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Abstract—Building on the previous work of Lee et al. [2]
and Ferdinand et al. [3] on coded computation, we propose
a sequential approximation framework for solving optimization
problems in a distributed manner. In a distributed computation
system, latency caused by individual processors (“stragglers”)
usually causes a significant delay in the overall process. The
proposed method is powered by a sequential computation scheme,
which is designed specifically for systems with stragglers. This
scheme has the desirable property that the user is guaranteed
to receive useful (approximate) computation results whenever a
processor finishes its subtask, even in the presence of uncertain
latency. In this paper, we give a coding theorem for sequentially
computing matrix-vector multiplications, and the optimality of
this coding scheme is also established. As an application of
the results, we demonstrate solving optimization problems using
a sequential approximation approach, which accelerates the
algorithm in a distributed system with stragglers.

I. INTRODUCTION

Emerging applications from social networks and machine
learning make distributed computation systems increasingly
important for handling large-scale computation tasks. In this
framework, a large computation task is divided into several
smaller sub-tasks, each of which is dispatched to a different
processor. The computation results are then aggregated and
processed to produce the final result. A central challenge
to this approach is how to handle uncertainty caused by
“system noise” (see, e. g. [1]). One notable phenomenon is the
“straggler” effect, namely, the latency of a single processor
could cause a significant delay in the whole computational
task. In existing distributed computation schemes, various
straggler-detecting algorithms have been proposed to mitigate
this problem. For example, Hadoop detects stragglers when
executing the computation. When it detects a straggler, it
runs a copy of the “straggled” task on a different processor.
However, running many replications of subtasks turn out to be
inefficient.

A novel approach to mitigating uncertainty is to add
controlled redundancy in the distributed computation tasks.
Lee et al. [2] proposed a coded computation framework
for computing matrix-vector multiplications in a distributed
system. By using maximum distance separable (MDS) codes
to encode the matrix and distribute smaller computation tasks
to different processors, they show that coded computation can
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derive significant gains over naı̈ve replication methods in terms
of computation time. Based on the same idea, Ferdinand and
Draper [3] proposed a refined coding scheme (called “anytime
coding scheme”) where an approximation of the matrix-vector
multiplication can be obtained in a timely fashion. We point
out that the coded computation scheme has also been extended
to study matrix multiplication problems [4], and is shown to be
useful for reducing the communication overhead in distributed
systems [5]. Furthermore, the idea of using codes in distributed
systems has found various applications in machine learning
problems, as shown in [6] [7] [8].

In this paper, we take a step further in studying how
to tackle optimization problems using a coded computation
approach. Building on the work of [2] and [3], we propose
a sequential approximation method for solving optimization
problems. The basic idea of this approach is that instead of
directly solving the original problem, we solve a sequence of
optimization problems (called approximations), whose solu-
tions gracefully approach the solution of the original problem.
These approximations need to be designed judiciously so that
solving the approximate problems requires less computation
time than solving the original problem. Consequently as we
show in the sequel, in the presence of stragglers, the sequential
approximation method typically takes less time to find the
solution of the original problem. The saving on execution time
is more significant if we only aim to find an approximate
solution to the original problem. An attractive feature of the
proposed method is that the processors in the distributed
system are oblivious to different approximations, making it
a user-centered design.

The driving mechanism for the proposed sequential approx-
imation framework is a so-called coded sequential computa-
tion scheme, designed specifically for distributed computation
systems with latency. It has the desirable property that the
user is guaranteed to receive useful (approximate) computation
results whenever a subset of processors finish their subtasks,
even in the presence of uncertain latency. In this paper, we
focus our study on a coding scheme for sequentially com-
puting matrix-vector multiplication, which is a basic building
block for most algorithms. We then show how to integrate
our coded sequential computation scheme into the sequential
approximation framework in order to accelerate the algorithm
in the distributed computation system.
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II. THE SEQUENTIAL APPROXIMATION METHOD: AN
OVERVIEW

We consider solving an optimization problem of the follow-
ing form

minimize (1/2)xTHx + hTx + g(x) (1)

where H ∈ Rm×m is positive (semi)-definite matrix and
g : Rm 7→ R is a closed, proper and convex function. The
formulation in (1) represents a large class of problems of
interests. For example, choosing g(x) to be the indicator func-
tion1 g(x) = 1x∈K converts problem (1) into a constrained
optimization problem with a qudratic objective function, where
K ⊂ Rn is a convex set. Choosing g(x) to be a norm of x
is also widely used in applications. For example, the choice
g(x) = γ ||x||1 converts (1) to the lasso problem.

