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Abstract—Erasure codes play an important role in storage
systems to prevent data loss. In this work, we study a class of
erasure codes called Multi-Erasure Locally Recoverable Codes
(ME-LRCs) for storage arrays. Compared to previous related
works, we focus on the construction of ME-LRCs over small
fields. We first develop upper and lower bounds on the minimum
distance of ME-LRCs. Our main contribution is to propose a
general construction of ME-LRCs based on generalized tensor
product codes, and study their erasure-correcting properties. A
decoding algorithm tailored for erasure recovery is given, and
correctable erasure patterns are identified. We then prove that
our construction yields optimal ME-LRCs with a wide range
of code parameters, and present some explicit ME-LRCs over
small fields. Finally, we show that generalized integrated inter-
leaving (GII) codes can be treated as a subclass of generalized
tensor product codes, thus defining the exact relation between
these codes.

I. INTRODUCTION

Recently, erasure codes with both local and global erasure-
correcting properties have received considerable attention [3],
[9], [17]–[19], [21], thanks to their promising application in
storage systems. The idea behind them is that when only a
few erasures occur, these erasures can be corrected fast using
only local parities. If the number of erasures exceeds the lo-
cal erasure-correcting capability, then the global parities are
invoked.

In this paper, we consider this kind of erasure codes with
both local and global erasure-correcting capabilities for a
ρ × n0 storage array [3], where each row contains some lo-
cal parities, and additional global parities are distributed in
the array. The array structure is suitable for many storage
applications. For example, consider a redundant array of in-
dependent disks (RAID) type of architecture for solid-state
drives (SSDs) [3], [8]. In this scenario, a ρ × n0 storage array
can represent a total of ρ SSDs, each of which contains n0
flash memory chips. Within each SSD, an erasure code is
applied to these n0 chips for local protection. In addition,
erasure coding is also done across all the SSDs for global
protection of all the chips. More specifically, let us give the
formal definition of this class of erasure codes as follows.

Definition 1. Consider a code C over a finite field Fq consist-
ing of ρ × n0 arrays such that:

1) Each row in each array in C belongs to a linear local code
C0 with length n0 and minimum distance d0 over Fq.

2) Reading the symbols of C row-wise, C is a linear code
with length ρn0, dimension k, and minimum distance d
over Fq.

Then, we say that C is a (ρ, n0, k; d0, d)q Multi-Erasure Lo-
cally Recoverable Code (ME-LRC). �

Thus, a (ρ, n0, k; d0, d)q ME-LRC can locally correct d0 −
1 erasures in each row, and is guaranteed to correct a total
of d − 1 erasures anywhere in the array.

Our work is motivated by a recent work by Blaum and Het-
zler [3]. In their work, the authors studied ME-LRCs where
each row is a maximum distance separable (MDS) code, and
gave code constructions with field size q > max{ρ, n0} us-
ing generalized integrated interleaving (GII) codes [11], [22],
[24]. Our Definition 1 generalizes the definition of the codes
in [3] by not requiring each row to be an MDS code. There
exist other related works. The ME-LRCs in Definition 1 can
be seen as (r, δ) LRCs with disjoint repair sets. A code C
is called an (r, δ) LRC [19], if for every coordinate, there
exists a punctured code (i.e., a repair set) of C with support
containing this coordinate, whose length is at most r +δ − 1,
and whose minimum distance is at least δ. Although the ex-
isting constructions [19], [21] for (r, δ) LRCs with disjoint
repair sets can generate ME-LRCs as in Definition 1, they
use MDS codes as local codes and require a field size that
is at least as large as the code length. A recent work [1]
gives explicit constructions of (r, δ) LRCs with disjoint re-
pair sets over field Fq from algebraic curves, whose repair
sets have size r +δ − 1 =

√
q or r +δ − 1 =

√
q + 1. Partial

MDS (PMDS) codes [2] are also related to but different from
ME-LRCs in Definition 1. In general, an ME-LRC is not a
PMDS code which needs to satisfy more strict requirements.
A ρ × n0 array code is called an (r; s) PMDS code if each
row is an [n0, n0 − r, r + 1]q MDS code and whenever any r
locations in each row are punctured, the resulting code is also
an MDS code with minimum distance s + 1. The construction
of (r, s) PMDS codes for all r and s with field size O(nρn0

0 )
was known [6]. More recently, a family of PMDS codes with
field size O(max{ρ, nr+s

0 }s) was constructed [7].
To the best of our knowledge, however, the construction

of optimal ME-LRCs over any small field (e.g., the field size
less than the length of the local code, or even the binary
field) has not been fully explored and solved. The goal of this
paper is to study ME-LRCs over small fields. We propose
a general construction based on generalized tensor product
codes [15], [23], which were first utilized in [12] to construct
binary single-erasure LRCs [9], [10], [13], [14], [18], [21].
The contributions of this paper are:

1) We extend our previous construction in [12] to the sce-
nario of multi-erasure LRCs over any field. As a result, the

ar
X

iv
:1

70
9.

09
77

0v
1 

 [
cs

.I
T

] 
 2

8 
Se

p 
20

17



construction in [12] can be seen as a special case of the
construction proposed in this paper.

2) In contrast to [3], our construction does not require
field size q > max{ρ, n0}, and it can even generate binary
ME-LRCs. We derive upper and lower bounds on the mini-
mum distance of ME-LRCs. For 2d0 > d, we show that our
construction can produce optimal ME-LRCs with respect to
(w.r.t.) the new upper bound on the minimum distance.

3) We present an erasure decoding algorithm and its cor-
responding correctable erasure patterns, which include the
pattern of any d − 1 erasures. We show that the ME-LRCs
from our construction based on Reed-Solomon (RS) codes
are optimal w.r.t. certain correctable erasure patterns.

4) So far the exact relation between GII codes [3], [22],
[24] and generalized tensor product codes has not been fully
investigated. We prove that GII codes are a subclass of gen-
eralized tensor product codes. As a result, the parameters of
a GII code can be obtained by using the known properties
of generalized tensor product codes.

The remainder of the paper is organized as follows. In
Section II, we study field size dependent upper and lower
bounds for ME-LRCs. In Section III, we propose a general
construction of ME-LRCs. The erasure-correcting properties
of these codes are studied and an erasure decoding algorithm
is presented. In Section IV, we study optimal code construc-
tion and give several explicit optimal ME-LRCs over different
fields. In Section V, we prove that GII codes are a subclass
of generalized tensor product codes. Section VI concludes
the paper.

