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Abstract

In distributed storage, erasure codes—like Reed-Solomon Codes—are often employed to provide reli-
ability. In this setting, it is desirable to be able to repair one or more failed nodes while minimizing the
repair bandwidth. In this work, motivated by Reed-Solomon codes, we study the problem of repairing
multiple failed nodes in a scalar MDS code. We extend the framework of (Guruswami and Wootters,
2017) to give a framework for constructing repair schemes for multiple failures in general scalar MDS
codes, in the centralized repair model. We then specialize our framework to Reed-Solomon codes, and
extend and improve upon recent results of (Dau et al., 2017).

1 Introduction

In coding for distributed storage, one wishes to store some data x ∈ Σk across n nodes. These nodes will
occasionally fail, and erasure coding is used to allow for the recovery of x given only a subset of the n nodes.
A common solution is to use a Maximum-Distance Separable (MDS) code; for example, a Reed-Solomon
code. An MDS code encodes a message x ∈ Σk into n symbols c ∈ Σn, in such a way that any k symbols
of c determine x. By putting the symbols ci of c on different nodes, this gives a distributed storage scheme
which can tolerate n− k node failures.

While this level of worst-case robustness is desirable, in practice it is much more common for only a few
nodes to fail, rather than n−k of them. To that end, it is desirable to design codes which are simultaneously
MDS and which also admit cheap repair of a few failures. One important notion of “cheap” is network
bandwidth: the amount of data downloaded from the surviving nodes. The naive MDS repair scheme would
involve downloading k complete symbols of n. Minimum storage regenerating (MSR) codes [6] improve the
situation; these are codes which maintain the MDS property, while substantially reducing repair bandwidth
for a single failure.

Most of the work in regenerating codes has focused on this case of a single failure, as is many systems this
is the most common case, as documented by Rashmi et al. in [16]. However, even in [16] it is not uncommon
to have multiple failures at once, and some systems employ lazy repair to encourage this [12]. Motivated by
this, many recent works have considered this case of multiple failures. In this work, we focus on the question
of multiple failures for scalar MDS codes. Our work is inspired by Reed-Solomon codes—arguably the most
commonly-used code for distributed storage—but our framework works more broadly for any scalar MDS
code.

1.1 Previous work and our contributions

There has been a huge amount of work on regenerating codes, and we refer the reader to the survey [7] for
an excellent introduction. Most of the work has focused on a single failures, but recently there has been a
great deal of work on multiple failures. Two commonly studied models are the centralized model (which we
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study here), and the cooperative model. In the centralized model, a single repair center is responsible for
the repair of all failed nodes, while in the cooperative model the replacement nodes may cooperate but are
distinct [19, 11, 13].

We focus on the centralized model. Most of this work in this model has focused on achieving the cut-set
bound for multiple failures [1, 14, 17, 25, 26, 27, 21, 23, 24]. This extends with well-known cut-set bound
for the single-failure case [6], and is only achievable when the sub-packetization (that is, the number of sub-
symbols that each node stores) is reasonably large; in particular, we (at least) require the subpacketization t
to be larger than n− k, otherwise the trivial lower bound of k+ t− 1 is larger than the cut-set bound. Most
of the works mentioned above focus on array codes, that is, codes where the alphabet Σ = Bt is naturally
thought of as a vector space over a finite field B, and the codes are generally B-linear.

Other recent works [3, 4, 23] focused on Reed-Solomon codes, and studied multiple failures for scalar
codes, where the alphabet Σ = F is a finite field, and the codes are required to be linear over F . In [23],
the goal is again the cut-set bound, and the underlying subpacketization is necessarily exponentially large.
In [3, 4], the sub-packetization is taken to be smaller, on the order of log(n). This is the natural parameter
regime for Reed-Solomon codes, and in this regime the cut-set bound is not achievable for high-rate codes.
Our work falls into this latter category.

Beginning with the work of Shanmugam et al. in [18], the repair properties of scalar MDS codes has
been increasingly studied [18, 10, 22, 20, 5, 3, 4, 23, 8, 2]. In [10], the authors gave a framework for studying
single-failure repair schemes for scalar MDS codes, and the works of Dau et al. [3, 4] mentioned above adapt
the single-failure scheme from [10] to handle two or three failures for Reed-Solomon codes, in several models,
including the centralized model.

In this work, we extend and improve the results of [3, 4]. More precisely, we make the following contri-
butions.

1. Following the setup of [10], we give a general framework for constructing repair schemes of scalar MDS
codes for multiple failures. Theorem 1 shows that collections of dual codewords with certain properties
naturally give rise to repair schemes for multiple failures. This framework is applicable to any scalar
MDS code, and for any number of failures r ≤ n− k.

2. We instantiate Theorem 1 with two different schemes in Theorems 2 and 3 that both give non-trivial
repair schemes for multiple failures. While the scheme in Theorem 2 is asympototically better (as n,
the length of the code, tends to infinity), the scheme in Theorem 3 is better for small n.

Our schemes are the first in this parameter regime to work for r > 3, and additionally they improve
over previous work [3, 4] when r = 2, 3. More precisely, we obtain the following bounds:

• Theorem 3 improves and generalizes the scheme of Dau et al. for Reed-Solomon codes in the
centralized model [3]. More precisely, in Theorem 3, for any r ≤ r0, for some r0 = O(

√
log(n)), we

give schemes for high-rate (say, 1−ε), length n Reed-Solomon codes which have repair bandwidth
(measured in bits) (

(n− r) · r − r(r − 1)

2

(
1

ε
− 1

))
· log2(1/ε).

For comparison, the scheme of Dau et al. worked for r = 2, 3, and had bandwidth (n − r) · r ·
log2(1/ε). Thus, for r = 2, 3 Theorem 3 improves the bandwidth by r(r−1)

2 (1/ε − 1) log2(1/ε)
bits, and for larger r we give the first non-trivial schemes for Reed-Solomon Codes with small
subpacketization.

When r = 1, this collapses to the scheme of [10], which is optimal.