Alternating methods [] are efficient optimization methods
used to solve problems of the form (1). The proximal gradient
method [9] and ADMM are two examples of the alternating
methods. For instance, the proximal gradient method update
the variable x as

xk+1 = proxtkg(x
k − tk(Hxk + h)) (2)

where xk and tk denote the variable and the step size in the k-
th iteration, respectively. The proximal operator prox is defined
as

proxtg(v) := argminx(g(x) + (1/2t) ||x− v||22).

The update rule of ADMM is given as

xk+1 = argminx

1

2
xTHx + hTx + ykT (x− zk)

+
tk

2

∣∣∣∣x− zk
∣∣∣∣2
2

(3)

zk+1 = argminzg(z) + ykT (xk+1 − z) +
tk

2

∣∣∣∣xk+1 − z
∣∣∣∣2
2

yk+1 = yk + tk(xk+1 − zk+1)

where y denotes the Langrangian multipler. To solve the first
iteration in (3) using first order methods, we need to compute
Hxk for each steps.

From the above expressions, it can be argued that the
matrix-vector multiplications Hxk is (one of) the computa-
tionally most expensive operations2 in this algorithm for each
step k. With the focus on the matrix-vector multiplication,
we will denote the update rule in (2) or (3) simply as
xk+1 = f(Hxk) in the sequel.

In modern large-scale machine learning problems, the ma-
trix H can be very large so that computing the matrix
multiplication (or even storing the matrix) in one processor
is not feasible. In order to handle such large-scale problems,
we turn to a distributed computation paradigm where the
task of computing Hxk is collaboratively accomplished by

1The indicator function 1x∈K evaluates to 0 if x ∈ K and to∞ if x /∈ K.
2Indeed, for example the proximal operator prox could be very simple for

many problems of interests.

several processors. As discussed in Introduction, the uncer-
tainty (latency for example) of the individual processor could
be detrimental to the distributed computation system and
renders the distributed computation approach unusable. To
alleviate this problem, previous works (e.g. [2] [3] [6]) have
proposed coded computation schemes by adding redundancy
in the computation tasks. We give a very simple example
to illustrate the idea of coded computation. The matrix H
is vertically split into two smaller matrices H1,H2. We use
three processors to store H1,H2,H1+H2 separately, and each
processor performs a smaller matrix-vector multiplication. It
is easy to see that with any two of three multiplicaitons
H1x,H2x, (H1 +H2)x, the user is able to recover Hx. The
same idea can be applied to a general setting with more users.

In this work, we take a step further to combine a coded
sequential computation scheme with a modified algorithm. In
particular, we propose the sequential approximation algorithm
shown in Algorithm 1 for solving the problem in (1). In
contrast to the original algorithm, Algorithm 1 executes a se-
quence of approximated problems (called “approximations”).
Each approximation is in the same form of the original
problem, but with a different choice of the matrix H(r). Notice
that in order to obtain the correct solution in the end, the last
approximation matrix H(R) should be equal to H. Algorithm
1 should possess the following two properties to be useful:

• 1) Executing the approximations f(H(r)x
k) should be

faster than executing the original iteration f(Hxk) in a
distributed system.

• 2) The matrix H(r) approaches the original matrix H as
r increases.

Property 1) ensures the proposed algorithm is faster than the
original algorithm in the approximation phases, and Property
2) guarantees that Algorithm 1 eventually provides a solution
which is close or identical to the solution of the original
problem.