Throughout the paper, we use the notation [n] to denote
the set {1, . . . , n}. For a length-n vector v over Fq and a
set I ⊆ [n], the vector vI denotes the restriction of the
vector v to coordinates in the set I , and wq(v) represents
the Hamming weight of the vector v over Fq. The transpose
of a matrix H is written as HT . For a set S , |S| represents
the cardinality of the set. A linear code C over Fq of length
n, dimension k, and minimum distance d will be denoted by
C = [n, k, d]q or [n, k, d]q for simplicity. For a code with
only one codeword, the minimum distance is defined as ∞.

II. UPPER AND LOWER BOUNDS FOR ME-LRCS

In this section, we derive field size dependent upper and
lower bounds on the minimum distance of ME-LRCs. The
upper bound obtained here will be used to prove the opti-
mality of our construction for ME-LRCs in the following
sections.

Now, we give an upper bound on the minimum distance
of a (ρ, n0, k; d0, d)q ME-LRC, by extending the shortening
bound for LRCs in [5].

Let d(q)
opt[n, k] denote the largest possible minimum distance

of a linear code of length n and dimension k over Fq, and

let k(q)
opt[n, d] denote the largest possible dimension of a linear

code of length n and minimum distance d over Fq.

Lemma 2. For any (ρ, n0, k; d0, d)q ME-LRC C, the mini-
mum distance d satisfies

d 6 min
06x6⌈ k

k∗ ⌉−1, x∈Z

{
d(q)

opt[ρn0 − xn0, k − xk∗]
}

, (1)

and the dimension satisfies

k 6 min
06x6⌈ k

k∗ ⌉−1, x∈Z

{
xk∗ + k(q)

opt[ρn0 − xn0, d]
}

, (2)

where k∗ = k(q)
opt[n0, d0].

Proof: See Appendix A.
An asymptotic lower bound for ME-LRCs with local MDS

codes was given in [1]. Here, by simply adapting the Gilbert-
Varshamov (GV) bound [20], we have the following GV-like
lower bound on ME-LRCs of finite length without specifying
local codes.

Lemma 3. A (ρ, n0, k; > d0, > d)q ME-LRC C exists, if

d−2

∑
i=0

(
ρ(n0 − ⌈logq

(
∑d0−2

j=0 (n0−1
j )(q − 1) j)⌉) − 1

i

)
(q − 1)i

< qρ(n0−⌈logq

(
∑

d0−2
j=0 (

n0−1
j )(q−1) j

)
⌉)−k .

(3)
Proof: See Appendix B.

III. ME-LRCS FROM GENERALIZED TENSOR PRODUCT
CODES: CONSTRUCTION AND DECODING

Tensor product codes, first proposed by Wolf in [23], are
a family of binary error-correcting codes defined by a parity-
check matrix that is the tensor product of the parity-check
matrices of two constituent codes. Later, they were general-
ized in [15]. In this section, we first introduce generalized
tensor product codes over Fq. Then, we give a general con-
struction of ME-LRCs from generalized tensor product codes.
The minimum distance of the constructed ME-LRCs is deter-
mined, a decoding algorithm tailored for erasure correction
is proposed, and corresponding correctable erasure patterns
are studied.

A. Generalized Tensor Product Codes over Fq
We start by presenting the tensor product operation of two

matrices H
′

and H
′′
. Let H

′
be the parity-check matrix of a

code with length n′ and dimension n′ − v over Fq. The ma-
trix H

′
can be considered as a v (row) by n′ (column) matrix

over Fq or as a 1 (row) by n′ (column) matrix of elements
from Fqv . Let H

′
be the vector H

′
= [h

′
1 h

′
2 · · · h

′
n′ ], where

h
′
j, 1 6 j 6 n′, are elements of Fqv . Let H

′′
be the parity-

check matrix of a code of length ℓ and dimension ℓ − λ over
Fqv . We denote H

′′
by

H
′′

=




h
′′
11 · · · h

′′
1ℓ

...
. . .

...
h

′′
λ1 · · · h

′′
λℓ


 ,

where h
′′
i j, 1 6 i 6 λ and 1 6 j 6 ℓ, are elements of Fqv .

The tensor product of the matrices H
′′

and H
′

is defined
as

HTP = H
′′ ⊗

H
′
=




h
′′
11H

′ · · · h
′′
1ℓH

′

...
. . .

...
h

′′
λ1H

′ · · · h
′′
λℓH

′


 ,



where h
′′
i jH

′
= [h

′′
i jh

′
1 h

′′
i jh

′
2 · · · h

′′
i jh

′
n′ ], 1 6 i 6 λ and

1 6 j 6 ℓ, and the products of elements are calculated ac-
cording to the rules of multiplication for elements over Fqv .
The matrix HTP will be considered as a vλ × n′ℓ matrix of
elements from Fq, thus defining a tensor product code over
Fq. We provide an example to illustrate these operations.

Example 1. (cf. [23]) Let H
′′

be the following parity-check
matrix over F4 for a [5, 3, 3]4 code where α is a primitive
element of F4,

H
′′

=

[
α0 0 α0 α0 α0

0 α0 α0 α1 α2

]
.

Let H
′

be the following parity-check matrix over F2 for a
[3, 1, 3]2 Hamming code,

H
′
=

[
1 0 1
0 1 1

]
.

Representing the elements of F4 as α0 =

[
1
0

]
, α1 =

[
0
1

]
, α2 =

[
1
1

]
, and 0 =

[
0
0

]
, we have

HTP = H
′′ ⊗

H
′

=

[
α0 α1 α2 0 0 0 α0 α1 α2 α0 α1 α2 α0 α1 α2

0 0 0 α0 α1 α2 α0 α1 α2 α1 α2 α0 α2 α0 α1

]
.

Using the same symbol-to-binary vector mapping, we repre-
sent HTP over F2 as

HTP =




1 0 1 0 0 0 1 0 1 1 0 1 1 0 1
0 1 1 0 0 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 0 1 1 1 1 0
0 0 0 0 1 1 0 1 1 1 1 0 1 0 1


 ,

which defines a binary [15, 11, 3]2 code. �
Our construction of ME-LRCs is based on generalized ten-

sor product codes [15]. Define the matrices H
′
i and H

′′
i for

i = 1, 2, . . . , µ as follows. The matrix H
′
i is a vi × n′ matrix

over Fq such that the (v1 + v2 + · · · + vi) × n′ matrix

Bi =




H
′
1

H
′
2...