• Theorem 2 improves over Theorem 3 asymptotically, but it is not as good for small values of n.
For this theorem we again generalize the constructions of [10, 5], but we do so in a different way
and do not go the same route as [3]. We obtain a repair scheme for high rate (1 − ε), length n
Reed Solomon codes with repair bandwidth (in bits) at most

min
r′≥r

(
(n− r′)

(
log2(n)−

⌊
log2

(
nε+ r′ − 1

2r′ − 1

)⌋))
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When r = 1, this too collapses to the scheme of [10], which is optimal, and the bound is nontrivial
for r ≤ r0 where r0 = O(n1−ε).

We compare our two bounds, along with the trivial bound of bandwidth kt and the optimal bound for
r = 1, in Figure 1.

Figure 1: The bound of Theorems 2 and 3, for rate 1/2 Reed-Solomon codes with n = 2t, for t = 8 and t = 20. When
t is small, Theorem 3 is better; when t is large, Theorem 2 is better. Other works [3, 4] on multiple failures in this
parameter regime corrected up to two or three failures only.

We emphasize that the codes in Theorems 2 and 3 are simply Reed-Solomon codes that use all their evaluation
points; that is, our results imply that this one classical code can be repaired from a growing number of failures
with non-trivial bandwidth, and the repair behavior degrades gracefully as the number of failures increases
to n − k. However, we do not have a matching lower bound for larger r, and we suspect that further
improvements are possible.

Organization. In Section 2 we set up notation and give formal definitions for the problems we consider.
In Section 3, we give Theorem 1, which provides a framework for constructing repair schemes for multiple
failures for general scalar MDS codes. In Section 4, we give Theorems 2 and 3, which specialize Theorem 1
to Reed-Solomon codes, and gives the results advertised above.

2 Preliminaries

In this section, we set up notation, and formally introduce the definitions that we will work with throughout
the paper.

2.1 Notation

We use the notation [n] to mean the set of integers {1, . . . , n}, and for vectors v, w ∈ Fn, we use 〈v, w〉 =∑
i∈[n] viwi to denote the standard inner product.

Matrix and vector notation. Unless otherwise noted, vectors v are treated as column vectors; the i’th
entry of a vector v is denoted vi. For a vector v ∈ Fn and a set I ⊆ [n], with I = {i1, . . . , ir} and
i1 < i2 < · · · < ir, vI denotes the (column) vector (vi1 , vi2 , . . . , vir ). For a vector v ∈ Fm, we will use set (v)
to denote the set set (v) = {vi : i ∈ [m]} .

For a matrix M , we use M [:, i] to refer to the i’th column and M [i, :] to refer to the i’th row of M .
For sets I, J , we will use M [I, J ] to refer to the submatrix of M containing the rows indexed by I and the
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columns indexed by J ; and we will extend this to M [I, :] and M [:, J ] to mean the submatrix formed by the
rows in I or columns in J , respectively. Our notation is 1-indexed.

Finite field notation. Throughout this paper, F denotes a finite field, and B ⊂ F denotes a subfield
of F . We use F ∗ and B∗ to denote the group of units in F and B respectively, and F ∗/B∗ to denote the
quotient group. For a set of elements S ⊆ F , we will use spanB(S) to denote the linear span over B of S:

spanB(S) =

{∑
x∈S

ax · x : ax ∈ B

}
.

We will similarly use dimB to refer to the dimension over B. Finally, for a field F with a subfield B, so that
F has degree t over B, the field trace trF/B : F → B is defined by

trF/B(x) :=

t−1∑
i=0

x|B|
i

.

The function trF/B is a B-linear function from F to B. We refer the reader to, for example, [9] for a
primer/refresher on finite fields.

2.2 Definitions

Let C ⊂ Σn be a code of block length n over an alphabet Σ. As described in the introduction, we imagine
the the n symbols of a codeword c = (c1, c2, . . . , cn) ∈ C are distributed between n different nodes, so that
node i stores the symbol ci.

The exact repair problem. In the exact repair problem, one node, Node i, is unavailable, and the goal
is to repair it (that is, recover ci) using only information from the remaining nodes. Of course, any MDS
code can achieve this: by definition, all of c is determined by any k symbols, and so any k surviving nodes
determine all of c and in particular the missing information ci. But, as described in the introduction, we
hope to do better than this, in terms of the amount of data downloaded.

Formally, suppose that Σ ' Bt can is a vector space over some base field B. Thus, the contents of a node
(a symbol ci ∈ Σ) are t sub-symbols from B. When a node fails, a replacement node or repair center can
contact a surviving node, which may do some computation and return some number—possibly fewer than
t—sub-symbols from B. The parameter t is called the sub-packetization. Formally, we define an exact repair
scheme as follows.

Definition 1. An exact repair scheme for a code C ⊂ Σn is defined as follows. For each i ∈ [n], there is a
collection of functions

{gi,j : j ∈ [n] \ {i}} ,
so that

gi,j : Σ→ Bbi,j

for some non-negative integer bi,j. and so that for all c ∈ C, ci is determined from {gi,j(cj) : j ∈ [n] \ {i}}.
The bandwidth of this scheme (measured relative to B) is the total number of elements of B required to
repair any node:

bandwidth = max
i∈[n]

∑
j∈[n]\{i}

bi,j .

Remark 1 (Variants). The definition above is not the only definition of regenerating codes, and is missing
several parameters often considered. For example, we may also limit number of nodes contacted, requiring
the repair scheme to only contact d out of the surviving nodes. We may also allow for the nodes to store
more elements of B than the original data blocks to (in the lingo of regenerating codes, to move away from
the MSR setting and toward the MBR setting). However, the goal of the current work is to study multiple
failures in scalar MDS codes.
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Multiple failures. In this work, we will focus on the centralized model of multiple repair [1]. In this
model, a repair center is in charge of the repair for all the nodes. We count as bandwidth the information
downloaded by this repair center, but not between the center and any of the replacement nodes. Formally,
we have the following definition.

Definition 2. An exact centralized repair scheme for r failures for a code C ⊂ Σn is defined as follows. For
each set I ⊆ [n] of size at most r, there is a collection of functions

{gI,j : j ∈ [n] \ I} ,

so that
gI,j : Σ→ BbI,j

for some non-negative integer bI,j, and so that for all c ∈ C, and all i ∈ I, ci is determined from
{gI,j(cj) : j ∈ [n] \ I}. The bandwidth of this scheme (measured relative to B) is the total number of el-
ements of B required to repair the nodes in any set I:

bandwidth = max
I⊂[n],|I|≤r

∑
j∈[n]\{i}

bI,j .