Algorithm 1 A sequential approximation for solving (1). The
function f(·) represents the updating rule in (2) or (3)
Require: H(1), . . . ,H(R) are R matrices which approximate

H with an increasing accuracy.
for k = 1, . . . , T1 do

xk+1 = f(H(1)x
k)

end for . first approx. for T1 iterations
for k = T1 + 1, . . . , T1 + T2 do

xk+1 = f(H(2)x
k)

end for . second approx. for T2 iterations
...
...

for k =
∑R−1
r=1 Tr + 1, . . . ,

∑R
r=1 Tr do

xk+1 = f(H(R)x
k)

end for

An illustration of the sequential approximation approach is



Fig. 1. An illustration of the sequential approximation approach. The black
path on the botten represents the path of xk when the variable is updated using
the exact computation Hx, and the colored “detour” represents the trajectory
using sequential approximation. During the r-th approximation phase, the
variable xk converges to the point x(r)∗, which is the optimal solution
to the optimization problem (1) with H replaced by H(r). The sequential
approximation approach could be faster in a distributed computation system
if each iteration in the “detour” takes less computation time.

given in Fig. 1. The black trajectory on the botten 3 represents
the path of xk when the variable is updated using the exact
computation Hx, and the colored “detour” represents the
trajectory using the sequential approximation method.

Remark 1: It is natural to ask if the sequential approxi-
mation method in Algorithm 1 is already useful in a system
without stragglers, where computing H(r)x takes the same
amount of time as computing Hx. A preliminary investiga-
tion suggests that it will depend on both the algorithm and
the optimization problem (e.g. the condition number of the
matrix). For certain problems, the sequential approximation
approach can indeed provide a better convergence rate even
for systems without stragglers. The results will be reported in
our future work.

III. CODING FOR DISTRIBUTED SEQUENTIAL
MATRIX-VECTOR MULTIPLICATION

A coded sequential computation scheme for the distributed
system is the key mechanism behind the sequential approxima-
tion method. In this section, we formally introduce the coded
sequential computation problem. It can be viewed as a general
problem formulation of the anytime coding scheme studied in
[3].

Consider a system with L processors where each processor
performs a matrix-vector multiplication of the form Bz. The
matrix B is of dimension n×m and z is a m-length vector. Let
A1, . . . ,AL be L matrices prescribed by the user where the
matrix Ai is of dimension ki×m. The goal is to compute the
matrix-vector multiplications Aiz, i = 1, . . . , L for a vector
z using these L processors. To perform the computation in
a distributed manner, L matrices Bi ∈ Rn×m, i = 1, . . . , L

3Notice that the actual trajectory of xk is not necessarily a straight line in
Rn. The plot is only an illustration.

are generated based on the given matrices Ai ∈ Rki×m, i =
1, . . . L, namely

Bi = Ei(A1, . . . ,AL) (4)

where Ei denotes a mapping
∏
j Rkj×m 7→ Rn×m. The

matrix Bi is stored in the i-th processor. To compute the
multiplication, a vector z is given to all processors, and each
processor returns the result yi = Biz to the user when it
finishes the computation. The user then applies a decoder D
to obtain desired multiplications Aiz using the received results
yi. We would like to design our encoders Ei and D such that
the system has the following property.

Property 1 (Sequential computation): With the computa-
tion results from any ` processors (1 ≤ ` ≤ L), y(1) :=
Bi1z, . . . ,y

(`) := Bi`z for some i1, . . . , i` ∈ [L], the user
can recover A1z, . . . ,A`z where Ai ∈ Rki×m.

Fig. 2. An illustration for distributed sequential matrix-vector multiplication.
L matrices B1, . . . ,BL are generated based on the prescribed matrices
A1, . . . ,AL. The user first sends a vector z to all processors (top). Whenever
a processor returns the computation result Bi`z, the user can recover an
additional matrix-vector multiplication A`z (bottom), ` = 1, . . . , L.