H
′
i




is a parity-check matrix of an [n′, n′ − v1 − v2 − · · · −
vi , d′

i]q code C ′
i , where d′

1 6 d′
2 6 · · · 6 d′

i. The matrix
H

′′
i is a λi × ℓ matrix over Fqvi , which is a parity-check

matrix of an [ℓ, ℓ − λi , δi]qvi code C ′′
i .

We define a µ-level generalized tensor product code over
Fq as a linear code having a parity-check matrix over Fq in
the form of the following µ-level tensor product structure

H =




H
′′
1

⊗
H

′
1

H
′′
2

⊗
H

′
2...

H
′′
µ

⊗
H

′
µ


 . (4)

As the matrix HTP, each level in the matrix H is obtained
by operations over Fq and its extension field. We denote this

code by Cµ
GTP. Its length is nt = n′ℓ and the dimension is

kt = nt − ∑µ
i=1 viλi.

By adapting Theorem 2 in [15] from the field F2 to Fq, we
directly have the following theorem on the minimum distance
of Cµ

GTP over Fq.

Theorem 4. The minimum distance dt of a generalized tensor
product code Cµ

GTP over Fq satisfies

dt > min{δ1, δ2d′
1, δ3d′

2, . . . , δµd′
µ−1, d′

µ}.

Proof: See Appendix C.

B. Construction of ME-LRCs

Now, we present a general construction of ME-LRCs based
on generalized tensor product codes.
Construction A
Step 1: Choose vi × n′ matrices H

′
i over Fq and λi × ℓ ma-

trices H
′′
i over Fqvi , for i = 1, 2, . . . , µ, which satisfy the

following two properties:
1) The parity-check matrix H

′′
1 = Iℓ×ℓ, i.e., an ℓ × ℓ identity

matrix.
2) The matrices H

′
i (or Bi), 1 6 i 6 µ, and H

′′
j , 2 6 j 6 µ,

are chosen such that d′
µ 6 δ jd′

j−1, for j = 2, 3, . . . , µ.
Step 2: Generate a parity-check matrix H over Fq according
to (4) with the matrices H

′
i and H

′′
i , for i = 1, 2, . . . , µ. The

constructed code corresponding to the parity-check matrix H
is referred to as CA. �
Theorem 5. The code CA is a (ρ, n0, k; d0, d)q ME-LRC with
parameters ρ = ℓ, n0 = n′, k = n′ℓ − ∑µ

i=1 viλi, d0 = d′
1,

and d = d′
µ .

Proof: According to Construction A, the code parame-
ters ρ, n0, k, and d0 can be easily determined. In the follow-
ing, we prove that d = d′

µ .
Since δ1 = ∞ (H

′′
1 is the identity matrix) and d′

µ 6 δid′
i−1

for all i = 2, 3, . . . , µ, from Theorem 4, d > d′
µ .

Now, we show that d 6 d′
µ . For i = 1, 2, . . . , µ,

let H
′
i = [h

′
1(i), . . . , h

′
n′(i)] over Fqvi , and let

[h
′′
11(i), . . . , h

′′
λi1

(i)]T over Fqvi be the first column of
H

′′
i . Since the code with parity-check matrix Bµ has

minimum distance d′
µ , there exist d′

µ columns of Bµ ,
say in the set of positions J = {b1, b2, . . . , bd′

µ
}, which

are linearly dependent; that is, ∑ j∈J α jh
′
j(i) = 0, for

some α j ∈ Fq, for all i = 1, 2, . . . , µ. Thus, we have

∑ j∈J α jh
′′
p1(i)h

′
j(i) = h

′′
p1(i)

(
∑ j∈J α jh

′
j(i)

)
= 0, for

p = 1, 2, . . . , λi and i = 1, 2, . . . , µ. That is, the columns in
positions b1, b2, . . . , bd′

µ
of H are linearly dependent.

C. Erasure Decoding and Correctable Erasure Patterns

We present a decoding algorithm for the ME-LRC CA from
Construction A, tailored for erasure correction. The decoding
algorithm for error correction for generalized tensor product
codes can be found in [15].

Let the symbol ? represent an erasure and “e” denote a de-
coding failure. The erasure decoder DA : (Fq ∪ {?})n′ℓ →



CA ∪ {“e”} for an ME-LRC CA consists of two kinds of
component decoders D′

i and D′′
i for i = 1, 2, . . . , µ described

below.
a) First, the decoder for a coset of the code C ′

i with parity-
check matrix Bi, i = 1, 2, . . . , µ, is denoted by

D′
i :(Fq ∪ {?})n′ × (Fq ∪ {?})∑i

j=1 v j → (Fq ∪ {?})n′

which uses the following decoding rule: for a length-n′ input
vector y′, and a length-∑i

j=1 v j syndrome vector s′ without

erasures, if y′ agrees with exactly one codeword c′ ∈ C ′
i + e

on the entries with values in Fq, where the vector e is a coset
leader determined by both the code C ′

i and the syndrome
vector s′, i.e., s′ = eBT

i , then D′
i(y′, s′) = c′; otherwise,

D′
i(y′, s′) = y′. Therefore, if the length-n′ input vector y′

is a codeword in C ′
i + e with d′

i − 1 or less erasures and the
syndrome vector s′ is not erased, then the decoder D′

i can
return the correct codeword.

b) Second, the decoder for the code C ′′
i with parity-check

matrix H
′′
i , i = 1, 2, . . . , µ, is denoted by

D′′
i : (Fqvi ∪ {?})ℓ → (Fqvi ∪ {?})ℓ

which uses the following decoding rule: for a length-ℓ input
vector y′′, if y′′ agrees with exactly one codeword c′′ ∈ C ′′

i
on the entries with values in Fqvi , then D′′

i (y′′) = c′′; other-
wise, D′′

i (y′′) = y′′. Therefore, if the length-ℓ input vector
y′′ is a codeword in C ′′

i with δi − 1 or less erasures, then the
decoder D′′

i can successfully return the correct codeword.
The erasure decoder DA for the code CA is summarized in

Algorithm 1 below. Let the input word of length n′ℓ for the
decoder DA be y = (y1, y2, . . . , yℓ), where each component
yi ∈ (Fq ∪ {?})n′

, i = 1, . . . , ℓ. The vector y is an erased
version of a codeword c = (c1, c2, . . . , cℓ) ∈ CA.