Definition 2 is perhaps the simplest possible definition of the exact repair problem for multiple failures.
As per Remark 1, we could spice up the definition of the exact repair problem in many ways; and beyond
that following the work of [3] for Reed-Solomon codes in other models, we could include in our measure
of bandwidth some way to capture the cost of communication between the multiple replacement nodes.
However, addressing even this simplest case is interesting and much is unknown, so we will focus on this
case for the current work, and we hope that the insights of this work may be extended to more complicated
models.

Linear repair schemes and scalar MDS codes. As mentioned in the introduction, most of the work on
regenerating codes explicitly views the alphabet Σ as a vector space over some field B. However, for many
codes commonly used in distributed storage—notably Reed-Solomon codes—it is more common to view the
alphabet Σ as a finite field F . Such codes are termed “scalar” MDS codes [18]. However, if B ⊆ F is a
subfield so that the degree of F over B is t, then F is in fact a vector space of dimension t over B, and so
the set-up above makes sense. We focus on this setting for the rest of the paper: that is, C ⊂ Fn is a linear
subspace which has the property that any k symbols of a codeword c ∈ C determine c.

In this setting, while more restrictive1 than that of Definition 1, there is additional algebraic structure
which, it turns out, very nicely characterizes exact repair schemes for a scalar MDS code C ⊂ Fn (for a
single failure) in terms of the dual code C⊥ := {v ∈ Fn : 〈c, v〉 = 0∀c ∈ C}. More formally, we define a repair
matrix for a symbol i ∈ [n] as follows.

Definition 3. Let C ⊆ Fn be an MDS code over F , and suppose that B is a subfield of F , so that F has
degree t over B. Let i ∈ [n]. A repair matrix with bandwidth b for an index i is a matrix M ∈ Fn×t with
the following properties:

1. The columns of M are codewords in the dual code C⊥.

2. The elements of the i’th row M [i, :] of M have full rank over B.

3. We have ∑
j∈[n]\{i}

dimB {spanB {set (M [j, :])}} = b.

1The difference is that an array code with the MDS property need not be itself a linear code over Σ (and indeed this may
not even make sense if Σ is not a field), while a scalar MDS code is by definition linear over Σ.
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One of the main results of [10] was that repair matrices precisely characterize linear repair schemes.
We say that a repair scheme as in Definition 1 is linear if the functions gi,j , along with the function that
determines ci, are all B-linear. The work of [10] showed that a (scalar) MDS code C admits a linear repair
scheme with bandwidth b if and only if, for all i ∈ [n], there is a repair matrix with bandwidth at most b for
i.

3 Framework

In this section, we extend the framework of [10] to the case of multiple repairs. We first define an analog of
repair matrices for multiple repair.

Definition 4. Let C ⊆ Fn be a MDS code over F , and suppose that B is a subfield of F , so that F has degree
t over B. Let I ⊂ [n] have size r. A multiple-repair matrix with bandwidth b for I is a matrix M ∈ Fn×rt
with the following properties:

1. The columns of M are codewords in the dual code C⊥.

2. The submatrix M [I, :] has full rank over B, in the sense that for all nonzero x ∈ Brt, M [I, :] · x 6= 0.

3. We have ∑
j∈[n]\I

dimB {spanB {set (M [j, :])}} = b.

Our main theorem is that an MDS code C admits a (linear) repair scheme for a set I of failed nodes with
bandwidth b if there exists a multiple-repair matrix with bandwidth b for I.

Theorem 1. Let C ⊂ Fn be an MDS code, and let B ⊂ F be a subfield so that F has degree t over B.
Suppose that for all I ⊆ [n] of size r, there is a multiple-repair matrix M ∈ Fn×rt with bandwidth at most b
for I. Then C admits an exact centralized repair scheme for r failures with bandwidth b.

Proof. Let I ⊂ [n] be any set of r failures, and let M ∈ Fn×rt be a multiple-repair matrix with bandwidth
b for I. For each j ∈ [n] \ I, we will show how to use M to construct the functions gI,j : F → BbI,j .

We will choose bI,j (the number of sub-symbols returned by gI,j) to be bI,j = dimB {spanB {set (M [i, :])}}.
Then by Definition 4,

∑
j∈[n]\I bI,j ≤ b. Let λ1, . . . , λbI,j ∈ F be a basis for the elements of M [j, :] over B.

(We note that the λi depend on the choice of j, but we suppress this for notational clarity). For x ∈ F , we
choose

gI,j(x) = (trF/B(λ1 · x), trF/B(λ2 · x), · · · , trF/B(λbI,j · x)).

We first observe that, by Property 3 in Definition 4, the total bandwidth of this scheme is b symbols of B.
We next need to show that this repair scheme works; that is, we need to show that for all c ∈ C, the values
{gI,j(cj) : j ∈ [n] \ I} determine {ci : i ∈ I}.

By Property 1 in Definition 4, for all ` ∈ [rt], we have M [:, `] ∈ C⊥. This means that for all c ∈ C, and
for all ` ∈ [rt],

0 =
∑
i∈[n]

ci ·M [i, `]

∑
i∈I

ci ·M [i, `] = −
∑

j∈[n]\I

cj ·M [j, `]

trF/B

(∑
i∈I

ci ·M [i, `]

)
= trF/B

− ∑
j∈[n]\I

cj ·M [j, `]


∑
i∈I

trF/B(ci ·M [i, `]) = −
∑

j∈[n]\I

trF/B(cj ·M [j, `]).

6



We claim that the right-hand side above can be constructed from the values {gI,j(cj) : j ∈ [n] \ I}. Indeed,

write M [j, `] =
∑bI,j
i=1 ai,`,jλi for some coefficients ai,`,j ∈ B. Then,

−
∑

j∈[n]\I

trF/B(cj ·M [j, `]) = −
∑

j∈[n]\I

trF/B

cj · bI,j∑
i=1

ai,`,jλi

 = −
∑

j∈[n]\I

bI,j∑
i=1

ai,`,jtrF/B (cj · λi) ,

and the values trF/B (cj · λi) are precisely what is returned by gI,j(cj). Thus, given the returned information,
the repair center can reconstruct the quantities∑

i∈I
trF/B(ci ·M [i, `]) ∀` ∈ [rt]. (1)

Finally, we invoke Property 2 in Definition 4 to show that (1) in fact contain enough information to
recover {ci : i ∈ I}. To see this, consider the map ϕ : F r → Brt given by

ϕ(x) = trF/B
(
xT ·M [I, :]

)
,

where the multiplication is done over F and the trace is applied entry-wise. That is,

ϕ(x) = (trF/B(〈x,M [I, 1]〉), trF/B(〈x,M [I, 2]〉), . . . , trF/B(〈x,M [I, rt]〉)).