Figure 2 gives an illustration of the sequential computation
scheme of the distributed computation system. If a coding
scheme satisifes the above sequential computation property,
the corresponding value (k1, . . . , kL) is called a feasible
configuration. The question is that given a distributed com-
putation system with parameters (L, n)4, what are the feasible

4As we shall see, the parameter m can be chosen arbitrarily.



configurations (possible values of k1, . . . , kL), and how do we
design the encoders Ei and the decoder D for such a system.

This sequential computation scheme is useful for distributed
computation systems with stragglers because it guarantees that
any finished processor will provide useful results. Moreover,
we could choose the matrices such that Aiz is more crucial
than Ajz for our application if i ≤ j, such that “more
important” results are received earlier. As pointed out in [3],
this coding scheme can also be viewed as an approximation
method for computing the multiplication Az, where the accu-
racy increases gradually as more and more processors finish
their tasks.

A. The coding scheme

In this section, we give a coding scheme for the sequential
distributed matrix-vector multiplication problem. This scheme
is a generalization of the MDS codes based scheme used in
[2], and uses essentially the same idea as in [10] (multiple
description coding) and [3].

Coding scheme: For each i, we divid the matrix Ai

vertically into at most bki/ic+ 1 submatrices as follows

A
(1)
i :=

Ai,1

...
Ai,i

 ,A
(2)
i :=

Ai,i+1

...
Ai,2i

 , . . . ,

A
(bki/ic)
i :=

Ai,bki/ic(i−1)+1

...
Ai,bki/ici

 ,

A
(bki/ic+1)
i :=

 Ai,bki/ic+1

...
Ai,bki/ic+mod(ki,i)


where Ai,j denotes the j-th row of the matrix Ai. In the case
when i divides ki, we do not have the last matrix A

(bki/ic+1)
i .

For each matrix A
(j)
i ∈ Ri×m where j = 1, . . . , bki/ic,

we encode its rows to form a new matrix Ã
(j)
i ∈ RL×m.

Particularly, we use a systematic MDS code, such that the
first i rows of Ã

(j)
i is identical to A

(j)
i , and the last L − i

rows are linear combinations of the rows of A
(j)
i (i.e.,

parity checks). If i does not divide ki, the rows of the
last matrix A

(bki/ic+1)
i ∈ Rmod(ki,i)×m is encoded with an

(L− i+mod(ki, i),mod(ki, i)) MDS code into a new matrix
Ã
bki/ic+1
i ∈ R(L−i+mod(ki,i))×m.
The matrices Bi are generated using the encoded matrices

Ã
(j)
i . More precisely, each matrix Bi contains exactly one

row of the matrix Ã
(j)
i , for j = 1, . . . , bki/ic and for all

i = 1, . . . , L. If we have the extra matrix Ã
bki/ic+1
i for certain

i, its L− i+mod(ki, i) rows are distributed to arbitrary L−
i+mod(ki, i) matrices Bi.

Example: We apply the above coding scheme to a system
with parameters L = 4, n = 3, and the configuration (k1 =
0, k2 = 3, k3 = 3, k4 = 1). There are three matrices A2 ∈
R3×m,A3 ∈ R3×m and A4 ∈ R1×m to encode (A1 is zero

in this case). The proposed coding scheme generates matrices
Bi as follows:

B1 =

A21

A23

A32

 ,B2 =

A22

A23

A33

 ,B3 =

 A21 + A22

A23

A31 + A32 + A33

 ,

B4 =

A21 + A22

A31

A4

 .

It can be checked that we can recover A2z if we have
Biz,Bjz for any i, j, recover A3z if we have Biz,Bjz,Bkz
for any i, j, k and recover A4z with all the compuation results.

Theorem 1 (Coding scheme): Consider the distributed se-
quential matrix-vector multiplication problem with parameters
(n,L). The configuration (k1, . . . , kL) is feasible if it satisfies

L∑
i=1

si ≤ nL (5)

where si is defined as

si :=

{
ki
i L i divides ki
bkii c · L+ L− i+mod(ki, i) otherwise

(6)

Proof: The proof is given in Appendix.
Remark 2: We point out that this result is a generalization

of the coding scheme using a single MDS code proposed in
[2], which can be seen as a special configuration with (k1 =
0, . . . , k`−1 = 0, k` = `n, k`+1 = 0, . . . , kL = 0) for some `.

