, the user

cannot successfully retrieve the file regardless of how much

information downloaded, i.e. the capacity is 0. When K ≥ 2,

T-BSPIR is non-trivial and our main result is summarized

below.

Theorem 1. For symmetric private information retrieval

from a database with K ≥ 2 files which are replicated at

N nodes, where any T nodes may collude and a Byzantine

adversary can corrupt the answers of any B nodes, if

N > 2B + T , the capacity is

CT-BSPIR =

{

1− 2B+T
N

, if ρT-BSPIR ≥ T
N−2B−T

0, otherwise
.

Remark: In [9], the authors show that the T-BPIR capacity

is N−2B
N

·
1− T

N−2B

1−( T

N−2B )K
. It can be observed that as the number

of files K tends to infinity, their T-BPIR capacity approaches

our T-BSPIR capacity. The intuition is that, when the number

of files increases, the penalty in the downloading rate to pro-

tect database-privacy decays. When there are asymptotically

infinitely many files, the information rate the user can learn

about the database from finite downloaded symbols vanishes.

B. T-ESPIR

When there is only one file in the database, the database-

privacy and user-privacy become trivial. The only privacy

constraint needed to be guaranteed is that the eavesdropper

learns no information of the database (3). It can be easily

checked that the capacity equals 1 − E
N

. When K ≥ 2, the

capacity of T-ESPIR is summarized below.

Theorem 2. For symmetric private information retrieval

from a database with K ≥ 2 files which are replicated at N

nodes, where any T nodes may collude and an eavesdropper

can tapped on the communication of any E nodes, the

capacity is

CT-ESPIR =

{

1− max (T,E)
N

, if ρT-ESPIR ≥ max (T,E)
N−max (T,E)

0, otherwise
.

IV. T-BSPIR

A. Achievability

In this section, we present a general scheme which

achieves the maximum T-BSPIR rate 1 − 2B+T
N

when the

secrecy rate is T
N−2B−T

. The main concepts of the construc-

tion are:

• The queries received by any set of T nodes are mutually

independent, and are independent of the desired file

index k. This is achieved by expanding T independent

query vectors with an (N, T )-MDS code.



• Because the answers received from any B nodes might

be erroneous, the N answers are formalized in a form of

(N,N − 2B)-MDS code, such that the user can correct

up to B errors.

Assume each file comprises L = N − 2B − T

symbols from a large enough field Fq .2 Let the vector

W = (w
[1]
1 , . . . , w

[1]
N−2B−T , . . . , w

[K]
1 , . . . , w

[K]
N−2B−T ) rep-

resent the database, which is stored at each server. The user

wants to retrieve Wk = (w
[k]
1 , . . . , w

[k]
N−2B−T ) privately.

The user generates the queries following the steps below:

Step 1: Generates T independent uniformly random vectors

U1, . . . , UT of length K(N − 2B − T ) over Fq . Let the

K(N − 2B − T )× T matrix U denote [U1, . . . , UT ].

Step 2: Let e
[k]
i denote the length-(K(N − 2B − T )) unit

vector where only the
(

(k − 1)(N − 2B − T ) + i
)

th entry

is 1 and all the other entries are 0’s. The purpose of e
[k]
i is

to retrieve the ith entry of Wk. Let the K(N − 2B − T )×

(N − 2B − T ) matrix e denote [e
[k]
1 , e

[k]
2 , . . . , e

[k]
N−2B−T ].

Step 3: Let {λ1, . . . , λN} be N distinct nonzero elements

from Fq . Let GU be the generating matrix of an (N, T )-
generalized-Reed-Solomon (GRS) code with code locators

{λ1, . . . , λN} and column multipliers all be 1. That is,

GU =











1 1 . . . 1
λ1 λ2 . . . λN

...
...

. . .
...

λT−1
1 λT−1

2 . . . λT−1
N











. (4)

Let Ge be the generating matrix of an (N,N − 2B − T )-
GRS code with code locators {λ1, . . . , λN} and column

multipliers {λT−1
1 , . . . , λT−1

N }. That is,

Ge =











1 1 . . . 1
λ1 λ2 . . . λN

...
...