We will show that ϕ is invertible. To see this, consider the map ψ : Brt → F r given by

ψ(y) = M [I, :] · y.

This map is clearly B-linear and Property 2 says that ψ is injective. By counting dimensions (over B), ψ is
surjective as well. To conclude, we will observe that ψ is the adjoint of ϕ, in the sense that for all y ∈ Brt
and for all x ∈ F r, we have

〈ϕ(x), y〉 = trF/B (〈x, ψ(y)〉) ,

and hence since ψ is invertible then ϕ is invertible. Formally, we compute

〈ϕ(x), y〉 =
∑
j∈[rt]

yj · trF/B(〈x,M [I, j]〉)

= trF/B

∑
j∈[rt]

yj · 〈x,M [I, j]〉


= trF/B (〈x,M [I, :] · y〉)
= trF/B (〈x, ψ(y)〉) .

Now, we would like to show that ϕ is injective. Let x ∈ F r be nonzero. Then there is some z ∈ F r so that
trF/B(〈x, z〉) 6= 0. Because ψ is surjective, there is some y ∈ Brt so that ψ(y) = z. But then

〈ϕ(x), y〉 = trF/B(〈x, ψ(y)〉) = trF/B(〈x, z〉) 6= 0,

and hence ϕ(x) 6= 0 as well. This shows that ϕ is injective; again by dimension counting, we see that ϕ is
also surjective and hence invertible.

Thus, given ϕ(x), we may recover x via linear algebra. To complete the argument, we observe that the
quantities (1) in fact give us ϕ(cI), where we recall that cI denotes the restriction of c to I. Thus, given (1),
we may invert ϕ and recover {ci : c ∈ I}, as desired.
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4 Centralized repair schemes for RS codes with multiple failures

In this section we specialize Theorem 1 to Reed-Solomon codes. The Reed-Solomon Code C of dimension k
over F with evaluation points α1, . . . , αn is the set

C = {(f(α1), f(α2), . . . , f(αn)) : f ∈ F [X],deg(f) < k} .

The dual of any Reed-Solomon Code is a generalized Reed-Solomon Code:

C⊥ = {(λ1 · g(α1), λ2 · g(α2), . . . , λn · g(αn)) : g ∈ F [X],deg(g) < n− k} , (2)

where λ1, . . . , λn ∈ F are constants which depend on the choice of α1, . . . , αn. (We refer the reader to[15]
for more details).

Below, we give two constructions instantiating Theorem 1 for Reed-Solomon Codes. Our first scheme,
discussed in Section 4.1, is much better as n → ∞. However, for small values of n, our second scheme,
discussed in Section 4.2, is quantitatively better, and so we include it as it may be of more practical interest.

Both of our schemes generalize the construction of [10, 5] for a single failure. We briefly review this
construction below, as we will need it for our constructions. The scheme of [10] was as follows:

Proposition 1 ([10]). Let n = |F |, and let Let C ⊆ Fn be the Reed-Solomon code of dimension k = n−n/|B|,
which uses all evaluation points F = {α1, . . . , αn}. Let δ ∈ F , and let ζ1, . . . , ζt be a basis for F over B.
Then the matrix M = M(δ, ζ1, . . . , ζt) ∈ Fn×t with

M [j, w] =
δ · tr(ζw(αj − αi))

αj − αi
(3)

is a repair matrix for index i with bandwith n− 1 symbols of B.

To see that this is indeed a valid repair matrix for i, observe that the polynomial

hw(X) =
δ · trF/B(ζw(X − αi))

X − αi
= δ

(
ζw + ζ |B|w (X − αi)|B|−1 + · · ·+ ζ |B|

t−1

w (X − αi)|B|
t−1−1

)
is indeed a polynomial of degree less than n− k = n/|B| = |B|t−1, and so the column M [:, j] is an element
of C⊥. Moreover, we have hw(αi) = δζw, and so M [i, :] = (δζ1, δζ2, . . . , δζt) is full rank. Finally, for all j 6= i,

hw(αj) ∈
δ

αj − αi
·B,

and hence spanB(set (M [j, :])) = spanB {hw(αj) : w ∈ [t]} has dimension 1 over B, and so the bandwidth
of the repair matrix is n− 1.

In [5], it was observed that the trace function above can be replaced with an arbitrary linearized poly-
nomial. More precisely, let W ⊆ F be a subspace of dimension s over B. The subspace polynomial defined
by W is

LW (X) =
∏
α∈W

(X − α).

It is well-known that LW is a B-linear map from F to F , of the form

LW (X) =

s∑
j=0

cjX
|B|j (4)

for coefficients c0, . . . , cs ∈ F . In particular, there is no constant term; X divides LW (X). Moreover, the
coefficient c0 is nonzero, as

c0 =
∑
α∈W

∏
β∈W\{α}

β =
∏

β∈W\{0}

β 6= 0.

Since the kernel of LW is W , the image of LW is a subspace of dimension t− s over B.
With this background in place, we proceed to our constructions.
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4.1 Main construction

Our main construction for Reed-Solomon codes generalizes the construction of [10, 5]. In particular, we will
choose rt different low-degree polynomials of a form similar to (3); we follow [5] and replace the trace function
with a linearized polynomial. The key is to choose an appropriate modification so that the requirements of
Theorem 1 hold. We will see how to do this below, but first we state our main result.