Remark 3 (Complexity of decoding): With the computation
results from ` processors, the decoding process at the user is
equivalent to solving a linear system of at most n` unknowns,
which does not depend on m (number of columns of the
matrices). Hence this coding scheme is most beneficial for
computing matrix-vector multiplications when the number of
rows of matrices is very large. Moreover, using MDS codes
with special structures (Reed-Solomon codes for example), the
decoding process is often much simpler than solving a generic
linear system.

We can show that if we restrict ourselves to linear coding
schemes (i.e., the encoder in (4) is a linear function of
A1, . . . ,AL), then the coding method in Section III-A is the
best possible. This result establishes the optimality of our
coding scheme in the previous section.

Theorem 2 (Converse for linear schemes): Consider the
distributed sequential matrix multiplication problem with
parameters (n,L). Under linear coding schemes, any feasible
configuration (k1, . . . , kL) must satisfy the constraint (5).

Proof: The proof is given in Appendix.

IV. THE SEQUENTIAL APPROXIMATION METHOD:
EXAMPLES

Equipped with the coded sequential computation scheme
described in Section III, the sequential approximation method
in Algorithm 1 can be implemented where the matrix-vector
multiplication H(r)x

k is computed in a sequential manner. We



demonstrate this method by considering the Lasso problem in
its standard form

minimize
1

2
||Fx− b||22 + γ ||x||1 (7)

for a matrix F ∈ Rw×m and γ ≥ 0. This corresponds to the
optimization problem in (1) by identifying H = FTF,h =
FTb and g(x) = γ ||x||1. The corresponding proximal gradi-
ent method for this problem is given by

xk+1 = Sγ(xk − tk(FTFxk − FTb)) (8)

where Sγ(x) is the soft-thresholding operator defined as

Sγ(x) =


xi − γ xi ≥ γ
0 |xi| ≤ γ
xi + γ xi ≤ −γ

.

For this problem, the soft-thresholding operator is very simple,
and the most computationally expensive step in the algorithm
is the matrix-vector multiplication FTFxk for each step k.

A. Approximations

Instead of computing FTFxk at each step k, we use the
proposed sequential distributed computation scheme. Similar
to [2], we frist focus on computing the term Fxk. Using Al-
gorithm 1 to solve the above problem requires a specification
of F(r). A priori, F(r) could be chosen in any way, as long as
the multiplication F(r)x

k requires less computation than Fxk.
Similar to [3], in this paper we choose F(r) to be a low rank
approximation of F using singular value decomposition:

F = UΣVT =

d∑
i=1

σiuiv
T
i

where σ1 ≥ σ2 ≥ . . . ≥ σd denote the singular values of F
with rank d. ui ∈ Rw,vi ∈ Rm are the i-th column of U and
V, respectively. In particular, we choose F(r) as

F(r) :=

rank(F(r))∑
i=1

σiuiv
T
i (9)

for some 1 ≤ rank(F(r)) ≤ d. Namely F(r) captures the
largest rank(F(r)) singular values of F.

Define A1 := [vT1 ; . . . ;vTk1 ] ∈ Rk1×m,A2 :=
[vTk1+1; . . . ;vTk1+k2 ] ∈ Rk2×m, . . . ,AL :=
[vTd−kL+1; . . . ;vTd ] ∈ RkL×m for a chosen configuration
(k1, . . . , kL) which satisfies the condition (5). Using the
coding scheme described in Section III-A, we generate L
matrices B1, . . . ,BL ∈ Rn×m based on A1, . . . ,AL for the
L processors.