Algorithm 1: Decoding Procedure of Decoder DA

Input: received word y = (y1, y2, . . . , yℓ).
Output: codeword c ∈ CA or a decoding failure “e”.

1. Let s1
j = 0, for j = 1, 2, . . . , ℓ.

2. ĉ = (ĉ1, . . . , ĉℓ) =
(
D′

1(y1, s1
1), . . . , D′

1(yℓ, s1
ℓ )

)
.

3. Let F = { j ∈ [ℓ] : ĉ j contains ?}.
4. For i = 2, . . . , µ

• If F ̸= ∅, do the following steps; otherwise go to step
5.

• (si
1, . . . , si

ℓ) = D′′
i

(
ĉ1H

′T
i , . . . , ĉℓH

′T
i

)
.

• ĉ j = D′
i

(
ĉ j, (s1

j , . . . , si
j)

)
for j ∈ F ; ĉ j remains the

same for j ∈ [ℓ]\F .
• Update F = { j ∈ [ℓ] : ĉ j contains ?}.
end

5. If F = ∅, let c = ĉ and output c; otherwise return “e”.

In Algorithm 1, we use the following rules for operations
which involve the symbol ?: 1) Addition +: for any element
γ ∈ Fq ∪{?}, γ+? =?. 2) Multiplication ×: for any element

γ ∈ Fq ∪ {?}\{0}, γ×? =?, and 0×? = 0. 3) If a length-n
vector x, x ∈ (Fq ∪ {?})n, contains an entry ?, then x is
considered as the symbol ? in the set Fqn ∪ {?}. Similarly,
the symbol ? in the set Fqn ∪ {?} is treated as a length-n
vector whose entries are all ?.

To describe correctable erasure patterns, we use the fol-
lowing notation. Let we(v) denote the number of erasures ?
in the vector v. For a received word y = (y1, y2, . . . , yℓ), let
Nτ = |{ym : we(ym) > d′

τ , 1 6 m 6 ℓ}| for 1 6 τ 6 µ.

Theorem 6. The decoder DA for a (ρ, n0, k; d0, d)q ME-LRC
CA can correct any received word y that satisfies the following
condition:

Nτ 6 δτ+1 − 1, ∀ 1 6 τ 6 µ, (5)

where δµ+1 is defined to be 1.
Proof: See Appendix D.

The following corollary follows from Theorem 6.

Corollary 7. The decoder DA for a (ρ, n0, k; d0, d)q ME-LRC
CA can correct any received word y with less than d erasures.

Proof: See Appendix E.

IV. OPTIMAL CONSTRUCTION AND EXPLICIT ME-LRCS
OVER SMALL FIELDS

In this section, we study the optimality of Construction A,
and also present several explicit ME-LRCs that are optimal
over different fields.

A. Optimal Construction
We show how to construct ME-LRCs which are optimal

w.r.t. the bound (1) by adding more constraints to Construc-
tion A. To this end, we specify the choice of the matrices in
Construction A. This specification, referred to as Design I,
is as follows.
1) H

′
1 is the parity-check matrix of an [n′, n′ − v1, d′

1]q code

which satisfies k(q)
opt[n

′, d′
1] = n′ − v1.

2) Bµ is the parity-check matrix of an [n′, n′ − ∑µ
i=1 vi , d′

µ ]q

code with d(q)
opt[n

′, n′ − ∑µ
i=1 vi] = d′

µ .
3) The minimum distances satisfy d′

µ 6 2d′
1.

4) H
′′
i is an all-one vector of length ℓ over Fqvi , i.e., the

parity-check matrix of a parity code with minimum distance
δi = 2, for all i = 2, . . . , µ. �
Theorem 8. The code CA from Construction A with Design I
is a (ρ = ℓ, n0 = n′, k = n′ℓ − v1ℓ − ∑µ

i=2 vi ; d0 = d′
1, d =

d′
µ)q ME-LRC, which is optimal with respect to the bound

(1).
Proof: From Theorem 5, the code parameters ρ, n0, k,

d0, and d can be determined. We have k∗ = k(q)
opt[n

′, d′
1] =

n′ − v1. Setting x = ℓ − 1, we get

d 6 min
06x6⌈ k

k∗ ⌉−1

{
d(q)

opt[ρn0 − xn0, k − xk∗]
}

6d(q)
opt[ℓn′ − (ℓ − 1)n′, k − (ℓ − 1)k∗]

=d(q)
opt[n

′, n′ −
µ

∑
i=1

vi] = d′
µ .



This proves that CA achieves the bound (1).

B. Explicit ME-LRCs from Construction A

Our construction is very flexible and can generate many
ME-LRCs over different fields. In the following, we present
several examples.

1) ME-LRCs with local extended BCH codes over F2
From the structure of BCH codes [20], there exists a chain

of nested binary extended BCH codes: C3 = [2m, 2m − 1 −
3m, 8]2 ⊂ C2 = [2m, 2m − 1 − 2m, 6]2 ⊂ C1 = [2m, 2m −
1 − m, 4]2.

Let the matrices B1, B2, and B3 be the parity-check ma-
trices of C1, C2, and C3, respectively.

Example 2. For µ = 3, in Construction A, we use the above
matrices B1, B2, and B3. We also choose H

′′
2 and H

′′
3 to be

the all-one vector of length ℓ over F2m .
From Theorem 5, the corresponding (ρ, n0, k; d0, d)2 ME-

LRC CA has parameters ρ = ℓ, n0 = 2m, k = 2mℓ − (m +
1)ℓ − 2m, d0 = 4, and d = 8. This code satisfies the re-
quirements of Design I. Thus, from Theorem 8, it is optimal
w.r.t. the bound (1). �

2) ME-LRCs with local algebraic geometry codes over F4
We use a class of algebraic geometry codes called Hermi-

tian codes [25] to construct ME-LRCs.
From the construction of Hermitian codes [25], there ex-

ists a chain of nested 4-ary Hermitian codes: CH(1) =
[8, 1, 8]4 ⊂ CH(2) = [8, 2, 6]4 ⊂ CH(3) = [8, 3, 5]4 ⊂
CH(4) = [8, 4, 4]4 ⊂ CH(5) = [8, 5, 3]4 ⊂ CH(6) =
[8, 6, 2]4 ⊂ CH(7) = [8, 7, 2]4.