. . .
...

λN−2B−T−1
1 λN−2B−T−1

2 . . . λN−2B−T−1
N











(5)

· diag(λT−1
1 , λT−1

2 , . . . , λT−1
N ) (6)

=











λT
1 λT

2 . . . λT
N

λT+1
1 λT+1

2 . . . λT+1
N

...
...

. . .
...

λN−2B−1
1 λN−2B−1

2 . . . λN−2B−1
N











. (7)

Step 4: Generate the N query vectors Q
[k]
1 , . . . , Q

[k]
n by

[Q
[k]
1 , . . . , Q[k]

n ] = UGU + eGe (8)

= [U, e] ·

[

GU

Ge

]

(9)

The user sends the query vectors generated from equa-

tion (9) to the servers.

All the servers share T symbols S1, . . . , ST that are

uniformly and independently chosen from Fq, which are

unavailable to the user. The servers generate their answers

2The field size should be large enough such that the MDS codes used in
the construction exist.

by taking the inner product of the query vectors they receive

and the stored data vector, then add on a linear combination

of S1, . . . , ST . Specifically,

A[k]
n = 〈Q[k]

n ,W〉+
T
∑

j=1

λj−1
n Sj . (10)

There are at most B servers corrupted by the Byzantine

adversary, who generate arbitrary (or even malicious) answers

Ã
[k]
n to confuse the user. Assume the Byzantine adversary

generates answers of the same size as the authentic servers,

i.e. the size the user expects to receive, otherwise the user

can easily identify the erroneous answers.

To see that the user can decode Wk successfully, firstly we

look at the N correct answers. Denote Xj = 〈Uj ,W〉+ Sj ,

where j = 1, . . . , T . From (9) and (10), A
[k]
n = X1+λnX2+

· · ·+λT−1
n XT +λT

nw
[k]
1 + · · ·+λN−2B−1

n w
[k]
N−2B−T . Hence,

[A
[k]
1 , . . . , A[k]

n ] = [X1, . . . , XT , w
[k]
1 , . . . , w

[k]
N−2B−T ] ·G,

(11)

where

G = [GU,Ge]
T

=











1 1 . . . 1
λ1 λ2 . . . λN

...
...

. . .
...

λN−2B−1
1 λN−2B−1

2 . . . λN−2B−1
N











. (12)

It can be observed that G is the generating matrix of an

(N,N − 2B)-GRS code with code locators {λ1, . . . , λN}
and column multipliers all be 1. Therefore, when at most

B symbols out of [A
[k]
1 , . . . , A

[k]
n ] are wrong, the user can

still successfully decode [X1, . . . , XT , w
[k]
1 , . . . , w

[k]
N−2B−T ],

which include all symbols of Wk .

It is obvious that database-privacy is guaranteed. Because

besides Wk, the user solves T symbols Xj = 〈Uj ,W〉+Sj ,

j = 1, . . . , T . Because S1, . . . , ST are independent uniform

symbols drawn from Fq , the user can obtain no information

about the linear combinations of the database from the Xj’s.

To see that user-privacy is guaranteed, from (9), because

U1, . . . , UT are T independent random vectors and GU is

the generating matrix of an (N, T )-GRS code, any T column

vectors of UGU are still independent uniform random vec-

tors. Hence, by adding deterministic column vectors of eGe,

any T query vectors are still independent uniform random

vectors, and are independent from the desired file index.

Therefore, any T colluding nodes cannot infer the desired

file index.

To conclude, the rate achieved by this scheme is
N−2B−T

N
= 1 − 2B+T

N
with secrecy rate T

N−2B−T
, which

matches the capacity.

B. Converse

In this section, we prove the converse part of Theorem 1.

Lemmas 3-5 below are the versions with colluding servers

and replicated databases of Lemmas 2-4 in [10] (and Lemmas

1-2 in [6]). Hence we state the lemmas with sketch proofs.