Algorithm 2 Subroutine for computing F(r)x
k: processor i

Require: Bi is the encoded matrix stored in processor i
1: Receive an input vector xk

2: Compute yi := Bix
k

3: Send yi back to the user

Algorithm 3 Subroutine for computing F(r)x
k: user

1: Send a vector xk to all processors
2: Wait until ` processors finish, where

∑`
i=1 ki ≥

rank(F(r))
3: Decode F(r)x

k using yi1 , . . . ,yi` from ` processors

When executing the algorithm, the vector xk is given
to all processors at each time step k. The coding scheme
guarantees that with the computation results yi := Bix

k from
any ` processors (1 ≤ ` ≤ L), the user can recover the
multiplication result

t` :=

A1

...
A`

xk =

vT1
...

vTh`

xk ∈ Rh` (10)

where we define h` :=
∑`
i=1 ki. An extra multiplication gives

F(r)x
k:

[σ1u1, . . . , σh`
uh`

]t` =

h∑̀
i=1

σiuiv
T
i x

k = F(r)x
k (11)

where rank(F(r)) = h` in this case. We point out that
in the lasso problem, the matrix F in general has much
more columns than rows, hence the above multiplication (11)
takes less computation. Moreover, it can also be done using
the distributed system in a similar way. By treating F(r)x

k

as the vector to be multiplied, the user can distribute the
multiplication FT(r)F(r)x

k in the same way. Hence there are
two computation steps for each iteration. We omit the details
of the second step in this paper.

The subroutines for processors and for the user are given
in Algorithm 2 and Algorithm 3, respectively. We point out
that the subroutine for processors does not change for different
approximation level (different F(r)), and only the user needs to
adjust its procedure to adapt to different approximation levels.

B. Computation time
As mentioned in Section II, the reason for adopting the

sequential approximation method is that it is faster to obtain
a low rank approximation F(r)x

k than obtaining the exact
answer Fxk in a distributed system with stragglers. More
precisely, let Ti denote the random computation time of
processor i and let T(`) denote the `-th order statistic, i.e.

T(`) := `-th smallest of {T1, . . . , TL}.

The time for recovering the result F(r)x
k is given by T(`)

where ` satisfies ∑̀
i=1

ki ≥ rank(H(r)),

while computing the exact answer Fxk requires time T(`′)
where `′ satisfies

`′∑
i=1

ki ≥ rank(F).



Notice that we always have ` ≤ `′. In a distributed system
with stragglers, T(`′) could be significantly larger than T(`) if
`′ is larger than `.

In summary, although Algorithm 1 starts with “incorrect”
iterations with approximation matrices F(r), the computation
time for those iterations are shorter than using the exact matrix
F. If we choose approximations F(r) judiciously (approaching
F gradually), the variable xk will approach the optimal
solution, but with a shorter computation time.

C. Choices of parameters

There are many free parameters to choose for the sequential
approximation algorithm, including the approximation matri-
ces F(r), the number of different approximation levels R, and
the number of iterations Tr, r = 1, . . . , R. They should be
chosen in a way such that the algorithm can be implemented
with the given system parameters (L, n). In other words,
if we choose F(r) as in (9), there should exist a feasible
configuration (k1, . . . , kL) which both satisfy condition (5)
and the condition

`(r)∑
i=1

ki ≥ rank(F(r)) (12)

for every r = 1, . . . , R with some `(r) ∈ [1 : L] satisfying
`(r1) ≥ `(r2) if r1 ≥ r2. Recall that these choices will affect
the running time of each iteration as shown in Subsection
IV-B, hence we could optimize the overall execution time with
respect to these parameters.

More importantly, choosing F(r) as (9) is only one way
to approximate the matrix F. There may exist other choices
of F(r) which provide a better convergence performance. The
problem of choosing good approximations will be addressed
in the future work.

D. Numerical results

In this section, we present numerical results to demonstrate
the sequential approximation method with the Lasso problem
in (7). Specifically, we consider the proximal gradient algo-
rithm in (8).

As a toy example, we assume that the distributed system
has 4 processors where each processor can compute a matrix-
vector multiplication Bz with B ∈ R10×m, namely (L =
4, n = 10). The F matrix in the Lasso problem has dimension
38 ×m with rank 38 and m = 500. In our simulations, the
matrix F is chosen randomly, and the regularization coefficient
γ is chosen to be 5. The computation time of each processor is
assumed to have an exponential distribution with the density
function p(x) = λ exp(−λx) with the choice λ = 1.