Now, let the matrices B1, B2, B3, and B4 be the parity-
check matrices of CH(4), CH(3), CH(2), and CH(1), respec-
tively. Let H

′′
i , i = 2, 3, 4, be the all-one vector of length ℓ

over F4.

Example 3. For µ = 2, in Construction A, we use the above
matrices B1, B2, and H

′′
2 . From Theorem 5, the corresponding

(ρ, n0, k; d0, d)4 ME-LRC CA has parameters ρ = ℓ, n0 = 8,
k = 4ℓ − 1, d0 = 4, and d = 5.

For µ = 3, in Construction A, we use the above matrices
B1, B2, B3, H

′′
2 , and H

′′
3 . From Theorem 5, the corresponding

(ρ, n0, k; d0, d)4 ME-LRC CA has parameters ρ = ℓ, n0 = 8,
k = 4ℓ − 2, d0 = 4, and d = 6.

For µ = 4, in Construction A, we use the above matrices
Bi, i = 1, . . . , 4, and H

′′
j , j = 2, 3, 4. From Theorem 5, the

corresponding (ρ, n0, k; d0, d)4 ME-LRC CA has parameters
ρ = ℓ, n0 = 8, k = 4ℓ − 3, d0 = 4, and d = 8.

All of the above three families of ME-LRCs over F4 are
optimal w.r.t. the bound (1). �

3) ME-LRCs with local singly-extended Reed-Solomon codes
over Fq

Let n′ 6 q and α be a primitive element of Fq. We choose
H

′
1 to be the parity-check matrix of an [n′, n′ − d′

1 + 1, d′
1]q

singly-extended RS code, namely

H
′
1 =




1 1 · · · 1 1
1 α · · · αn′−2 0
...

...
. . .

...
...

1 αd′
1−2 · · · α(n′−2)(d′

1−2) 0


 .

For i = 2, 3, . . . , µ, we choose H′
i to be

H
′
i =




1 αd′
i−1−1 · · · α(n′−2)(d′

i−1−1) 0
...

...
. . .

...
...

1 αd′
i−2 · · · α(n′−2)(d′

i−2) 0


 ,

where d′
1 < d′

2 < · · · < d′
µ . We also require that

δi = ⌈ d′
µ

d′
i−1

⌉ = ⌈ d′
µ

d′
i−1 + 1

⌉= · · ·= ⌈ d′
µ

d′
i − 1

⌉, ∀i = 2, . . . , µ

and δ2 > δ3 > · · · > δµ .
For i = 2, 3, . . . , µ, let H

′′
i be the parity-check matrix of

an [ℓ, ℓ − δi + 1, δi = ⌈ d′
µ

d′
i−1

⌉]qvi MDS code, which exists

whenever ℓ 6 qvi , where vi = d′
i − d′

i−1. Note that for an
MDS code with minimum distance 2, the code length can be
arbitrarily long.

Example 4. We use the above chosen matrices H′
i and H′′

i
for Construction A. The corresponding (ρ, n0, k; d0, d)q ME-
LRC CA has parameters ρ = ℓ, n0 = n′, k = (n′ −
d′

1 + 1)ℓ − ∑µ
i=2(⌈

d′
µ

d′
i−1

⌉ − 1)(d′
i − d′

i−1), d0 = d′
1, and

d = d′
µ; the field size q satisfies q > max{q′, n′}, where

q′ = maxi=2,...,µ{
⌈
ℓ

1
d′

i−d′
i−1

⌉
}.

When µ = 2 and d′
1 < d′

2 6 2d′
1, the correspond-

ing (ρ, n0, k; d0, d)q ME-LRC CA has parameters ρ = ℓ,
n0 = n′, k = (n′ − d′

1 + 1)ℓ − (d′
2 − d′

1), d0 = d′
1, and

d = d′
2; the field size q needs to satisfy q > n′. Since CA

satisfies the requirements of Design I, from Theorem 8, it is
optimal w.r.t. the bound (1). �

The following theorem shows that the µ-level ME-LRC
CA constructed in Example 4 is optimal in the sense of pos-
sessing the largest possible dimension among all codes with
the same erasure-correcting capability.

Theorem 9. Let C be a code of length ℓn′ and dimension k
over Fq. Each codeword in C consists of ℓ sub-blocks, each of
length n′. Assume that C corrects all erasure patterns satisfy-
ing the condition in (5), where δτ = ⌈ d′

µ

d′
τ−1

⌉ for 2 6 τ 6
µ. Then, we must have dimension k 6 (n′ − d′

1 + 1)ℓ −
∑µ

i=2(⌈
d′
µ

d′
i−1

⌉ − 1)(d′
i − d′

i−1).

Proof: The proof is based on contradiction.
Let each codeword in C correspond to an ℓ × n′ array. We

index the coordinates of the array row by row from number
1 to ℓn′. Let I1 be the set of coordinates defined by I1 =
{(i − 1)n′ + j : δ2 − 1 < i 6 ℓ, 1 6 j 6 d′

1 − 1}. For
2 6 τ 6 µ, let Iτ be the set of coordinates given by Iτ =



{(i − 1)n′ + j : δτ+1 − 1 < i 6 δτ − 1, 1 6 j 6 d′
τ − 1},

where δµ+1 is defined to be 1. Let I be the set of all the
coordinates of the array.

By calculation, we have |I\(I1 ∪I2 ∪ · · · ∪ Iµ)| = (n′ −
d′

1 + 1)ℓ − ∑µ
i=2(⌈

d′
µ

d′
i−1

⌉ − 1)(d′
i − d′

i−1). Now, assume that

k > (n′ − d′
1 + 1)ℓ − ∑µ

i=2(⌈
d′
µ

d′
i−1

⌉ − 1)(d′
i − d′

i−1). Then,

there exist at least two distinct codewords c′ and c′′ in C that
agree on the coordinates in the set {i : i ∈ I\(I1 ∪ I2 ∪
· · · ∪ Iµ)}. We erase the values on the coordinates in the set
{i : i ∈ I1 ∪ I2 ∪ · · · ∪ Iµ} of both c′ and c′′. This erasure
pattern satisfies the condition in (5). Since c′ and c′′ are dis-
tinct, this erasure pattern is uncorrectable. Thus, our assump-
tion that k > (n′ − d′

1 + 1)ℓ − ∑µ
i=2(⌈

d′
µ

d′
i−1

⌉ − 1)(d′
i − d′

i−1)

is violated.