Theorem 2. Let B ⊆ F be a subfield, and let C ⊂ Fn be a Reed-Solomon Code of dimension k. Choose
1 ≤ r ≤ n− k. Then C admits an exact centralized repair scheme for r failures with bandwidth at most

b ≤ min
r′≥r

(
(n− r′)

(
t−
⌊

log|B|

(
n− k + r′ − 1

2r′ − 1

)⌋))
. (5)

Remark 2 (Optimality?). Theorem 2 works for any value of r between 1 and n − k, and moreover it is
optimal for scalar MDS codes at both r = 1 and r = n − k. Moreover, it produces non-trivial bounds for
r � nR, where R = k/n is the rate of the code. However, when r ≈ nR, the expression above becomes trivial
(equal to kt), and we do not know whether or not this is a fundamental limit or an artifact of our approach.
The behavior of (5) is shown in Figure 1.

Proof of Theorem 2. LetW ⊆ F be a subspace of dimension s overB, and let LW be the subspace polynomial

LW (X) =
∏
α∈W

(X − α).

As above, let I ⊂ [n] be the set of failed nodes, so |I| = r. Let Z = {ζ1, . . . , ζt} be a basis for F over B.
Define

FI(X) =
∏
α∈I

(X − α),

and for p ∈ [r], define

Pζ,p(X) =
LW

(
ζ · FI(X) ·Xp−1)
FI(X)

.

This is a generalization of the construction in [10, 5] to multiple failures: if r = 1 and α1 is the only failed
node, then the above is

Pζ,1(X) =
LW (ζ · (X − α1))

(X − α1)
,

exactly as in [5].
Now, we construct our repair matrix M ∈ Fn×rt as follows. We index the rows of M by j ∈ [n], and the

columns by pairs (ζ, i) for ζ ∈ Z and p ∈ [r]. Then we set

M [j, (ζ, p)] := λjPζ,p(αj),

where λj is as in (2).
We must show that M satisfies the conditions of Theorem 1. In particular, we will show that M has the

form shown in Figure 2, which as we will see below implies that Theorem 1 applies. First, we compute the
bandwidth of M .

Claim 1. The bandwidth of M is at most (n− r)(t− s).

Proof. For j 6∈ I, the set of symbols set (M [j, :]) that appears in row j of M is precisely

set (M [j, :]) = {λj · pζ,p(αj) : ζ ∈ Z, p ∈ [r]}

=

{
λj ·

LW (ζ · FI(αj) · αp−1j )

FI(αj)
: ζ ∈ Z, p ∈ [r]

}

⊆ λj
FI(αj)

Im(LW ),
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which is a subspace of dimension t − s. Since there are n − r such j’s by definition the bandwidth of M is
bounded by

(n− r)(t− s),

as desired.

We next show that M [I, :] has full rank, in the sense that M [I, :]x 6= 0 for all nonzero x ∈ Brt.

Claim 2. M [I, :] has full rank.

Proof. Using (4), we write

Pζ,p(X) =
PW (ζ · FI(X) ·Xp−1)

FI(X)

=

∑s
m=0 cm

(
ζ · FI(X) ·Xp−1)|B|m
FI(X)

=

s∑
m=0

cm · ζ |B|
m

· FI(X)|B|
m−1 ·X(p−1)·|B|m ,

and hence for i ∈ I, all terms vanish except the m = 0 term, and we have

Pζ,p(αi) = c0 · ζ · αp−1i .

To show that M [I, :] has full rank, by definition we must show that for all nonzero x ∈ Brt, M [I, :]x 6= 0.
So let x ∈ Brt \{0}, and write x = (x(1), x(2), . . . , x(r)), where each x(i) ∈ Bt. By the above characterization,
we have

〈M [i, :], x〉 = λi ·
r∑
p=1

c0α
p−1
i

〈
~ζ, x(p)

〉
,

where ~ζ = (ζ1, . . . , ζt) ∈ F t. Since the ζi form a basis of F over B and since x 6= 0, at least one of the

coefficients
〈
~ζ, x(p)

〉
is nonzero. Thus, 〈M [i, :], x〉 = λi ·g(αi), where g(X) =

∑r
p=1 c0

〈
~ζ, x(p)

〉
Xp−1 is some

nonzero polynomial of degree at most r − 1. This means that M [i, :] · x 6= 0, or else this polynomial g(X)
would have at least r roots, one for each i ∈ I.

Finally, we must choose s. We need for the columns of M to be elements of C⊥, which by (2) is the same
as requiring the polynomials Pζ,p(X) to have degree strictly less than n− k. That is, we require

|B|s · (2r − 1)− r ≤ n− k − 1,

which is satisfied by the choice of

s =

⌊
log|B|

(
n− k + r − 1

2r − 1

)⌋
.

Plugging this choice of s into the bandwidth bound of Claim 1 coupled with Observation 1 below finishes
the proof of Theorem 2.

Observation 1. Given r′ > r if C admits an exact centralised repair scheme for r′ failures with bandwidth
b then it also admits an exact centralized repair scheme for r failures with bandwidth b.

Proof. This is true because if we have r < r′ failures then we can simply ignore a further r′ − r nodes and
use the repair scheme for r′ failures.

10



· · ·

λi1 · c0 · ~ζ λi1 · c0 · αi1 · ~ζ λi1 · c0 · α2
i1
· ~ζ

λi2 · c0 · ~ζ λi2 · c0 · αi2 · ~ζ λi2 · c0 · α2
i2
· ~ζ

λi3 · c0 · ~ζ λi3 · c0 · αi3 · ~ζ λi3 · c0 · α2
i3
· ~ζ

∈ λj1 · (FI(αj1 ))−1 · Im(LW )

∈ λj2 · (FI(αj2 ))−1 · Im(LW )

∈ λj3 · (FI(αjn−3 ))−1 · Im(LW )

M [I, :]

t

M [Ic, :]

Figure 2: The matrix M constructed in the proof of Theorem 2 for r = 3, where we write I = {i1, i2, i3}, and
[n] \ I = {j1, . . . , jn−3}. Here, c0 is the coefficient from (4), and ζ = (ζ1, . . . , ζr) is a vector consisting of the elements
of the basis Z.