Example 1: We use two approximation levels where
F(1),F(2) are chosen according to (9) with rank(F(1)) = 6
and rank(F(2)) = 38 (i.e., F(2) = F). It can be checked
straightforwardly this particular choice can be implemented
with a feasible configuration (k1 = k2 = 0, k3 = 6, k4 = 32).
With this choice, the matrix-vector multiplication F(1)x

k is
obtained when three processors finish their tasks. It can be
seen that if the user needs the exact result Fxk, he must wait

Fig. 3. Numerical results for Example 1, showing the normalized subop-
timality

∣∣∣∣xk − x∗
∣∣∣∣ / ||x∗|| verses overall computation time. The solid line

denotes the sequential approximation algorithm and the dashed line denotes
the original proximal gradient method. A black circles denotes the end of
one approximation level. To reach a normalized suboptimality 10−3, the
sequential approximation is roughly 30% faster than the original algorithm.

Fig. 4. Numerical results for Example 2, showing the normalized subop-
timality

∣∣∣∣xk − x∗
∣∣∣∣ / ||x∗|| verses overall computation time. The solid line

denotes the sequential approximation algorithm and the dashed line denotes
the original proximal gradient method. In this example, the algoritm never
uses the exact matrix F, hence xk does not converge to the optimal solution
of the original proble, but an approximate soultion with a suboptimality 0.1.
In this case, the sequential approximation algorithm is almost two times faster
than the original algorithm to reach this suboptimality.

for all four processors to finish. It can be calculated that the
average waiting time for three processors is approximately
1.08, while the averate waiting time for four processors is
2.08. The performance of the algorithm is given in Figure 3.

Example 2 (approximate solution): This approach is also
useful when we only aim to obtain an approximate solution
of the problem. In this example we execute the sequential ap-
proximation algorithm with two levels of approximation where
rank(F(1)) = 5 and rank(F(2)) = 15. This is implemented
with a configuration (k1 = 5, k2 = 10, k3 = 0, k4 = 0). In



other words, the user can recover F(1)x
k when any processor

returns the result and can recover F(2)x
k when any 2 pro-

cessors return the results. The average waiting time for one
processor is approximately 0.25 and the average waiting time
for two processors is approximately 0.58. Notice that in this
case, the sequential approximation algorithm cannot converge
to the true minimizer since it does not use the exact matrix F
in any level. Nevertheless the simulation results show that it
gives a fairly good approximate solution. The performance of
the algorithm is given in Figure 4.

V. APPENDIX

Proof of Theorem 1: It is easy to see that each
matrix Ai is encoded into at most bki/ic + 1 matrices
Ã(1), . . . , Ã(bki/ic+1), whose total number of rows sums up
to si as defined in (6). Hence all the encoded data can be
accommodated in the L matrices if it satisfies

∑L
i=1 si ≤ nL.

Now we argue that this coding scheme possesses the se-
quential property in Property 1. Since the rows of A

(j)
i , j =

1, . . . , bki/ic are encoded with an (L, i) MDS code into the
matrix Ã

(j)
i , it is to see that any i entries of the matrix-vector

multiplication Ã
(j)
i x allow us to recover A

(j)
i x. Recall that

each row of Ã(j)
i is distribtued to one processor, hence if i pro-

cessors return the their matrix-multiplication results, the user
can recover A(j)

i x, and this holds for all j = 1, . . . , bki/ic.
If i does not divide ki, we have the extra matrix

A
(bki/ic+1)
i whose rows are encoded using an ((L − i +

mod(ki, i),mod(ki, i)) MDS codes into Ã
(bki/ic+1)
i with

(L − i + mod(ki, i) rows, and each row is distrbued to one
processor. It can be seen that any i processors will contain
at least mod(ki, i) rows of Ã

(bki/ic+1)
i . Indeed, there are

i − mod(ki, i) processors which do not store any row of
Ã

(bki/ic+1)
i . The worst case is when a subset of i proces-

sors include all the processors which do not contain rows
of Ã

(bki/ic+1)
i . Even in this case, we have the remaining

mod(ki, i) processors which contain rows of Ã
(bki/ic+1)
i .