Remark 1. The construction by Blaum and Hetzler [3] based
on GII codes cannot generate ME-LRCs constructed in Ex-
amples 2 and 3. For the ME-LRC in Example 4, since the
local code is the singly-extended RS code, the construction
in [3] can also be used to produce an ME-LRC that has the
same code parameters ρ, n0, k, d0 and d as those of the ME-
LRC CA from our construction. However, the construction in
[3] requires the field size q to satisfy q > max{ℓ, n′}, which
in general is larger than that in our construction.

V. RELATION TO GENERALIZED INTEGRATED
INTERLEAVING CODES

Integrated interleaving (II) codes were first introduced in
[11] as a two-level error-correcting scheme for data storage
applications, and were then extended in [22] and more re-
cently in [24] as generalized integrated interleaving (GII)
codes for multi-level data protection.

The main difference between GII codes and generalized
tensor product codes is that a generalized tensor product code
over Fq is defined by operations over the base field Fq and
also its extension field, as shown in (4); in contrast, a GII
code over Fq is defined over the same field Fq. As a result,
generalized tensor product codes are more flexible than GII
codes, and generally GII codes cannot be used to construct
ME-LRCs over very small fields, e.g., the binary field.

The goal of this section is to study the exact relation be-
tween generalized tensor product codes and GII codes. We
will show that GII codes are in fact a subclass of generalized
tensor product codes. The idea is to reformulate the parity-
check matrix of a GII code into the form of a parity-check
matrix of a generalized tensor product code. Establishing this
relation allows some code properties of GII codes to be ob-
tained directly from known results about generalized tensor
product codes. We start by considering the II codes, a two-
level case of GII codes, to illustrate our idea.

A. Integrated Interleaving Codes

We follow the definition of II codes in [11]. Let Ci, i =
1, 2, be [n, ki , di]q linear codes over Fq such that C2 ⊂ C1

and d2 > d1. An II code CI I is defined as follows:

CI I =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C1, 0 6 i < m,

and
m−1

∑
i=0

αbici ∈ C2, b = 0, 1, . . . , γ − 1
}

,
(6)

where α is a primitive element of Fq and γ < m 6 q − 1.
According to the above definition, it is known that the

parity-check matrix of CI I is

HI I =

[
I

⊗
H1

Γ2
⊗

H2

]
, (7)

where
⊗

denotes the Kronecker product. The matrices H1

and
[

H1
H2

]
over Fq are the parity-check matrices of C1 and

C2, respectively, the matrix I over Fq is an m × m iden-
tity matrix, and Γ2 over Fq is the parity-check matrix of an
[m, m − γ, γ + 1]q code in the following form

Γ2 =




1 1 · · · 1
1 α · · · αm−1

1 α2 · · · α2(m−1)

...
...

. . .
...

1 α(γ−1) · · · α(γ−1)(m−1)




. (8)

Remark 2. The parity-check matrix HI I over Fq in (7) of CI I
is obtained by operations over the same field Fq. In contrast,
the parity-check matrix H over Fq in (4) of a generalized
tensor product code is obtained by operations over both the
base field Fq and its extension field.

Remark 3. In general, the codes C1 and C2 in (6) are chosen
to be RS codes [11]. If C1 and C2 are chosen to be binary
codes, then m can only be m = 1.

To see the relation between II codes and generalized tensor
product codes, we reformulate HI I in (7) into the following
form, by splitting the rows of H2,

HI I =




I
⊗

H1
Γ2

⊗
H2(1)

Γ2
⊗

H2(2)
...

...
...

Γ2
⊗

H2(k1 − k2)




, (9)

where the matrix H1 over Fq is the parity-check matrix of
C1, and is treated as a vector over the extension field Fqn−k1

here; correspondingly, the matrix I is treated as an m × m
identity matrix over Fqn−k1 . For 1 6 i 6 k1 − k2, H2(i) over
Fq represents the ith row of H2, and Γ2 over Fq is the matrix
in (8).

Now, referring to the matrix in (4), the matrix in (9) can be
interpreted as a parity-check matrix of a (1 + k1 − k2)-level
generalized tensor product code over Fq. Thus, we conclude
that an II code is a generalized tensor product code. Using
the properties of generalized tensor product codes, we can
directly obtain the following result, which was proved in [11]
in an alternative way.



Lemma 10. The code CI I is a linear code over Fq of length
N = nm, dimension K = (m − γ)k1 + γk2, and minimum
distance D > min{(γ + 1)d1, d2}.

Proof: For 1 6 i 6 k1 − k2, let the following parity-
check matrix 



H1
H2(1)
...
H2(i)




define an [n, k1 − i, d2,i]q code. It is clear that d1 6 d2,1 6
d2,2 6 · · · 6 d2,k1−k2 = d2.

From the properties of generalized tensor prod-
uct codes, the redundancy is N − K = nm − K =
(n − k1)m + γ(k1 − k2); that is, the dimension is K =
k1(m − γ) + k2γ. Using Theorem 4, the minimum distance
is D > min

{
d1(γ + 1), d2,1(γ + 1), . . . , d2,k1−k2−1(γ +

1), d2,k1−k2

}
= min

{
(γ + 1)d1, d2

}
.

B. Generalized Integrated Interleaving Codes
With the similar idea used in the previous subsection, we

continue our proof for GII codes. We use the definition of
GII codes from [24] for consistency. Let Ci, i = 0, 1, . . . , γ,
be [n, ki , di]q codes over Fq such that

Cis = · · · = Cis−1+1 ⊂ Cis−1 = · · · = Cis−2+1

⊂ · · · ⊂ Ci1 = · · · = C1 ⊂ C0,
(10)

where i0 = 0 and is = γ. The minimum distances satisfy
d0 6 d1 6 · · · 6 dγ . A GII code CGII is defined as:

CGII =

{
c = (c0, c1, . . . , cm−1) : ci ∈ C0, 0 6 i < m,

and
m−1

∑
i=0

αbici ∈ Cγ−b, b = 0, 1, . . . , γ − 1
}

,

(11)

where α is a primitive element of Fq and γ < m 6 q − 1.
Let us first define some matrices which will be used below.