4.2 Alternate construction for small block sizes

In this section we give another generalization of the one-failure scheme from Proposition 1. This scheme is
worse asymptotically, but has better performance for small n, so it may be of practical value. The basic idea
directly generalizes (and improves upon) that of [4]; the multiple-repair matrix M is formed by concatenating
r separate repair matrices M1, . . . ,Mr from Proposition 1. In fact, Theorem 1 immediately implies that this
is a nontrivial repair scheme, but we can do better by choosing multipliers δ1, . . . , δr ∈ F , and using the repair
matrix formed by concatenating δ1M1, . . . , δrMr. We will show how to choose the multipliers δ1, . . . , δr so
that (a) the rank of M [I, :] is not affected, but (b) the rank of the other rows M [j, :] for j 6∈ I is reduced.

We will prove the following theorem.

Theorem 3. Let n = |F | and let C ⊆ Fn be as in Lemma 1. Let B be a subfield of F so that F has degree
t over B. Choose r ≥ 2 so that

t >

(
r

2

)
+ log|B|(r · (r +

(
r

2

)
(|B| − 1)) · (|B| − 1) + 1).

Then for all I ⊂ [n] of size r, there is a matrix M ∈ Fn×rt so that M is a multiple repair matrix for I, with
bandwidth

b ≤ (n− r) · r − (|B| − 1)

(
r

2

)
.

Remark 3 (Bandwidth guarantee). Observe that the naive scheme (which contacts any k remaining nodes)
has bandwidth nk, while the scheme which repeats the one-failure scheme r times has bandwidth (n− 1) · r.
Thus, the guarantee that b ≤ (n− r) · r−

(
r
2

)
(|B| − 1) improves on both of these. Moreover, when r = 1, this

collapses to the result of [10] that b ≤ n− 1. For r = 2, 3, this improves over the result b ≤ (n− r) · r of [3].
A comparison of Theorem 3 with Theorem 2 is shown in Figure 1.

Remark 4 (Large r). Notice that Theorem 3 allows r to grow slightly with n. However, since we have
t = log|B|(n) since n = |F |, the requirement on t implies that, for the result to hold, we need

log|B|

(
n

r · (r +
(
r
2

)
(|B| − 1)) · (|B| − 1) + 1

)
>

(
r

2

)
or r .

√
log(n).
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The rest of this section is devoted to the proof of Theorem 3. We begin with a lemma which shows that,
if the multipliers δ1, . . . , δr are picked appropriately, then the matrix formed by contenating r copies of the
single-repair matrices of Proposition 1 form a good multiple-repair matrix.

Lemma 1. Let n = |F |, and let B ⊆ F be a subfield so that F has degree t over B. Let C ⊆ Fn be the
Reed-Solomon code of dimension k = n − n/|B| with evaluation points F = {α1, . . . , αn}. Suppose2 that
I = {α1, . . . , αr}. Let ζ1, . . . , ζt be any basis for F over B. Choose δ1, . . . , δr so that for all j = 1, . . . , r, for
all ` > j and for all s > j, we have

trF/B

(
δ`
δj
· αs − αj
αj − α`

)
= 0. (6)

Let

Mi := M

(
δi,

ζ1
δi
,
ζ2
δi
, . . . ,

ζt
δi

)
be as in Proposition 1. Then the matrix M ∈ Fn×rt given by

M = [M1|M2| · · · |Mr] (7)

is a multiple-repair matrix for I.

Notice that Lemma 1 does not make any claims about the bandwidth of this scheme; we will show below
how to choose the δi so that (6) holds, and so that the bandwidth is also small. Because the columns of M
are columns of the Mi and we have already established that these are dual codewords, the only thing left to
prove is that Property 2 of Definition 4 holds; that is, that the r× rt matrix M [I, :] has a trivial right kernel
over B. We will prove this in Section 4.2.1, but first, we will show how to use Lemma 1 in order to prove
Theorem 3.

Proof of Theorem 3. Suppose without loss of generality that I = {α1, . . . , αr}. Let ζ1, . . . , ζt be any basis of
F over B. We will choose the paramaters δ1, . . . , δr successively so that Lemma 1 applies, and keep track of
the bandwidth of the resulting repair matrix.

Before we begin, we note that this approach—even without keeping track of the bandwidth—would
immediately imply that M is a multiple-repair matrix for I with bandwidth at most (n− r) · r; indeed, for
all i ∈ [n] \ I,

dimB {spanB {set (M [i, :])}} ≤ r,

because set (M [i, :]) =
⋃r
`=1 set (M`[i, :]), and for each ` we have

dimB {spanB {set (M`[i, :])}} ≤ 1.

Then, Theorem 1 implies that this gives a repair scheme for I with bandwidth b ≤ (n− r)r.
The approach above would recover the results of [3] for r = 2, 3 and would generalize them to all r.

However, in fact this calculation may be wasteful, and by choosing the δi carefully we can improve the
bandwidth. More precisely, we will try to choose δi so that the spans spanB {set (M [i, :])} collide, and the
dimension of the union is less than the sum of the dimensions.

Claim 3. Let ` < r and suppose that δ1, . . . , δ`−1 have been chosen. Then for at least |B|t−(`−1)·r+`(`−1)/2−1
choices of δ ∈ F ∗, setting δ` ← δ satisfies

trF/B

(
δ

δj
· αs − αj
αj − α`

)
= 0

for all j < ` and all s > j.

2Since we will never use anything about the ordering of the evaluation points, this assumption is without loss of generality.
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Proof. For each j < ` and s > j, the above gives a linear requirement on δj . There are at most

`−1∑
j=1

(r − j) = (`− 1) · r − `(`− 1)

2

such pairs (j, s), so there are that many linear constraints. Since F is a vector space over B of dimension t,
this proves the claim.

We briefly recall some algebra. For γ ∈ F ∗, the (multiplicative) coset γ ·B∗ is the set

γ ·B∗ = {γ · b : b ∈ B∗} .

We say that γ ≡B∗ γ′ if γ ∈ γ′B∗, and it is not hard to see that ≡B∗ is an equivalence relation that partitions
F ∗ into |F ∗|/|B∗| cosets of size |B∗|. The group of all such cosets form the quotient group F ∗/B∗. The
following observations follow directly from these definitions, as well as the definition of the matrix M`.

Observation 2. Suppose that set (M [i, :]) ⊆ γ1B∗ ∪ γ2B∗ ∪ · · · ∪ γcB∗ for c different cosets γiB
∗. Then

dimB {spanB {set (M [i, :])}} ≤ c.