For any set of nodes that are not corrupted by the adversary,



given their received queries, the answers generated by these

nodes do not depend on other queries. Because besides the

received queries, the answers depend on the database and

the shared common randomness, which are independent with

other queries. Lemma 3 below states that this also holds if

conditioned on the requested file.

Lemma 3. For any set of nodes N ⊂ [1 : N ] that are not

corrupted by the adversary,

H(A
[k]
N |Q,Wk, Q

[k]
N ) = H(A

[k]
N |Wk, Q

[k]
N ).

Proof: We first show that I(A
[k]
N ;Q|Wk, Q

[k]
N ) ≤ 0, as follows

I(A
[k]
N ;Q|Wk, Q

[k]
N ) ≤ I(A

[k]
N ,W[1:K], S;Q|Wk, Q

[k]
N )

(a)
= I(W[1:K], S;Q|Wk, Q

[k]
N )

≤ I(W[1:K], S;Q) = 0,

where (a) holds because the answers are deterministic func-

tions of the database, common randomness, and the queries.

In the last step, I(W[1:K], S;Q) = 0 holds because the

queries do not depend on the database and common ran-

domness.

On the other hand, it is immediate that

I(A
[k]
N ;Q|Wk, Q

[k]
N ) ≥ 0. Therefore, H(A

[k]
N |Wk, Q

[k]
N ) =

H(A
[k]
N |Q,Wk, Q

[k]
N ). �

Lemma 4. For any set of nodes T ⊂ [1 : N ] with size

|T | = T that are not corrupted by the adversary,

H(A
[k]
T |Q

[k]
T ) = H(A

[k′ ]
T |Q

[k′]
T ), (13)

H(A
[k]
T |Wk, Q

[k]
T ) = H(A

[k′ ]
T |Wk, Q

[k′]
T ). (14)

Proof: The proof is similar as that of Lemma 1 in [6]. We

omit the detailed proof here. The key idea is that since any T

nodes may collude, the statistical distribution of the queries

and answers of any T nodes shall be the same regardless of

the requested file index, even if the nodes condition on a part

of the database, for example Wk. Otherwise, the T nodes can

differentiate between the cases where Wk is requested and

Wk′ is requested. �

Lemma 5. For any set of nodes T ⊂ [1 : N ] with size

|T | = T that are not corrupted by the adversary,

H(A
[k]
T |Wk, Q

[k]
T ) = H(A

[k′]
T |Q

[k′]
T ).

Proof: By database-privacy (2), I(Wk̄;A
[k′ ]
[1:N ],Q) = 0. For

any k 6= k′, because Wk ∈ Wk̄′ , we have

0 = I(Wk;A
[k′]
T , Q

[k′]
T )

= I(Wk;A
[k′]
T |Q

[k′]
T ) + I(Wk;Q

[k′]
T )

(a)
= I(Wk;A

[k′]
T |Q

[k′]
T )

= H(A
[k′ ]
T |Q

[k′]
T )−H(A

[k′]
T |Wk, Q

[k′]
T )

(b)
= H(A

[k′]
T |Q

[k′]
T )−H(A

[k]
T |Wk, Q

[k]
T ),

where equality (a) holds because Wk is independent of the

queries, and equality (b) follows by (14). �

Lemma 6 below states that the user should be able to

decode the desired file from any N − 2B authentic nodes.

This is similar as Lemma 4 in [9], developed from the cut-

set bound in the network coding problem [17], [18], and the

distributed storage problem [19]. The difference between our

Lemma 6 and Lemma 4 in [9] is that instead of arguing

that the answers from any N − 2B authentic nodes must be

unique for every realization of the database, we argue that it

only needs to hold for any realization of the requested file

Wk. For different realizations of the database that differ on

files other than Wk , the interference may still be the same

hence the user can successfully decode. We reprise the proof

of Lemma 4 in [9] with slight modification for the proof of

Lemma 6 below.