Let the matrix I over Fq be an m × m identity matrix. Let
H0 over Fq be the parity-check matrix of C0. For 1 6 j 6 s,

let the matrix
[

H0
Hi j

]
over Fq represent the parity-check

matrix of Ci j , where

Hi j =




Hi1\i0
Hi2\i1

...
Hi j\i j−1


 .

For any i 6 j, let matrix Γ(i, j;α) over Fq be the parity-
check matrix of an [m, m − ( j − i + 1), j − i + 2]q code in
the following form

Γ(i, j;α) =




1 αi · · · αi(m−1)

1 αi+1 · · · α(i+1)(m−1)

...
...

. . .
...

1 α j · · · α j(m−1)


 . (12)

Now, according to the definition in (11), using the matrices
introduced above, the parity-check matrix of CGII is

HGII =




I
⊗

H0
Γ(0, is − is−1 − 1;α)

⊗
His

Γ(is − is−1, is − is−2 − 1;α)
⊗

His−1...
...

...
Γ(is − i2, is − i1 − 1;α)

⊗
Hi2

Γ(is − i1, is − i0 − 1;α)
⊗

Hi1




,

(13)
which can be transformed into the form of

HGII =




I
⊗

H0
Γ(0, is − i0 − 1;α)

⊗
Hi1\i0

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1...
...

...
Γ(0, is − is−2 − 1;α)

⊗
His−1\is−2

Γ(0, is − is−1 − 1;α)
⊗

His\is−1




. (14)

To make a connection between GII codes and generalized
tensor product codes, we further reformulate the matrix HGII
in (14) as follows,

HGII =




I
⊗

H0
Γ(0, is − i0 − 1;α)

⊗
Hi1\i0

(1)
...

...
...

Γ(0, is − i0 − 1;α)
⊗

Hi1\i0
(ki0 − ki1 )

Γ(0, is − i1 − 1;α)
⊗

Hi2\i1
(1)

...
...

...
Γ(0, is − i1 − 1;α)

⊗
Hi2\i1

(ki1 − ki2 )
...

...
...

...
...

...
Γ(0, is − is−2 − 1;α)

⊗
His−1\is−2

(1)
...

...
...

Γ(0, is − is−2 − 1;α)
⊗

His−1\is−2
(kis−2 − kis−1 )

Γ(0, is − is−1 − 1;α)
⊗

His\is−1
(1)

...
...

...
Γ(0, is − is−1 − 1;α)

⊗
His\is−1

(kis−1 − kis )




,

(15)

where, in the first level, the matrix H0 over Fq is treated as
a vector over the extension field Fqn−ko , and correspondingly
the matrix I is treated as an m × m identity matrix over
Fqn−ko . For 1 6 x 6 s and 1 6 y 6 kix−1 − kix , Hix\ix−1

(y)
over Fq represents the yth row of the matrix Hix\ix−1

.
Now, referring to the matrix in (4), the matrix in (15) can

be seen as a parity-check matrix of a (1 + k0 − kis)-level
generalized tensor product code over Fq. As a result, we can
directly obtain the following lemma, which was also proved
in [24] in a different way.

Lemma 11. The code CGII is a linear code over Fq of
length N = nm, dimension K = ∑γ

x=1 kx + (m − γ)k0 =
∑s

j=1(i j − i j−1)ki j + (m − γ)k0, and minimum distance
D > min

{
(γ + 1)d0, (γ − i1 + 1)di1 , . . . , (γ − is−1 +

1)dis−1 , dis
}

.



Proof: For 1 6 x 6 s and 1 6 y 6 kix−1 − kix , let the
following parity-check matrix



H0
Hi1\i0(1)
...
Hi1\i0(ki0 − ki1)
...
Hix\ix−1

(1)
...
Hix\ix−1

(y)




define an [n, kix−1 − y, dix ,y]q code, so we have dix−1 6
dix ,1 6 dix ,2 6 · · · 6 dix ,kix−1

−kix
= dix . From the proper-

ties of generalized tensor product codes, it is easy to obtain
the dimension K = ∑s

j=1(i j − i j−1)ki j + (m − γ)k0. From
Theorem 4, the minimum distance satisfies

D > min
{
(γ + 1)d0 ,

(γ + 1)di1 ,1 , . . . , (γ + 1)di1 ,ki0 −ki1 −1 , (γ − i1 + 1)di1 ,

. . . , . . . , (γ − is−1 + 1)dis−1 ,

(γ − is−1 + 1)dis ,1 , . . . , (γ − is−1 + 1)dis ,kis−1 −kis −1 , dis

}

= min
{
(γ + 1)d0 , (γ − i1 + 1)di1 ,

. . . , (γ − is−1 + 1)dis−1 , dis

}
.

Remark 4. In some prior works, we find that generalized ten-
sor product codes are called generalized error-location (GEL)
codes [4], [16]. Recently, in [24], the similarity between GII
codes and GEL codes was observed. However, the exact re-
lation between them was not studied. In [24], the author also
proposed a new generalized integrated interleaving scheme
over binary BCH codes, called GII-BCH codes. These codes
can also be seen as a special case of generalized tensor prod-
uct codes.

VI. CONCLUSION

In this work, we presented a general construction for ME-
LRCs over small fields. This construction yields optimal ME-
LRCs with respect to an upper bound on the minimum dis-
tance for a wide range of code parameters. Then, an erasure
decoder was proposed and corresponding correctable erasure
patterns were identified. ME-LRCs based on Reed-Solomon
codes were shown to be optimal among all codes having
the same erasure-correcting capability. Finally, generalized
integrated interleaving codes were proved to be a subclass
of generalized tensor product codes, thus giving the exact
relation between these two codes.
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APPENDIX A
PROOF OF LEMMA 2

Proof: For the case of x = 0, it is trivial. For 1 6 x 6
⌈ k

k∗ ⌉ − 1, x ∈ Z+, let I represent the set of the coordinates
of the first x rows in the array. Thus, |I| = xn0. First,
consider the code CI = {cI : c ∈ C} whose dimension is
denoted by kI , which satisfies kI 6 xk∗. Then, we consider



the code C0
I = {c[ρn0 ]\I : cI = 0 and c ∈ C}. Since the

code C is linear, the size of the code C0
I is qk−kI and it is

a linear code as well. Moreover, the minimum distance d̂ of
the code C0

I is at least d, i.e., d̂ > d.
Thus, we get an upper bound on the minimum distance d,

d 6 d̂ 6d(q)
opt[ρn0 − |I|, k − kI ]

6d(q)
opt[ρn0 − xn0, k − xk∗].