Observation 3. We have

spanB {set (M`[i, :])} ⊆
(

δ`
αi − α`

)
B∗ ∪ {0} .

Say that (j, `) collide at i if
δj

αi − αj
B∗ =

δ`
αi − α`

B∗.

Notice that (j, `) collide at i if and only if

δ` ∈
(
αi − α`
αi − αj

)
δjB

∗.

Define
S` := {i ∈ [n] \ I : ∃j < k ≤ ` s.t. (j, k) collide at i}.

Consider choosing δ1, ..., δr one at a time. Choose δ1 = 1, and we will proceed by induction on `, assuming
that we have chosen δ1, . . . , δ`, with the inductive hypothesis that

|S`| =
(
`

2

)
· (|B| − 1). (8)

Notice that the base case when ` = 1 is trivially satisfied with δ1 = 1, because S1 = ∅. Now suppose that
the inductive hypothesis (8) holds, and consider choosing δ`+1. For j < `+ 1, define

T `+1
j := {i ∈ [n] : (`+ 1, j) collide at i} .

Notice that T `+1
j depends on the choice of δ`+1, as the definition of colliding depends on δ`+1.

Claim 4. Fix j < `+1. For all but at most r+
(
`
2

)
· (|B|−1) cosets γB∗, the following holds: If δ`+1 ∈ γB∗,

then

(a) |T `+1
j | = |B| − 1, and

(b) T `+1
j ∩ (I ∪ S`) = ∅.

13



Proof. Say γ is good if (
αi − α`+1

αi − αj

)
δj /∈ γB∗ ∀i ∈ I ∪ S`.

That is, γ is good if and only if choosing δ`+1 ∈ γB∗ would mean that (` + 1, j) do not collide at any
i ∈ I ∪ S`. We first claim that there are at most |I ∪ S`| values of γ ∈ F that are not good. This follows

from the fact that the map h : z 7→
(
z−α`+1

z−αj

)
δj is a bijection from F to F . Given this, and the fact that

|I ∪ S`| = |I|+ |S`| = r +
(
`
2

)
· (|B| − 1), we conclude that there are at most r +

(
`
2

)
· (|B|+ 1) choices of γ

that are not good.
Suppose that γ is good, and consider any choice of δ`+1 ∈ γB∗. Since h as defined above is a bijection,

there are |B∗| = |B| − 1 elements αi ∈ F so that(
αi − α`+1

αi − αj

)
δj ∈ γB∗ = δ`+1B

∗,

and so (` + 1, j) collide at i, and by definition T `+1
j is this set. This establishes (a). Now (b) follows from

the definition of good. This completes the proof of Claim 4.

Claim 4 is for a fixed j, and summing over all j ≤ `, it implies that for all but at most ` · (r +
(
`
2

)
(|B| −

1)) · (|B| − 1) choices of δ`+1, we have that for all j = 1, . . . , `, the set T `+1
j satisfies the conclusions (a) and

(b) of Claim 4. We next claim that for such a choice of δ`+1, the sets T `+1
j are disjoint.

Claim 5. Suppose that δ`+1 is chosen so that the conclusion (b) of Claim 4 holds for all j = 1, . . . , `. Then
for all j < k ≤ `, T `+1

j ∩ T `+1
k = ∅.

Proof. Suppose towards a contradiction that i ∈ T `+1
j ∩ T `+1

k . Then by the definition of T `+1
j and T `+1

k ,
(`+ 1, j) and (`+ 1, k) collide at i, which means that

δj
αi − αj

B∗ =
δ`+1

αi − α`+1
B∗ =

δk
αi − αk

B∗.

This implies that j and k collide at i. However, since j, k ≤ `, this implies that i ∈ S`. But this contradicts
the conclusion (b) of Claim 4, which states that S` ∩ T `+1

j = ∅.

Now we finish the proof of Theorem 3. Suppose that δ`+1 is chosen so that the conclusions (a) and (b)
of Claim 4 as well as the conditions of (6) hold for j = 1, . . . , `. By definition we have

S`+1 = S` ∪ T `+1
1 ∪ T `+1

2 ∪ · · · ∪ T `+1
` ,

and by conclusion (b) of Claim 4 and by Claim 5, each of these sets of disjoint. By induction, |S`| =(
`
2

)
(|B| − 1) and by the conclusion (a) of Claim 4 we have |T `+1

j | = |B| − 1 for all j ≤ `. Thus,

|S`+1| = |S`|+
∑̀
j=1

|T `+1
j |

=

(
`

2

)
(|B| − 1) + `(|B| − 1)

=

(
`+ 1

2

)
(|B| − 1).

This establishes the inductive hypothesis for `+ 1.
Now, the requirement that

t >

(
r

2

)
+ log|B|

(
r ·
(
r +

(
r

2

)
(|B| − 1)

)
· (|B| − 1) + 1

)
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or equivalently

|B|(t−(r
2)) − 1 > r ·

(
r +

(
r

2

)
(|B| − 1)

)
· (|B| − 1)

in the statement of the Theorem 3, in conjunction with Claim 3 implies that for all ` < r, we can choose a
δ`+1 so that the conclusions (a) and (b) of Claim 4 as well as the conditions of (6) hold. Now by choosing
δ1, . . . , δr in this way, we conclude by induction that

|Sr| =
(
r

2

)
(|B| − 1).

Since Sr is the set of rows i that have any collisions, each i ∈ Sr contributes at most r− 1 to the bandwidth,
while i ∈ [n] \ (I ∪ Sr) may contribute r. Thus, with this choice of δ1, . . . , δr, the bandwidth of the resulting
scheme is at most(

r

2

)
(|B| − 1)(r − 1) +

(
n− r −

(
r

2

)
(|B| − 1)

)
· r = (n− r) · r −

(
r

2

)
(|B| − 1).

4.2.1 Proof of Lemma 1

In this Section, we prove Lemma 1. Because we have made no claims about the bandwidth, we only need
to show that the sub-matrix M [I, :] has full rank, in the sense that for all nonzero y ∈ Brt, M [I, :]y 6= 0. To
save on notation, for the rest of this proof, let A ∈ F r×rt denote the matrix M [I, :].