Lemma 6. For any set of authentic nodes H ∈ [1 : N ] where

|H| = N − 2B, for correctly decoding Wk , the answers A
[k]
H

are unique for every realization of Wk. That is, there cannot

exist two realizations of the kth file, Wk 6= W̃k, such that

A
[k]
H (Wk) = A

[k]
H (W̃k). Consequently, H(Wk|A

[k]
H ,Q) = 0.

Proof: Divide the nodes [1 : N ] \ H into two size-B sets,

denoted by B1 and B2. The scheme shall allow the user to

correctly decode Wk if any B nodes in [1 : N ] \ H are

corrupted by the Byzantine adversary, with any corrupted

answers. Consider the following two cases:

• Case 1: The true realization of the kth file is Wk. The

user downloads A
[k]
H (Wk) from the authentic nodes in

H. The nodes in B1 are also authentic, who generates the

answers A
[k]
B1
(Wk). The nodes in B2 are the corrupted

nodes, the answers from which overwritten by the

adversary “happened” to be generated with the agreed

scheme but by replacing the kth file with W̃k, denoted

by Ã
[k]
B2

= A
[k]
B2
(W̃k).

• Case 2: The true realization of the kth file is W̃k. The

user downloads A
[k]
H (W̃k) from the authentic nodes in

H. The nodes in B2 are also authentic, who generates

the answers A
[k]
B2
(W̃k). The nodes in B1 are corrupted,

the answers from which overwritten by the adversary

“happened” to be generated with the agreed scheme but

by replacing the kth file with Wk, hence generating

Ã
[k]
B1

= A
[k]
B1
(Wk).

If A
[k]
H (Wk) = A

[k]
H (W̃k), under both cases, the user

downloads the same set of answers from all nodes, i.e.,
(

A
[k]
H (Wk) = A

[k]
H (W̃k), A

[k]
B1
(Wk), A

[k]
B2
(W̃k)

)

. Hence, the

user cannot successfully decode whether the kth file is Wk

or W̃k.

In conclusion, for any different realization of Wk, the

answers from H differs. In other words, the user should be

able to successfully decode the desired file from the N −2B

authentic nodes, . i.e., H(Wk|A
[k]
H ,Q) = 0. �

1) The proof for R ≤ CT-BSPIR : By Lemma 6, let H be a

set of N − 2B honest nodes, N − 2B ≥ T ,

H(Wk) = H(Wk)−H(Wk|A
[k]
H ,Q)

= I(Wk;A
[k]
H |Q)

= H(A
[k]
H |Q)−H(A

[k]
H |Wk,Q)



(a)

≤ H(A
[k]
H |Q)−H(A

[k]
T |Wk,Q)

(b)
= H(A

[k]
H |Q)−H(A

[k]
T |Wk, Q

[k]
T )

(c)
= H(A

[k]
H |Q)−H(A

[k′ ]
T |Q

[k′]
T )

(d)
= H(A

[k]
H |Q)−H(A

[k]
T |Q

[k]
T )

≤ H(A
[k]
H |Q)−H(A

[k]
T |Q)

In step (a), T can be any set of T nodes in H. Step (b)

holds by Lemma 3. Steps (c) and (d) follow by Lemma 5

and Lemma 4 respectively.

Averaging over all T with size T from H, we have that

H(Wk) ≤ H(A
[k]
H |Q)−

1
(

N−2B
T

)

∑

T ∈H
|T |=T

H(A
[k]
T |Q).

By Han’s inequality [20],

1
(

N−2B
T

)

∑

T ∈H
|T |=T

H(A
[k]
T |Q) ≥

T

N − 2B
H(A

[k]
H |Q).

Hence, H(Wk) ≤
N−2B−T
N−2B H(A

[k]
H |Q) ≤ N−2B−T

N−2B (N −

2B)H(A
[k]
h1
|Q) ≤ (N − 2B − T )H(A

[k]
h1
|Q), where h1 ∈ H

is an honest node.