This shows that it is always possible to recover A
(j)
i x, j =

1, . . . , bki/ic and A
(bki/ic+1)
i x (hence Aix) with any i pro-

cessors. This argument holds for all i, i = 1, . . . , L and thus
concludes the proof.

Proof sketch of Theorem 2: We will only consider linear
coding scheme in this paper where the matrix Bi is a linear
function of matrices A1, . . . ,AL. It can be argued that, any
linear coding scheme can be reduced to a scheme where each
row of Bi only consists of rows of one matrix Ai (as shown
in the Example in Section III-A). In other words, any linear
scheme can be equivalently implemented as

Bi = Gi

A1

...
AL

 (13)

where Gi ∈ Rn×
∑L

i=1 ki is of the form

Gi =


Gi,1 0 . . . 0
0 Gi,2 . . . 0
...

...
...

...
0 0 . . . Gi,L


for some Gi,j ∈ Rnj×ki where

∑L
j=1 nj = n.

Since each row of B` is used for encoding only one matrix
Ai, we use ni,` to denote the number of rows used for
encoding Ai in processor ` (which contains B`). Let si be the
number of rows used for the matrix Ai across all L processors,
i.e., si =

∑L
`=1 ni,`. Now we show that in order to have a valid

coding scheme for the distributed storage problem, si should
satisfy

si ≥

{
ki
i L i divides ki
bkii c · L+ L− i+mod(ki, i) otherwise

which matches the achievable coding scheme in (6).
First notice that in order to recover Aiz using any i

processors, a necessary condition on ni,` is∑
`∈T

ni,` ≥ ki (14)

for any subset T ⊆ [L] with |T | = i, simply because Aiz
has length ki. Hence a lower bound ŝi on si is given by the
following optimization problem

minimize ŝi :=

L∑
`=1

ni,` (15)

s . t.
∑
`∈T

ni,` ≥ ki for all T ⊆ [L] with |T | = i

ni,l ∈ Z for all ` ∈ [L] (16)

If we ignore the integer constraint on ni,`, it is easy to see
that the optimal solution to the relaxed linear programming
problem is given by

n∗i,` = ki/i for all ` ∈ [L]

and the lower bound ŝi is equal to Lki/i. In the special case
when i divides ki, the optimal solution n∗i,` is an integer hence
is also an optimal solution to the original problem (15). This
shows that we have si ≥ ŝi = Lki/i if i divides ki.

If i does not divide ki, it can be argued that, due to the
complete symmetry of the problem (15), the optimal solution
of the integer programming problem (15) satisfies

n∗i,` = dki/ie or n∗i,` = bki/ic for all ` ∈ [L]

Moreover, at most α := i−mod(ki, i) among the L processors
are allowed to dedicate bki/ic rows to ai, and all other
processors must dedicate dki/ie rows to Ai. Indeed, if we
have n∗i,` = bki/ic for all ` ∈ T ′ ⊆ [L] for some set T ′ with



|T ′| = α+ p for some p ≥ 1, then for a set T ⊇ T ′ we have∑
`∈T

ni,` =
∑
`∈T ′

ni,` +
∑

`∈T \T ′

ni,`

= (α+ p)bki/ic+ (i− (α+ p))(bki/ic+ 1)

= ibki/ic+mod(ki, i)− p
< ibki/ic+mod(ki, i) = ki,

hence not be able to recover Aiz. We conclude that ŝi must
satisfy

ŝi =

L∑
`=1

ni,` ≥ αbki/ic+ (L− α)(bki/ic+ 1)

= Lbki/ic+ L− i+mod(ki, i)

This shows a lower bound on si for the case when i does not
divides ki.
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