As in the proof of Theorem 1, it suffices to show that the B-linear map ϕA : F r → Brt given by

ϕA(x) = trF/B(xTA)

is invertible, where trF/B is applied coordinate-wise. Our proof basically follows from analyzing the LU -
decomposition of this matrix A. That is, we will give an algorithm, consisting of row operations, which
preserve the invertibility of ϕM and after which M will become a matrix of the form

M ′ =



~ζ ∗ ∗ · · · ∗
~0 ~ζ ∗ · · · ∗
~0 ~0 ~ζ · · · ∗

...
~0 ~0 ~0 · · · ~ζ

 , (9)

where ~0 ∈ F t denotes the vector of t zeros and ~ζ = (ζ1, ζ2, . . . , ζt). Recall that ζ1, . . . , ζt is the basis chosen
in the statement of the lemma. The matrix M ′ as in (9) clearly has the desired property (ϕM ′ is invertible),
and so this will finish the proof.

Remark 5 (Picking a basis). In what follows, we just go through the LU decomposition of the matrix A, and
show that the assumption (6) implies that the result has the form (9). Unfortunately, this familiar argument
may seem less familiar because we have not picked a basis for F over B, and are instead working with the
trace functional. If the reader prefers, they may imagine picking a basis for F over B, and working with
square rt × rt matrices over B. However, for this exposition we choose to leave things as they are to avoid
the additional level of subscripts that picking a basis would require.

Given γ ∈ F , define the map fγ : F → F by

fγ(x) = γ · trF/B
(
x

γ

)
.

Then extend fγ to fγ : F rt → F rt by acting coordinate-wise.
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Observation 4. Let A ∈ F r×rt, and suppose that A′ is obtained from A by adding fγ(A[i, :]) to A[j, :], so

A′[j, :] = A[j, :] + fγ(A[i, :])

and for ` 6= j, we have A′[`, :] = A[`, :]. Then
{

trF/B(xTA) : x ∈ F r
}

=
{

trF/B(xTA′) : x ∈ F r
}

. In
particular, ϕA is invertible if and only if ϕA′ is invertible. (As before, above trF/B is applied coordiatewise).

Proof. Given x ∈ F r, consider x′ given by (x′)i = xi + tr(γxj)/γ. Then trF/B(xTA′) = trF/B((x′)TA).

Now consider the following algorithm:

Algorithm LU(A):

A(0) ← A

for j = 1, . . . , r − 1:

for s = j + 1, . . . , r:

A(j)[s, :]← A(j−1)[s, :] + fδj/(αs−αj)(A
(j−1)[j, :])

end for

end for

return A(r).

Because of Observation 4, we see that ϕA(r) is invertible if and only if ϕA is invertible. Moreover, we claim
that, if (6) is met, then A(r) has the form (9). To see this we proceed by induction. Write A = [A1|A2| · · · |Ar],
where Aj ∈ F r×t, and similarly write

A(j) = [A
(j)
1 |A

(j)
2 | · · · |A(j)

r ].

Then the inductive hypothesis is that for all i ≤ j, A
(j)
i is equal to Ai on the first i rows and is equal to

zero otherwise. That is, the first j blocks of A(j) have zeros in the form of (9), and all nonzero entries are
the same as in A. The base case is immediate for j = 0, with the notational assumption that any statement
about M [`, c] for c ≤ 0 is vacuously true.

Now assuming that this holds for j − 1, we establish it for j. First notice that, because of the inductive
hypothesis, the first j − 1 blocks do not change. For block j, and a row s > j, we update

A
(j)
j [s, :]← A

(j−1)
j [s, :] + fδj/(αs−αj)(A

(j−1)
j [j, :]) = Aj [s, :] + fδj/(αs−αj)(Aj [j, :])

again using the inductive hypothesis. By construction, for all w ∈ [t],

Aj [s, w] =
δj

αs − αj
· trF/B(ζw · (αs − αj)/δj).

Then the update is

fδj/(αs−αj)(Aj [j, w]) =
δj

αs − αj
· trF/B

(
αs − αj
δj

·Aj [j, w]

)
=

δj
αs − αj

· trF/B(ζw · (αs − αj)/δj)

= Aj [s, w],

and so Aj [s, w] − fδj/(αs−αj)(Aj [j, w]) = 0 for all s > j. Thus, this operation indeed zeros out all but the
first j rows of Aj .
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Next, consider a block ` > j and a row s > j. We need to show that A
(j−1)
` [s, w] does not change in the

j’th iteration, namely that the update is zero. Now we have, by induction and by definition, respectively,
that

A
(j−1)
` [j, w] = A`[j, w] =

δ`
αj − α`

· trF/B(ζw · (αj − α`)/δ`).

A computation similar to the one above establishes that

fδj/(αs−αj)(A`[j, w]) =
δj

αs − αj
· trF/B(ζw · (αj − α`)/δ`) · trF/B

(
δ`
δj
· αs − αj
αj − α`

)
= 0,

where in the final line we have used (6). This establishes the other part of the inductive hypothesis (that all
other entries remain the same) and this completes the proof.

5 Conclusion

In this work, we have extended the framework of [10] to handle multiple failures, and instantiated this
framework in two ways to give improved results for Reed-Solomon codes with multiple failures. However,
several open problems remain. We highlight a few promising directions below.

1. We have no reason to believe that the bound in Theorem 2 is asymptotically tight. We leave it as an
open question to either obtain an improved construction or a matching lower bound. As a concrete
question, we may ask if it is possible to repair full-length Reed-Solomon codes from r = ω(nR) failures
with nontrivial bandwidth.

2. Our work is restricted to the centralized model for repair of multiple nodes. On the other hand, the
work of [3] obtains results for Reed-Solomon codes for r = 2, 3 in other models where the communication
between the nodes is taken into account when measuring the bandwidth; our framework does not apply
there. Could our techniques be adapted to apply to this model as well?

3. Finally, we have instantiated our framework for full-length RS codes, but it may be interesting in other
parameter regimes as well. Recently, Ye and Barg have given a construction of a Reed-Solomon code
which achieves the cut-set bound for multiple failures [23]; however, the subpacketization is (necessarily)
extremely large. Can we instantiate our framework to obtain RS codes (or other scalar MDS codes)
with repair bandwidth that improves over our scheme, but which still have small (sublinear in n)
subpacketization?
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