Assume that the corrupted nodes send the same amount

of information bits to the user, otherwise the user can

easily identify the corrupted nodes. Hence, RT-BSPIR =
H(Wk)

∑
N

n=1 H(A
[k]
n )

= H(Wk)

N ·H(A
[k]
h1

)
≤ 1− 2B+T

N
.

2) The proof for ρT-BSPIR ≥ T
N−2B−T

: By database-

privacy,

0 = I(Wk̄;A
[k]
H |Q)

= H(Wk̄|Q)−H(Wk̄|A
[k]
H ,Q)

(a)
= H(Wk̄|Q,Wk)−H(Wk̄|A

[k]
H ,Q,Wk)

= I(Wk̄;A
[k]
H |Q,Wk)

(b)

≥ I(Wk̄;A
[k]
T |Q,Wk)

(c)
= H(A

[k]
T |Q,Wk)−H(A

[k]
T |Q,W[1:K])

+H(A
[k]
T |Q,W[1:K], S)

= H(A
[k]
T |Q,Wk)− I(S;A

[k]
T |Q,W[1:K])

≥ H(A
[k]
T |Q)−H(S),

where step (a) follows from Lemma 6 that the user should be

able to decode Wk from A
[k]
H . In step (b), T can be any set of

T nodes in H. Step (c) holds because the authentic answers

are deterministic functions of the queries, the database, and

the common randomness.

Averaging over all T ⊂ H, and from the proof in

Section IV-B1 above,

H(S) ≥
1

(

N−2B
T

)

∑

T ⊂calH
|T |=T

H(A
[k]
T |Q)

≥
T

N − 2B
H(A

[k]
H |Q)

≥
T

N − 2B − T
H(Wk).

Hence, ρT-BSPIR = H(S)
H(Wk)

≥ T
N−2B−T

.

V. T-ESPIR

A. Achievability

Assume each file comprises L = N − max(T,E) sym-

bols from a large enough field Fq . Let the vector W =

(w
[1]
1 , . . . , w

[1]
N−max(T,E), . . . , w

[K]
1 , . . . , w

[K]
N−max(T,E)) rep-

resent the database, which is stored at each server. The user

wants to retrieve Wk = (w
[k]
1 , . . . , w

[k]
N−max(T,E)) privately.

The queries are generated in the following way. The user

firstly generate max(T,E) independent uniformly random

vectors U1, . . . , Umax(T,E) of length K(N − max(T,E))
over Fq . The user choose an (N,max(T,E))-GRS code

with generating matrix G(N,max (T,E)). Let e
[k]
i denote the

length-(K(N − max(T,E))) unit vector where only the
(

(k− 1)(N −max(T,E)) + i
)

th entry is 1 and all the other

entries are 0’s. Again, the purpose of e
[k]
i is to retrieve the

ith entry of Wk. The query vectors are generated by

[Q
[k]
1 , . . . , Q

[k]
N ] = [U1, . . . , Umax(T,E)] ·G(N,max(T,E))

+ [0, . . . , 0, e
[k]
1 , . . . , e

[k]
N−max(T,E)].

(15)

The nodes share max(T,E) symbols

(S1, . . . , Smax(T,E)) = S, called common randomness,

that are uniformly and independently chosen from Fq. The

common randomness is unavailable to the user and the

eavesdropper. The servers generate their answers by taking

the inner product of the query vector and the stored data

vector, then add on a linear combination of the common

randomness in the following way,

A[k]
n = 〈Q[k]

n ,W〉+ 〈G(N,max (T,E))(n),S〉, (16)

where G(N,max (T,E))(n) denotes the nth column of matrix

G(N,max (T,E)). Let Xj = 〈Uj ,W〉 + Sj , where j =
1, . . . ,max(T,E), the answers received by the user are

[A
[k]
1 ,. . ., A

[k]
N ]=[X1,. . ., Xmax(T,E), w

[k]
1 ,. . ., w

[k]
N−max(T,E)]

·

[

G(N,max (T,E))

0 I

]

, (17)

where we omit the dimension of the zero matrix

0 and the identity matrix I because there is no

ambiguity. Because G(N,max (T,E)) is the generating

matrix of an (N,max(T,E))-GRS code, the matrix
[

G(N,max(T,E))

0 I

]

is invertible. Therefore, the user can solve

[X1, . . . , Xmax(T,E), w
[k]
1 , . . . , w

[k]
N−max(T,E)], hence obtain

Wk.