Similarly, we also get an upper bound on the dimension
k,

k − kI 6 k(q)
opt[ρn0 − |I|, d̂] 6 k(q)

opt[ρn0 − xn0, d].

Therefore, we conclude that

k 6 k(q)
opt[ρn0 − xn0, d] + kI 6 k(q)

opt[ρn0 − xn0, d] + xk∗.

APPENDIX B
PROOF OF LEMMA 3

Proof: We can construct a (ρ, n0, k; > d0, > d)q ME-
LRC in two steps, and use the GV bound [20] twice. First,
there exists a [ρ(n0 − r0), k, > d]q array code G1 of size
ρ × (n0 − r0) where r0 is an integer 0 6 r0 < n0, if it
satisfies

d−2

∑
i=0

(
ρ(n0 − r0) − 1

i

)
(q − 1)i < qρ(n0−r0)−k . (16)

Second, there exists a length-n0 code G2 with minimum
distance at least d0, if its redundancy r0 satisfies

r0 > logq

( d0−2

∑
i=0

(
n0 − 1

i

)
(q − 1)i

)
. (17)

Now, we encode each row of the code G1 using the
code G2 by adding r0 more redundancy symbols. The
resulting code is a (ρ, n0, k; > d0, > d)q ME-LRC. Let
r0 = ⌈logq

(
∑d0−2

i=0 (n0−1
i )(q − 1)i)⌉, and substitute it into

(16), producing (3).

APPENDIX C
PROOF OF THEOREM 4

Proof: A codeword x in Cµ
GTP is an n′ℓ-dimensional

vector over Fq, denoted by x = (x1, x2, . . . , xℓ), where xi
in x is an n′-dimensional vector, for i = 1, 2, . . . , ℓ.

Let s j
i = xi H

′T
j , for i = 1, 2, . . . , ℓ and j = 1, 2, . . . , µ.

Thus, s j
i is a v j-dimensional vector over Fq, and is consid-

ered as an element in Fqv j . Let s j = (s j
1, s j

2, . . . , s j
ℓ), an

ℓ-dimensional vector over Fqv j , whose components are s j
i ,

i = 1, 2, . . . , ℓ.
To prove Theorem 4, we need to show that if xHT = 0

and wq(x) < dm = min{δ1, δ2d′
1, δ3d′

2, . . . , δµd′
µ−1, d′

µ},
then x must be the all-zero vector 0.

We prove it by contradiction and induction. Assume that
there exists a codeword x such that xHT = 0, wq(x) < dm,
and x ̸= 0.

We first state a proposition which will be used in the fol-
lowing proof.

Proposition 12. If xHT = 0 and s1 = s2 = · · · = s j = 0,
then wq(xi) > d′

j for xi ̸= 0, i = 1, 2, . . . , ℓ.

Proof: The condition s1 = s2 = · · · = s j = 0 means
that xiBT

j = 0 for i = 1, 2, . . . , ℓ; that is, xi is a codeword
in the code defined by the parity-check matrix B j, whose
minimum distance is d′

j. Therefore, we have wq(xi) > d′
j

for xi ̸= 0, i = 1, 2, . . . , ℓ.
Now, if s1 ̸= 0, then wq(x) > wqv1 (s1) > δ1 > dm,

which contradicts the assumption. Thus, we have s1 = 0.

Then, consider the second level. If s2 ̸= 0, then wq(x)
(a)
>

wqv2 (s2)d′
1 > δ2d′

1 > dm, where step (a) is from Proposition
12. This contradicts the assumption, so we have s2 = 0. By
induction, we must have s1 = s2 = · · · = sµ−1 = 0.

For the last level, i.e., the µth level, if sµ ̸= 0, then
wq(x) > wqvµ (sµ)d′

µ−1 > δµd′
µ−1 > dm, which contradicts

our assumption. Now, if s1 = s2 = · · · = sµ = 0, then
wq(x) > d′

µ > dm, which also contradicts our assumption.
Thus, our assumption is violated.

APPENDIX D
PROOF OF THEOREM 6

Proof: The proof follows from the decoding procedure
of decoder DA. The ME-LRC CA has d0 = d′

1 and d = d′
µ .

For a received word y = (y1, y2, . . . , yℓ), each vector yi,
1 6 i 6 ℓ, corresponds to a row in the array.

For the first level, since δ1 = ∞, the correct syndrome
vector (s1

1, . . . , s1
ℓ) is the all-zero vector, i.e., (s1

1, . . . , s1
ℓ ) =

0. Thus, the rows with number of erasures less than d′
1 are

corrected.
For the second level, the remaining uncorrected row ĉ j,

j ∈ F , has at least d′
1 erasures. The total number of such

uncorrected rows with indices in F is less than δ2, because
we require N1 6 δ2 − 1 in the condition. Thus, the correct
syndrome vector (s2

1, . . . , s2
ℓ ) can be obtained. As a result,

the rows with number of erasures less than d′
2 are corrected.

Similarly, by induction, if the decoder runs until the µth
level, the remaining uncorrected row ĉ j, j ∈ F , has at
least d′

µ−1 erasures. The total number of such uncorrected
rows with indices in F is less than δµ , because we require
Nµ−1 6 δµ − 1 in the condition. Therefore, all the correct
syndrome vectors (si

1, . . . , si
ℓ), i = 1, 2, . . . , µ, are obtained.

On the other hand, the remaining uncorrected row ĉ j, j ∈ F ,
has at most d′

µ − 1 erasures, since we also require Nµ 6 0
in the condition. Thus, all these uncorrected rows can be
corrected in this step with all these correct syndromes.

APPENDIX E
PROOF OF COROLLARY 7

Proof: The ME-LRC CA has d0 = d′
1 and d = d′

µ . We
only need to show that the received word y with any d′

µ − 1



erasures satisfies the condition in Theorem 6. We prove it by
contradiction. If the condition is not satisfied, there is at least
an integer i, 1 6 i 6 µ, such that Ni > δi+1. Therefore,
we have we(y) > d′

iδi+1 > d′
µ , where the last inequality

is from the requirement of Construction A. Thus, we get a
contradiction to the assumption that the received word y has
d′
µ − 1 erasures.