To see that database-privacy is guaranteed, besides the

symbols of Wk , the user solves X1, . . . , Xmax(T,E), where

Xj = 〈Uj ,W〉 + Sj . Because S1, . . . , Smax(T,E) are inde-

pendent uniform symbols drawn from Fq, the user can obtain

no information about the database. User-privacy is also guar-

anteed, because from equation (15), every max(T,E) query



vectors are independently and uniformly distributed. Hence

every T nodes see independent and uniformly distributed

query vectors, no matter which file the user requests. To

see that the eavesdropper learns no information about the

database, the eavesdropper taps on the queries and answers

of E nodes. By the MDS property of GRS codes, any E

columns of G(N,max (T,E)) are linearly independent. From

equation (16), any E answers are protected by independent

linear combinations of S1, . . . , Smax(T,E). That is, for any E

nodes n1, . . . , nE , 〈G(N,max (T,E))(ni),S〉’s are statistically

independent and uniformly distributed. Hence, from any

E query and answer pairs, the eavesdropper obtains no

information about the database, i.e. (3) is satisfied.

B. Converse

In this section, we prove the converse part of Theorem 2.

We also use Lemmas 3-5 in Section IV-B for the proofs

below.

1) The proof for R ≤ CT-ESPIR : For any file Wk, k ∈
[1 : K], and any set of nodes N ∈ [1 : N ] with size |N | =
max (T,E),

H(Wk) = H(Wk|Q)−H(Wk|A
[k]
[1:N ],Q)

= H(A
[k]
[1:N ]|Q)−H(A

[k]
[1:N ]|Wk,Q)

≤ H(A
[k]
[1:N ]|Q)−H(A

[k]
N |Wk,Q, Q

[k]
N )

(a)
= H(A

[k]
[1:N ]|Q)−H(A

[k]
N |Wk, Q

[k]
N )

(b)
= H(A

[k]
[1:N ]|Q)−H(A

[k]
N |Q

[k]
N )

≤ H(A
[k]
[1:N ]|Q)−H(A

[k]
N |Q),

where (a) holds because given the queries Q
[k]
N , the answers

of N do not depend on other queries. If max(T,E) = T ,

by Lemma 5 and Lemma 4, we have that (b) holds; if

max(T,E) = E, from equation (3), I(Wk;A
[k]
N , Q

[k]
N ) = 0,

hence (b) also holds.

Averaging over all N with size max(T,E), we have that

H(Wk) ≤ H(A
[k]
[1:N ]|Q)−

1
(

N
max(T,E)

)

∑

N∈[1:N ]
|N |=max(T,E)

H(A
[k]
N |Q).

By Han’s inequality [20],

1
(

N
max(T,E)

)

∑

N∈[1:N ]
|N |=max(T,E)

H(A
[k]
N |Q) ≥

max(T,E)

N
H(A

[k]
[1:N ]|Q).

Therefore, RT-ESPIR = H(Wk)
∑

N

n=1 H(A
[k]
n )

≤ H(Wk)

H(A
[k]

[1:N ]
|Q)

≤ 1 −

max(T,E)
N

.

2) The proof for ρT-ESPIR ≥ max (T,E)
N−max (T,E) : For any set

of nodes N ∈ [1 : N ] with size |N | = max (T,E), from

database-privacy (2),

0 = I(Wk̄;A
[k]
[1:N ]|Q)

= H(Wk̄|Q)−H(Wk̄|A
[k]
[1:N ],Q)

= H(Wk̄|Q,Wk)−H(Wk̄|A
[k]
[1:N ],Q,Wk)

= I(Wk̄;A
[k]
[1:N ]|Q,Wk)

≥ I(Wk̄;A
[k]
N |Q,Wk)

(a)
= H(A

[k]
N |Q,Wk)−H(A

[k]
N |Q,W[1:K])

+H(A
[k]
N |Q,W[1:K],S)

= H(A
[k]
N |Q,Wk)− I(S;A

[k]
N |Q,W[1:K])

≥ H(A
[k]
N |Q,Wk, Q

[k]
N )−H(S)

(b)
= H(A

[k]
N |Q

[k]
N )−H(S)

≥ H(A
[k]
N |Q)−H(S).

Equality (a) holds because the answers A
[k]
N are deterministic

functions of the queries Q, the database W[1:K], and the

common randomness S. In the proof of the converse part

above, we argued that equality (b) holds.

Averaging over all N , and from the proof in Section V-B1

above,

H(S) ≥
1

(

N
max(T,E)

)

∑

N∈[1:N ]
|N |=max (T,E)

H(A
[k]
N |Q)

≥
max (T,E)

N
H(A

[k]
[1:N ]|Q)

≥
max (T,E)

N −max (T,E)
H(Wk).

Hence, ρT-ESPIR = H(S)
H(Wk)

≥ max (T,E)
N−max (T,E) .

VI. DISCUSSION

A. T-BESPIR

In this section, we discuss the case where an adversary

has the ability to tap in on any set E with E nodes, and can

overwrite the answers of any set B with B nodes (the set E
and the set B may intersect, the adversary does not tap in on

the nodes that are in B but not in E). We argue below that

the capacity of T-BESPIR is 1 − 2B+max(T,E)
N

, with shared

common randomness at least
max(T,E)

N−2B−max(T,E) times the size

of a file.

The capacity can be achieved by simply replacing T in

the scheme in Section IV-A by max(T,E). User-privacy,

database-privacy and decodability are guaranteed with the

same arguments as in Section IV-A. To see that the adversary

cannot obtain any information about the database, from (10),

every E answers contains linearly independent combinations

of S1, . . . , Smax(T,E), which are uniformly and independently

chosen from Fq . Therefore, from any E answers, the adver-

sary cannot cancel the Sj’s hence obtains no information

about the database.

The converse can be proved by replacing T in the proof of

the converse in Section IV-B by max(T,E), and by replacing

the node set T by any node set N with max(T,E) nodes,

the same as in Section V-B. Because if max(T,E) = T , by

Lemma 4 and Lemma 5, we have that H(A
[k]
N |Wk, Q

[k]
N ) =

H(A
[k]
N |Q

[k]
N ) holds; if max(T,E) = E, from equation (3),

I(Wk;A
[k]
N , Q

[k]
N ) = 0, H(A

[k]
N |Wk, Q

[k]
N ) = H(A

[k]
N |Q

[k]
N )

also holds. Therefore, the results are obtained by replacing



T in the results of Section IV-B by max(T,E), that is, R ≤
1− 2B+max(T,E)

N
with ρ ≥ max(T,E)

N−2B−max(T,E) .

B. T-EPIR

In this section, we discuss the case when database-privacy

is not required, with colluding servers and in presence of a

passive eavesdropper, hence called T-EPIR. When E ≥ T ,

from the privacy of the database against the eavesdropper (3),

H(A
[k]
E |Q

[k]
E ) = H(A

[k]
E |Wk, Q

[k]
E ). Lemma 3 still holds for

the PIR problem. With similar steps as in Section V-B1, it can

be proved that R ≥ 1− E
N

. The scheme in Section V-A which

achieves the rate of 1 − E
N

still works for T-EPIR problem.

Hence, we can conclude that for E ≥ T , the capacity of

T − EPIR equals 1 − E
N

. The capacity of T-EPIR for the

case when E < T is our ongoing research.
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